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Abstract: We consider the algebras generated by observables in quantum field theory
localized in regions in the null plane. For a scalar free field theory, we show that the
one-particle structure can be decomposed into a continuous direct integral of lightlike
fibres and the modular operator decomposes accordingly. This implies that a certain
form of QNEC is valid in free fields involving the causal completions of half-spaces on
the null plane (null cuts). We also compute the relative entropy of null cut algebras with
respect to the vacuum and some coherent states.
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1. Introduction

The modular Hamiltonian, or the (logarithm of the half of the) modular operator of
local regions in quantum field theory (QFT), has been a focus of attention in recent
years (see e.g. [CF20,Lon20,CTT17b]). On one hand, quantum-information aspects,
such as the Bekenstein bound, generalized second law of thermodynamics and various
null energy conditions, are a rare guidepost in the search of quantum gravity [Cas08,
Wal12,FLPW16]. On the other hand, the modular theory of von Neumann algebras
allows one to define relative entropy in QFT in a mathematically precise way [OP04],
and various modular objects in QFT have been computed in concrete examples [LX18,
Hol20,CLR20]. In particular, the modular operator of certain regions in the null plane
X0− := {x = (x0, . . . , xd) ∈ R

D+1 : x0 − x1 = 0} (or its Poincaré transformed) has
played an important role in relation with the quantum null energy condition (QNEC)
and the averaged null energy condition (ANEC) [CTT17b,KLLSM18,CF20]. In these
works, physicists consider a null cut, a region in the null plane X0− defined by a spacelike
curve C , and have written a formula for the modular operator for the algebra of a null
cut (see e.g. [CTT17b, (1.5)]):

ĤC = 2π
∫

dD−1xxx⊥
∫ ∞

−∞
dλ(λ− C(xxx⊥))T++(λ, xxx⊥), (1)

where T++ is the lightlike component of the stress-energy tensor. This suggests that
the inclusion of null cut algebras is a half-sided modular inclusion (HSMI) [Wie93].
Based on the latter assumption, a limited version of QNEC has been proved in [CF20].
Therefore, it is crucial to study modular objects on the null plane.

Actually, the above formula must be interpreted with care: while it seems reasonable
to assume that the stress-energy tensor is an operator-valued distribution (or even a
Wightman field), it is unclear whether it can be restricted to a null plane (cf. [Ver00,
FR03]). Furthermore, it is integrated against the unbounded function λ − C(xxx⊥), that
could be even more problematic. For these reasons, (1) cannot be considered directly
as an expression for an operator on a Hilbert space. One of the goals of this paper is to
partially justify (1) using the modular theory of von Neumann algebras in the case of
the free fields.

We observe that the (scalar) free field can be restricted to the null plane, through a
corresponding condition on the test functions. This has been known for a long time, and
general properties of observables on the null plane have been studied [SS72,Dri77b,
Dri77a,GLRV01,Ull04]. By the Bisognano–Wichmann property [BW76] and the Take-
saki theorem [Tak03, Theorem IX.4.2], it is immediate that, if there are enough observ-
ables on the null plane, they split into a (continuous) tensor product along the transverse
direction. This allows us to consider the observables on each fibre on the null plane.
These observables form a simplified quantum field theory on each lightlike fibre, and
we can consider the modular objects there. We will show that the one-particle subspace
Hm of the free field with mass m disintegrates as follows

Hm =
∫ ⊕

RD−1
HU (1)dxxx⊥. (2)

where HU (1) is the one-particle space of the U (1)-current sitting on the light ray
{(t, t, xxx⊥) ∈ R

1+D : t ∈ R}. One can deduce that the modular operator of the re-
gion on the null plane is decomposed into the fibres, and its logarithm is written as a
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direct integral over fibres (see (19)):

log(�H(NC )) �
∫ ⊕

RD−1

(
log(�HU (1)(R+)) + 2πC(xxx⊥)Pxxx⊥

)
dxxx⊥,

This is a clear analogue of (1), where the logarithm of the modular operator is expressed
as the integral in the transverse direction of the stress-energy tensor smeared by the
function λ − C(xxx⊥), where the latter is a formal expression for the shifted dilation
operator in two-dimensional conformal field theory, which should coincide with the
modular operator on each fibre. Our formula, while we avoid talking about the stress-
energy tensor, makes explicit the idea that the modular operator decomposes into fibres.
While the validity of (1) is believed more generally, we point out that in general there
are not many observables that can be restricted to the null plane. We clarify the situation
from interacting models in (1 + 1)-dimensions. Our formula allows a covariant action
of such distorted dilations of the null plane and, for null cuts with continuous boundary
C , on distorted wedge region WC = N ′′

C .
In the course of the proof (Proposition 4.1), we show that inclusions of the null cut

regions are HSMI. Together with [CF20], this completes the limited version of QNEC
as in (25) in the case of the free scalar field (note that the result of [CF20] is based on
the assumption that these inclusions are HSMI).

Entropy inequalities can be used to investigate features of quantum systems. For
instance, on the physical grounds, the strong subadditive property of the entropy together
with the Lorentz covariance leads to a c-theorem for the entanglement entropy in 1+1
dimensions and connections with the a-theorem are claimed in [CTT17a]. Due to the
direct integral disintegration of the one-particle space (2), it is possible to generalize
the Buchholz–Mach–Todorov endomorphism βk [BMT88] to the direct integral of the
U (1)-current with k ∈ C∞

0 (X0−). Using the formula contained in [Lon20], we are able
to compute the relative entropy with respect to the states ω ◦ βk and ω and deduce the
QNEC - in this case intended to be S′′(t) > 0 where S is the relative entropy related of
the algebraA(NC+t A)with respect to ω◦βk and ω and the derivative is with respect to t .
We also have a saturation of the strong superadditivity condition of the relative entropy
considered.

This paper is organized as follows. In Sect. 2 we collect the basic notions such as
one-particle space in terms of standard subspaces and its second quantization. In Sect. 3
we discuss observables on the null plane and their transversal decomposition. In Sect. 4
we obtain the decomposition of the modular operator of null plane regions and prove
that inclusions of null plane regions are HSMI. In Sect. 5, after recalling the notions
concerning relative entropy, ANEC, QNEC and some background also from physics, we
study the relative entropy and its relation with the energy inequalities and the saturation
of the strong superadditivity condition of the null cut algebras between the BMT type
states. In Sect. 6 we present concluding remarks, including the 1+1 dimensional case.

2. Preliminaries

In this Section we will recall the operator-algebraic formulation of the free field. A free
field is constructed starting from its one-particle structure. A quantum and relativistic
particle species on Minkowski spacetime corresponds to an irreducible unitary positive
energy representation of the Poincaré group. The localization property of the one-particle
states is formulated in terms of the standard subspaces, and it translates to the localization
property of the associated free fields through the second quantization. We will further
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comment on the U (1)-current model, which will be a convenient tool to describe the
restriction of the free theory to the null plane.

2.1. Abstract one-particle structure. A real linear, closed subspace H of a complex
Hilbert spaceH is called cyclic if H +i H is dense inH and separating if H∩i H = {0}.
A standard subspace is a real linear, closed subspace that is both cyclic and separating.
We recall below some useful properties of standard subspaces, see [Lon08] for details.

It is possible to consider an analogue of the Tomita-Takesaki modular theory for
standard subspaces. For a standard subspace H , the Tomita operator SH is defined to be
the closed anti-linear involution with dense domain H + i H acting in the following way:

SH : H + i H → H + i H

ξ + iη �→ ξ − iη.

The polar decomposition

SH = JH�
1
2
H

defines the modular operator �H and the modular conjugation JH , and they satisfy the
following relations:

JH�H JH = �−1
H , �i t

H H = H for t ∈ R, JH H = H ′,

where H ′ is the symplectic complement of H :

H ′ := {ξ ∈ H : Im 〈ξ, η〉 = 0 for η ∈ H}.
The symplectic complement H ′ is a standard subspace if and only if so is H , and a stan-
dard subspace H satisfies H = H ′′. The Tomita operator of the symplectic complement
H ′ is given by

SH ′ = S∗H = JH�
− 1

2
H = �

1
2
H JH .

There is a 1 − 1 correspondence H
1:1↔ SH between standard subspaces and closed,

anti-linear, densely defined involution: For such an operator S, the real closed subspace
ker(1− S) is a standard subspace.

One can easily deduce the covariance of standard subspaces (see [Mor18, Lemma
2.2]):

Lemma 2.1. Let H ⊂ H be a standard subspace and U be a unitary or anti-unitary
operator on H. Then UH is standard and U�HU∗ = �

ε(U )
UH and U JHU∗ = JUH

where ε(U ) = 1 if U is unitary and ε(U ) = −1 if U is anti-unitary.

The following is an analogue of Borchers theorem [Bor92,Flo98] for standard sub-
spaces, see [Lon08, Theorem 3.15].

Theorem 2.2. Let H bea standard subspace of aHilbert spaceH and T aone-parameter
group with positive generator such that T (s)H ⊂ H, s ≥ 0, then the following hold:

�i t
H T (s)�−i t

H = T (e−2π t s)

JHT (s)JH = T (−s).
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We say that a pair of standard subspaces K ⊂ H is a half-sided modular inclusion
(HSMI) if

�−i t
H K ⊂ K for t ≥ 0.

Let P be the translation-dilation group, that is, the group of affine transformations of R,
where dilations act by d(2π t)x = e2π t x, x ∈ R and translations act by t(s)x = x + s.
The group P contains also dilations centered at 1: d1(2π t)x = e2π t (x −1)+1. A HSMI
of von Neumann algebras implies the existence of a one-parameter group of unitaries
with certain properties [Wie93,AZ05]. The following is its standard subspace version
and the first part can be found in [Lon08, Theorem 3.21].

Theorem 2.3. Let K ⊂ H be a half-sided modular inclusion of standard subspaces of
the Hilbert spaceH, then there exists a positive energy representation of the translation-
dilation group P given by

U (d(2π t)) = �−i t
H , U (d1(2π t)) = �−i t

K

In particular, the translations aregivenbyU (t(e2π t−1)) = �−i t
H �i t

K , satisfyU (t(s))H ⊂
H for s ≥ 0, U (t(1))H = K and have a positive generator.

Furthermore, the generator P of the translation group is 1
2π (log(�K ) − log(�H )).

In general, we have the relation log(�U (t(s))H ) = AdU (t(s))(log(�H )) = log(�H ) +
2πsP.

Proof. We prove the last statement. The operator log(�K )− log(�H ) is essentially self-
adjoint on its natural domain (one can prove this by first taking the Gårding domain).
Thus, we can apply Trotter’s product formula:

eit (log(�H )−log(�K )) = s- lim n→∞
(

�
i tn
H �

−i tn
K

)n

= s- lim n→∞
(
U (t(e−2π t

n − 1))
)n

= s- lim n→∞U
(
t(n(e−2π t

n − 1))
)
= U (t(2π t)).

The last relation follows from Lemma 2.1. ��

2.2. The one-particle structure of the free scalar field. The relativistic invariance is
encoded in the Poincaré group P on the (D + 1)-dimensional Minkowski space time
R

D+1, where D > 1. It is the semi-direct product of the full Lorentz group L and the
translation group R

D+1:

P = L � R
D+1.

The subgroup P↑
+ = L↑

+ � R
D+1 of time- and space orientation-preserving transforma-

tions gives the relativistic transformations from one inertial frame to another. The causal
structure is determined by the Minkowski metric and the causal complement of a region
O ⊂ R

1+D is determined as follows:

O ′ = {x ∈ R
1+D : (y − x)2 < 0, y ∈ O}◦.

where ◦ denotes the open kernel.
We restrict our analysis to the scalar representations of P↑

+ (see e.g. [Var85]). A
scalar representation with mass m ≥ 0 (for D > 1) is defined on the Hilbert space
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Hm = L2(
m, d
m), where d
m is the unique (up to a constant) Lorentz-invariant
measure on the mass shell 
m = {p = (p0, . . . , pD) ∈ R

D+1 : p2 = m2, p0 ≥ 0}.
Let ωm(ppp) = √

m2 + |ppp|2, then 
m = {(ωm(ppp), ppp); ppp ∈ R
D} and the measure can be

expressed (up to a constant) in the ppp-coordinates as:

d
m = dDppp

ωm(ppp)
. (3)

The action Um of (�, a) ∈ P↑
+ = L↑

+ � R
D+1 is given as follows:

(Um((�, a))�)(p) = eia·p�(�−1 p), for � ∈ Hm . (4)

Consider the restriction E of the Fourier transformation on Schwartz functions on
R

D+1 to
m . Let S(
m) be the set of Schwartz functions onR
D+1 restricted to
m , then

E : S(RD+1) → S(
m)

f �→ (E f )(p) =
∫
RD+1

eix ·p f (x)dD+1x, p ∈ 
m

(as D > 1, this holds even ifm = 0). Then E(S(RD+1)) is dense inHm . We refer to p as
the momentum variable and x as the position variable. We shall denote by xxx⊥ the D− 1
coordinate vector (x2, . . . , xD). The action of the Poincaré group on the one-particle
space (4) is covariant with respect to the action of P↑

+ on test functions in S(RD+1):

(Um((�, a))E f )(x) = E( f (�−1(x − a))).

The local structure of the free scalar field is encoded in the local space corresponding
to bounded open bounded regions O ⊂ R

D+1:

H(O) := {E f ∈ L2(
m, d
m) : f ∈ S(RD+1, R), supp ( f ) ⊂ O}. (5)

We shall call O the set of bounded, open regions. For an arbitrary regions S with non-
empty interior in Minkowski space, its local subspace is generated by the subspaces of
bounded open regions contained in it:

H(S) =
⋃
O⊂S

H(O).

The map O � O �→ H(O) ⊂ H and the Poincaré representation Um define a net
of standard subspaces, also called one-particle net or first quantized net, satisfying the
following properties (see e.g. [BGL02]):

(SS1) Isotony: H(O1) ⊂ H(O2) for O1 ⊂ O2;
(SS2) Locality: if O1 ⊂ O ′

2, then H(O1) ⊂ H(O2)
′, where O ′ denotes the spacelike

complement of O;
(SS3) Poincaré covariance: H(gO) = U (g)H(O) for g ∈ P↑

+ ;
(SS4) Spectral condition: the joint spectrum of the translation subgroup in U is con-

tained in the closed forward light cone V+ = {p ∈ R
D+1 : p2 ≥ 0, p0 ≥ 0}.

(SS5) Cyclicity: H(O) are cyclic subspaces.
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It is a consequence of locality and cyclicity that H(O) are standard subspaces if O has
a nontrivial spacelike complement.

Consider the standard wedge W1 = {x ∈ R
D+1 : |x0| < x1} in the x1-direction and

let

�W1(t)(x0, x1, xxx⊥) = (cosh(t)x0 + sinh(t)x1, sinh(t)x0 + cosh(t)x1, xxx⊥)

be the one-parameter group of Lorentz boosts fixing W1. Any other region of the form
W = gW1, g ∈ P↑

+ is also called a wedge, and we put �W (t) = g�W1(t)g
−1 with such

a g (this is well-defined, because any g ∈ P↑
+ fixing W commutes with �W ). We shall

denote byW the set of wedges. Let H(W ) = ⋃
O⊂W H(O) be the subspace associated

to the wedge W . The net defined by (5) further satisfies the following properties.

(SS6) Bisognano–Wichmann (BW) property: Let W ∈ W , it holds that

U (�W (t)) = �
− i t

2π
H(W ) for t ∈ R,

(SS7) Haag duality (for wedges): H(W ′) = H(W )′, for all W ∈ W.

2.3. Second quantization and nets of von Neumann algebras. LetH be a Hilbert space
and H ⊂ H a real linear subspace. The von Neumann algebra R(H), called second
quantization algebras, on the symmetric Fock space F+(H) generated by the Weyl op-
erators:

R(H) ≡ {w(ξ) : ξ ∈ H}′′,
where w(ξ), ξ ∈ H are unitary operators on F+(H) characterized by

w(ξ)eη = e−
1
2 〈ξ,ξ〉−〈ξ,η〉 · eξ+η,

where eη = 1 ⊕ η ⊕ 1√
2!η

⊗2 · · · is a coherent vector in F+(H). By continuity in the

strong operator topology of the map H � ξ �→ w(ξ) ∈ F+(H) we have that

R(H) = R(H) .

Moreover, the Fock vacuum vector 
 = e0 is cyclic (respectively separating) for R(H)

if and only if H is cyclic (respectively separating). Therefore one verifies the relation:

〈w(ξ)
,w(η)
〉 = e−
1
2 (‖ξ‖2+‖η‖2)e〈ξ,η〉. (6)

The second quantization respects the lattice structure [Ara63] and the modular struc-
ture [LRT78,LMR16]. We shall denote JR(H),
, �R(H),
 the Tomita operators associ-
ated with (R+(H),
), and by +(T ) the multiplicative second quantization of a one-
particle operator T onH. It holds that +(T )eξ = eT ξ for ξ ∈ H.

Proposition 2.4. [LRT78,LMR16] Let H and Hι be closed, real linear subspaces ofH
with ι ∈ J and J is an index set. We have

1. JR(H),
 = +(JH ), �R(H),
 = +(�H ) if H is standard;
2. R(H)′ = R(H ′);
3. R(Span ι∈J Hι) = ∨

ι∈J R(Hι);
4. R(

⋂
ι∈J Hι) = ⋂

ι∈J R(Hι),
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where
∨

ι∈J R(Hι) denotes the von Neumann algebra generated by R(Hι)’s.

In particular, the second quantization promotes the one-particle net defined in (5) to a
Haag–Kastler net of local algebras. Consider the mapO � O �→ A(O) = R(H(O)) ⊂
F+(H), together with the second quantizationU = +(Um) of the one-particle Poincaré
representation Um , the following hold:

(HK1) Isotony: A(O1) ⊂ A(O2) for O1 ⊂ O2;
(HK2) Locality: if O1 ⊂ O ′

2, then A(O1) ⊂ A(O2)
′;

(HK3) Poincaré covariance: U (g)A(O)U (g)∗ = A(gO) for g ∈ P↑
+ .

(HK4) Positivity of the energy: the joint spectrum of the translation subgroup in U is
contained in the closed forward light cone V+.

(HK5) Vacuum and the Reeh-Schlieder property: 
 is the (up to a phase) unique
vector such thatU (g)
 = 
 for g ∈ P↑

+ and is cyclic,A(O)
 = H for any O .
(HK6) The Bisognano–Wichmann property: For a wedge W ∈ W , we put A(W ) =(∨

O⊂W A(O)
)′′. Then it holds that

U (�W (t)) = �
− i t

2π
A(W ),


,

where �i t
A(W ),


is the modular group of A(W ) with respect to 
.

2.4. The U (1)-current net. We introduce a family of standard subspaces parametrized
by intervals on R, the U (1)-current. Let us consider HU(1) = L2(R, dθ ′) and, for each
I ⊂ R open interval, the subspace

HU(1)(I ) = {(ĝ ◦ e)(θ ′); g ∈ C∞
0 (R, R), ĝ(0) = 0, supp (g) ⊂ I } ⊂ L2(R, dθ ′),

where ĝ is the Fourier transform of g and (ĝ ◦ e)(θ ′) = ĝ(e−θ ′). Furthermore, we
introduce

(UU(1)(α, t)ξ)(θ ′) = eite
−θ ′

ξ(θ ′ − α).

This is a unitary representation of the translation-dilation group P = R � R. Let x ∈ R,
then (α, 0) ∈ R � R corresponds to the dilation d(α)x = eαx and (0, t) ∈ R �

R corresponds to the translations t(t)x = x + t . It is straightforward to check that
UU(1)(α, t)H(I ) = H(eα I + t).

Each H(I ) is a standard subspace and for disjoint I1, I2 it holds that H(I1) ⊂ H(I2)′.
Furthermore, theBisognano–Wichmannproperty holds:�i t

H(R+)
= UU(1)(−2π t, 0), t ∈

R.
Let f, g ∈ C∞

0 (R, R) with f̂ (0) = ĝ(0) = 0 and call the primitives F,G, respec-
tively. The condition f̂ (0) = ĝ(0) = 0 implies F,G ∈ C∞

0 (R, R). We have, under the
substitution p = e−θ ′ , that

〈ĝ ◦ e, f̂ ◦ e〉 =
∫
R+

ĝ(−p) f̂ (p)
dp

p
=

∫
R+

Ĝ(−p)F̂(p)pdp.



Modular Operator for Null Plane Algebras in Free Fields 339

where 〈ĝ ◦ e, f̂ ◦ e〉 has to be intended as the Lebesgue scalar product on R of the
functions R � θ ′ �→ (ĝ ◦ e)(θ ′) and R � θ ′ �→ ( f̂ ◦ e)(θ ′). The imaginary part of the
scalar product (symplectic form) plays a crucial role in the second quantization

Im 〈ĝ ◦ e, f̂ ◦ e〉 = 1

2i

∫
R+

(
Ĝ(−p)F̂(p) − F̂(−p)Ĝ(p)

)
pdp = 1

2

∫
R

G(x) f (x)dx

(7)

The family {H(I )} and the representationUU(1) are unitarily equivalent to the family
of closed real subspaces coming from the U(1)-current conformal net and the one-
particle symmetry restricted to the translation-dilation group, see [BT15, Section 5.2].
The intertwining map for h ∈ C∞

0 (R, R) is ĥ(p) �→ ĥ′(e−θ ′). Thus to switch to the
standard definition of theU (1)-current presented in the literature (see e.g. [Lon08]) one
replaces g ∈ C∞

0 (R, R) with ĝ(0) = 0 with its primitive G ∈ C∞
0 (R, R).

3. Free Scalar Field on the Null Plane

3.1. Direct integrals and decompositions. Let us summarize some of the basic notions
and results on the direct integral of Hilbert spaces and decomposition of group repre-
sentations. We follow the conventions of [Dix81], see also [KR97].

Let X be a σ -compact locally compact Borel measure space, ν the completion of a
Borel measure on X and {Kλ} a family of separable Hilbert spaces indexed by λ ∈ X .
We say that a separable Hilbert space K is the direct integral of {Kλ} over (X, ν) if, to
each ξ ∈ K there corresponds a function λ �→ ξ(λ) ∈ Kλ and

1. λ �→ 〈ξ(λ), η(λ)〉 is ν-integrable and 〈ξ, η〉 = ∫
X 〈ξ(λ), η(λ)〉 dν(λ)

2. if φλ ∈ Kλ for all λ and λ �→ 〈φλ, η(λ)〉 is integrable for all η ∈ K, there is φ ∈ K
such that φ(λ) = φλ for almost every λ.

In this case, we write:

K =
∫ ⊕

X
Kλdν(λ).

An operator T ∈ B(K) is said to be decomposable when there is a function λ �→ Tλ

on X such that Tλ ∈ B(Kλ) and, for each ξ ∈ K, Tλξ(λ) = (T ξ)(λ) for ν-almost every
λ, and in this case we write T = ∫ ⊕

X Tλdν(λ). If Tλ = f (λ)1 for some f ∈ L∞(X, ν),
we say that T is diagonalizable. An operator T ∈ B(K) is decomposable if and only
if T commutes with every diagonalizable operator. Conversely, let X � λ → Tλ ∈
B(Kλ) be a field of bounded operators with supλ ‖Tλ‖ < ∞. If for any ξ ∈ K with
ξ = ∫ ⊕

X ξ(λ)dν(λ) there exists η ∈ K such that η(λ) = Tλξ(λ) for almost every λ ∈ X ,

then T = ∫ ⊕
X Tλdν(λ) ∈ B(K) defines a bounded decomposable operator on K and

λ → Tλ is called a measurable field of bounded operators. We shall use the notation
K = ∫ ⊕R

X Kλdν(λ) when we consider a direct integral of real Hilbert spaces.
The following Lemma can be found in [MT18, Appendix B].

Lemma 3.1. Let K = ∫ ⊕
X Kλdν(λ) then

(a) Let H = ∫ ⊕R

X Hλdν(λ) ⊂ K be a real subspace such that Hλ ⊂ Kλ is a real

subspace, then H ′ = ∫ ⊕R

X H ′
λdν(λ).
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(b) Let {Hk}k∈N be a countable family of real subspaces ofK such that Hk =
∫ ⊕R

X (Hk)λ

dν(λ) on R and (Hk)λ ⊂ Kλ is a real subspace, then
⋂

k∈N Hk =
∫ ⊕R

X

⋂
k∈N(Hk)λ

dν(λ).
(c) Let {Hk}k∈N be a countable family of real subspaces ofK such that Hk =

∫ ⊕R

X (Hk)λ

dν(λ) on R and (Hk)λ ⊂ Kλ is a real subspace, then Span k∈NHk = ∫ ⊕R

X
Span k∈N(Hk)λdν(λ).

It follows immediately that the direct integral of standard subspaces is again a standard
subspaces on the direct integral of Hilbert space.

LetG be a locally compact group andπ a continuous (in the strong operator topology)
unitary representation of G on K = ∫ ⊕

X Kλdν(λ). Suppose that, for each g ∈ G, we

have π(g) = ∫ ⊕
πλ(g)dμ(λ), then we say that π is the direct integral of the πλ and

write:

π =
∫ ⊕

X
πλdν(λ).

Equivalently, π is a direct integral if each π(g), g ∈ G, is decomposable. As a conse-
quence a direct integral of Poincaré covariant nets of standard subspaces is a Poincaré
covariant net of standard subspaces on the direct integral of Hilbert space.

As a particular case, let K = ∫ ⊕
X K0dν be a direct integral Hilbert space over the

constant fieldK0, which is a separable Hilbert space, on X with measure ν. Then it holds
that [Dix81, Proposition II.1.8.11, Corollary]

∫ ⊕

X
K0dν(λ) � L2(X, ν) ⊗K0. (8)

The isomorphism is given by identifying L2(X, ν)⊗K0 as the space of K0-valued L2-
functions. By this isomorphism, we identify

∫ ⊕
X Tdν(λ) and 1⊗ T , where T ∈ B(K0)

(a constant field of bounded operators).

3.2. Decomposition of the one-particle space. Let us fix D > 1. We first consider the
m > 0 case. In Remark 3.5 we explain the minor modification to deal with the massless
case.

The hypersurface X0− := {x ∈ R
D+1 : x0 − x1 = 0} is called the null plane

in the x1-direction. It is appropriate to consider the coordinate frame (x+, x−, xxx⊥) =
( x0+x1√

2
, x0−x1√

2
, xxx⊥). In these coordinates, the Minkoswki product becomes

x · p = x+ p− + x− p+ − xxx⊥ppp⊥ (9)

and the Minkowski (pseudo)norm x2 = 2x+x− − xxx2⊥. In the momentum space, the
massive hyperboloid is determined by 2p+ p− − ppp2⊥ = m2, and for each (p−, ppp⊥) ∈
R+ × R

D−1 there is one and only one p+ ∈ R+ satisfying this equation. For a test
function f = f (x+, x−, xxx⊥) on R

D+1, let E f be its Fourier transform restricted to

the mass hyperboloid 
m =
{
p = (m2+ppp2⊥

2p− , p−, ppp⊥
) : p− > 0, p⊥ ∈ R

D−1
}
(in the

(p+, p−, ppp⊥)-coordinates). In the (p−, ppp⊥)-coordinates, we have, up to a unitary (given
by the change of variables),
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Hm � L2
(

R
D,

dDppp

ωm(ppp)

)
� L2

(
R+ × R

D−1,
2p−dp−dppp⊥
m2 + 2p2− + ppp2⊥

)

(since dp1dppp⊥ = 1√
2
dp−ppp⊥ and ωm(p−, ppp⊥) = 1√

2

(
m2+ppp2⊥
2p− + p−

)
is the dispersion

relation in the (p−, ppp⊥)-coordinates). For sake of notational simplicity, we will write
ξ(p1, ppp⊥) ∈ Hm or ξ(p−, ppp⊥) ∈ Hm for ξ ∈ Hm in terms of (p1, ppp⊥) or (p−, ppp⊥),
respectively. In the same way, the representation Um acts on Hm in various realizations.

We introduce the map VM : Hm = L2(
m, d
m) → L2(RD, dθ ′dD−1ppp⊥) as
follows: Let ξ ∈ L2(RD, dθ ′dD−1ppp⊥),

(V−1
M ξ)(p1, ppp⊥) = ξ

(
arcsinh

(
p1

ωm (ppp⊥)

))
− log(ωm(ppp⊥)) + log

√
2, ppp⊥),

where ωm(ppp⊥) :=
√
m2 + ppp2⊥. VM is a unitary operator. Indeed, first, the change of p1

to rapidity θ = arcsinh( p1
ωm (ppp⊥)

) for a fixed ppp⊥, or p1 = ωm(ppp⊥) sinh θ is a smooth

one-to-one map R
D → R

D . Moreover, with ∂θ
∂p1

= 1
ωm (ppp⊥)

/

√
1 +

p21
ωm (ppp⊥)2

= 1
ωm (ppp) , the

measure d
m transforms in the following way, cf. (3):

d
m = dDppp

ωm(ppp)
= dθdD−1ppp⊥.

Therefore, the pullback of the rapidity substitution imposes the equivalence:

Hm = L2(
m , d
m) � L2(R × R
D−1, dθ × dD−1ppp⊥)(� L2(R, dθ) ⊗ L2(RD−1, dD−1ppp⊥)).

Moreover, the substitution θ ′ = θ − log(ωm(ppp⊥))+ log
√
2 is a smooth one-to-one map:

R → R if m > 0 with dθ = dθ ′.
By substituting θ = arcsinh( p1

ωm (ppp⊥)
) or p1 = ωm(ppp⊥) sinh θ in p− = 1√

2
(ωm(p1,

ppp⊥) − p1) we have p− = 1√
2
ωm(ppp⊥)e−θ therefore,

p− = 1√
2
ωm(ppp⊥)e−θ ′−log(ωm(ppp⊥))+log

√
2 = e−θ ′ ,

and

(VMξ)(θ ′, ppp⊥) = ξ(e−θ ′ , ppp⊥), ξ ∈ L2

(
R+ × R

D−1,
2p−dp−dppp⊥
m2 + 2p2− + ppp2⊥

)

Proposition 3.2. We have the following equivalence, where the map is given by VM
composed by the inverse Fourier transform on the perpendicular momenta:

Hm � L2(RD, dθ ′dD−1xxx⊥) �
∫ ⊕

RD−1
L2(R, dθ ′)dD−1xxx⊥, (10)

where the last equivalence is given by (8).
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Subsequently, we will refer to these direct integral representations of Hm as spatial
decomposition and denote the intertwining unitary by VS, while the map VM is referred
to asmomentum decomposition.

Next we discuss the decomposition of the spacetime symmetry. Let us take the wedge
W1 in the x1-direction and consider the subgroup �1 � tx+ ⊂ P↑

+ consisting of boosts
�1 := �W1 along the x1-direction and lightlike translations tx+ of x+. It is straightforward
that this group is isomorphic to the translation-dilation group P of R. We will show that
the restriction of Um to P decomposes with respect to the decompositions (10) of the
one-particle vectors.

Lemma 3.3. The unitary VM between Hm and
∫ ⊕
RD−1 L2(R, dθ ′)dD−1ppp⊥ intertwines

the actions of the subgroup P to:

(VMUm(�1(α), tx+(a+))ξ)(θ ′, ppp⊥) = eia+e
−θ ′

(VMξ)(θ ′ − α, ppp⊥), (11)

Proof. We start with the Poincaré group action given by Um on Hm expressed in (4).
We recall that p− = e−θ ′ . Then the result is immediate by considering (9) and the fact
that a+ · p− = a+e−θ ′ ,

For boosts, the claim follows directly from the following

�−1
1 (α)p =

⎛
⎝ cosh(α)p0 − sinh(α)p1
− sinh(α)p0 + cosh(α)p1

ppp⊥

⎞
⎠

=
⎛
⎝ωm(ppp⊥) cosh(θ ′ + log(ωm(ppp⊥)) − log

√
2− α)

ωm(ppp⊥) sinh(θ ′ + log(ωm(ppp⊥)) − log
√
2− α)

ppp⊥

⎞
⎠ .

��
Proposition 3.4. Under the spatial decomposition, the representation of Um to P is
decomposable (in the sense of Sect. 3.1) and acts as follows:

(Um((�1(α), tx+(a+)))ξ)(θ ′, xxx⊥) = eia+e
−θ ′

ξ(θ ′ − α, xxx⊥). (12)

Proof. The representation Um decomposes in the momentum decomposition as (11),
and the action of Um does not involve the variable ppp⊥, it commutes with the inverse
Fourier transform on ppp⊥. ��
Remark 3.5. The disintegration (10) and the identifications (11) and (12) apply also to
the m = 0 case up to a measure zero set. To see this, note that in the massless case

0 = ∂V+ = {p ∈ R

D+1 : p2 = 0, p0 > 0}. The change of variables determining V−1
M

(both in (p1, ppp⊥) or (p−, ppp⊥) set of coordinates) are 1-1 diffeomorphisms on the set

0∩{p ∈ R

D+1 : ppp⊥ �= 0}. This set is dense in
0 with respect to the topology induced
by the euclidean topology on R

D+1. The complement N0 = {p ∈ 
0 : ppp⊥ = 0} has
measure zero with respect to the Lorentz invariant measure on 
0, see (3). We conclude
that VM is a unitary operator. As �1-boosts fix N0, (10), (11) and (12) continue to hold
(up to a measure zero set). This is the only modification to have in mind along the paper
to adapt the massless case.
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Fig. 1. The geometric setup and illustration of the decomposition of standard subspaces of null cuts

3.3. The local subspace of the null plane. Here we show that the free field can be
restricted to regions on the null plane if we exclude the lightlike zero-modes (see
Lemma 3.6 for the precise restriction, cf. [Ull04]). Recall that the algebra A(O) is
generated by the Weyl operators associated with test functions supported in O . In this
spirit, we define the local subspaces of open (with the relative topology) regions R in
the null plane X0− := {x ∈ R

D+1; x− = 0}. The geometric setup is visualised in Fig. 1.
To make it precise, we consider distributions of the form

g0(x+, x−, xxx⊥) = δ(x−)g(x+, xxx⊥), (13)

where g is a real-valued function such that R × R
D−1 � (x+, xxx⊥) �→ g(x+, xxx⊥) is

a compactly supported smooth function. We denote the set of such distributions by
D(X0−, R), and call them thin test functions supported on X0−.

The Fourier transform of such g0 is a smooth function and can be restricted to the
mass shell, which we denote by Eg0. Then it is natural to consider one-particle vectors
associated with thin test functions.

Lemma 3.6. Let g0(x+, x−, xxx⊥) = δ(x−)g(x+, xxx⊥) as in (13). Then Eg0 ∈ L2(
m,

d
m) (the norm is finite) if and only if
∫
dx+g(x+, xxx⊥) = 0 for each xxx⊥.

Proof. We take g0(x+, x−, xxx⊥) = δ(x−)g(x+, xxx⊥) as above. The Fourier transform of
g0 is

(Eg0)(p) =
∫
RD+1

ei(x+ p−+x− p+−xxx⊥·ppp⊥)δ(x−)g(x+, xxx⊥)dx+dx−dD−1xxx⊥ = ĝ(p−, ppp⊥).

By rapidity substitution p− = 1√
2
ωm(ppp⊥)e−θ and p+ = 1√

2
ωm(ppp⊥)eθ we have:

‖Eg0‖2H−
m
=

∫
R×RD−1

∣∣∣∣ĝ
(

1√
2
ωm(ppp⊥)e−θ , ppp⊥

)∣∣∣∣
2

dθdD−1ppp⊥



344 V .Morinelli,Y. Tanimoto, B. Wegener

=
∫
R×RD−1

|ĝ(e−θ ′ , ppp⊥)|2dθ ′dD−1ppp⊥

as we did in (10). Therefore, it is necessary that ĝ(0, ppp⊥) = 0 for each ppp⊥ in order to
have Eg0 ∈ Hm (that is the integral is finite), and equivalently,

∫
dx+g(x+, xxx⊥) = 0 for

each xxx⊥.
Conversely, if

∫
dx+g(x+, xxx⊥) = 0 for each xxx⊥, then ĝ(0, ppp⊥) = 0. In particular,

since g is smooth, by the Taylor formula, θ ′ �→ ĝ(e−θ ′ , ppp⊥) has finite L2-norm at +∞.
Then, since g is compactly supported, it decays fast when p− → +∞(θ ′ → −∞) and
|ppp⊥| → +∞. As a consequence Eg0 ∈ Hm . ��

The condition
∫
dx+g(x+, xxx⊥) = 0 for each xxx⊥ is satisfied if and only if g is the

partial derivative in x+ of another compactly supported smooth function. We define, for
an open region R on the null plane X0−, as follows:

H(R) := Span
Hm {Eg0 ∈ L2(
m , d
m) : g0 = δ(x−)∂x+g(x+, xxx⊥) ∈ D(X0−, R), supp g ⊂ R}.

In particular, a null cut is a region on the null plane associated with a continuous
function C : R

D−1 → R, where R
D−1 denotes the subspace {xxx ∈ R

D+1; x− = x+ = 0}

NC := {xxx = (x+, x−, xxx⊥) ∈ R
D+1; x− = 0, x+ > C(xxx⊥)}.

These subspaces are natural in the view of the following isotony in an extended sense.

Lemma 3.7. Let R ⊂ X0− be open (relatively in X0−) and O ⊂ R
D+1 open such that

there is a direction a ∈ R
D+1 where R ⊂ O + ta for every t ∈ (0, ε) for sufficiently

small ε. Then it holds that H(R) ⊂ H(O).

Proof. Let g be any smooth function compactly supported in R. Then for g− a test func-
tionon R such that g−(t) ≥ 0 and

∫
g−(t)dt = 1, g(x−, x+, xxx⊥) = g−(x−)∂x+g(x+, xxx⊥)

has a Fourier transform inHm = L2(
m, d
m). Indeed, we know that the Fourier trans-
form of ∂x+g(x+, xxx⊥) alone is in Hm , and it gets multiplied by ĝ−(p+), which is rapidly
decreasing. If we consider the scaled function g−,n(x−) = ng−(nx−), its Fourier trans-
form is ĝ−(

p+
n ), which is bounded and converges to 1, therefore, E(g−,ng) converges to

Eg0.
On the other hand, for fixed a and t as in the statement, for sufficiently large n, g−,ng

is supported in O + ta, hence we have Eg0 ⊂ H(O + ta) by the closedness of H(O + ta).
This implies H(R) ⊂ H(O + ta) = Um(ta, 0)H(O), and by the continuity of Um , we
obtain H(R) ⊂ H(O). ��

The spaces H(R) are real subspaces ofHm . Recalling the spatial decomposition (10)
of Hm , we will show that the same decomposition holds as a real Hilbert space through
VS.

Let I ⊂ R be an open interval and I⊥ ⊂ R
D−1 a open region. Under the spatial

decomposition (10), we consider the local subspace H(I × I⊥) of rectangular regions
as follows

I × I⊥ = {(x+, x−, xxx⊥) : x− = 0, x+ ∈ I, xxx⊥ ∈ I⊥}.
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Proposition 3.8. Let I × I⊥ be a rectangle on the null plane X0−. Under the spatial
decomposition (10), the local subspace H(I × I⊥) decomposes in the following way
(see e.g. [MT18, Proposition B.2]):

H(I × I⊥) →
∫ ⊕R

I⊥
HU (1)(I )d

D−1xxx⊥ (14)

Eg0 �→ VSEg0,

where g0(x−, x+, xxx⊥) = δ(x−)g(x+, xxx⊥) ∈ D(X0−, R) satisfying
∫
dx+g(x+, xxx⊥) = 0

for each xxx⊥ ∈ I⊥.
H(R) is separating for any R = I × I⊥ where I � R, and standard if I is not empty

and I⊥ = R
D−1.

Proof. By the spatial decomposition (10), we identify the whole Hilbert space Hm with∫ ⊕
RD−1 L2(R, dθ ′)dxxx⊥. By (8) the right-hand side of (14) is the constant field of standard
spaces

∫ ⊕R

I⊥ HU (1)(I )dxxx⊥ of real Hilbert spaces and is identified with HU (1)(I ) ⊗R

L2(I⊥, R, dxxx⊥). On the other hand, H(I × I⊥) is generated by the functions of the
form ĝ+(e−θ ′)g⊥(xxx⊥), where supp g+ � I, ĝ+(0) = 0 and supp g⊥ � I⊥, hence, by
Lemma 3.6, H(I × I⊥) = ∫ ⊕R

I⊥ HU (1)(I )dD−1xxx⊥ in the direct integral disintegration.
The statement about the separating property and cyclicity follows from this decom-

position and Lemma 3.1. ��
Next let us consider translations and dilations on each fibre on the null plane. Let

C : R
D−1 → R be a continuous function. We define the distorted lightlike translations

as the following unitary operator on L2(RD, dθ ′dxxx⊥) (and with the identification ofHm
with it through the spacial decomposition VS):

(TCξ)(θ ′, xxx⊥) = eiC(xxx⊥)e−θ ′
ξ(θ ′, xxx⊥). (15)

Similarly, we consider the distorted lightlike dilations

(DCξ)(θ ′, xxx⊥) = ξ(θ ′ − C(xxx⊥), xxx⊥). (16)

If C = α is constant, they coincide with the usual translation and the dilation, respec-
tively, see (12).

Remark 3.9. Note that since C is a continuous function C , x⊥ �→ eiC(xxx⊥)te−θ ′
is a

measurable vector field of bounded operators, that is,
∫ ⊕
RD−1 eiC(xxx⊥)te−θ ′

ξ(xxx⊥)dxxx⊥ ∈
Hm for all ξ ∈ Hm , with the identification (10). As an intermediate step, if C is a
characteristic function, the claim is obvious. For an arbitrary continuous C , there is
a family of simple functions {CN }N∈N converging uniformly to pointwise to C . Then

eiCN (xxx⊥)te−θ ′
converges to eiC(xxx⊥)te−θ ′

in the strong operator topology. DC is also a
decomposable operator since (DCξ)(θ ′, xxx⊥) = ∫ ⊕

RD−1 DC (xxx⊥)ξ(θ ′, xxx⊥)dxxx⊥, where
DC (xxx⊥)ξ(θ ′, xxx⊥) = ξ(θ ′ − C(xxx⊥), xxx⊥), and one can analogously prove that x⊥ �→
DC (xxx⊥) is a measurable vector field of bounded operators passing to the θ ′-Fourier
transform. In particular, since H = ∫ ⊕R

RD−1 H(xxx⊥)dxxx⊥ ⊂ Hm is a standard subspace, the

subspaces TC H = ∫ ⊕R

RD−1 TC (xxx⊥)H(xxx⊥)dxxx⊥ and DCH = ∫ ⊕
RD−1 DC (xxx⊥)H(xxx⊥)dxxx⊥

are well-defined and standard as well.
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Proposition 3.10. The family of real subspaces H(R), indexed by open connected re-
gions R ⊂ X0−, is covariant with respect to TC , DC for a continuous function C, i.e.

TC H(R) = H(R + C) and DCH(R) = H(eC · R),

where R + C = {(x+ + C(xxx⊥), xxx⊥) : (x+, xxx⊥) ∈ R} and C · R = {(eC(xxx⊥)x+, xxx⊥) :
(x+, xxx⊥) ∈ R}.
Proof. Let g0 be a thin test function as in (13). The fibre-wise deformed test function
gtC (x+, xxx⊥) = g(x+ − C(xxx⊥), xxx⊥) corresponds to the following one-particle vector:

ĝtC (p−, ppp⊥) = eiC(xxx⊥)p−(ĝ)(p−, ppp⊥),

Therefore, we obtain the equality VS(Eg0,tC ) = TCVS(Eg0) once we prove that H(R +
C) contains the vectors which are the Fourier transform of g0,tC (x+, x−, xxx⊥) = δ(x−)

gtC (x+, xxx⊥) where gtC is of the form g(x+ − C(xxx⊥), xxx⊥) with a smooth g.
Indeed, we can mollify gtC by an approximate delta function δn on X0−: δn is a pos-

itive smooth function with
∫

δ1(x+, xxx⊥)dx+dxxx⊥ = 1 over the Lebesgue measure and
δn(x+, xxx⊥) = nDδ1(nx+, nxxx⊥). The mollified function gtC ∗ δn is smooth, supported in
R+C for sufficiently large n and its x+ integral vanishes. Therefore, its Fourier transform
belongs to H(R +C) when restricted to the mass shell, and is equal to the Fourier trans-
form of gtC multiplied by that of δn . The Fourier transform of δn is bounded and converge
to 1, therefore, it converges to Eg0,tC where g0,tC (x+, x−, xxx⊥) = δ(x−)g0,tC (x+, xxx⊥).
As H(R + C) is closed, it contains Eg0,tC .

Similarly, for gdC (x+, xxx⊥) = g(e−C(xxx⊥)x+, xxx⊥), its Fourier transform on x+ for fixed
xxx⊥ as a function of p− is dilated by eC(xxx⊥) and hence

(VSĝdC )(θ ′, xxx⊥) = (VSĝ)(θ
′ − C(xxx⊥), xxx⊥),

that is, it holds that VS(Eg0,dC ) = DCVS(Eg0). Similarly as in the case of gtC ,
Eg0,dC ∈ H(eC · R), where g0,dC (x+, x−, xxx⊥) = δ(x−)gdC (x+, xxx⊥), we obtain the
desired covariance. ��

Proposition 3.10 allows to generalize the disintegration (14) to more general open
regions.

Proposition 3.11. Let R be a region on X0− of the form R = {(x+, xxx⊥) : xxx⊥ ∈
I⊥,C1(xxx⊥) < x+ < C2(xxx⊥)} for an open region I⊥ ⊂ R

D−1 and two continuous
functions C1,C2 : R

D−1 → R. Then through the spatial decomposition we have

H(R) �
∫ ⊕R

I⊥
HU (1) ((C1(xxx⊥),C2(xxx⊥))) dD−1xxx⊥.

Similarly, the subspace of a null-cut decomposes:

H(NC ) �
∫ ⊕R

RD−1
HU (1)((C(xxx⊥),∞))dD−1xxx⊥,

H(N †
C ) �

∫ ⊕R

RD−1
HU (1) ((−∞,C(xxx⊥))) dD−1xxx⊥,

where N †
C is the interior of the complement of the null-cut NC on the null-plane:

N †
C = X0− \ NC = {x+ < C(xxx⊥), x− = 0, xxx⊥ ∈ R

D−1}◦.
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Proof. Recall that by Proposition 3.8 the decomposition holds for the case R = (0, 1)×
I⊥. We can dilate this by DC2−C1 and then translate it by C1 to arrive at R in the
desired form. By the covariance of the whole family {H(R)} with respect to fibre-wise
translations and dilations by Proposition 3.10, we obtain the desired decomposition.

If we start from the rectangle R+ × R
D−1 (analogously for R− × R

D−1), then we
deform the rectangle via the distorted lightlike translation TC to the null-cut NC or the
interior of its complement N †

C , respectively. From the covariance of TC and Proposi-
tion 3.8, we obtain the decompositions:

H(NC ) �
∫ ⊕R

RD−1
HU (1)((C(xxx⊥),∞))dD−1xxx⊥

H(N †
C ) �

∫ ⊕R

RD−1
HU (1) ((−∞,C(xxx⊥))) dD−1xxx⊥. (17)

��

3.4. Duality for null cuts.

Theorem 3.12. The standard subspaces H(NC ) of continuous C satisfy duality (see
Fig. 1):

H(NC ) = H(NC )′′ = H(N ′′
C ).

Proof. The first equality follows from the fact that H(NC ) is a standard subspace.
Next we show H(NC ) ⊂ H(N ′′

C ). Let a be a vector pointing in the positive x1-
direction (or the negative x− direction) we have NC ⊂ N ′′

C − ta for t > 0. Indeed, if
x ∈ NC , y ∈ N ′

C , it has x− = 0, and (x − y)2 = −2(x+ − y+)y− − (xxx⊥ − yyy⊥)2 < 0.
Furthermore, as x+ can be arbitrarily large, it must hold that x+ − y+ > 0, y− > 0 and
hence adding −ta to y just decreases the first term. Therefore, for any y ∈ N ′

C , y − ta
is spacelike from x ∈ NC , that is, NC ⊂ N ′′

C − ta. Therefore, by Lemma 3.7, we have
H(NC ) ⊂ H(N ′′

C ).

Lastly we prove H(N ′′
C ) ⊂ H(NC )′′. It is easy to see that N †

C − ta ⊂ N ′
C for any

t > 0, where a is again a vector pointing in the positive x1-direction, hence we have
H(N †

C ) ⊂ H(N ′
C ) by Lemma 3.7. As we have H(N ′′

C ) ⊂ H(N ′
C )′ by locality and we

have H(N ′′
C ) ⊂ H(N ′

C )′ ⊂ H(N †
C )′ = H(NC )′′, where the last equality follows from

Lemma 3.1 and (17). ��
As an example, it is immediate to see that the causal completion of the zero null-cut

N0 = NC0 with C0(xxx⊥) = 0 is the right wedge: N ′′
0 = W1, hence H(N0) = H(N ′′

0 ) =
H(W1).

While it is possible to define H(NC ) for non continuous curves (see Sect. 6), the
continuity condition Theorem 3.12 cannot be removed. Indeed, if C = χQD−1 is the
characteristic function of Q

D−1 then H(NC ) = H(WR) since the direct integrals

H(NC ) =
∫ ⊕R

RD−1
HU(1)((χQD−1(xxx⊥),+∞))dD−1xxx⊥

=
∫ ⊕R

RD−1
HU(1)((0,+∞))dD−1xxx⊥ = H(W1)
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are equal up to a null measure set, but H(N ′′
C ) is strictly contained in H(WR) when the

definition (5) is considered .
Let us define the deformed wedge for a continuous function C : R

D−1 → R by

WC := {xxx ∈ R
D+1, x− < 0, x+ > C(xxx⊥)}.

Then we have:

Proposition 3.13. H(NC ) = H(WC ).

Proof. It is clear from the definition that NC ⊂ WC + t x− for every t > 0. From
Lemma 3.7, it follows H(NC ) ⊂ H(WC ).

For the opposite direction, we will deduce H(WC ) ⊂ H(N ′′
C ). The claim follows

from isotony and the previous theorem. Let y ∈ WC , then we can write y = x + a with
x ∈ NC and a = (0, a−, 0) with a− < 0. It is enough to prove NC + ta ⊂ N ′′

C for
t > 0, or equivalently, NC ⊂ N ′′

C − ta for every t > 0. This is analogous to the proof
of Theorem 3.12. ��

4. Modular Operator for Null Cuts

The following is of an independent interest, because it is an assumption of the limited
version of QNEC [CF20].

Proposition 4.1. Let C1,C2 : R
D−1 → R be continuous functions such that C1(xxx⊥) <

C2(xxx⊥). Then the inclusion H(NC2) ⊂ H(NC1) is a HSMI.

Proof. Note that, if K ⊂ H is a HSMI and U is a unitary, then also UK ⊂ UH is a
HSMI by Lemma 2.1.

Recall that1 H(W+) ⊂ H(W1) is a HSMI, where C+(xxx⊥) = 1 and W+ = WC+ is
the shifted wedge. Put also C0(xxx⊥) = 0, so that W1 = WC0 . By fibre-wise covariance
(Proposition 3.10), the inclusion H(NC2) ⊂ H(NC1) is unitarily equivalent to H(W+) =
H(C+) ⊂ H(C0) = H(W1). Indeed, we can take Cdl(xxx⊥) = log(C2(xxx⊥) − C1(xxx⊥))

and Ctr(xxx⊥) = C1(xxx⊥). Then we have TCtrDCdlH(W1) = H(Ctr + eCdlC0) = H(NC1)

and TCtrDCdlH(W+) = H(Ctr + eCdlC+) = H(NC2). Then the desired HSMI follows
from this unitary equivalence. ��

In the rest of this Section, we will study the modular operator of the standard spaces
H(NC ). We call QS the unitary that results from the concatenation of VS (cf. Sect.
3.2) and the fibre-wise unitary between L2(R, dθ ′) and the U (1)-current mentioned in
Sect. 2.4.

Proposition 4.2. The unitary operator QS between Hm and the direct integral of U (1)-
current Hilbert spaces decomposes the modular operator of C(N0):

log(�H(N0)) = log(�H(WR))

= Ad QS

∫ ⊕

RD−1
log(�HU (1)(R+))d

D−1xxx⊥.

1 With this slightly unfortunate notations,W1 is the standard wedge in the x1-direction (and not the shifted
wedge).
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Proof. The causal complement of N0 is the left wedge WL :

N ′
0 = {x ∈ R

D+1; x+ < 0, x− > 0, xxx⊥ ∈ R
D−1} = WL .

ByTheorem3.12,weknow H(N0) = H(N ′′
0 ) = H(WR). By theBisognano–Wichmann

property (HK6) in Sect. 2.2, we know that themodular group of the rightwedge coincides
with the representation of the boost group along x1:

�i t
H(WR) = Um(�1(−2π t)).

By (16) the representation of the boost group is equivalent to the constant dilation group
of the U (1)-current on each fibre of the spatial decomposition of Hm and hence:

Ad QS�
−i t
H(WR) =

∫ ⊕

RD−1
UU(1)(2π t, 0) d

D−1xxx⊥.

The statement follows from Proposition A.1 and the Bisognano–Wichmann property for
the U (1)-current (cf. Sect. 2.4). ��

The standard subspace of the constant null cut Cs(xxx⊥) = s is

H(Ns) = TCs H(N0) = Um(1, tx+(s))H(W1) = H(tx+(s)W1).

Thatmeans thatH(Ns) equals the standard subspace associatedwith thewedge tx+(s)W1.
According to the Bisognano–Wichmann property, the associated modular group is the
boost group leaving the wedge tx+(s)W1 invariant:

�i t
H(Ns )

= Um(1, tx+(s))�
i t
H(N0)

Um(1, tx+(s))
∗

= Um(1, tx+((1− e2π t )s))�i t
H(N0)

.

From this, we have the following well-known (cf. Lemma 2.1) relation between gener-
ators.

log�H(Ns ) = log�H(N0) + 2πsP, (18)

where P is the generator of translations Um(tx+(s)) along the light ray x+.
The formula (18) has a natural generalization to arbitrary null-cuts. The key structures

that we will utilize are half-sided modular inclusion of certain null-cut subspaces. In the
following, we will use the notation for half-sided modular inclusions introduced in
Sect. 2.1.

Now we state one of our main results (the idea of the proof is visualised in Fig. 2).

Theorem 4.3. Let C : R
D−1 → R be a continuous function, then the generator of the

modular group of the associated null-cut is decomposed as follows, where the equiva-
lence is given by the operator QS of Proposition 4.2.

log(�H(NC )) �
∫ ⊕

RD−1

(
log(�HU (1)(R+)) + 2πC(xxx⊥)Pxxx⊥

)
dxxx⊥, (19)

where Pxxx⊥ is the generator of translations on each fibre.



350 V .Morinelli,Y. Tanimoto, B. Wegener

Fig. 2. Geometric action of distorted lightlike translations

Proof. As we have NC = TC N0 (with the notations of Lemma 3.7), we have �i t
H(NC ) =

Ad TC (�i t
H(N0)

). Note that TC is a decomposable operator implementing the fiber-wise
translations, therefore by the decomposition through QS,

�i t
H(NC ) �

∫ ⊕

RD−1
AdUU(1)(0, t(C(xxx⊥))(�i t

HU (1)(R+)
) dxxx⊥

=
∫ ⊕

RD−1
exp

(
i t

(
log(�HU (1)(R+)) + 2πC(xxx⊥)Pxxx⊥

))
dxxx⊥,

where the second equation is the fibre-wise transformation law of a simple HSMI (Theo-
rem2.3). ByPropositionA.1 and the Stone theorem, this relation passes to the generators.

��
Let us comment on the second quantized net (A, +(Um),F+(Hm)). By Proposi-

tion 2.4, a HSMI of standard subspaces promotes to a HSMI of von Neumann algebras,
hence the following is an immediate consequence of Proposition 4.1 and Theorem 3.12.

Corollary 4.4. Let C1,C2 : R
D−1 → R be continuous functions such that C1(xxx⊥) <

C2(xxx⊥). Then the inclusion A(N ′′
C2

) ⊂ A(N ′′
C1

) is a HSMI.

It is not easy to write the second-quantized version of (19): while the second quanti-
zation of the left-hand side is straightforward d+(log�H(NC )) = log�A(N ′′

C ),
, where
d+(A) = 0 ⊕ A ⊕ (A ⊗ 1 ⊕ 1 ⊗ A) · · · is the additive second quantization, the
direct-integral structure on the right-hand side translates to the continuous tensor prod-
uct structure in the second quantization [AW66,Nap71]. Conceptually, it should be an
“integral” of the second-quantized generators on fibres, but we do not know how to
formulate such an integral corresponding to (1). Instead, we were able to formulate the
HSMI without reference to the (undefined) stress-energy tensor smeared on the null
plane.
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On the other hand, for general interacting models, we do not have this simple second-
quantization structure, and the validity of HSMI for the inclusions of null cut regions
remains open, see Sect. 6.

5. Relative Entropy and Energy Bounds

5.1. Decomposition of the relative entropy for coherent states. Werecall that the formula
for Araki relative entropy of a von Neumann algebra A ⊂ B(K) with respect to two
vector states ω1 and ω2 is given by

S(ω1||ω2) = −〈ξ, log�η,ξ ξ 〉

where ξ, η ∈ K implement ω1 and ω2 on A, respectively and Sη,ξ = Jη,ξ�
1
2
η,ξ is the

relative Tomita opereator:

Sη,ξ : Aξ � aξ �→ a∗η ∈ Aη.

It is immediate to see that if η = ξ , then �ξ,ξ is the modular operator ofA with respect
to ξ and S(ω1||ω1) = 0.

Let H ⊂ H be a standard subspace and w(ψ) be the Weyl operator of ψ ∈ H on
+(H). A state on a von Neumann algebra A ⊂ B(+(H)) is called coherent if it is
given by ωψ(·) := ω(w(ψ) · w(ψ)∗), where ω is the Fock vacuum.

Following [CLR20], given a standard subspace H ⊂ H, we can consider the follow-
ing quantity

SH (ψ) = Im 〈ψ, PHi log�Hψ〉,
where PH is an unbounded real projection called cutting projection. The cutting projec-
tion is determined by the modular operator and modular conjugation of H . Its explicit
form is:

PH = a(�H ) + JHb(�H )

where a(λ) = λ−1/2(λ−1/2 − λ1/2)−1 and b = (λ−1/2 − λ1/2)−1.
If h ∈ H , then

SH (ψ) = −〈ψ, log�Hψ〉.
We have the following relation with the relative entropy of second quantization algebra:

SR(H)(ωψ ||ω) = SH (ψ).

where SR(H)(ωψ ||ω) is the relative entropy of ωψ and ω with respect to R(H) [CLR20,
Proposition 4.2].

Lemma 5.1. Consider a standard subspace H that is a direct integral of standard sub-
spaces H = ∫ ⊕R

X H(x)dν(λ) ⊂ ∫ ⊕
X Kλdν(λ) with decomposable modular generator

log(�H ) = ∫ ⊕
X log(�H(λ))dν(λ). Moreover, let ψ = ∫ ⊕

X ψ(λ)dν(λ) ∈ K. Then the
relative entropy of ωψ and the vacuum with respect to H decomposes:

SR(H)(ωψ ||ω) =
∫
X
SR(H(λ))(ω�(λ)(λ)||ω(λ))dν(λ),

where ω(λ) denotes the vacuum on the Fock space of Kλ.
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Proof. Following the previous arguments, we have SR(H)(ωψ ||ω) = SH (ψ). By as-
sumption the modular generator decomposes. It is straightforward to check that JH =∫ ⊕
X JH(λ)dν(λ) decomposes as well. Applying Proposition A.1, the cutting projection

decomposes accordingly PH = ∫ ⊕
X PH(λ)μ(λ). Thus

〈ψ, PHi log�Hψ〉 =
∫
X
〈ψ(λ), PH(λ)i log(�H(λ))ψ(λ)〉 dν(λ),

in particular

SH (ψ) = Im
∫
X
〈ψ(λ), PH(λ)i log(�H(λ))ψ(λ)〉 dν(λ)

=
∫
X
Im 〈ψ(λ), PH(λ)i log(�H(λ))ψ(λ)〉 dν(λ) =

∫
X
SH(λ)(ψ(λ)).

Since SH(λ)(ψ(λ)) = SR(H(λ))(ωψ(λ)(λ)||ω(λ)), we conclude the argument. ��
Remark 5.2. The modular operator of the direct integral of standard subspaces always
decomposes into the direct integral of modular operators of the fibre subspaces. This
can be seen from the KMS condition for standard subspaces (see [Lon08, Proposition
2.1.8]) and the results in “Appendix A”.

5.2. Relative entropy for coherent states on the null plane. For a single U (1)-current
net, an explicit formula for the relative entropy was computed in [Lon20], where the
U (1)-current (cf. Sect. 2.4) is differently, but equivalently, defined. To be precise, a test
function in [Lon20] is replaced by its primitive in Sect. 2.4. We translate the results of
[Lon20] to the definition of the U (1)-current introduced in Sect. 2.4.
Let It = (t,+∞) ⊂ R, HU(1)(It ) be its standard subspace andA(It ) = R(HU(1)(It )) be
the second quantization von Neumann algebra. Consider the map βk(w(ξ)) =
e−i

∫
R
k(x)L(x) dxw(ξ)with k, l ∈ C∞

0 (R, R), l̂(0) = 0,C∞
0 (R, R) � L(x) = ∫ x

−∞ l(s)ds
the primitive of l and ξ ∈ HU(1)(It ) being the one-particle vector associated to l. Then
βk extends to an automorphism of the local algebraA(It ) - a so-called Buchholz-Mack-
Todorov (BMT) automorphism [BMT88]. We denote this extension by βk as well. One
has [Lon20, Theorem 4.7]:

SA(It )(ω ◦ βk ||ω) = π

∫ +∞

t
(x − t)k2(x)dx,

where ω is the vacuum state on the U (1)-current.
We can generalize BMT automorphisms to the direct integral of U (1)-currents. Let

h, g ∈ C∞
0 (X0−, R) with ĝ(0, xxx⊥) = 0 where ĝ is the fiberwise Fourier transform, G

the fiberwise primitive of g and ξ = VSEδ(x−)g, we define the automorphism

βh(w(ξ)) = e
−i

∫
X0−

h(x)G(x) dx
w(ξ).

Let us consider the relative entropy between ω and ω ◦ βh with respect to local algebras
of null cuts:

Proposition 5.3. We have

SR(H(NC ))(ω ◦ βh ||ω) = π

∫
RD−1

∫ ∞

C(xxx⊥)

(x+ − C(xxx⊥))h(x+, xxx⊥)2dx+dxxx⊥.
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Proof. As the support of h is compact,C is bounded on the restriction toxxx⊥ of the support
of h, and by adding an appropriate smooth function supported in N †

C , we may assume
that

∫
h(x+, xxx⊥)dx+ = 0 for every xxx⊥ without changing the state ω ◦βh on R(H(NC )).

Then δ(x−)h is a thin test function and we call h := VSEδ(x−)h its one-particle vector
in the spatial decomposition.

In this case, the BMT automorphism βh is generated by the adjoint action of theWeyl
operator w(h). The symplectic form can be computed fibrewise using (7)

Adw(h) (w(ξ)) = e2iIm 〈h,ξ〉w(ξ). (20)

Im 〈h, ξ〉 =
∫
RD−1

Im 〈h(xxx⊥), ξ(xxx⊥)〉U (1) dxxx⊥ = 1

2

∫
RD

h(x+, xxx⊥)G(x+, xxx⊥)dx+dxxx⊥. (21)

Thus, on R(H(NC )), ω ◦ βh is the coherent state ωh and we can apply Lemma 5.1:

SR(H(NC ))(ωh||ω) =
∫
RD−1

SA(IC(xxx⊥))(ωh(xxx⊥)(xxx⊥)||ωxxx⊥)dxxx⊥.

The coherent state ωh(xxx⊥)(xxx⊥) on the U (1) current is generated by the adjoint action of
wU (1)(h(xxx⊥)) on the fibrewise vacuum ω(xxx⊥). This in turn coincides with the action of
the BMT automorphism βh(xxx⊥) on the U (1) vacuum ω(xxx⊥). Therefore, we can insert
the results for a single U (1)-current and have:

SR(H(NC ))(ω ◦ βh ||ω) =
∫
RD−1

SA(IC(xxx⊥))(ω(xxx⊥) ◦ βh(xxx⊥)||ω(xxx⊥))dxxx⊥

= π

∫
RD−1

∫ ∞

C(xxx⊥)

(x+ − C(xxx⊥))h(x+, xxx⊥)2dx+dxxx⊥. ��

5.3. The ANEC and the QNEC. One of the motivations to study quantum energy condi-
tions comes fromenergy constraints inGeneral Relativity, see e.g. [Few12]. For example,
the pointlike positivity of the stress energy tensor along null-directions is called Null
Energy Condition (NEC). It is often used in General Relativity to model matter distri-
butions and it plays an important role in the discussion of singularity theorems. In QFT,
however, it is not difficult to see that the stress energy tensor smeared by a positive test
function can not be positive but only bounded from below, see e.g. [FH05].

One candidate for an analogous expression of the NEC in QFT is the Averaged Null
Energy Condition (ANEC). It claims that the the integral of the expectation value of the
energy-momentum tensor in any physical state, along any complete, lightlike geodesic
γ is always non-negative (see e.g. [FLPW16, (3)], [Ver00]):

〈�|
∫
R

ds Tμ,ν(γ (s))kμkν�〉 ≥ 0, (22)

where kμ is the tangent of γ. We can write T++ when we consider the null x+-direction
(x+, 0,000). It is expected that (22) is satisfied for a dense set of vectors in a certain formal
sense.

Another candidate is the QuantumNull Energy Condition (QNEC). It is a local bound
on the expectation value of the null energy density given by the von Neumann entropy
of the null cut (the following is only symbolic and we do not attempt to justify the
expressions):

〈T++(x)〉ρ ≥ 1

2π
S′′R(NC )(ρ), (23)
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where SR(NC )(ρ) is the von Neumann entropy of a state ρ with respect to the local
algebra R(NC ) of a null cut NC , x is on the boundary of the cut C , and the derivative
is taken in the sense of the deformation of C at the point x (see [BFKW19]). The local
algebras in AQFT are usually of type III and the von Neumann entropy is infinite (see
e.g. [OP04]). That is why (23) can only be considered as a formal expression.

Under the (formal) assumption that the local algebra R(NC ) is of type I, in standard
form and with the associated modular operator as in (1), [BFLW16, Sec. 5.3] argued,
for null cuts NC and in [KLLSM18] for deformed wedges WC , that the QNEC can be
reformulated as convexity of the relative entropy:

S′′R(NC )(ρ||ω) ≥ 0, (24)

where the second derivative is considered w.r.t. to positive deformations of the lower
boundary of the null cut.

We will review the (not completely rigorous) arguments. The form of the modular
Hamiltonian (1) plays an important role. To justify that we consider the QNEC for the
free scalar field as convexity of the relative entropy (24) in the following, it is, therefore,
important that the modular operator log(�H(NC )) in (19) is a clear analogue of the
modular Hamiltonian in (1).

Let ω be the vacuum, ρ a density matrix and ρ|NC
the normal state it generates on

R(NC ). In the physics literature, the relative entropy ofω and ρ w.r.t. R(NC ) is expressed
in terms of the (vacuum) modular Hamiltonian H̃C on the future horizon of the null cut
NC [KLLSM18, (22)]:

SR(NC )(ρ||ω) = 〈ξρ, H̃Cξρ〉 − S(ρ|NC
).

In the above formula, ξρ is a vector representative of ρ|NC
and H̃C has the form (cf.

[CTT17b, (1.5)]):

H̃C = 2π
∫

dD−1xxx⊥
∫ ∞

C(xxx⊥)

dλ(λ− C(xxx⊥))T++(λ, xxx⊥).

The key is the formal connection between H̃C and the stress-energy tensor T++. Consider
deformations of the lower boundary C(xxx⊥) → C(xxx⊥) + t A(xxx⊥) with the deformation

parameter t ∈ R. The second formal variational derivative of H̃C+t A with respect to t is
[KLLSM18, (14)]:

d2

dt2

∣∣∣∣
t=0

H̃C+t A =
∫
RD−1

A(xxx⊥)2T++(C(xxx⊥), xxx⊥)dD−1xxx⊥.

With this connection, the following equivalence holds independently of the choice of
the deformation function A(xxx⊥) [KLLSM18, IV.B]:

∫
RD−1

A(xxx⊥)2 〈T++〉ρ dD−1xxx⊥ ≥ d2

dt2

∣∣∣∣
t=0

S( ρ|NC+t A
) ⇔ d2

dt2

(
〈H̃C+t A〉ρ − S( ρ|NC+t A

)
)
≥ 0

⇔ d2

dt2
SR(NC+t A)(ρ||ω) ≥ 0.

The authors of [KLLSM18] define S(ρ|NC
)′′(y⊥) := lim

A2(xxx⊥)→δ(xxx⊥−y⊥)

d2

dt2

∣∣∣
t=0

S(ρ|NC+t A
) and SR(NC )(ρ||ω)′′(y⊥) analogously. In this sense, we have:

〈T++〉ρ (C(y⊥), y⊥) ≥ S(ρ|NC
)′′(y⊥) ⇔ SR(NC )(ρ||ω)′′(y⊥) ≥ 0.
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Since this holds independently of y⊥, it implies the formal equivalence of (23) and (24).
Now, the QNEC in its relative entropy form (24) can be investigated on a rigorous

level because the relative entropy has a meaningful definition for von Neumann algebras
of any type (see e.g. [OP04]). TheQNEC (24) has already been verified for some families
of AQFT models and states (see e.g. [Lon20,CLR20,Lon19,Pan20]) and is expected to
hold in general in the AQFT context.

In [CF20], the authors assume that the inclusions of null cut algebras are HSMI and
prove an inequality that is very similar to the QNEC in its relative entropy form (24).
For continuous functions C1 ≥ C2 and A ≥ 0, they showed

∂+t SR(NC1+t A)(�||
)

∣∣∣
t=0

− ∂−t SR(NC2+t A)(�||
)

∣∣∣
t=0

≥ 0, (25)

where ∂±t denote half-sided partial derivatives. This statement was proven for the class
of vectors satisfying the ANEC (22) with respect to T++ and having finite relative entropy
with respect to the vacuum and the algebra of the zero null cut.

We will make contact with the pyhsics literature and prove the ANEC for the free
scalar field for certain states. Together with Proposition 4.1 and the results of [CF20], it
proves the inequality (25). Moreover, we will verify the QNEC (24) for the free scalar
field and for some states explicitly. In order to do this, we take the decomposition of the
modular operator (cf. Theorem 4.3) and exploit the result by [Lon20] on each fiber. In
this sense, our findings constitute a generalization of the results to a continuum family
of U (1)-currents.

The ANEC. To make contact with the physical literature, let us consider distorted light-
like translations TA by A ≥ 0, which generate half-sided modular inclusions of standard
subspaces H(NC+A) ⊂ H(NC ) of null-cuts. It is claimed, e.g. [CTT17b, (5.6) and
(5.18)], that the following operators are positive.

Pxxx⊥ =
∫

dx+T++(x+, xxx⊥)

HA =
∫

dD−1xxx⊥A(xxx⊥)

∫
dx+T++(x+, xxx⊥) =

∫ ⊕

RD−1
dD−1xxx⊥A(xxx⊥)Pxxx⊥ . (26)

Furthermore, it is argued that positivity of HA should imply ANEC (22) in [FLPW16,
Section 3.2].

Note that the last expression does not involve T++, and we can make sense of it in
the free field if we interpret these relations at the one-particle level. Indeed, it is simply
a weighted integral of the generator Pxxx⊥ of translations in the U(1)-current, which is
positive.

Following [Lon20], we define the vacuum energy associated to null deformations by
A ≥ 0 of a normal and faithful state ϕ, that has a vector representative η, by

EA(η) = 〈η, HAη〉 , (27)

where HA = 1
2π

(
log(�R(H(NC+A)),
)− log(�R(H(NC )),
)

)
is the generator of modular

translations associated to the HSMI R(H(NC+A)) ⊂ R(H(NC )). From Theorem 4.3,
one concludes that the generator of modular translation coincides with (26).

The expression (27) is positive for the dense set of vectors inD(HA) (cf. “AppendixA”
for explicit form ofD(HA)) since HA is a positive operator. In [Lon20] and [CF20], the
positivity of (27) is considered as form of the ANEC.
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The QNEC. Let ω ◦ βh1 and ω ◦ βh2 be two coherent states that are unitarily generated
by the adjoint action of w(h1) and w(h2), respectively. The relative entropy is between
these states is:

S(ω ◦ βh1 ||ω ◦ βh2) = S(ω ◦ βh1 ||ω · Adw(h2)) = S(ω · Adw(h1 − h2)||ω)

= S(ω ◦ βh1−h2 ||ω).

To study the relative entropy between these states, we can therefore restrict to h2 = 0,
i.e. ω ◦ βh2 being the vacuum state.

A distorted lightlike translation Tt A by continuous A maps H(NC ) to H(NC+t A)

and the relative entropy of ω ◦ βh and ω changes accordingly (cf. Proposition 5.3). The
differentiation with respect to the deformation parameter t gives:

d

dt
SR(NC+t A)(ω ◦ βh ||ω) = −π

∫
RD−1

∫ ∞

C(xxx⊥)+t A(xxx⊥)

A(xxx⊥)h(x+, xxx⊥)2dx+dxxx⊥ (28)

d2

dt2
SR(NC+t A)(ω ◦ βh ||ω) = π

∫
RD−1

A(xxx⊥)2h(C(xxx⊥) + t A(xxx⊥), xxx⊥)2dxxx⊥ ≥ 0

We applied the differentiation fibrewise and used

d

dt

∫ ∞

C+t A(xxx⊥)

(x+ − (C + t A(xxx⊥))h(x+, xxx⊥)2dx+ =
∫ ∞

C+t A(xxx⊥)

A(xxx⊥)h(x+, xxx⊥)2dx+

(29)

d2

dt2

∫ ∞

C+t A(xxx⊥)

A(xxx⊥)h(x+, xxx⊥)2dx+ = A(xxx⊥)2h(C + t A(xxx⊥), xxx⊥)2.

(30)

To justify the interchange of the xxx⊥-integral and the d
dt -derivative, we verify that (29),

(30) ∈ L1(RD−1, dD−1xxx⊥). We estimate (29) ≤ ∥∥A(xxx⊥)h(x+, xxx⊥)2
∥∥
1. Since A is con-

tinuous and h is compactly supported and smooth, the estimate is bounded and compactly
supported in R

D−1 and as such it is integrable. For (30), we note that C + t A(xxx⊥) is
continuous on R

D−1 and accordingly maps compact sets to compact sets. Hence, the
product in (30) is compactly supported in R

D−1 and bounded and therefore integrable.
In summary, we have proven the following form of the Quantum Null Energy Con-

dition:

Corollary 5.4. For the coherent states ω ◦ βh considered here, the QNEC holds:

1

2π

d2

dt2
SR(NC+t A)(ω ◦ βh ||ω) ≥ 0.

This inequality is not saturated at every point of positive energy density. Following
the arguments in Theorem 3.12 and Proposition 3.13, we can replace the region NC+t A
with N ′′

C+t A and WC+t A, respectively.
As expected in [BFK+16], we recover the ANEC by integrating the QNEC along

a null-direction for coherent states by (27). Here the ANEC has to be intended as the
positivity of (27). We assume A ≥ 0, then:
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1

2π

∫
R

dt
d2

dt2
SR(NC+t A)(ω ◦ βh ||ω)

= 1

2

∫
R

dt
∫
RD−1

A(xxx⊥)2h(C(xxx⊥) + t A(xxx⊥), xxx⊥)2dxxx⊥

= 1

2

∫
R

dx+

∫
RD−1

A(xxx⊥)h(x+, xxx⊥)2dxxx⊥

= Im 〈h, i HAh〉 = −i
d

dt

∣∣∣∣
t=0

〈h, Tt Ah〉

= −i
d

dt

∣∣∣∣
t=0

(
e−

1
2 (‖h‖2+‖Tt Ah‖2)e〈h,Tt Ah〉

)
= −i

d

dt

∣∣∣∣
t=0

〈w(h)
, (Tt A)w(h)
〉
= 〈w(h)
, d(HA)w(h)
〉 ,

where the self-adjoint fibrewise “momentum operator" HA = ∫ ⊕
RD−1 A(xxx⊥)Pxxx⊥dxxx⊥

is the generator of distorted lightlike translations Tt A, d(HA) is the additive second
quantization of HA, i.e. the generator of (Tt A). (7) and (21) are used to conclude
the third equality and the general identity (6) is used for the fifth equality. This is in
agreement with [Lon20, Corollary 3.10 and (46)]).

We interpret A(xxx⊥)h(x+, xxx⊥)2 as vacuum energy density at the point (x+, xxx⊥) ⊂ X0−
of the statew(h)
with respect to null-deformations A . This is the vacuumenergydensity
of the state w(h(xxx⊥))
xxx⊥ of the U (1)-current at xxx⊥-fibre with respect to deformations
by A(xxx⊥) (cf. [Lon20]). With this interpretation, the energy averaged over the a null-cut
NC is:

EA,βh (NC ) =
∫
RD−1

∫ ∞

C(xxx⊥)

A(xxx⊥)h(x+, xxx⊥)2dxxx⊥, (31)

and we have the following connection between the first derivative of the relative entropy
and the energy localised in the null-cut by comparing (28) and (31):

d

dt
SR(NC+t A)(ω ◦ βh ||ω) = EA,βh (NC+t A).

Strong superadditivity of relative entropy. Consider two null-cuts NC1 and NC2 and the
null-cuts NC∪ and NC∩ generated by C∪(xxx⊥) = min{C1(xxx⊥),C2(xxx⊥)} and C∩(xxx⊥) =
max{C1(xxx⊥),C2(xxx⊥)}, respectively. Then the strong superadditivity of relative entropy
is:

SR(NC∪ )(�||
) + SR(NC∩ )(�||
) ≥ SR(NC1 )(�||
) + SR(NC2 )(�||
).

As proven in [CF20, Section 3.2] the QNEC (25) implies this strong superadditivity for
a state � with finite QNEC (25). We can show that the states considered in Sect. 5.3
saturate the strong superadditivity of relative entropy. Indeed, we apply Proposition 5.3
and have:

SR(H(NC∪ ))(ω ◦ βh ||ω)+SR(H(NC∩ ))(ω ◦ βh ||ω)−SR(H(NC1 ))(ω ◦ βh ||ω)−SR(H(NC2 ))(ω ◦ βh ||ω)

= π

∫
RD−1

( ∫ ∞

C∪(xxx⊥)

(x+ − C∪(xxx⊥)) +
∫ ∞

C∩(xxx⊥)

(x+ − C∩(xxx⊥))

−
∫ ∞

C1(xxx⊥)

(x+ − C1(xxx⊥)) −
∫ ∞

C2(xxx⊥)

(x+ − C2(xxx⊥))
)
h(x+, xxx⊥)2dx+dxxx⊥ = 0

since C∪(xxx⊥) + C∩(xxx⊥) − C1(xxx⊥) − C2(xxx⊥) = 0 for all xxx⊥.



358 V .Morinelli,Y. Tanimoto, B. Wegener

6. Concluding Remarks

Let us close this paper with a few more remarks.

• It is possible to extend the definition of local subspaces on the null plane to measur-
able functionsC . The strategy is to loosen the assumption on “thin test functions” (cf.
Sect. 3.3) in the sense that xxx⊥ �→ g(x+, xxx⊥) ∈ L1(RD−1) ∩ L2(RD−1) for almost
every x+. The real subspaces are covariant with respect to distorted lightlike transla-
tions and dilations (cf. (15) and (16)) for measurable functions C . Also in this case
TC and DC are determined by measurable vector fields of bounded operators since
Remark 3.9 obviously extends. It constitutes an extension of the present analysis in
the sense that for continuous functions the definitions coincide. Many results such as
the decomposition of the subspaces (Proposition 3.11) and modular operators (Theo-
rem 4.3) hold for the resulting subspaces as well. However, isotony (Lemma 3.7) and
duality for null-cuts (Theorem 3.12) do not hold for arbitrary measurable functions.
• Themodular operator of a direct integral of standard subspaces decomposes into the
direct integral of modular operators. Therefore, the modular operator of H(R) from
Proposition 3.11 decomposes into the direct integral of U (1)-modular operators of
the interval (C1(xxx⊥),C2(xxx⊥)).
• The fact that there are observables that can be restricted to null plane shows that the
minimal localization region in the sense of [Kuc00] can have empty interior.
• In a general Haag–Kastler net, we do not expect that there are sufficiently many
observables (e.g. in the sense of the Reeh-Schlieder property) that can be restricted to
the null plane. With additional assumptions (including the C-number commutation
relations), it is shown that only free fields can be directly restricted on the null plane
[Dri77a], cf. [Wal12, Section 5] [BCFM15, A]. In addition, in the two-dimensional
spacetime, there are interacting Haag–Kastler nets [Tan14] where observables on the
lightray generate a proper subspace of the Hilbert space from the vacuum [BT15,
Section 5.3, Trivial examples]. In these cases, different ideas are required to justify
(1).
On the other hand, it has been suggested that there could be bounded operators
localized on the null plane in the sense ofHaagduality [Sch05]. If so, two-dimensional
conformal field theory is hidden on each lightlike fibre [BLM11].
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A. Decomposable Functional Calculus

Assume the same notations as in Sect. 3.1. We call an (possibly unbounded) operator T
on the direct integral of Hilbert spacesK = ∫ ⊕

X Kλdν(λ) decomposable when there is a
function λ �→ Tλ, such that Tλ is an (possibly unbounded) operator on Kλ, and for each
ξ ∈ D(T ), ξ(λ) ∈ D(Tλ) and (T ξ)(λ) = Tλξ(λ) for ν-almost every λ.

Theorem A.1. Let T be a self-adjoint operator on the direct integral of Hilbert spaces
K = ∫ ⊕

X Kλdν(λ). The following are equivalent:

1. The projection-valued measure ET associated to T decomposes in the direct integral
of projection-valued measures:

ET =
∫ ⊕

X
ETλdν(λ) =: E (32)

for some self-adjoint operators Tλ on Kλ.
2. The Borel functional calculus of T decomposes in the direct sum of Borel functional

calculi of self-adjoint operators Tλ on Kλ:

f (T ) =
∫ ⊕

X
f (Tλ)dν(λ).

3. T = ∫ ⊕
X Tλdν(λ) is decomposable. Each Tλ is a self-adjoint operator on Kλ.

4. The one-parameter group of unitaries U (t) := eitT decomposes:

U (t) =
∫ ⊕

X
Uλ(t)dν(λ),

where Uλ(t) is a one-parameter group of unitaries on Kλ.

Proof. 2 ⇒ 3, 4: clear.
3 ⇔ 1 ⇒ 2: We show that E (cf. (32)) is the spectral measure associated to∫ ⊕

X Tλdν(λ). It is a projection-valued measure defined by:


 �→ E(
) :=
∫ ⊕

X
ETλ(
)dν(λ).

That is because the multiplication of decomposable operators is defined fibre-wise. It is
clear that each element is a projection and that E(∅) = 0, E(R) = 1 and E(
1∩
2) =
E(
1)E(
2). For mutually disjoint 
n the associated projections are orthogonal. It
follows that their sum is again a projection. Hence, we can use dominated convergence,

to deduce the convergence E(∪N
n)
N→∞−−−−→ E(
) for a countable union 
 = ∪
n

http://creativecommons.org/licenses/by/4.0/
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from the fibre-wise convergence. The latter is true because ETλ is a spectral measure.
The spectral measure Eϕ for ϕ ∈ K is for a Borel set 
:

Eϕ(
) = 〈ϕ, E(
)ϕ〉 =
∫
X
ETλ

ϕλ
(
)dν(λ).

For integration, we denote it by dEϕ(x). For a simple function s = ∑
aiχ
i on a

compact set 
 = ∪i
i it holds:∫
R

s(x)dEϕ(x) =
∑
i

ai

∫
X
ETλ

ϕλ
(
i )dν(λ)

=
∫
X

∫
R

s(x)dETλ
ϕλ

(x)dν(λ) = 〈ϕ,

(∫ ⊕

X
s(Tλ)dν(λ)

)
ϕ〉 .

The integral of a general bounded Borel function is the difference of the integrals over
the positive and negative part. The integral over a positive bounded Borel function f
with respect to dEϕ is defined as the supremum of integral over simple functions s that
are locally bounded by f :
∫
R

f (x)dEϕ(x) = sup
0≤s≤ f

∫
X

∫
R

s(x)dETλ
ϕλ

(x)dν(λ) ≤
∫
X

sup
0≤s≤ f

∫
R

s(x)dETλ
ϕλ

(x)dν(λ)

For a positive, Borel measurable function f , there is a non-decreasing sequence sn of
simple functions converging from below pointwise. We can utilize dominated conver-
gence (spectral measures are finite) to show

lim
n→∞

∫
X

∫
R

sn(x)dEϕλ(x)dν(λ) =
∫
X

∫
R

f (x)dEϕλ(x)dν(λ).

Hence, we have for bounded Borel functions:∫
X

∫
R

f (x)dETλ
ϕλ

(x)dν(λ) =
∫
R

f (x)dEϕ(x). (33)

For each ϕ ∈ K, the measure Eϕ is inner regular and countably additive. The second
property was already discussed. The inner regularity follows from the finiteness of
Eϕ . Hence, the two integrals in (33) define the same bounded, linear functional on the
compactly supported, continuous functions. From the uniqueness in the Riesz-Markov
theorem (cf. Lemma A.2), we deduce the equality of the measures. This means for each
ϕ ∈ K and Borel function h:

∫
R

h(x)dEϕ =
∫
X

∫
R

h(x)dETλ
ϕλ
dν(λ) = 〈ϕ,

(∫ ⊕

X
h(Tλ)dν(λ)

)
ϕ〉 .

In the usual notation, this amounts to:
∫
R

h(x)dE(x) =
∫ ⊕

X
h(Tλ)dν(λ).

The domain of the operator h(T ) is:

D(h(T )) = {ϕ ∈ K;
∫
R

| f (k)|2dET
ϕ (k) < ∞}
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= {ϕ ∈ K;
∫
X

∫
R

| f (k)|2dETλ

ϕ(λ)(k)dν(λ) < ∞}

= {ϕ ∈ K;
∫
X
‖h(Tλ)ϕ(λ)‖2 dν(λ) < ∞} =

∫ ⊕

X
D(h(Tλ))dν(λ).

For a closed operator A on a Hilbert space H its domain D(A) is a Hilbert space w.r.t.
the Graph inner product:

〈ξ, η〉A := 〈ξ, η〉H + 〈Aξ, Aη〉H .

Since Tλ is self-adjoint for (ν-almost) every λ, the domain of h(Tλ) is a Hilbert space
w.r.t. the Graph inner product for almost every λ. The domain D(h(T )) embeds in K
trivially. If T is decomposable, then we have for all vectors ϕ ∈ K:

∫
R

λdET
ϕ (λ) =

∫
X

∫
R

λdETλ
ϕλ
dν(λ).

4 ⇒ 1: Let ξ, η ∈ K and g ∈ S (R). Then by Fubini’s theorem the operator g(T )

decomposes:

〈ξ, g(T )η〉 =
∫
R

g̃(t) 〈ξ,U (t)η〉 dt

=
∫
X
〈ξ(λ),

(∫
R

g̃(t)Uλ(t)dt

)
η(λ)〉 dν(λ)

= 〈ξ,

(∫ ⊕

X
g(Tλ)dν(λ)

)
η〉 .

Every characteristic function χS of a set S with finite measure can be expressed as
the pointwise limit of a sequence gn ⊂ S (R) of uniformly bounded functions. In the
functional calculus this amounts to the strong convergence:

gn(T )
n→∞−−−→ χS(T ) = ET (S),

where ET (S) denotes the spectral projection of T with respect to the set S.
Since gn is uniformly bounded, we can apply the theorem of dominated convergence:

〈ξ, ET
S η〉 = lim

n→∞

∫
X
〈ξ(λ), gn(Tλ)η(λ)〉 dν(λ)

=
∫
X
〈ξ(λ), χS(Tλ)η(λ)〉 dν(λ)

= 〈ξ,

(∫ ⊕

X
ETλ(S)dν(λ)

)
η〉 .

Hence, the spectral measure ET
ϕ associated to any vector ϕ ∈ K decomposes in the

following sense for any bounded Borel function f :

〈ϕ, f (T )ϕ〉 =
∫
R

f (k)dET
ϕ (k) (34)

=
∫
X

∫
R

f (k)dETλ

ϕ(λ)(k) = 〈ϕ,

(∫ ⊕

X
f (Tλ)dν(λ)

)
ϕ〉 . (35)
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The two expression (34) and (35) define the same linear functional on the continuous,
compactly supported functions. By the Riesz-Markov theorem such a functional is de-
termined a unique countably additive, inner regular measure on R. Since both measure
in (34) and (35) are countably additive and inner regular, they coincide. ��
Lemma A.2 (Riesz-Markov theorem). Let X be a locally compact Hausdorff space and
� a bounded linear functional on Cc(X), then there exists a unique inner regular and
countably additive measure μ on X such that:

�( f ) =
∫
X
f dμ.
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