
Modular Open Robots Simulation Engine: MORSE

Gilberto Echeverria and Nicolas Lassabe and Arnaud Degroote and Séverin Lemaignan

Abstract— This paper presents MORSE, a new open–source
robotics simulator. MORSE provides several features of interest
to robotics projects: it relies on a component-based architecture
to simulate sensors, actuators and robots; it is flexible, able to
specify simulations at variable levels of abstraction according
to the systems being tested; it is capable of representing a
large variety of heterogeneous robots and full 3D environments
(aerial, ground, maritime); and it is designed to allow simu-
lations of multiple robots systems. MORSE uses a “Software-
in-the-Loop” philosophy, i.e. it gives the possibility to evaluate
the algorithms embedded in the software architecture of the
robot within which they are to be integrated. Still, MORSE
is independent of any robot architecture or communication
framework (middleware).

MORSE is built on top of Blender, using its powerful
features and extending its functionality through Python scripts.
Simulations are executed on Blender’s Game Engine mode,
which provides a realistic graphical display of the simulated
environments and allows exploiting the reputed Bullet physics
engine. This paper presents the conception principles of the
simulator and some use–case illustrations.

I. INTRODUCTION

Robotics systems are becoming highly complex and so-

phisticated, with an increasing number of hardware and

software components. There is also an increasing variety

of tasks involved in performing robotics experiments, which

induces much time and resources for validation. The use of a

simulator can ease the development and validation processes,

allowing to verify the component integration and to evaluate

their behaviour under different controlled circumstances.

Roboticists are currently paying a lot of attention to the

development of robotics simulation, as shown in recent

workshops [1] and conferences [2].

Simulation is cheaper in terms of time and human re-

sources than experiments with real robots. It can also provide

more flexibility, by allowing testing under conditions that

would be unfeasible otherwise: a simulated environment

can be significantly more complex and larger than a lab

environment, and meanwhile ensure a perfect repeatability.

Another advantage is the possibility of simulating multiple

robots when the hardware may not be available.

In robotics, we can distinguish two main types of simula-

tors. Those restricted to the validation of a specific kind of

component, e.g. the processing of data provided by a given

G. Echeverria is with RTRA STAE, 23 avenue Edouard Belin, 31400
Toulouse, France gechever@laas.fr

N. Lassabe is with ONERA Centre de Toulouse – DCSD, 2 avenue douard
Belin, F-31055 Toulouse, France nicolas.lassabe@onera.fr

A. Degroote and S. Lemaignan are with CNRS, LAAS, 7 av-
enue du colonel Roche, F-31077 Toulouse, France and Université de
Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France
adegroot@laas.fr and slemaign@laas.fr

(a) A mobile robot in an indoor scene (b) A helicopter and two mobile
ground robots outdoors

Fig. 1: Screenshots of the MORSE simulator.

sensor or path planning for a particular kinematic system

[3], [4], [5]; such simulators are highly specialised (“Unitary

Simulation”). On the other hand, some applications require

a more general simulator that can allow the evaluation of

a robot at the system level, i.e. represent all aspects of a

robot as a whole [6]. MORSE belongs to the latter kind of

simulators, which are more versatile, flexible and reusable.

This paper presents the architecture of the MORSE simula-

tor, jointly developed at LAAS and ONERA. It is built on top

of the Blender software and is intended as a general purpose,

modular system simulation of multiple moving robots in

any kind of environment (Fig. 1), and provides a library

of configurable components that can be interconnected to

create any robot configuration. The outline of the paper is as

follows: the motivations and requirements for the develop-

ment of another robotics simulator are stated in Section II.

Section III presents the overall architecture of the simulator

and its components. Section IV shows the current state of

MORSE development, while planned future developments

are presented in Section V. Finally Section VI provides a

general discussion on the MORSE simulator.

II. MOTIVATIONS – REQUIREMENTS

Various commercial robotics simulators are already avail-

able [7], [8], [9], [10], as well as open-source [11], where the

most popular are Player/Stage [12] and Gazebo [13]. These

projects are currently limited in terms of system simulation of

robots in a realistic 3D environment. The MORSE simulator

is an open-source application (BSD-3 clauses) that can be

used in different contexts for the testing and verification of

robotics systems as a whole, at a medium to high level of

abstraction. It is not meant to replace dedicated simulators for

very specific purposes. One of the main interests of creating

a new simulator is making it reusable by researchers and

engineers: MORSE is being developed as part of multiple

projects, each with different restrictions and requirements,

but all related with multiple robot interaction and coopera-

tion, as well as human–robot interaction. The projects require

the representation of heterogeneous robots, each with their

own set of capabilities. For this reason the design of MORSE

must be completely modular, as in many other modern

simulators. Another strong requirement for the simulator is

that it must be capable of interacting with any middleware

used in robotics, and not impose a format that others must

adapt to. MORSE is designed to handle the simulation of

several robots simultaneously, as a distributed application

where the robotics software being evaluated can run on the

same or a different computer as the simulation.

A. Simulation based on Blender

Blender [14] is an open source 3D modelling and ren-

dering application whose main purpose is the creation of

computer generated images and animations. Though it is not

designed as a tool for simulation, it provides many features

that facilitate the development of such an application. There

exists already a community of robotics researchers who use

Blender for some simulations [15], and there is a drive to

improve on this functionality.

The most obvious advantage of using Blender is the high

level of graphical detail that can be achieved in real time,

thanks to the advanced modelling of meshes, and effects

such as texturing, lighting and shaders. The visual aspect is

important when simulating robotic vision, since the images

captured in the virtual world can be realistic enough (see

Fig. 1) to be processed with the same algorithms as real

images. Blender also offers the capability of using several

camera views to follow the evolution of the simulation,

displaying a global view of the scenario, as well as views

from each of the cameras on–board the various robots.

Blender provides the tools necessary to model robots and

scenarios with as much detail as required. Furthermore, it

also gives immediate access to the Bullet engine for physics

simulation. The interface with the modelled objects is already

integrated, and the physical properties of objects can be

specified in control panels. These properties include the

mass and friction of an object, its bounding box to detect

collisions, its interaction with other objects and the force of

gravity in the virtual world. The recent Blender 2.5 version

incorporates the iTasC Inverse Kinematics solver [16], which

permits the use of IK armatures in the Game Engine, useful

for simulating robotic arms and humans.

The element in Blender that permits the development of

an interactive simulation is the Game Engine (GE) mode. It

provides the user with a flexible graphical interface (called

the Logic Bricks) to script behaviour to objects in the scene,

and to define variables (called Logic Properties) associated

with the same objects. One of the Logic Bricks also permits

the use of Python scripts which can interact with the Blender

world though a dedicated API. Additional modules can also

be programmed in Python or C/C++ using SWIG wrappers.

For all the advantages of using Blender, there is also the

drawback of having to understand its (non-trivial) interface,

Fig. 2: Simulation of a trajectory following process at two

different levels of abstraction. Left: low abstraction simula-

tion, giving linear and angular velocities for the movement.

Right: higher abstraction simulation, using a direct destina-

tion coordinate.

as well as the additional computational overhead of using a

software for a purpose different that expected.

B. Simulation at different levels of abstraction

We aim at defining a simulation infrastructure that can

be exploited to develop and validate a wide spectrum of

robotics functionalities, ranging from the simplest ones, e.g.

navigation in a flat environment, to complex scenarios that

involve a fleet of heterogeneous robots, e.g. aero-terrestrial

teams. For such purposes, the simulator should be able

to work at various levels of abstraction. A realistic (non-

abstract) simulation produces exactly the same data as the

sensors of the actual robot, and accepts actuator commands

as they are sent to the robot, whereas a more abstract

simulation produces and/or accepts higher level data and

commands. Letting the user the possibility to simulate a

robot at various levels of abstraction is essential, as it allows

him to specify the functions he wants to simulate and the

ones he wants to evaluate. For instance, when evaluating

a high level algorithm, it is not necessary to worry about

lower level actions, and an abstract simulation is sufficient.

Fig. 2 and 3 illustrate this point for actuators and sensors,

respectively. They show two possible separations between the

virtual environment and its data (simulation) and the robotics

software to be tested (evaluated software).

C. “Software-in-the-Loop”

MORSE is designed to interact directly with the eval-

uated software exactly as it is, without the need of any

modifications to the software. This philosophy takes after

“Hardware-in-the-Loop” simulations, in which the evaluated

components are run on the target hardware and interact with

the simulator with the very same protocols than the ones

of the actual robots sensors and actuators [17], in order to

make the shift from simulations to actual experiments totally

transparent. “Software-in-the-Loop” means that when linked

with the simulator, the evaluated components are embedded

in the same target architecture than the considered robot:

MORSE can link with the evaluated software layer by the use

of any middleware, as explained in the next section. MORSE

is nevertheless independent of any middleware, and can

be used in scenarios involving simultaneously robots with

different software architectures: contrary to some simulation

schemes (e.g. [18]), MORSE is not tied to any specific robot

middleware or software architecture.

Fig. 3: Simulation of the perception of a 3D scene at two

different levels of abstraction. Top: the simulation produces

an image pair (as a stereo vision bench would) that is further

processed “on–board the robot” to produce a 3D vector rep-

resentation of the perceived scene. Bottom: a more abstract

simulation directly produces the 3D representation directly

from the Blender geometry. In this latter case, a “noise

function” within the simulator reproduces the imperfect data

generated by the stereo vision process.

III. OVERALL ARCHITECTURE

A. Modular design

MORSE, while dedicated to robotic simulation, relies on

the Blender approach of file composition to build simulated

scenes: one scene can reference a Blender object stored

in other file. When the original object is updated, this is

in turn reflected in all scenes that depend on this asset.

MORSE makes use of this modular philosophy, providing a

library of simple components that can be assembled together

with others. Each MORSE component consists of a Python

and a Blender file: The Python file defines an object class

for the component type, with its state variables, data and

logical behaviour (methods). All components extend from

an abstract base MorseObjectClass that defines: the

3D position and orientation relative to the origin of the

Blender world, a local data dictionary with the infor-

mation the component must share with other elements and a

basic default action method that individual subclasses

must implement according to their functionality. Sensors and

actuators have also a reference to the robot they are attached

to, and the relative position/orientation with respect to it.

The base class also provides lists of additional functions

that can be added dynamically to the components during

runtime to extend their basic functionality. The Blender file

specifies the visual and physical properties of the object

in the simulated world. The complexity of the component

meshes can vary from a simple cube to a complete robotic

arm of multiple segments. The physical properties include

colour, texture, dynamic properties like friction or mass,

and possibly other data like simplified bounding box models

for collision detection. The Blender file holds as well the

overall component logic (expressed with the so-called Logic

Bricks) that binds Python methods to events generated in

the Blender world. Every component has variables (Logic

Properties) indicating its kind, and the Python file that

provides its class and functionality.

There are currently three different kinds of robotics com-

ponents defined in MORSE.

• Sensors: Recover data from the simulated world, emu-

lating the functionality of the real sensors by using the

logic functionality of the GE.

• Actuators: Produce actions upon the associated robots

or components. In particular, actuators move the robots

based on a given parameter: destination coordinates

or linear/angular velocities. Other actuators can affect

other components, such as the position of arms or pan-

tilt units on robots.

• Robots: The platforms where sensors and actuators are

mounted. They also define the physical properties (size,

weight, friction, mobility, collision bound) of the virtual

robot. Robotic arms are also included in this category.

These are composed of several segments that can be

articulated and that have special actuators.

Besides those, three other classes of components are

available:

• Scenes: Modelled environments where the robot will

interact during the simulation. MORSE provides some

examples like a outdoor scene with trees and buildings

or a furnished indoor room (see Fig. 1). MORSE scenes

are simple Blender scenes and any previously modelled

environment can be reused.

• Middlewares: Communication channels between the

simulator and the evaluated software are set up through

special Blender objects that take care of the bindings

with the simulated sensors and actuators.

• Modifiers: Simulated sensors produce “perfect data”,

with very accurate measures taken from the virtual

world. This is never the case in the real world, where

some sort of noise is always present in the data. It

is possible to add Modifiers that encapsulate functions

to alter the data produced by the simulator, typically

noise functions. These modifiers expose methods that

are inserted in the data flow between the simulation and

the evaluated software.

B. Integration with middlewares

Middlewares are an intermediate layer between different

software systems that enables them to communicate and

share data. Various middlewares are used in robotics, such as

YARP [19], ROS [20], Pocolibs [21] and others [22], [23],

[24]. While middlewares are designed to connect separate

components, if an element is highly coupled with a given

middleware, then it becomes difficult to reuse it in a different

environment. For this reason, components should be designed

to be middleware–independent.

The philosophy of MORSE is influenced by another

software package used at LAAS: GenoM 3 [25]. It is a tool

to generate software modules that can be compiled with any

middleware. This permits keeping the code of a component

Fig. 4: The data flow between components of the simulator.

completely separated from the middleware, and only bound

to it when it is necessary. Once a module has been generated,

it can be connected to the rest of the robot software, and

exchange data by means of data structures and requests.

MORSE components (sensors or actuators) store the data

they use in the Python dictionary local data. However,

to be middleware independent, they do not provide any

functionality destined to share their data with other programs

outside of Blender. We implement a mechanism called hook

to dynamically add middleware bindings when necessary.

The mechanism consists on adding methods to the compo-

nent instances during runtime, thanks to the dynamic nature

of Python. These methods must access the local data

dictionary and prepare the data to be sent in the format

required by the corresponding middleware. Fig. 4 shows the

data flow of the sensor and actuator components using hooks

to share data with external applications.

The binding of specific components and middlewares

in a simulation scene is defined in a script called

component config.py, inside the Blender file for the

scene. The script consists of a Python dictionary listing the

components, the middleware and the method each will use

(See example below). When the simulation is started, this

file is read, and the methods listed are added to the class

instance of the components.

component mw = {
” M o t i o n C o n t r o l l e r ” : [” S oc ke t ” , ” r e a d m e s s a g e ”] ,

”GPS” : [” Yarp ” , ” p o s t m e s s a g e ”] ,

” Gyroscope ” : [” Text ” , ” w r i t e d a t a ”] ,

”PTU” : [” P o c o l i b s ” , ” w r i t e v i a m ” ,

” morse / midd leware / p o c o l i b s / s e n s o r s / viam ”] ,

” S i ck ” : [” Yarp ” , ” p o s t s i c k d a t a ” ,

” morse / midd leware / ya r p / s i c k ”] , }

Thanks to this hook mechanism, MORSE can run several

middlewares in parallel: one robot could be controlled with

YARP with one of its sensors logged through a socket, while

another robot is managed by a software running Pocolibs.

MORSE middleware modules are considered as optional

plug–ins. An instance of them is created if necessary, with the

initialization routine specific to each. They also implement

the basic data serialisation necessary to transfer information

to external software. To simplify deployment, each middle-

ware module provides a default, basic data serialization for

the common data types. For more complex data (as is the

case for images, arrays or other structures) an additional

module must be included that will define the specific se-

rialisation necessary for each data structure. In its current

version, MORSE has support for YARP, Pocolibs, ROS, raw

sockets and a dummy text-based input/output mechanism

(useful for creating logs). Modifiers also make use of the

hook mechanism to add noise or otherwise alter the data of

each component. Currently there exists modifiers that can

generate gaussian noise, and others that convert coordinates

to UTM (Universal Global Mercator) used by GPS systems

or transform the reference system of the X, Y and Z axis

from ENU (East, North, Up) to NED (North, East, Down).

C. Construction of a simulation scenario

Building a complete simulated robot in MORSE involves

the creation of a new Blender file, with the robot mesh and

its components linked from external individual Blender files.

The sensors and actuators must be set as children of the

robot, so that they will move together and share data. Just as

in real robots, the relative position of the sensors with respect

to the robot frame is important, as it must be considered to

correctly locate the data when they are generated.

When a virtual robot is complete, it is itself linked to

a scene file with the virtual world in another Blender file.

Linked components can be modified or duplicated inside

the scene as necessary, using Blender’s modelling tools. All

environmental settings must be specified in this scenario file,

such as the global coordinate system. The list of the bindings

of middlewares with individual components is also defined

in the scenario file, as the script component config.py.

The modules for the middlewares and modifiers to be used

in the scene must also be linked into the scenario file.

IV. CURRENT STATUS

A number of components are already available for

MORSE, which allows to rapidly produce test scenarios of

specific cases. Robot platforms already modelled include:

iRobot ATRV Unmanned Ground Vehicle (UGV), Yamaha

RMAX Unmanned Aerial Vehicle (UAV) and a NeoBotix

mobile platform. Robotic arms available are Mitsubishi PA-

10 and KUKA LWR, both implemented with inverse kine-

matics. A user controlled human model is also available in

MORSE and permits human robot interaction inside the sim-

ulated scenarios. Some of the sensors already implemented

in MORSE are: Cameras, Gyroscope, GPS, Accelerome-

ter, Thermometer, SICK laser and proximity detectors. The

(a) DTM generation from treatment
of stereo camera images

(b) Objects on the table are tagged
and identified without processing

Fig. 5: Camera sensors with different information abstrac-

tion.

functionality of each sensor is defined within the Blender

world using both the GE interface and Python scripts. As

an example, the SICK laser works by using the ray tracing

functions existing in Blender; the field of view of the SICK

is visualised by deforming the geometry of an arc shaped

mesh, using the distances measured with ray tracing.

The camera sensor can provide data with different levels of

abstraction. Basic images can be generated using Blender’s

camera object and the VideoTexture library of the Game

Engine. These can be used, for example, to generate Digital

Terrain Maps (DTM), through stereo vision. Alternatively, a

camera can produce a semantic list of the visible objects

within its field of view, generated by using predefined

Blender functions to locate objects specifically tagged. This

permits testing higher level tasks without the burden of image

processing to identify objects. Fig. 5 illustrates these two

kinds of camera in use.

A. Practical use cases

1) ROSACE project: This project deals with the design

and development of a group of robots capable of commu-

nicating and cooperating to accomplish a given objective in

a dynamic environment. The test scenario for the project is

a search and rescue mission in the event of fire in a rural

area. In simulation, the robots must cooperate in locating

various victims, while avoiding obstacles such as buildings,

roads and fire. The MORSE scenario includes groups of 5 to

15 UGVs outfitted with thermometer sensors and simulated

communication radios. The simulation is used to study the

different cooperation strategies and the self adaptability of

the robot team in case of loss of communication. The robot

controlling agents are programmed in Java and communicate

data with MORSE via YARP, serialised using JSON, and

decoded and interpreted in both ends.

2) ACTION project: Related to the cooperation of het-

erogeneous types of robots (land, air, sea and submarine)

in various localization and detection scenarii, in complex

outdoor environments. In the first test scenario, an UGV

requests a traversability map of a certain direction to a nearby

robot helicopter (UAV). The latter flies in the direction

requested, locates obstacles that could impede the movement

of the ground vehicle, generates a map and sends it back.

Upon receiving the map, the UGV recomputes its projected

path and starts the cycle again. In simulation, both robots

Fig. 6: Diagram of the data exchange between the different

modules in the Action test scenario.

use completely different evaluated software, running in two

separate computers. Both communicate with a single instance

of MORSE, each using a distinct middleware (Fig. 6). The

UGV is controlled with GenoM modules and communicates

with MORSE via the Pocolibs library. Meanwhile, the UAV

is driven by Orocos [26], and uses YARP to talk to MORSE1.

This scenario demonstrates the interest of the “Software-in-

the-Loop” concept, and that MORSE can link to various

middlewares.

3) Simulation of ReSSAC: The ReSSAC is an Unmanned

Autonomous Helicopter based on a YAMAHA RMax he-

licopter. The objective of the project is to perform air–to–

ground target tracking missions in an unknown environment

[27]. The evaluated software in this application is a visual

target search and tracking system implemented in Orocos.

It tracks the movement of a ground vehicle and generates

motion controls for the helicopter to follow the target. The

ReSSAC experiment is a proof of concept for the simulator,

where an existing algorithm that works in the real robot

was later tested in the simulator using “Software-in-the-

Loop”, connecting via the YARP middleware. This example

demonstrates that the simulator can be correctly connected

with the evaluated software, properly emulate the output of

the sensors, and interpret the control instructions for the

robot. In the test simulation, the ground target is made

to move with keyboard commands, while the simulated

helicopter tracks and follows the vehicle, giving the same

results as in the real life experiment.

V. FUTURE WORK

The simulation of multiple robots in MORSE is currently

limited by the processing power of the computer running

the software. Up to 15 robots with simple sensors can

be simulated in a single scenario with MORSE turning at

over 20 frames per second. The generation and processing

of image data (as in the case of simulated cameras) does

require more resources, depending on camera resolution

and data output rate. To cope with this problem, we plan

to deploy a number of simulator nodes, each one running

the same simulated scenario, but managing only a limited

number of virtual robots. The different nodes need to be

synchronised through a special node, denoted the simulation

Supervisor. Each node is responsible of one or more robot,

1Both robots communicates through YARP, but this is related to the way
multi-robots interactions have been defined, and not to MORSE.

Fig. 7: Distributed architecture of MORSE, including the

Supervisor, vHub and multiple simulation nodes.

and broadcasts to other node their positions and actions.

Concerning other objects, the information goes through the

Supervisor which is responsible of the consistency of the

whole ”simulation universe”. Furthermore, the Supervisor

also provides a central management for the simulation. A

special GUI allows to start or stop nodes, to add or remove

some robots or some objects. It can allow too to introduce

hazard in the simulated environment.

Another important task in a multi-robots environment is

the simulation of robot communications. The Virtual Hub

(vHub) component, associated to the Supervisor node, will

achieve this. Using information from the simulated world

(i.e. the distance between robots, line of sight), the vHub

decides if two robots can communicate, and in which condi-

tions (packet loss, congestion, slow bandwidth ...). Moreover,

the vHub component should log all communication flow for

future analysis. Fig. 7 sums up the future extension to the

MORSE architecture. The decomposition of the simulation

in different nodes will allow to simulate numerous robots in

a realistic way. The vHub will allow to experiment with the

communication issues within the simulator.

VI. SUMMARY

We have presented a new robotics simulator, completely

based on Blender and Python. MORSE is designed for high

reusability under all kinds of robotics research. It provides

many facilities to be integrated with existing robotics soft-

ware and to simulate numerous sensor and actuators setups.

This simulator is already used in real projects, demonstrating

it can fulfil the requirements specified of modularity, mid-

dleware independence and realistic visualisation and physics.

Many features of the simulator are still in an early stage of

development, including the multi–node architecture, but the

integration with ROS, GenoM 3 and Blender 2.5 will make

MORSE simpler to use in various robotics laboratories.

MORSE is developed as an open–source project, the

source code can be downloaded from the GIT repository:

(http://github.com/laas/morse.git)

User documentation and additional information is also

available at (http://morse.openrobots.org)

Acknowledgments: This work has been partially supported

by the DGA founded Action project (http://action.

onera.fr) and the STAE foundation Rosace project

(http://www.fondation-stae.net)

REFERENCES

[1] Workshop on robot simulators: available software, scientific applica-

tions and future (along with IROS’08, Nice, France), Sept. 2008.
[2] International Conference on Simulation, Modeling and Programming

for Autonomous Robots (SIMPAR 2008) Venice(Italy), Nov 2008.
[3] T. Siméon, J-P. Laumond, and F. Lamiraux. Move3d: a generic

platform for path planning. In in 4th Int. Symp. on Assembly and

Task Planning, pages 25–30, 2001.
[4] F. Kanehiro, K. Fujiwara, S. Kajita, K. Yokoi, K. Kaneko, and

H. Hirukawa. Open architecture humanoid robotics platform. In
Proceedings of the IEEE ICRA, pages 24–30, 2002.

[5] V. Zykov, P. Williams, N. Lassabe, and H. Lipson. Molecubes
extended: Diversifying capabilities of open-source modular robotics.
International Conference on Intelligent Robots and Systems (IROS),
workshop on Self-Reconfigurable Robotic, 2008.

[6] F. Kanehiro, H. Hirukawa, and S. Kajita. Openhrp: Open architecture
humanoid robotics platform. I. J. Robotic Res., 23(2):155–165, 2004.

[7] O. Michel. Webots: Professional mobile robot simulation. Journal of

Advanced Robotics Systems, 1(1):39–42, 2004.
[8] M. Lewis, J. Wang, and S. Hughes. Usarsim : Simulation for the

study of human-robot interaction. Journal of Cognitive Engineering

and Decision Making, 2007:98–120, 2007.
[9] Microsoft robotics developer studio.

http://www.microsoft.com/robotics/.
[10] Cogmation robotics simulation. http://www.cogmation.com/.
[11] S. Petters, D. Thomas, M. Friedmann, and O. von Stryk. Multilevel

testing of control software for teams of autonomous mobile robots.
In Simulation, Modeling, and Programming for Autonomous Robots,
volume 5325 of Lecture Notes in Computer Science, pages 183–194.
Springer Berlin / Heidelberg, 2008.

[12] B. P. Gerkey, R. T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In In Proceedings

of the 11th International Conference on Advanced Robotics, pages
317–323, 2003.

[13] N. Koenig and A. Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In In IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 2149–2154,
2004.

[14] Blender 3D. http://www.blender.org.
[15] Blender for robotics interest group.

http://wiki.blender.org/index.php/Robotics.
[16] R. Smits, T. De Laet, K. Claes, H. Bruyninckx, and J. De Schutter.

itasc: a tool for multi-sensor integration in robot manipulation. In IEEE

International Conference on Multisensor Fusion and Integration for

Intelligent Systems, pages 426 –433, 2008.
[17] A. Goktogan and S. Sukkarieh. Simulation of multi-UAV missions in

a real-time distributed hardware-in-the-loop simulator. In 4th Inter-

national Symposium on Mechatronics and its Applications (ISMA07),

Sharjah, U.A.E, March 2007.
[18] S. Joyeux, A. Lampe, R. Alami, and S. Lacroix. Simulation in the

LAAS architecture. In Workshop on principle and practice of software

development in robotics, IEEE ICRA, Barcelona (Spain), April 2005.
[19] G. Metta, P. Fitzpatrick, and L. Natale. YARP: yet another robot

platform. International Journal of Advanced Robotic Systems, 3(1):43–
48, 2006.

[20] ROS: Robot Operating System. http://www.ros.org.
[21] Pocolibs. http://pocolibs.openrobots.org.
[22] J. Kramer and M. Scheutz. Development environments for autonomous

mobile robots: A survey. Autonomous Robots Journal, 22:101–132,
2007.

[23] N. Mohamed, J. Al-Jaroodi, and I. Jawhar. Middleware for robotics:
A survey. In IEEE International Conference on Robotics, Automation

and Mechatronics (RAM 2008), Chengduo (China), pages 736–742,
2008.

[24] A. Shakhimardanov and E. Prassler. Comparative evaluation of robotic
software integration systems: A case study. In IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Diego (USA), 2007.
[25] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. F. Ingrand.

Genom3: Building middleware-independent robotic components. In
Proceedings of the IEEE ICRA, 2010.

[26] The Orocos Project. http://www.orocos.org.
[27] Y. Watanabe, C. Lesire, A. Piquereau, P. Fabiani, M. Sanfourche, and

G. Le Besnerais. The onera ressac unmanned autonomous helicopter
: Visual air-to-ground target tracking in an urban environment. In
American Helicopter Society 66th Annual Forum, May 2010.

