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“It is interesting that people try to find meaningful patterns in things that

are essentially random.”

— Lt. Cmdr. Data, Star Trek: The Next Generation, Ep. 5.22
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ABSTRACT

MODULAR ORGANIZATION

AND COMPOSABILITY OF RNA

Miler T.S. Lee

Supervisor: Junhyong Kim, Ph.D.

Life is organized. Organization is largely achieved via composability – that at some

level of abstraction, a system consists of smaller parts that serve as building blocks

– and modularity – the tendency for these blocks to be independent units that re-

combine to form functionally different systems. Here, we explore the organization,

composition, and modularity of ribonucleic acid (RNA) molecules, biopolymers that

adopt three-dimensional structures according to their specific nucleotide sequence.

We address three themes: the efficacy of specific sequences to function as modules or

as the context in which modules are inserted; the sources of novel modules in modern

genomes; and the resolutions at which functionally relevant modules exist in RNA.

First, we investigate the structural modularity of RNA sequences by developing

the Self-Containment Index, a method to quantify in silico the degree to which RNA

structures deviate in changing genomic contexts. We show that although structural

modularity is not a general property of natural RNAs, precursor microRNAs are

strongly modular, which we hypothesize is a consequence of their unique biogenesis

and evolutionary history.

Next, we consider the role of modularity in the regulation of subcellular localiza-

tion. We identify a novel module, the ID element retrotransposon, contained in the

introns of rat neuronal genes, and demonstrate that it is sufficient to drive localization

vii



of mRNAs to dendrites via regulated retention of intron sequence. This mechanism

shows that introns can provide the context for functional module insertion, and that

transposable elements can be co-opted as source material for these modules. As a fur-

ther example, we present evidence that a Camk2a localization signal can be mimicked

by Alu retrotransposon sequence.

Finally, we propose that RNAs can be conceptually decomposed into sets of basic

RNA functions. To identify these, we automatically construct an ontology of RNA

function using Wikipedia documents. We show that many of the functions encoded

in ontology terms are significantly associated with common structural features, high-

lighting an underlying structure-function relationship that can be encapsulated in

elemental RNA building-block units.

In sum, we show how the phenomena of organization, composition, and modularity

can frame RNA research in an evolutionary context.
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Chapter 1

Introduction

Life is organized. On the macro scale, individuals and communities are organized

into ecological niches; on the subcellular level, nucleotides are organized into genes,

and genes into chromosomes. To the extent that we as biologists study life, we are

in some sense attempting to decode how our system of interest – the human genome

[1], the MAPK signal transduction pathway [2], the migratory patterns of passerine

birds [3], the cell-cycle-coupled oscillation of yeast genes [4] – is organized in space

and in time.

Some of the earliest forays into the study of biology as a scientific discipline cen-

tered on describing the components of human bodies as well as contextualizing human

beings in the natural world. The endeavor of characterizing and understanding hu-

man anatomy, the shapes and structures that form a living person, began with ancient

medicinal and ritualistic traditions, and rose to prominence with the work of Andreas

Vesalius, a 16th-century practitioner of observation-based medicine. In De humani

corporis fabrica, Vesalius described a system composed of discrete organs and organ

groups, each contributing a specific function to the organism as a whole [5]. By the

nineteenth century, a theory emerged, due to Theodor Schwann and Matthias Jacob

Schleiden, stating that all living organisms and their parts were composed of elemen-

1



tal units called cells [6]; subsequently, Rudolf Virchow added a temporal dimension,

observing that all cells are produced from pre-existing cells, thus forming the basis for

understanding developmental phenomena such as pattern formation, which we now

know to be an organized and coordinated process [7].

On the macro scale, the study of the organizing principles of life date back to

at least the fourth century B.C., when Aristotle formulated the scala naturae (the

“Great Chain of Being”), a taxonomy of living things organized into an eleven-tiered

hierarchy. Plants occupied the lowest rung of life, while humans were at the top –

“infected,” as it were, with a maximal degree of “potentiality” as reflected in their

birth forms: warm, wet, and live offspring, in contrast to cold eggs or seeds [8]. Ver-

sions of this linear hierarchy prevailed for 2000 years, until 1735, when Carl Linnaeus

proposed a rank-based classification system in Systema Naturae [9], in which natural

entities were divided into three parallel kingdoms – animals, plants, and minerals –

which each were subdivided into groups of increasing specificity – class, order, genus,

species, and variety. For example, lions (Leo) constituted a separate genus from tigers

(Tigris) but belonged to the same order (Ferae) and by extension, the same class and

kingdom (Quadrupedia, and Animalia, respectively) [10]. Under the Linnaean taxon-

omy, which became the foundation for modern systematics, the organization of living

things began to look more like a tree than a single chain.

As the formal discipline of life science matured, revealing an ever-increasing com-

plexity of natural systems, certain patterns became apparent. To a large extent we

observe that organization is achieved via composability – that at some level of abstrac-

tion, a system consists of a series of smaller parts that serve as fundamental building

blocks. The cells that comprise organisms are themselves composed of smaller units

called organelles, and the instruction set from which these components derive consists

of particular combinations of four biomolecular building blocks – the DNA nucleotides
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adenine, guanine, cytosine, and thymine. Both functionally and conceptually, these

units are separate entities that interact and interface with one another, contributing

to a system of hierarchical complexity.

Intimately related, we also observe a phenomenon of modularity, the tendency

for these building blocks to be independent units that can be reused or recombined

to form functionally different systems. The DNA instructions that encode a protein

component are contained in a single, discrete gene; changes in that gene result in

localized changes to that specific product. Multiple, slightly different copies of genes

can occur throughout a genome, the result of duplication events that create new

functional products that do not need to evolve de novo. The same gene product can

be produced in different cell types or in different developmental stages, resulting in

subtly or profoundly different effects depending on the other gene products present

at that place and time.

Characterizations of biological modularity come predominantly from studies in

morphology, development, and evolution [11], recapitulating similar themes of reuse

and independence of modules. Early on, studies of variation in biological subfields

such as systematics, paleontology, and comparative anatomy revealed the existence

of common forms and common components in the body plans of diverse organisms

[12, 13]. Mammalian forelimbs, for example, constitute modules in the sense that they

are largely operationally independent from the rest of the body. This is manifest both

in the maintenance of the global organismal form when a forelimb is removed, and in

the diversity of shapes among different species – wings in bats, flippers in whales –

that reflect localized evolutionary variation.

Developmental modularity occurs on a more mechanistic level and concerns the

realization of localized components of these body plans through the coordinated ex-

pression of a discrete set of genes [14]. The classic examples are the developmental

3



modules that determine body segmentation and axis polarity in arthropods such as

Drosophila [15]. Arthropod bodies consist of a series of repeated segments, each of

which is patterned using the same regulatory network of genes [16] that establish

direction locally specific to the particular segment. In this way, the same regulatory

plan causes legs to develop in the thoracic segments but antennae to develop in the

head, as a result of different downstream gene effects in different segments. This

phenomenon is dramatically illustrated in the induced ectopic formation of legs in

place of antennae when the gene Antennapedia is expressed in the head segment [17],

revealing both the positional independence of segment identity and the developmental

homology between different segments.

Evolutionary modularity arises as a consequence of natural selection, the fun-

damental process driving evolutionary change that was first described by Charles

Darwin in 1859 [18]. Natural selection occurs when individual variation of specific

traits (phenotypes) causes fitness differentials, such that some individuals are better

adapted to surviving to reproduce and pass their genetic material to the next gen-

eration. Subsequent generations will preferentially be composed of gene sequences

(genotypes) that conferred the fitness advantage in the previous generation.

Richard Lewontin argued that adaptation is possible only if the genotypes that

lead to variable reproductive fitness are “quasi-independent,” meaning that particular

genes should be able to change in response to selection without inducing side effects

in many other genes [19]. John Bonner expanded this argument by invoking the

existence of modular “gene nets” – groups of genes that are highly interdependent

within the group (i.e., pleiotropic) but relatively independent of genes outside of

the group [20]. The effects of genetic changes are then localized to a small subset

of the entire genome, such that incremental changes, as necessitated by evolution,

tend not to have systemic effects that would result in an overall decrease in fitness
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in the organism. Robert Brandon refines this further by proposing that a gene net

must possess “unitary function” in order to be an evolutionary module, such that the

genotype of a module maps exclusively onto a single phenotype or set of phenotypes

that constitute a trait upon which selection can act [21]. For example, the overall spot

patterns on the wing of a Viceroy butterfly constitute a unitary function, as selection

acts on the ability of the viceroy to mimic a Monarch butterfly; however, the color of

an individual spot does not constitute a unitary function, as the selection advantage

has little meaning at that level of resolution [22]. Thus, modularity emerges as a

phenomenon that defines discrete units of evolution.

The confluence of these three forms of modularity occurs in the holistic “evo-

devo” treatment of development and form in the context of evolution [23], and relies

on a mapping of morphological modules onto developmental modules, which in turn

map to discrete evolutionary modules [24, 25, 26]. In practice, this mapping is not

always clear [27]; however, the close coupling of genotype and phenotype suggests

that modularities defined at various levels of abstraction will interact in the form of

constraints on the space of possible forms of organization.

This dissertation explores the properties of organization, composition, and modu-

larity as pertaining to ribonucleic acid (RNA) molecules, biopolymers occurring ubiq-

uitously among all living cells and essential for life function. RNA is composed of a

linear sequence of basic units called nucleotides, whose pairwise energy-minimizing

interactions (base pairs) confer the RNA with a three-dimensional folded structure

(for a detailed discussion of RNA biology, see Chapter 2). In turn, the function of an

RNA molecule is a direct consequence of the structure that it adopts [28], resulting

in a variety of roles as an information carrier, a catalytic species, or a substrate for

chemical reactions or biomolecular-complex assembly. As a result, RNA can serve

as a basic model for studying the genotype-phenotype relationship [29, 30], since
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we can treat RNA structure – which at a basic level is a computationally tractable

characteristic – as a proxy for phenotype.

The principles of organization and composition in RNA biology are apparent in

many forms. RNA genes, like protein-coding genes, can exist in multi-copy families, in

which each version shares a core functionality but is also specialized in some way. For

example, most organisms contain hundreds of copies of transfer RNA (tRNA) genes,

each containing the same structural elements, but differing only in a few nucleotides

according to the specific amino acid substrate they bind [31]. Similarly, combinato-

rial regulation is a common theme in RNA biology, in which the aggregate effects

of different RNA species combine in different ways serves to bring about a specific

regulatory plan; this phenomenon is exemplified in microRNA-mediated regulation,

in which target transcripts contain multiple copies of different microRNA-recognition

sequences [32, 33]. In RNA structures, repeated patterns of base configurations have

been well characterized by both biophysicists [34, 35] and computational biologists

[36, 37], suggesting the existence of a higher-order code that dictates the composition

of natural RNAs.

The modular properties of RNA structures was the topic of a seminal paper by

Ancel and Fontana in 2000 [38]. Using the base-paired structure of RNA as a model

for phenotype, Ancel and Fontana used computational simulations to characterize

the plasticity of individual RNAs, defined as the propensity for an RNA sequence

to adopt several different thermodynamically-favorable structures, as opposed to a

single, stable structure with high probability. High plasticity means low specificity of

shape, which is seen as a negative consequence if the function of the RNA depends on

a specific conformation. Thus, there is evolutionary pressure to reduce plasticity and

canalize particular configurations, which according to their simulations occurs when

the individual structured components in the global RNA structure have a high degree
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of independent thermodynamic stability – i.e., modularity. Modular components in

a single RNA tend to fold autonomously from each other, they remain intact over a

broad range of temperatures, and they are structurally insensitive to genetic context.

From a bottom-up perspective, modularity in RNA components has particular

relevance under a model of RNA evolution in which primordial RNA fragments with

specific catalytic abilities combined together to form molecules of increasing complex-

ity [39, 40]. In vitro selection experiments, in which artificial RNA species are evolved

to perform a specific biochemical process, have shown the feasibility of constructing

catalytic RNAs using random sequence ligation and shuffling [41]. Simulations by

Manrubia and Briones [42] showed that selection for large, complex RNA structures

is significantly easier when modular subcomponents are first allowed to evolve sepa-

rately before combining together, as compared to direct evolution of the larger RNA.

Here, we address three themes in the study of RNA composition and modularity:

the efficacy of specific sequences to function either as modules or as the context in

which a module is inserted; the sources of novel modules in modern genomes; and the

resolutions at which functionally relevant modules exist in RNA.

Chapter 3 addresses the first of these themes. We draw inspiration from Ancel and

Fontana and investigate the structural modularity of natural RNAs in the context of

changing genomic sequence, using the “self-containment index” to measure the degree

of intrinsic structural robustness that an RNA possesses. We find that although

structural modularity is not a general property of most natural RNAs; precursor

microRNAs do exhibit an extremely high degree of modularity, which we hypothesize

is a consequence of unique biogenesis constraints.

Chapter 4 looks at modularity in the specific context of transcript localization. We

identify a functional module, the ID element retrotransposon, that is contained in the

introns of several neuronally expressed rat genes whose messenger RNA transcripts are
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transported to the dendrite compartment. We show that this ID element structure is

sufficient to drive the localization phenotype, via the regulated retention of intronic

sequence. Our findings show that introns can provide the context for functional

module insertion and that transposable elements can be co-opted to serve as the

source material for functional RNA modules. As a further example of the relationship

between transposable elements and localization modules, we show that the Camk2a

localization motif can be mimicked by Alu retrotransposon sequence, suggesting that

Alus may also be co-opted as functional modules.

Finally, in Chapter 5 we investigate the functional components from which single

RNA molecules are constructed. We propose that an RNA can be conceptually

decomposed into a set of basic RNA functions, each of which is shared by diverse

classes of RNAs. The specificity of any one RNA is determined by the particular

combination of functions. To identify these functions, we use information-extraction

techniques to construct an RNA-function ontology, such that basic RNA functions

are represented by individual ontology terms. We show that RNA classes that are

annotated with similar terms contain similar structural components, recapitulating

the structure-function relationship in RNAs and reflecting the existence of a common

repertoire of functionally-relevant building blocks that span a diverse set of natural

RNA structures.

We hope to show that the themes of organization, composition, and modularity

are useful ways to frame ongoing research in RNA biology and to understand new

observations and discoveries in the the context of modular RNA evolution.
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Chapter 2

RNA biology

There are three fundamental information-carrying molecules in biology: DNA, RNA,

and proteins. All three are polymers composed of different combinations of alphabetic

monomers. DNA is the genetic blueprint, the instructions that encode all of life’s

functions. Proteins are effectors: the instructions they carry, which are specified by

DNA, explicitly define what they look like and how they interact with other molecules

around them. RNA falls somewhere in the middle, literally and figuratively. RNA’s

traditionally defined role is as a messenger, an intermediate created from DNA genes

for the purpose of generating protein products.

Not content to remain relegated to “middle-child” status, RNA proved to be a

much more versatile molecule, a fact that biologists slowly became aware of, start-

ing with the discovery of the first non-intermediate-messenger RNAs, transfer RNA

(tRNA) and ribosomal RNA (rRNA); through the 1980s when the first example of

RNA catalytic activity was discovered [1]; and into the 1990s and 2000s, when the

number of characterized functionally distinct RNA classes exploded. The role of RNA

as something other than a middleman is increasingly less seen as an exception; taken

to the extreme, one might argue that RNA can do everything that DNA and pro-

teins do, albeit in a limited fashion. This is in fact the basis for the “RNA world
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hypothesis” formulated by Walter Gilbert [2], which suggests that ancient biological

processes were carried out solely by RNA molecules that served both as the infor-

mation carriers and as the effectors. In this way, RNA is actually the eldest sibling,

and over evolutionary time DNA and proteins evolved to adopt and specialize roles

previously assumed by RNA alone.

In this chapter, we will explore the role of RNA in all aspects of molecular biology.

Section 2.1 summarizes these roles framed in terms of the phenomenon of directional

information transfer. Section 2.2 describes the physical properties of RNA molecules

and illustrates the importance of sequence and structure. Section 2.3 describes several

of the major classes of RNAs that have been characterized. Section 2.4 reviews

the experimental and computational techniques commonly used to elucidate RNA

structure. Finally, Section 2.5 describes techniques to identify and quantify RNAs.

2.1 The role of RNA in the Central Dogma of

molecular biology

In 1958, shortly after he and James Watson presented their model for the structure

of the DNA double helix, Francis Crick proposed that the relationship between the

three fundamental molecules of life – deoxyribonucleic acid (DNA), ribonucleic acid

(RNA), and proteins – conformed to a constrained model of information flow that he

called “The Central Dogma” [3]. The theory states that information can be passed

from nucleic acid (DNA, RNA) to protein and from nucleic acid to nucleic acid, but

never protein to protein or protein to nucleic acid (Figure 2.1).

Under this model, biological information is encoded as sequence, words formed

from a four-letter nucleotide alphabet in the case of DNA and RNA and a twenty-

letter amino-acid alphabet for proteins (Figure 2.2). Different combinations of letters

14



DNA RNA Protein

Figure 2.1: Diagram showing flow of information between biomolecules according to
Crick’s Central Dogma. Arrows indicate possible directions of flow.

encode different instructions, which lead to the production of the various molecular

products that carry out life functions.
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Figure 2.2: The three genetic alphabets

2.1.1 RNA as a message-carrying intermediate

The specific nucleotide sequence of DNA gives rise to a specific nucleotide sequence of

RNA in a process called transcription. The DNA in a cell is organized into one or sev-

eral chromosomes as double helices, pairs of long strings of nucleotide sequence that
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together constitute an organism’s genome. Discrete regions of these chromosomes are

defined as genes – individual units of inheritance and functionality, and the sites of

transcription. When these genes are bound by an enzyme called RNA polymerase

in concert with other associated proteins called transcription factors, transcription

initiation is triggered, and a nascent RNA molecule is created. During the elongation

phase, the DNA double helix is unwound and RNA polymerase moves forward along

one of the DNA strands (the so-called “template” strand) and assembles an RNA

molecule by ligating together ribonucleotides according to the sequence specified by

the DNA template – i.e., for every nucleotide in the DNA strand, a correspond-

ing complementary nucleotide is added to the RNA. A specific nucleotide signal in

the DNA causes termination of this process, allowing the new single-stranded RNA

molecule to dissociate.

Proteins are in turn created using the information encoded in an RNA molecule

in a process called translation, so named because the nucleotides of the RNA are

“translated” into an amino-acid alphabet according to specific rules. As there are 20

different amino acids and only four different nucleotides, a three-nucleotide combina-

tion – e.g., ACG or GCC – is required to encode all of the amino acids, albeit redun-

dantly (43 = 64 different three-nucleotide words). Each of these nucleotide triples is

called a codon, and there are 61 different codons that encode amino acids, with three

additional “stop” codons specifying a termination signal (Figure 2.3). This so-called

genetic code is mostly conserved across all organisms, though slight variations exist.

In eukaryotes (all animals, plants, fungi, and some additional single-cell organ-

isms), transcription can be followed by a post-processing step called splicing in which

segments of the RNA called introns are removed. Introns range in length from a few

nucleotides to thousands and always occur between exons; thus conceptually an RNA

is composed of an [exon, (intron, exon)*] pattern – i.e., an RNA sequence always
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Figure 2.3: The genetic code showing the mapping of nucleotide codons to amino
acids. (*) indicates a stop codon.

starts with an exon, followed by zero or more intron-exon pairs. The spliceosome,

a complex composed of catalytic RNA and protein subunits, carries out the splicing

process by binding each intron at opposite ends, cleaving at the intron-exon boundary,

and ligating the free exons together.

The RNA that contains the coded protein sequence is called a messenger RNA

(mRNA). Prior to translation, the mRNA is bound by the components of the ribo-

some; in bacteria, this can happen while the mRNA is still being transcribed, but in

eukaryotes, transcription and translation do not overlap since transcription occurs in

the nucleus where the chromosomes are sequestered from the rest of the cell, while

translation occurs outside the nucleus after the mRNA is exported. The ribosome

positions the mRNA at the beginning of its sequence code, then catalyzes the decod-

17



ing by processing one codon (three nucleotides) at a time, recruiting a specific amino

acid corresponding to the code in Figure 2.3, and creating bonds between consecutive

amino acids, forming a polypeptide chain. This process ends when a stop codon is

encountered. The amino acids are carried to the ribosome by tRNAs that are specific

to specific codons. Where the ribosome begins reading the mRNA code naturally

affects the resulting protein sequence – e.g., shifting the code to the right by one

nucleotide would result in a completely different codon sequence. Thus to ensure the

mRNA is read “in frame,” the ribosome recognizes sequence signals in the mRNA,

such that the code always begins with a specific “AUG” codon.

2.1.2 RNA in other roles

The processes of transcription and translation constitute the canonical modes of ge-

netic information processing in the cell and paint a picture of RNA as a sort of

molecular middle man. As the field of biology matured, the role of RNA became in-

creasingly more varied and nuanced with the discovery of mechanisms of information

transfer that de-emphasize the role of either the canonical starting point (DNA) or

end point (protein).

Early on, viruses were identified that contained genomes composed of RNA rather

than DNA. For many types of viruses (e.g., the common cold, Hepatitis A, SARS),

genomic RNA is used directly to create protein products, bypassing transcription. For

other types (e.g., Influenza, measles, Ebola), the RNA genes are transcribed as though

they were DNA using an RNA-specific RNA polymerase, and the resulting mRNAs

are subject to translation. Retroviruses such as HIV-1 use both the transcription and

translation machinery of their host cell by inserting their genetic material directly into

the host genome. Using an enzyme called reverse transcriptase that is encoded by

the viral genome, RNA genes are converted into DNA and then integrated into one of
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the host’s chromosomes, where they are transcribed as though they were endogenous

host genes. Thus the flow of information is RNA→DNA→RNA→protein.

The existence of RNA molecules whose purpose was not to serve as an intermediate

messenger for protein production, but rather to serve as end products, was also rec-

ognized shortly after the Central Dogma was proposed, with the first tRNA primary

structure characterized in 1965 by Richard Holley [4]. tRNAs play an essential role in

protein translation by serving as the decoder between nucleotide sequence and amino

acids, a function facilitated by their three-dimensional shape. Each tRNA specifically

binds one type of amino acid on one end of the molecule. On the opposite end, the

tRNA contains an anticodon, a three-nucleotide sequence that is complementary to a

specific codon – this is how specificity of the codon-amino acid mapping is achieved.

During translation, the anticodon on the tRNA and the codon on the mRNA form

a temporary interaction in the ribosome, allowing the correct amino acid to be pre-

sented and added to the growing polypeptide. The ribosome itself is also composed of

several ribosomal RNAs (rRNAs). The ribosome consists of two protein-RNA hybrid

subunits, with the small subunit containing one rRNA (16S rRNA in bacteria, 18S in

eukaryotes), and the large subunit containing two or three different rRNAs (5S and

23S in bacteria; 5S, 5.8S, and 28S in most eukaryotes).

Within the last decade, our understanding of the cellular repertoire of these so

called non-coding RNAs has increased dramatically, suggesting that the non-protein-

including DNA→RNA flow of information should not be relegated to special-case

status.

The flow of information from RNA to RNA in isolation can also occur – i.e., with-

out a protein end product. In most higher organisms, a transcript-silencing mecha-

nism called RNA interference (RNAi) occurs when double-stranded RNA (dsRNA)

is found in the cytoplasm. Since endogenous cytoplasmic RNA is normally single
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stranded, the presence of dsRNA triggers an inactivation pathway that prevents the

RNA from being translated. This process is believed to be similar to an immune re-

sponse, since invading pathogens can contain dsRNA [5, 6], but endogenously coded

dsRNA can also trigger the response, as a means of translation regulation. In higher

eukaryotes, endogenously-coded short RNAs called microRNAs (miRNAs) are pro-

duced that are complementary to nucleotide sequences in specific “target” mRNA

transcripts. Specifically in plants, upon binding of the miRNA to the target se-

quence, a double-stranded region is formed, which induces RNAi-style cleavage of the

transcript at the site of binding. In all cases, cleavage of the transcript inactivates

it, thus preventing it from being used for protein translation. However, in some in-

stances, cleavage also initiates a cascade in which a new RNA strand is synthesized

using the cleaved transcript as a template, by the RNA-dependent RNA polymerase

RDR6. The resulting newly double-stranded RNA is then targeted for additional

cleavage, which produces small RNA fragments that themselves can bind to other

transcripts, targeting them for cleavage [7, 8].

RNAi is one example of epigenetic control, a mode of heritable phenotypic change

that is not encoded in DNA. The short silencing RNA effectors of RNAi can be

transcribed in one cell, and then transferred during cell division when the contents of

the cytoplasm are divided between daughter cells. This is the basis for the phenomena

of maternal effects, in which the phenotype of a zygote is influenced by the cytoplasmic

contents of the egg, as opposed to being completely determined by only the genetic

material contributed by each parent. Another form of epigenetic control is regulation

of how particular mRNA transcripts are processed – for example, how they are spliced.

Although most genes exhibit a canonical splicing pattern when they are transcribed,

sometimes variants are created in which certain exons are excluded or rare additional

exons are included [9]. These alternative splice forms exert different phenotypes, and
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inheritance of an alternatively spliced mRNA causes these phenotypic effects to be

passed on.

2.2 The biophysics of RNA

An RNA molecule is a polymer composed of nucleotide monomers. A nucleotide is

composed of a sugar – ribose for RNA in contrast to deoxyribose for DNA; a phosphate

group attached to the 5-carbon of the sugar; and a nitrogen-containing base attached

to the 1-carbon (Figure 2.4). Bases are either purines (adenine (A) and guanine(G))

or pyrimidines (cytosine (C), thymine (T), and uracil (U)). Both DNA and RNA

molecules use nucleotides containing A, C, and G; T is normally found only in DNA

and U only in RNA.

To form a polymer, nucleotides are joined together via a phosphodiester bond

between the phosphate and the hydroxyl group on the 3-carbon of the sugar. Thus, a

nucleotide chain is directional, with the 5′ end denoting the nucleotide with the free

phosphate, and the the 3′ end denoting the nucleotide with the free hydroxyl on the

3-carbon (Figure 2.4).

Interactions between nucleotides occur via hydrogen bonding of their bases. Due

to their molecular geometries, the most typical interactions are one adenine paired

with one thymine or uracil; or one cytosine paired with one guanine. These are

known as Watson-Crick base pairs. Base pairing occurs in an anti-parallel fashion,

such that the base-paired nucleotides are in opposite orientations with respect to their

5′ phosphates and 3′ hydroxyls. It is these interactions that allow the formation of

the DNA double helix – two separate DNA molecules whose nucleotide sequences are

exactly complementary, but due to the orientation rules, are reversed with respect to

one another. For example, a DNA sequence of ACTGG would base pair to its reverse
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Figure 2.4: Molecular diagram of RNA nucleotides. Two base-paired strands of RNA
are shown. Base types are labeled in green, and hydrogen bond interactions are
shown as red dotted lines. For a reference ribose sugar, the carbon atoms are labeled
1 through 5 according to standard conventions. Structure drawing was done using
ACD/ChemSketch.

complement of CCAGT:

5′-ACTGG-3′

3′-TGACC-5′

Base pairing causes the molecules involved to be in a lower energy state; thus, it is

favorable for nucleotide strands to base pair when possible.

Base pairs can also form between nucleotides on a single strand, which is generally
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the case for RNA molecules. Because number of base pairs correlates with energy min-

imization, a strand of RNA will tend to maximize the number of sterically-favorable

base pairs it forms by adopting a compact folded structure to allow bases to interact

with each other. The base pairing pattern of an RNA constitutes its secondary struc-

ture and is a direct consequence of the RNA nucleotide sequence, which is commonly

called the primary structure. Long stretches of base-paired nucleotides confer the

RNA with a helical shape, analogous to the DNA double helix.

Secondary structure follows particular biophysical rules. Bases pair according to

the Watson-Crick rules listed above – A with U, C with G – but RNAs commonly

also have weaker pairs between G and U, the so called “wobble” base pair, along with

several additional minor interactions that can involve three or more bases. Bases can

only pair if they are separated by a sufficient distance in the sequence, approximately

three nucleotides, since it is energetically unfavorable for the RNA sugar backbone

to bend sufficiently to allow very close bases to pair. Also, bases must pair in a

nested fashion, such that if we imagine that paired bases are connected by a thread,

these threads cannot cross (Figure 2.5). Thus secondary structure exists in a two-

dimensional plane.

The convention typically used to represent a secondary structure is a dot-parenthesis

notation popularized by the Vienna RNA Package [10], which consists of a string

formed from an alphabet of three symbols: “(“, “)”, and “.” The left parenthe-

sis represents a nucleotide that is base paired with some downstream nucleotide,

while the right parenthesis represents a nucleotide base paired with an upstream nu-

cleotide. The dot indicates an unpaired base. In this way, the secondary structure

of a k-length RNA nucleotide sequence can be unambiguously encoded by a k-length

dot-parenthesis sequence (Figure 2.6).

The constraints imposed on secondary structure result in a set of commonly oc-
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GUCCACGCGGGCAAAGUACGUGCGACGCGC

GUCCACGCGGGCAAAGUACGUGCGACGCGC

A

B

Figure 2.5: Examples of basepairing. Basepairing occurs in a nested fashion. (A)
Arcs show basepairing; note that no arcs cross. (B) An illegal secondary structure
with crossing arcs.

curring structural elements seen in various RNA structures. These elements are com-

posed of different patterns of base paired nucleotides (stems) and unpaired nucleotides

(loops). The most commonly cited element is the hairpin, which consists of a stem

terminated on one end by a loop of at least three nucleotides. Loops that occur

within a stem are called interior loops, resulting in varying degrees of disruption of

the helical shape. Bulges are asymmetric interior loops, resulting in free nucleotides

protruding from only one side of the stem. Branch loops occur at the junction of

three stems (Figure 2.7).

Higher-ordered structure can exist on top of secondary structure, such that inter-

actions occur outside the plane or between secondary-structure elements; this consti-

tutes the tertiary structure of the RNA, which is a truer three-dimensional represen-

tation of the RNA molecule in space than secondary structure. Some tertiary motifs

consist of base-pairing interactions that violate the nested base-pairing rules of sec-

ondary structure. For example, pseudoknots are formed between nucleotide sequence

in a loop and single-strand sequence outside the enclosing stem [11] (Figure 2.8); this

is a particularly stable motif due to interactions between the two stem regions [12]. A
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5’-GCGGAUUUAGCUCAGUUGGGAGAGCGCCAGACUGAAGA-

(((((((..((((........)))).(((((.......

-UCUGGAGGUCCUGUGUUCGAUCCACAGAAUUCGCACCA-3’

))))).....(((((.......))))))))))))....

D
T

A

D

Figure 2.6: Primary, secondary, and tertiary structures of yeast phenylalanine tRNA.
Structural conformation was derived from X-ray crystallographic data PDB:1EHZ
[15] and visualized using RNAplot and PyMol. Corresponding loops in the secondary
and tertiary structures are labeled (D, T, and A).

similar motif is the kissing hairpin, which involves base pairing between two hairpin

loops [13]. Many other tertiary motifs do not involve canonical base pairing, such as

the G quadruplex, which consists of “Hoogsteen” base interactions between quartets

of guanines arranged in a square [14]; and the D-Loop:T-Loop interactions in tRNAs,

which are illustrated in the yeast tRNA tertiary structure shown in Figure 2.6.

The net result of these nucleotide interactions is a molecule with specific sequence

and shape properties, whose function will directly follow from these characteristics.

Some of these functions were alluded to in the previous section; in the next section,

we will explicitly delineate the broad classes of functionality and describe some of the

major types of RNA.
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Stem Hairpin Interior loop Bulge Branch loop

Figure 2.7: RNA structure elements. Nodes represent nucleotides, solid lines are
covalent bonds, dotted lines are hydrogen bond interactions.

Pseudoknot

Figure 2.8: RNA pseudoknot example. Nodes represent nucleotides, solid lines are
covalent bonds, dotted lines are hydrogen bond interactions.

2.3 Functional classes of RNA

At any given moment, a living cell contains on the order of 106-108 individual RNA

molecules [16], the sum of which constitutes the cell’s transcriptome. A transcriptome

is dynamic, with new RNAs being transcribed as others are being degraded. It consists

of a variety of different species of RNA, ranging in length from tens of nucleotides

to several thousands. Some RNA will exist in single copy, while others will have

thousands or more.

As we saw in Section 2.1, we can distinguish between two broad classes of RNA

– those that code for protein products (mRNAs); and everything else, which are

collectively called noncoding RNA (ncRNA). This is a useful dichotomy conceptually,
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but the elevated status it confers to mRNAs compared to the rest of the crowd may

be a bit misleading.

We can think of the functionality of an RNA molecule as arising from a unique

combination of nucleotide sequence and structured components. Nucleotide sequence

is well suited for recognition, by virtue of the base-pairing specificity that is funda-

mental to nucleotide biochemistry. Nucleotide structure, similar to protein structure,

confers a range of biological function, which can be broken down into three general cat-

egories: catalysis – i.e., enzymatic facilitation of chemical reactions on biomolecules;

interaction with other biomolecules, particularly proteins, to form complexes or to

serve as substrates; and scaffolding, providing a platform on which biological pro-

cesses can occur. More often that not, the sequence and structural components that

give rise to these four basic functions are difficult to separate; however, we can think

of any RNA molecule as consisting of a mixture of components that contribute to an

approximate ratio of these functions. In this sense, RNA classes can be mapped onto

a three-dimensional simplex – a tetrahedron, where each of the vertices represents

one of the basic functions. In such a subspace, RNAs that map close to one of the

vertices are predominantly composed of sequence and structure directed toward that

specific function. RNAs that map to the interior are composed of several components

that encompass multiple functions. A visualization of this map is given in Figure 2.9.

Family groupings of RNAs consist of individual RNA genes that all share a com-

mon mixture of sequence, structure, and functionality, for the purpose of carrying out

a specific biological process. RNAs differ in terms of their biogenesis pathways, their

cellular location, and whether they exist autonomously or in complex with proteins

or other RNAs. Despite such a wide range of structure and function, commonalities

exist, some arising from obvious evolutionary relationships, others not. Biologists

have yet to fully characterize the RNA repertoire, and assuming this is even possible,
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Figure 2.9: A simplex of RNA function. The figure is a tetrahedron with each vertex
corresponding to one of four basic RNA functions. Points within the simplex represent
classes of RNAs, showing the relative degree to which each RNA carries out these
functions. For example, RNAs close to one of the vertices predominantly perform the
function defined by that vertex, while RNAs in the interior can be characterized by
a mixture of functions.

it will be interesting to reconstruct how such a diversity of function evolved.

2.3.1 RNAs involved in protein translation

Messenger RNA

The primary role of mRNA, as described above, is to serve as an information interme-

diate between DNA and proteins. Why proteins are not produced directly from DNA

does not have a clear answer; one prevailing hypothesis is that the RNA→protein

production pathway is more ancient, and that the DNA step evolved subsequently

[2]. Regardless, splitting the protein production pathway into two discrete phases

does allow for more fine-grained regulation targeting different points.

As is the case for all RNAs, mRNA transcription is regulated, depending on many
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Table 2.1: RNA abbreviations found in the literature

Abbrev. Name

aRNA antisense RNA

cRNA complementary RNA

dsRNA double-stranded RNA

endo-siRNA endogenous short-interfering RNA

gRNA guide RNA

lincRNA large intervening noncoding RNA

lncRNA large/long noncoding RNA

mRNA messenger RNA

mtRNA mitochondrial RNA

nat-RNA natural antisense transcript RNA (NAT)

ncRNA non-coding RNA

nmRNA non-messenger RNA

piRNA Piwi-associated RNA

rRNA ribosomal RNA

rasiRNA repeat-associated small interfering RNA

sRNA small RNA

scaRNA small Cajal-body-specific RNA

shRNA short hairpin RNA

siRNA small interfering RNA

smRNA small modulatory RNA

sncRNA small noncoding RNA

snmRNA small non-messenger RNA

snoRNA small nucleolar RNA

snRNA small nuclear RNA

ssRNA single-stranded RNA

stRNA small temporal RNA (= miRNA)

tRNA transfer RNA

tasiRNA trans-acting small interfering RNA

tmRNA transfer messenger RNA

vRNA vault RNA
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factors. Foremost is the availability of transcription factors (TFs); these are proteins

that bind promoters, specific loci on the chromosome upstream of genes that acti-

vate a site for transcription and recruit components of the transcriptional machinery.

Production of TFs is itself a regulated process, which can depend on external stimuli

to the cell, and generally corresponds to a requirement to produce more (or less) of a

given gene product. Accessibility of the binding sites is also regulated, depending on

an open chromatin state on the chromosome that is determined by how tightly the

DNA molecule is wound around its protein spools (histones) [17].

Transcription of mRNA is carried out by RNA polymerase II (Pol II) in eukary-

otes, which produces an RNA strand in the 5′ to 3′ direction using the 3′ to 5′ DNA

template strand of the gene as a reference – i.e., the RNA strand is the reverse com-

plement of the template. The resulting transcript is called a pre-mRNA and is subject

to three eukaryote-specific post-transcriptional modification steps, some of which can

sometimes occur co-transcriptionally. The first is capping the 5′ end with a modified

guanosine nucleotide, which protects the mRNA from certain forms of degradation.

Second, the 3′ end is trimmed, and a series of ∼200 adenine nucleotides is attached

to form the poly(A) tail. This is a unique characteristic of Pol II-transcribed RNAs

and can be used to segregate RNA populations experimentally. Finally, splicing of

introns occurs in many genes, catalyzed by the spliceosome (see Section 2.3.2), and

the exonic portions of the mRNA are ligated together to form the mature mRNA. In

many cases, what constitutes an exon or intron is not static, such that the spliced

form of the mRNA may differ for different mRNAs produced from the same gene,

a phenomenon called alternative splicing. Since the splice pattern affects the final

sequence of the mature mRNA, often the protein-coding instructions are changed,

resulting in the production of an alternate protein product, though some alterna-

tive splice forms preserve protein sequence and instead contain different regulatory
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sequences [18]. Following post-processing, the mature mRNA is exported from the

nucleus and directed to protein translation pathways or stored.

The final mature mRNA consists of five distinct regions: the 5′ cap; the 3′ poly(A)

tail; and the nucleotide sequence, which consists of the protein coding sequence

flanked upstream and downstream by the 5′ untranslated region (UTR) and 3′ UTR,

respectively. The UTRs contain regulatory sequence that affect the manner in which

the mRNA is used for protein translation.

In bacteria, none of these processing events occurs, as the mRNA produced from

transcription is already in a mature state. However, bacterial genes are commonly

transcribed polycistronically in an operon, such that two or more functionally asso-

ciated genes are transcribed as a single, connected mRNA. This coupling facilitates

coordinated regulation, as is the case for the oft cited lac operon responsible for

regulated lactose metabolism in Escherichia coli.

As a message carrier with an encoded set of instructions for protein production,

the bulk of the mRNA transcript is used for nucleotide recognition, the mechanism

of which is described below. However, protein recognition is also a large component

in the function of an mRNA. A large number of proteins interact with the mRNA

transcript throughout its biogenesis and functioning, and as discussed in Section 2.3.4,

various structural components in the mRNA contribute to its specific regulation.

Transfer RNA

As the first ncRNA to be identified, tRNAs play an essential role in decoding a

nucleotide message into an amino acid sequence. A tRNA is small, approximately 75

nts in length, is transcribed by RNA Polymerase III (Pol III), and adopts a three-

dimensional cloverleaf structure. In the acceptor stem, the free 3′ end of the sequence

is covalently bonded to a specific amino acid, a reaction catalyzed by an aminoacyl
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tRNA synthase enzyme specific to the tRNA subtype [19]. On the opposite end is the

anti-codon loop, a single-stranded region containing the three-nucleotide anticodon

sequence that is complementary to a codon in an mRNA that encodes the amino acid

cargo. This is the nucleotide recognition component of a tRNA.

The shape of the tRNA allows it to fit into one of three binding pockets in the

ribosome during translation, allowing the tRNA to deliver correct amino acids to the

site of protein synthesis (see below). Thus a tRNA also functions in a protein/RNA-

recognition capacity.

Ribosomal RNA

Four rRNAs (three in bacteria) comprise major components of the ribosome, the site

at which protein translation takes place; over half of the ribosome is made up of rRNA

[20]. In eukaryotes, transcription of rRNA occurs in the nucleolus substructure of the

nucleus. The 18S, 5.8S, and 28S rRNAs are transcribed together as a polycistron

by RNA Polymerase I (Pol I) [21, 22] from one of hundreds of copies of a primary

rRNA gene, which occur in tandem in so-called nucleolar organizing regions on sev-

eral different chromosomes. The large transcript is processed, involving nucleotide

modification and cleavage facilitated by small nucleolar RNAs (snoRNAs, see Section

2.3.2), resulting in the production of mature rRNAs [23, 24]. These, along with 5S

rRNA, which is transcribed by Pol III outside of the nucleolus and transported in,

and various protein components, are all assembled into the large and small subunits

of the ribosome and exported out of the nucleus and into the cytoplasm.

Ribosomes are the molecular machines that drive translation, a complex coordi-

nated process involving rRNAs as catalysts, interaction partners, and scaffolds [25].

During translation, the small subunit (consisting of the 18S rRNA and about 33 pro-

teins) binds a free mRNA at an AUG start codon and recruits the large subunit (5S,
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5.8S, 28S, and about 49 proteins) to form the assembled ribosome. The ribosome

contains three binding pockets for tRNAs, the A, P, and E sites. During protein

synthesis, a tRNA bound to an amino acid binds at the A (aminoacyl) site; this

tRNA will have an anticodon sequence complementary to the in-frame codon on the

mRNA. A condensation reaction occurs, joining the new amino acid with the existing

polypeptide chain. The ribosome shifts over by one codon frame, causing the tRNA

to move into the P (peptidyl) pocket, still bound to the amino acid, which has now

been incorporated into the protein. The A pocket is now free to accept the next

tRNA. The tRNA in the P pocket is deacylated, severing the bond between it and

the polypeptide, and as the ribosome shifts to the next codon, the deacylated tRNA

enters the E (exit) site, where it is released in the next step.

2.3.2 RNAs that modify other RNAs

As we alluded to in the previous section, the primary function of some types of RNA

is to catalyze modifications of other RNA sequences. In some cases, the RNAs are

associated with proteins and form functional complexes, while in others the RNAs

act in isolation.

Small nuclear RNAs

Small nuclear RNAs (snRNAs) are eukaryotic RNAs found in the nucleus that occur

in conjunction with proteins as small ribonucleoprotein complexes (snRNPs). snRNPs

are involved in a variety of nuclear regulatory processes, including intron splicing.

The spliceosome is composed of five snRNAs – U1, U2, U4, U5, and U6 – along

with approximately 200 proteins (U3 is a snoRNA, see Section 2.3.2). Each intron

consists of recognition sequences, located at the 5′ and 3′ splice sites where the flanking

exons meet the intron, and a branch point site (BPS) located just upstream the 3′
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splice site. Assembly of the spliceosome begins at the 5′ splice site of the intron, where

U1 snRNP binds the intron via base-pairing interactions. Next, the spliceosomal E

complex is formed downstream the BPS, consisting of several RNA-binding proteins,

which in turn recruit U2 snRNA and additional proteins to form the spliceosomal A

complex. Next, a tri-snRNP consisting of U4/U6 snRNP and U5 snRNP subunits

is recruited, which joins all of the components of the spliceosome together as the B

complex. Conformational changes involving the release of U1 and U4 and the base

pairing of U2 and U6 ultimately result in the catalytically active B* complex. The first

splicing step occurs, in which cleavage at the 5′ splice site occurs, resulting in a lariat

structure formed between the 5′ -most intronic nucleotide and the BPS nucleotide.

At this point, the spliceosome exists as the C complex, further rearrangements occur,

then the second catalytic step causes excision of the downstream exon and ligation

with the already-freed upstream exon [26].

Some species contain an alternate spliceosome that is specific to a rare class of

introns called U12 introns. This minor spliceosome is functionally analogous to the

major spliceosome, except the corresponding snRNPs are U11, U12, U4atac/U6atac,

and U5 (the only snRNP shared between the two spliceosomes).

Besides those involved in splicing, other snRNAs include the mammalian 7SK

RNA, which along with HEXIM1 binds and negatively regulates the protein com-

plex elongation factor P-TEFb, whose role is to activate RNA polymerase II; and

telomerase RNA, the RNA component of telomerase, which maintains the length of

telomeres, the protein-DNA structures that cap and protect the ends of chromosomes

[27].
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Small nucleolar RNAs

Sometimes classified as a subtype of snRNAs, small nucleolar RNAs (snRNAs) re-

side in the nucleolus, the site of ribosome assembly, and as the RNA component of

snoRNPs, help to catalyze the base modification of other RNAs in the nucleolus.

Base modification is a post-transcriptional regulatory step and is often critical to the

maturation of the RNA due to the subtle structural changes that result. There are

a large number of annotated snoRNAs [28], which belong to one of two large sub-

families based on the particular chemistry they catalyze. The C/D box snoRNAs

catalyze methylation of the 2′ oxygen on the ribose portion of the specific substrate

nucleotide, while the H/ACA box snoRNAs catalyze pseudouridylation conversion of

uridines – i.e., the isomerization of a normal uridine into a modified pseudouridine

base. Each snoRNA has a specific substrate RNA that is determined by base pair-

ing of the snoRNA sequence to its target; catalysis is carried out by the associated

proteins in the snoRNP complex.

The majority of characterized snoRNAs have specificity to rRNAs and tRNAs, the

major RNA species in the nucleolus. The pre-rRNA, for example, contains approxi-

mately 200 modified bases, each catalyzed by a separate snoRNA [29]. All tRNAs also

contain modified bases, a large number of which are created by snoRNAs. A subset

of snoRNAs do not actually reside in the nucleolus; these small Cajal-body-specific

RNAs (scaRNAs) guide the modification of the spliceosomal RNAs, which occurs in

the Cajal body subnuclear organelles [30]. Still others (called “orphan” snoRNAs)

have unknown targets, and may function on substrates not in the normal repertoire

of snoRNAs [31].
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RNase P and RNase MRP RNA

RNase P and RNase MRP are endoribonucleases, a class of enzymes that hydrolyze

internal phosphodiester bonds in a ribonucleotide sequence, causing cleavage of an

RNA strand into two pieces. Most endoribonucleases are composed exclusively of

proteins; however, RNase P and RNase MRP are exceptions, consisting of both cat-

alytic RNA and protein components. The RNA-induced silencing complex (RISC) is

another exception (see Section 2.3.3).

RNase P is found throughout all lineages and in its primary capacity functions

as a post-transcriptional modifier of tRNA molecules – tRNAs are transcribed with

a leading 5′ sequence that is removed upon maturation by the RNase P. RNase P

might have a general role in the transcription and processing of several other Pol-III

transcribed small RNAs including 5S rRNA, U6 snRNA, and 7SL RNA [32].

RNase MRP (mitochondrial RNA processing) is found only in eukaryotes and

plays a role in mitochondrial DNA replication by cleaving the RNA primers used for

DNA synthesis. It also has been shown in yeast to cleave the internal transcribed

spacer 1 between 18S and 5.8S rRNAs in the large primary rRNA transcript [33, 34].

Autonomous ribozymes

A number of RNAs have distinct, independent catalytic ability and function in roles

normally associated with protein enzymes. Accordingly, such RNAs have been called

ribozymes (RNA enzymes). Technically any RNA with catalytic function can be con-

sidered a ribozyme – 23S rRNA for example, despite residing in complex with several

proteins, is in fact independently catalytic, and thus is a ribozyme [35]; similarly,

RNase P and MRP are both ribozymes that are complexed with proteins.

One class of autonomous ribozymes catalyzes nucleotide sequence cleavage, com-
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prising the hammerhead, hairpin, Hepatitis delta virus (HDV), and Varkud satellite

(VS) ribozymes. The best studied of these is the Hammerhead ribozyme, which is

found in plant viruses and plays a role in viroid genome replication by trimming a

newly generated RNA strand to the correct length [36, 37, 38]. The Hammerhead

ribozyme is a self-cleaving RNA that consists of a three-stem-loop structure surround-

ing an autocatalytic core sequence. The stems are numbered from 5′ to 3′ as I, II, and

III according to the their position with respect to the site of cleavage, which occurs

at an unpaired nucleotide upstream of the 3′ strand of stem I. Hammerhead type I

ribozymes are folded such that stem I is formed by the ends of the RNA sequence;

type III is oriented such that stem III is formed by the end; type II is not known to

exist in nature [39].

In vitro, the Hammerhead cleaving and target domains can be separated into

two different RNA molecules, such that the Hammerhead RNA can act in trans and

catalyze cleavage of many RNA substrates. One notable application for such a system

is the construction of molecule-level biosensors for the detection of specific nucleotide

sequences [40].

Another class of ribozymes is the self-splicing introns. Similar to conventional

introns, these sequences occur as spacer sequences between exons that are removed in

a post-transcriptional modification step. However, the self-splicing introns do not use

the canonical spliceosomal machinery to catalyze splicing. Group I introns are found

in diverse transcripts and species and adopt a complex 10-hairpin (helices P1 through

P10) structure, which contains a catalytic core. The 5′ splice site first undergoes

cleavage with a GTP cofactor, causing the upstream exon sequence to be covalently

released from the intron, although it still remains associated with the intron through

base pairing. Following a conformation change, cleavage and subsequent ligation with

the 5′ exon occurs at the 3′ splice site, resulting in release of the intron and the ligated
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exons as separate molecules [41].

Group II introns are found in the RNAs of organelles in protists, fungi, and plants;

and also in bacteria. Their structure consists of six domains, dI - dVI, which con-

tain the autocatalytic regions for splicing. In an analogous pathway to spliceosome-

catalyzed splicing, the group II intron forms a lariat between a 3′ bulged adenine

nucleotide and the 5′ splice site, followed by cleavage at the 3′ splice site and ligation

of the exon ends [42]. In vivo, this process is aided by additional protein factors [43],

some of which are encoded in open-reading frames of the introns themselves. Ad-

ditionally, several examples of nested introns, called twintrons, have been identified,

such that an internal intron is spliced prior to the excision of the external intron [44].

2.3.3 Antisense RNAs

The term “antisense RNA” is used to describe regulatory ncRNAs whose primary

function is to base pair specific (sense) sequence. The most widely studied mode of

antisense regulation is RNA interference, a form of post-transcriptional regulation me-

diated by endogenously and exogenously encoded small interfering RNAs (siRNAs),

microRNAs (miRNAs), and most recently characterized, Piwi-interacting RNAs (piR-

NAs). However, other antisense RNAs exist that are involved in transcriptional si-

lencing as well. Some antisense RNAs act in cis, meaning that they are created from

the opposite strand of the gene target that they regulate; others, notably miRNAs,

operate in trans, such that the antisense RNA gene loci are distinct from the genes

that are the targets of regulation.

Small interfering RNAs

siRNAs are small RNAs, ∼21 nts in length, that are created by endonucleolytic

cleavage of a double-stranded RNA precursor and are the specificity determinants of
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RNAi. The source of the dsRNA is normally external to the cell, as might be the case

if the cell were infected by an RNA virus or some other pathogen; however, several

instances of endogenously-encoded double-stranded precursors exist [45].

The presence of dsRNA activates Dicer, a cytoplasmic RNase III that binds the

ends of the RNA and cleaves through both strands at a distance approximately two

helical turns from the ends [46]. The same dsRNA can be cleaved several times in

succession, generating multiple ∼21 nt duplexes, each of which is a distinct siRNA.

The resulting siRNA duplex is loaded into RISC, the RNA-induced silencing complex,

consisting primarily of an Argonaute protein (Ago-2 in humans). One of the siRNA

strands is cleaved and dissociates, leaving the other siRNA strand to serve as the

base-pairing component of RISC. Activated RISC can then bind other single-stranded

RNA targets containing near-perfect complementary sequence to the siRNA, which

causes subsequent “slicing” of the target – i.e., endonucleolytic cleavage catalyzed by

Ago-2 resulting in inactivation of the RNA [47].

These cleaved targets can act as precursors for further siRNA generation by

serving as templates for double-stranded RNA synthesis through the action of an

RNA-dependent RNA polymerase (RdRP); thus the silencing effect can be amplified.

siRNA amplification has been observed in nematodes [48], though is notably absent

in insects and vertebrates. One consequence of this amplification is that siRNAs gen-

erated from one transcript can cause siRNA-generation on an unrelated transcript

due to sequence similarity. As described above (Section 2.1.2), plants can gener-

ate trans-acting siRNAs (ta-siRNAs) through the involvement of a parallel silencing

mechanism driven by miRNAs (see below).

The effects of silencing are not limited to post-transcriptional regulation. siRNAs

associated with the RNA-induced transcriptional silencing (RITS) complex target

chromosomal loci via base-complementarity of DNA sequence with the siRNA, which
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in some species promotes histone methylation [49] as well as DNA methylation [50].

The result is induction of heterochromatin formation, a state of compact chromoso-

mal conformation that inhibits transcriptional activity for genes contained in those

chromosomal regions.

microRNAs

miRNAs are endogenously encoded analogs of siRNAs. Most miRNAs are transcribed

by Pol II [51, 52] in long primary transcripts called pri-miRNAs, which are often

several kilobases long. Embedded within the pri-miRNAs are stem/loop structures

that constitute the precursor miRNAs (pre-miRNAs), which in turn contain a mature

∼ 22 nt miRNA sequence, analogous to the ∼21 nt siRNAs. The majority of miRNA

genes lie in the introns of protein-coding genes [53], and a large number of primary

transcripts contain several different miRNA genes that are transcribed together but

individually processed [54].

The pre-miRNAs are cleaved from the primary transcript by the nuclear RNase III

Drosha [55] in the Microprocessor complex, which also includes the double-stranded

RNA-binding protein Pasha/DGCR8 that is believed to confer substrate specificity

[56, 57, 58, 59]. Upon recognition of an appropriately-structured hairpin flanked by

single-stranded sequence in the primary transcript [60], Drosha cleaves the stem at a

point two helical turns from the stem/loop junction, forming a characteristic 2-nt 3′

overhang. The resulting hairpin is exported to the cytoplasm by Exportin 5 [61], a

RanGTP-dependent dsRNA-binding protein [62, 63] that binds the stem portion of

the hairpin.

Cytoplasmic pre-miRNAs are processed by Dicer – in most species, this is the

same enzyme that processes siRNAs, though in Drosophila, two distinct Dicer pro-

teins have separate miRNA and siRNA functionality [64]. As with siRNAs, Dicer
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cleaves from the terminal end of the stem to form an RNA duplex with two 2-nt 3′

overhangs [65], and the resulting duplex is incorporated into RISC, where one of the

strands is lost. Like siRNA-bound RISC, miRNA-bound RISC downregulates gene

expression by binding to target transcripts via base complementarity. In plants, this

complementarity is strong and can occur anywhere along the transcript [66]. In ani-

mals, complementarity is much weaker and occurs almost exclusively in the 3′ UTR

[67]. Downregulation in plants is achieved predominantly via cleavage of the bound

mRNA, while in animals miRNA-RISC mediates translational repression. However,

there are notable exceptions where complementarity is exact and cleavage occurs in

animals [68]. Animal transcripts can have several miRNA binding sites, and in fact

combinatorial binding appears to be a paradigm for animal miRNA-mediated regu-

lation [69].

Piwi-interacting RNAs

A third, more recently characterized player in RNA silencing is the Piwi-interacting

RNA (piRNA). First identified as repeat-associated small interfering RNAs (rasiR-

NAs) in Drosophila germline cells [70], these short RNAs are 23-26 nts in length

– slightly longer than canonical siRNAs – and additionally occur in the testes of

Caenorhabditis elegans, rodents, and humans. These small RNAs are bound by a

class of Argonaute proteins called Piwi, which contain an eponymous domain that

possesses nuclease activity.

piRNAs occur in chromosomal clusters in their respective genomes and are hy-

pothesized to be the cleavage products of transcribed transposable elements [71],

a class of repetitive sequence elements that occur throughout eukaryotic genomes

with high frequency and can be thought of as endogenous parasites that can jump

around the genome (i.e., “transpose”), disrupting existing sequence in the process
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(see Section 2.3.5). As such, transposition of these elements is a potentially detri-

mental process, so silencing of active transcripts may be desirable, an activity that

appears to fall under the purview of piRNA pathways. Under the proposed “ping-

pong” cycle model [72, 73], existing piRNAs (perhaps inherited from cell division

or explicitly transcribed) in complex with Piwi target specific transposon transcripts

with base complementarity to the piRNA sequence, causing cleavage and inactivation

of the transposon. In the process, new “secondary” piRNAs are generated as cleav-

age products, which are loaded into another Piwi-containing complex (Aubergine in

Drosophila) and in turn target additional transcripts.

Long antisense RNA

Modern transcriptome sequencing technologies have facilitated the characterization

of a more widespread phenomenon of cis antisense transcription, in which previously

annotated loci that are known to be transcribed in one direction also appear to be

transcribed from the opposite strand in the other direction as well [74]. It is estimated

that as many as 40 percent of all transcriptional units may have partly or completely

overlapping antisense counterparts [75], though it is still unclear what if any portion

of these transcripts are artifacts arising from the identification techniques.

Several functions have been hypothesized for these “natural” antisense transcripts

(NATs). If the corresponding antisense and sense transcripts base pair to form double-

stranded RNA (which is not yet known [76]), some form of silencing may occur, in

which the duplex is cleaved to form siRNAs or analogs. Other roles for the duplex

include regulation of the sense transcript, either by disrupting regulatory binding

sites or signals by virtue of blocking secondary structure formation or sequence ac-

cessibility; or by promoting editing or recognition by double-strand-specific enzymes

[77].
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Another intriguing hypothesis is that antisense transcription regulates transcrip-

tion in the sense direction. The occupancy of loci with transcription machinery pro-

ducing an antisense transcript may physically block the binding of factors necessary

for transcription in the other direction. Or, transcription may commence from both

directions, but then at some midpoint the RNA Pol complexes collide, preventing

completion of a full-length sense transcript [78]. Yet another form of transcriptional

control would be on the chromatin state of the locus – i.e., the degree to which the

DNA is compacted around histones, a family of proteins that provide spools around

which the DNA double helix is wound; active transcription is thought to require a

non-compacted chromatin state. One model suggests that the antisense transcripts

are bound by histone-modifying proteins, and base-pairing specificity causes the com-

plexes to be recruited to the sense loci, where the neighboring histones are modified

to induce changes in the chromatin state [79].

Chromatin state plays a role in X chromosome inactivation, a process that oc-

curs in every somatic cell of mammalian females, causing one of the two copies of

the X chromosome to become completely transcriptionally silent. In mice, the long

sense/antisense pair Xist/Tsix, which are transcribed from the same locus in opposite

directions, regulate the recruitment of histone-modifying complexes that exert their

effect systemically across the chromosome. Tsix inactivates Xist by a mechanism

that may involve small silencing RNA production [80], while in the absence of Tsix

expression, Xist activity triggers X inactivation. Humans also contain transcribed

Xist and Tsix homologs, though Tsix appears to have no effect on X inactivation

[81], suggesting nuanced lineage-specific differences in the regulation pathways.

Finally, it is possible that a large portion of antisense transcription, despite being a

real biological phenomenon, has little functional relevance. For instance, overlapping

transcripts may not be functionally linked despite sharing common sequence, and
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may be co-located in the genome due to chance or the existence of common regulatory

sequence in overlapping UTRs. Or transcription may be an inherently noisy process,

in which unregulated transcription occurs at many loci in both directions, generating

transitory transcripts that are promptly degraded [82]. Given the potential side effects

of duplex-forming sequences, however, it would be surprising if such an unregulated

process could exist.

2.3.4 RNA components embedded in mRNAs

The UTRs of protein-coding RNAs are known to contain many regulatory elements,

some of which are specific sequences that are bound by protein effectors. However,

some are locally structured elements that can be considered a form of nested RNA.

In every known case, these elements affect the translation of their host transcripts,

either directly through interaction with the translational machinery, or indirectly by

altering the composition or location of the mRNA.

Internal ribosome entry site

The start codon, AUG, at the 5′ end of an mRNA defines the site of translation

initiation, where the protein-coding message begins. The upstream sequence is by

definition an untranslated region. AUG also codes for the amino acid methionine,

and generally occurrence of that particular three-nucleotide combination is not rare;

thus initiating translation from the correct AUG is essential for producing a correct

protein sequence. Normally the 5′ cap directs the initiation complex to the correct site.

However, the presence of an internal ribosome entry site (IRES) in the 5′ UTR of an

mRNA facilitates cap-independent translation initiation. IRESs were first identified

in viral transcripts [83] as a way to cause host cells to preferentially translate viral

RNA when coupled with inhibition of cap-binding proteins necessary for normal cap-
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dependent translation. Subsequently, IRESs were found in cellular mRNAs spanning

several species including human, Drosophila, and yeast, and may exist as a way to

enhance translation of endogenous transcripts under cellular conditions that affect

normal translation initiation [84]. There is no consensus IRES sequence or structure,

suggesting either difficult-to-detect higher-order structural similarity or a diversity of

mechanisms for achieving similar function.

RNA localization motifs

The better-understood mode of regulating protein location in eukaryotes occurs via

explicit transport of a protein from the site of translation (the ribosome, usually

positioned on the endoplasmic reticulum, an organelle responsible for protein traf-

ficking throughout the cell) to another destination distal to the nucleus – the plasma

membrane for example. However, protein localization can also be mediated prior

to translation, by localizing the mRNAs themselves to the correct subcellular com-

partment, where proteins can subsequently be translated. The advantages to this

mode of localization include a finer level of regulation, since local stimuli can directly

affect protein production, rather than triggering a more time-consuming cascade of

signaling; the reduced cost of localizing a single mRNA molecule that can produce

multiple proteins on site, compared to localizing several proteins independently; and

the effective sequestering of protein products in a particular compartment to prevent

off-target effects where the protein activity is not desired [85].

Localization of mRNAs is thought to involve specific sequence and structural sig-

nals contained predominantly in the UTRs that are bound by carrier complexes and

shuttled to their destination, though few of these signals have been well characterized

compared to the number of transcripts believed to be localized. The best known ex-

amples are involved in developmental pattern formation in Drosophila embryos – the
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bicoid mRNA contains a large, ∼ 600 base pair region in its 3′ UTR that was shown

to be necessary for localization of the transcript to the anterior pole of Drosophila

oocytes [86]. This region consists of several localization elements, many of which fold

into hairpin structures that each confer specificity for the different stages of localiza-

tion. In budding yeast, the mating-type determiner ASH1 is selectively localized to

the daughter cell during cell division via a cluster of four small stem-loop structures,

each of which was shown to be independently sufficient to confer localization of the

transcript to the bud tip, but to have enhanced efficacy in combination [87]. Localiza-

tion motifs have also been identified for Xenopus vg1 transcript, chicken β-actin, and

Camk2a and Map2 in rodent neurons, where these (along with potentially hundreds

other transcripts [88]) are localized to dendrites.

Selenocysteine insertion sequence

The selenocysteine insertion sequence (SECIS) element is a motif in the 5′ UTR

that mediates the introduction of a non-standard amino acid, selenocysteine, into

a protein sequence [89]. The presence of a SECIS element in the transcript causes

recruitment of a specialized selenocysteine-carrying tRNA, which binds to the UGA

codon during translation; UGA is normally read as a stop codon. SECIS elements

are common among both eukaryotic and bacterial transcripts that encode a class of

proteins called selenoproteins, but despite similarity in size (∼ 60 nts) and shape

(hairpin), the different SECIS signals have distinct sequence [90]

Iron response element

Cells are often responsive to different concentrations of small molecules and ions.

Transcripts that function in iron metabolism pathways contain hairpin motifs called

iron response elements (IRE), which are bound by iron-regulatory proteins (IRPs)
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that affect the translation and stability of the transcripts. In ferritin transcripts,

IREs located in the 5′ UTR mediate translation inhibition when cellular levels of

iron are low, and the iron-storage functionality of ferritin protein are not needed. In

transferrin receptor transcripts, IREs occur in the 3′ UTR in a cluster, and binding

of these by IRPs in low iron states causes stabilization of the transcript, facilitating

active translation of receptor proteins for iron uptake [91]. IREs are structurally

conserved among many different transcripts, as a bulged hairpin with a specific six-

nucleotide loop.

Riboswitches

In contrast to IREs, which respond to iron concentration with the aid of protein com-

plexes, riboswitches are a class of autonomous RNA aptamers, which cause transcrip-

tional modulation upon binding of specific metabolites [92]. The canonical ribozyme

is located in the 5′ UTR of an mRNA and consists of two domains. The first is

the metabolite-binding aptamer domain, which is highly specialized to bind specifi-

cally to one particular metabolite, such as nucleotides or coenzyme B12. The second

domain is the expression platform, the effector of transcriptional or translational con-

trol. Binding of the metabolite to the aptamer domain induces a conformational

change that causes activation of the expression platform. In the case of the bacte-

rial coenzyme-B12 riboswitch, the expression platform has two distinct effects. Upon

binding of the coenzyme-B12 molecule to a partly transcribed mRNA, the conforma-

tional change induces the formation of a terminator stem that causes premature tran-

scription termination before a functional mRNA can be created; under low coenzyme-

B12 concentrations, the unbound aptamer allows the expression platform to form an

anti-terminator that inhibits formation of the terminator stem, so that the mRNA is

transcribed normally [93]. The second effect is on fully transcribed mRNAs, where the
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conformational change blocks access to the ribosome binding site and inhibits transla-

tion [94]. Another mechanism for control is found in the glmS gene in Gram-positive

bacteria, which contains a riboswitch that is a self-cleaving ribozyme; activation un-

der conditions of high concentration of glucosamine-6-phosphate, the product whose

formation is catalyzed by GlmS, causes cleavage and subsequent degradation of the

glmS mRNA [95].

Although most riboswitches have been found in bacteria, the thiamine pyrophos-

phate (TPP) riboswitch, which is sensitive to cellular thiamine levels, is found in

plants and fungi as well, though interestingly in plants the riboswitch resides in the

3′ UTR [96].

2.3.5 Transposable elements

Despite the diversity of protein coding genes and ncRNAs, they together constitute

only a small fraction of most organismal genomes. Especially in animals and plants,

the majority of genome sequence consists of high-copy-number (repetitive) sequence,

which is due in large part to the action of transposable elements [97], also known as

mobile elements or transposons. Transposons are sequences that at one point had the

ability to mobilize and integrate into a host genome. There are three broad classes

of transposons: DNA transposons, which employ a “cut and paste” mechanism for

integration, such that they are excised from one genomic locus and reinserted into a

different site; autonomous retrotransposons; and non-autonomous retrotransposons,

both of which rely on a “copy and paste” mechanism, such that the end result is a du-

plication of the transposon sequence and insertion of the copy in a new genomic locus

– essentially replication. Autonomous retrotransposons catalyze their own duplica-

tion and insertion, while non-autonomous retrotransposons rely on the machinery

encoded by the autonomous retrotransposons.
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Retrotransposons of both the autonomous and non-autonomous variety are rele-

vant to a discussion of RNA because during the replication process, an RNA interme-

diate is involved, arising from active transcription of the retrotransposon sequence.

For autonomous retrotransposons, transcription of the transposon results in the pro-

duction of several protein-coding RNA segments that encode the protein components

of the retrotransposition machinery. One class of autonomous retrotransposons, the

long-terminal-repeats (LTR), have a gene architecture similar to retroviruses such as

HIV, containing genes that encode a viral particle coat (GAG), a reverse transcrip-

tase that catalyzes the creation of RNA sequence from DNA sequence, ribonuclease

H for insertion-site strand cleavage, and integrase, which catalyzes the insertion of

the copied transposon sequence into the genome. Non-LTR retrotransposons, such as

mammalian LINE-1 (long interspersed nucleotide elements 1 or L1), encode a nucleic

acid binding protein, reverse transcriptase, and an endonuclease.

The non-LTR-encoded enzymes are capable of operating in trans, causing other

RNA in the nucleus to be integrated into the genome. This is the replication mecha-

nism of non-autonomous retrotransposons, which include the broad class of elements

called SINEs (short interspersed nucleotide elements). SINEs are the product of retro-

transposition of endogenous host RNA (the “master” gene) or transposon copies of

these RNAs. The ubiquitous Alu SINE element in the human genome, for example,

originated from retrotransposition of 7SL RNA, and has since expanded to 1.1 million

copies [97]. Similarly, in rodents, the ID element arose from BC1 RNA [98]. Retro-

transposition of RNAs without subsequent expansion also occurs, resulting in a class

of retrotransposons called processed pseudogenes, which are retrotransposed spliced

mRNA or ncRNAs characterized by a high degree of sequence divergence from their

functional counterparts [99].

Transposable element frequencies vary greatly between species, in both the com-
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position and numbers of individual elements. For example, the rodent ID element

appears in a few hundred copies in mouse and guinea pig, but in rats it appears more

than 100,000 times [100] due to recent lineage-specific amplification.

Most transposable elements are not known to be active – the estimated novel

Alu retrotransposition rate in humans is only about once per 30 individuals [101];

however, active mechanisms exemplified by piRNA-mediated silencing exist to prevent

rampant retrotransposition, which can cause genomic instability due to disruption of

gene sequence at the sites of insertion. Still, not all retrotransposition activity is

deleterious, as transposons have the capacity to drive evolutionary change [97], by

providing novel functional sequence at the site of insertion, such as regulatory regions

[102] or exons [103].

2.4 RNA structure determination

2.4.1 Experimental determination of RNA structure

Several methods exist for elucidating the three-dimensional structural characteristics

of individual RNA molecules that all rely on quantifying the nearness in space of

individual atoms or nucleotides in the RNA to each other, or where these elements are

positioned with respect to the global RNA structure. Given accurate characterization

of all the pairwise atomic distances in an RNA, it is possible to reconstruct the overall

three-dimensional configuration to some degree of resolution. However, generating

such data using these protocols can be laborious and expensive, and as such tends to

be impractical for longer RNAs. To our knowledge, there do not exist high-throughput

protocols for experimental structure determination.

To determine which nucleotides in an RNA are participating in base pairs, enzy-

matic probes can be used that specifically cleave an RNA at either single-stranded
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(un-base-paired) or double-stranded (base-paired) nucleotides. If the sequence of the

RNA is known, then the resulting fragments can be size analyzed, and the cleavage

sites can be mapped back onto the RNA sequence. Different enzymes have different

sequence specificity – e.g., RNase V1 will cleave any base-paired region while RNase

T1 preferentially cleaves single-stranded RNA at a G nucleotide [104].

Various chemical probes also exist that help determine the solvent accessibility

of individual nucleotides – if we model an RNA structure as a crumpled piece of

string, portions of the structure will be more exposed while other portions will be

buried in the interior, thus less likely to be exposed to water molecules in solution.

Low concentrations of diethylpyrocarbonate (DEPC), for example, will selectively

chemically modify purine (A and G) bases by carbethoxylating them, rendering them

susceptible to cleavage by aniline [105]; as above, position of structural elements (i.e.,

an A or G on the exterior) can be deduced from the cleavage fragments. In a similar

approach called hydroxyl radical mapping, RNA is subjected to strand cleavage by

high OH• concentrations, and regions of the RNA that are protected from cleavage are

deduced to be buried in the interior of the structure. Typically these free hydroxyls

are generated using the Fenton reaction, in which hydrogen peroxide (H2O2) reacts

with iron (Fe2+) [106, 107].

The nucleotide analog interference mapping (NAIM) approach analyzes RNA

structure by selective replacement of nucleotides with one of several nucleotide analogs

tagged with phosphorothioate substitutions that interrupt the normal base interac-

tions at that site. Over a series of different replacements, if a nucleotide is struc-

turally/functionally important, then the modified RNA containing the analog at that

position will not function correctly, which can be gauged using a functional assay spe-

cific to the RNA under study. The phosphorothioate substitutions serve as cleavage

sites for iodine, so the positions of the nucleotide substitutions can be mapped using
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a size-fractionation gel on the cleaved fragments [108, 109].

Cross-linking experiments can be used to identify nucleotides in a structure that

are in close proximity to each other. Exposing unmodified RNA to short-wave ultravi-

olet light causes adjacent nucleotides to form covalent bonds, resulting in a permanent

nonlinear structure once the RNA is treated to inhibit base pairing interactions. Dif-

ferent cross-linked RNAs will have different fractionation patterns when visualized

on a gel [110, 111]. Because the UV is applied non-specifically, it can be difficult to

deduce much structural information from the gel patterns; thus, strategies exist to

introduce photoaffinity agents to specific sites along the RNA, so that cross linking

can be done in a more controlled manner [112].

Fluorescence resonance energy transfer (FRET) relies on the use of paired flu-

orophores, one acting as an energy donor and one as an acceptor. When the fluo-

rophores are in close proximity, laser-induced activation of the donor will cause energy

to be transferred to the acceptor, resulting in a shift in the light wavelength emitted

by the system. Thus, fluorophores attached onto individual nucleotides on the RNA

can be used to measure distance in space between the nucleotides. FRET was used

to generate a three-dimensional structure for the hammerhead ribozyme [113].

Finally, two physical approaches are used to measure atomic distances in the RNA

structure, allowing the conformation to be reconstructed. The first, X-ray crystal-

lography, has a long history of use for organic molecules, particularly proteins, but

notably was instrumental in helping to shape Watson and Crick’s model of the DNA

double helix, which was influenced by crystallographic data generated by Rosalind

Franklin [114]. In this process, a molecule of interest is formed into a crystal, then

over a series of different orientations, the crystal is bombarded with X-rays, producing

a two-dimensional pattern of diffraction that is a function of the way the individual

atoms are packed in the crystal. These data are assembled into a three-dimensional
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model of the electron densities in the molecule, a non-trivial problem. A major limi-

tation lies in the availability of a crystallized form of the molecule of interest; most of

the successfully characterized RNA structures tend to be short, on the order of 10s

of nucleotides in length [115, 116].

The second method, nuclear magnetic resonance (NMR) spectroscopy, relies on

the characteristic resonance patterns generated by atoms in different local chemical

environments – e.g., what other atoms they are bonded to – when exposed to a

magnetic field. The resulting resonance spectrum contains information about the

number and characteristics of different atomic isotopes in the molecule, which can be

used to generate constraints on atom position in the molecular structure model. Due

to the magnetic indifference of isotopes most commonly found in biological samples,

such as 12C, radiolabeled sample is often used to generate more informative spectra

[117].

2.4.2 Computational prediction of RNA secondary structure

Because of the low-throughput nature of experimental RNA structure determination,

they are unsuitable for most genome-scale applications. Thus, researchers commonly

rely on computational structure prediction. Due to relative computational ease, typ-

ical applications use secondary structure prediction and presuppose that most of the

salient structural characteristics of an RNA are contained in its base-pairing pattern.

Whether this is a reasonable biological assumption largely depends on the application

and the RNA in question, but from a computational standpoint, considering only sec-

ondary structure rather than full tertiary structure reduces the size of the problem

considerably.

Secondary structure prediction can be formulated as generating a complete list of

pairwise interactions between bases in a linear sequence of RNA. Bases may only pair
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with one other base, or they may remain unpaired. The gold standard for a correct

secondary structure representation is of course the actual biological configuration of

the RNA in three-dimensional space; however, that information is rarely available,

so some heuristic measure of correctness is used. Despite the relatively tractability

of secondary structure prediction compared to full structure prediction, it is still

infeasible to enumerate all possible base-paired configurations, as the number of such

structures is exponential in the length of the sequence, approximately 1.8n for an

n-length sequence [118].

There are many different prediction algorithms (see [119] for example) that tend

to vary along three axes: how correctness of structure is judged and the source of

parameters used to calculate a correctness measure; how the space of different struc-

tures is searched; and what the sequence input(s) and structure output(s) are. The

most common method, as implemented in Vienna RNAfold [10] and mfold [120], ap-

plies a dynamic programming approach (the Nussinov method [121]) to search the

space of possible thermodynamically favorable base pairs in a single sequence, which

has cubic time complexity with respect to the sequence length. Thermodynamic pa-

rameters are in the form of empirically-derived stacking and destabilizing energies

associated with particular base-pair combinations [122], which are summed over the

optimal path through the dynamic programming matrix to yield a minimum-free

energy (mfe) specification of base pairing. This mfe secondary structure represents

the optimal configuration for the input sequence; however, it is not always the case

that the predicted optimal structure corresponds to the actual structure in vivo [123],

since higher-order nucleotide interactions or external factors such as chaperone pro-

teins may affect the actual base-pairing pattern. Thus, the basic algorithm is suited

also to return any number of sub-optimal structures (the default for mfold) subject

to some ranking criterion.
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Perhaps a more biophysically accurate way to envision RNA structure is to con-

sider the distribution of possible structures expected in a large pool of sequence copies.

Such an ensemble of structures can be modeled using an application of the Boltz-

mann distribution – the secondary structure partition function [124], which specifies

the probability that a sequence adopts any one possible structure based on the struc-

ture’s free energy and the temperature of the system. Intuitively, a sequence that

has two equally minimal-energy conformations will have equal high probability of

adopting either conformation. However, in situations where there are many equally-

probable low-energy structures, the probability density of any individual structure is

low; thus, it becomes useful to aggregate probabilities over individual base pairs in

order to identify high-probability substructures that the sequence will adopt. Base-

pair probabilities are available using RNAsubopt [125] in the Vienna package. In

Sfold, the probabilities of full structures statistically sampled from the ensemble are

aggregated into topologically similar clusters defined by a centroid structure that has

minimum distance to all structures in the cluster [126].

When the input is a set of sequences, rather than just a single sequence, the task

becomes consensus structure prediction – i.e., predicting a secondary structure that

is common to all the input sequences. When a multiple sequence alignment is avail-

able or can be computed for the input set, patterns of nucleotide substitution should

reflect the maintenance of secondary structure features despite sequence change. For

example, if an “A” and a “U” occur at two positions in one sequence, and a “C”

and “G” occur at aligned positions in another sequence, then a reasonable hypothesis

would be that the nucleotides co-evolved to preserve a base-pairing interaction. Such

information is leveraged by the covariation modeling methods (e.g., [127]) that pro-

duce secondary structures based on consistent patterns of substitution in the input

sequences. RNAalifold integrates covariation information into the thermodynamic
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framework of RNAfold by optimizing a summed score derived from a modified energy

model that averages the possible free energies from base interactions at identical po-

sitions in all of the sequences, coupled with strength of covariation at those positions

[128]. Other methods use the covariation information to define probabilistic models,

such as stochastic context free grammars (SCFGs) (see Section 2.5.4).

The Sankoff algorithm [129] attempts to simultaneously optimize sequence align-

ment and thermodynamic stability of a consensus structure; however, the time com-

plexity is n3m to calculate a consensus structure for m sequences of length n, which

is infeasible for large-scale applications; this has led to heuristic implementations of

the algorithm, e.g., Foldalign [130] and Dynalign [131].

2.5 Identification and quantification of RNA

The utility of a predicted structure presupposes that the sequence of interest is func-

tionally significant. The main criterion for assessing significance is whether the RNA

sequence is present in the transcriptome, which can be determined using various ex-

perimental assays on RNA extracts from tissues or cells. However, computational

techniques also exist, in which the statistical properties of known RNAs are used

to build predictive models that can be applied to genome sequence. These methods

are complementary, as the experimental techniques are often used to confirm predic-

tions made by the computational techniques, or computational techniques are used

to further annotate novel RNAs identified in experimental screens.

2.5.1 RNA amplification

Since RNA is a relatively unstable molecule, most of these assays start with a cloning

step that produces complementary DNA (cDNA) from the RNA sample, using reverse
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transcriptase [132]. A supply of primers is required to start the reverse transcription

process; these are short nucleotide sequences complementary to the 3′ end of the

RNA that serve as nucleation sites for cDNA strand synthesis. In the case of RNAs

transcribed by Pol II, the 3′ poly-A tail presents a natural site for the binding of a

poly-T primer. For other types of RNAs, in the absence of prior knowledge of the

sequence content of the RNAs, random primer sequence is used. Following cDNA first-

strand synthesis, a complementary second strand is typically synthesized, followed by

one or more rounds of amplification by polymerase chain reaction (PCR) to create

multiple copies of each RNA, thus facilitating easier detection.

Special strategies are required to create cDNA from small amounts of RNA. In

single-cell applications, transcriptome characterization is possible using an antisense

RNA amplification protocol [133]. The first strand synthesis proceeds using a mod-

ified poly-T primer that has a T7 RNA polymerase promoter ligated to the 5′ end.

Following second strand synthesis, the cDNA can serve as a template for transcription

by T7 polymerase, producing ∼ 2000 RNA strands per cDNA, oriented antisense to

the original source RNA. These RNAs can in turn be used for new cDNA generation,

via random primer sequences, for further amplification. For isolating RNAs shorter

than a few hundred base pairs, an initial fractionation step can be used to isolate par-

ticular RNA length classes, or functional criteria such as binding to a known protein

interactor can be used to isolate a specific RNA family.

Following cDNA library creation, either a hybridization-based approach or a

sequencing-based approach can be used to identify and quantify the RNA species

represented in the library.
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2.5.2 Hybridization approaches

Hybridization-based approaches rely on the identification of unique RNA sequences

based on whether they are base-complementary to a probe of known sequence. The

classic hybridization technique is the Northern blot, which is performed by using

gel electrophoresis to separate an RNA sample by length on a gel, then applying a

radioactive or fluorescent probe sequence, which will base pair to the target sequence

on the gel if it was present in the sample [25]. Northern blots are generally useful

only for small-scale analysis, as different probes for the detection of different RNA

species must be tested in serial.

In contrast, microarrays are a high-throughput version of a “reverse” Northern

blot, in which a sample of interest is fluorescently labeled and applied to a slide

containing a matrix of thousands of probe sequences [134]. Each probe or set of probes

occupies a discrete coordinate on the slide. Presence or absence of a particular RNA

species is determined by whether or not the respective probes are bound by labeled

RNA, which is indicated by the presence of a fluorescence signal at the coordinate of

interest. The intensity of the signal is roughly proportional to the relative amount of

that RNA species present in the sample; thus quantitative statements can be made

between sequences in the sample or across different samples.

Two technologies exist to create microarrays; both require a priori knowledge of

the probe sequences. Spotted arrays use probes that are synthesized prior to place-

ment (“spotting”) on glass slides. Due to variability in the amount of probe sequence

in each spot, spotted arrays are usually for two-channel experiments, in which two

samples are simultaneously applied, each labeled with one of two different fluorophores

(e.g., green-fluorescent Cy3 and red-fluorescent Cy5), such that the ratio between the

two signals per spot is considered rather than absolute fluorescence level, which can
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be artifactually low if there is only a small amount of probe sequence. For oligonu-

cleotide arrays such as those produced by Affymetrix, probes are synthesized directly

on the slide. This process controls for copy number, so single-channel experiments

can be performed and fluorescence intensities directly compared.

There is a large degree of flexibility in selecting probe sequences to include on

a microarray. Gene expression arrays contain probe sequences spanning the entire

characterized transcriptome for a particular species and are suitable for comparing

global transcriptome expression changes in different cell or tissue conditions. To

discover novel transcripts, tiling arrays can be used; these contain probes from densely

overlapping segments of the genome, over a region of interest that is not necessarily

known to be transcribed. Microarrays can also be custom tailored to specific classes

of RNAs such as miRNAs [135] or to detect alternative splicing events [136].

To obtain spatial information about transcripts, RNA samples must be obtained

from the compartment of interest – e.g., the nucleolus or the dendrite. Alternatively,

in situ hybridization techniques can be used for fine-grained resolution of small num-

bers of transcripts [137]. Radioactive or fluorescent probes are applied in vivo, into

a single cell or tissue, and the spatial pattern of the signal indicates where the probe

binds its target, reflecting the quantity and distribution of the transcript of interest.

2.5.3 Sequencing approaches

Sequencing refers to the direct determination of nucleotide sequence, which was first

achieved by the Sanger method [138]. Given a single-stranded DNA (cDNA) template,

sequencing proceeds via PCR synthesis using radiolabeled nucleotides, plus a supply

of one of four analogous dideoxynucleotide triphosphates (ddNTPs) – ddATP, ddCTP,

ddGTP, ddTTP – that serve as chain terminators due to their inability to form a

3′ phosphodiester bond. As an example, in the presence of ddATP, during strand
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synthesis ddATP will be randomly incorporated into the strand in the place of a

normal A nucleotide, causing termination of the reaction and the production of a

truncated sequence that ends in A. Over many such reactions, truncated sequences

ending at every possible A will be created, each of different length. By separating

these fragments using gel electrophoresis, the relative position of each A in the full-

length sequence can be determined. Combining these positions with those determined

by identical reactions with the three other ddNTPs yields a full characterization

of the nucleotide sequence. By replacing the radioactive ddNTPs with fluorescent

labeled ddNTPs, such that each of the four ddNTPs emits a different wavelength, the

sequencing can occur in a single reaction rather than four separate ones, resulting in

a more efficient pipeline.

Although the Sanger method was able to scale to produce multiple-fold coverage

of various genomes consisting of billions of nucleotides, the process took several years

to complete at a high cost. Thus, for transcriptome studies, strategies were developed

to capture a maximal amount of information from a relatively small amount of se-

quence data. Expressed sequence tags (ESTs) are a way to rapidly characterize short

fragments (no more than a few hundred bases) of sequences in a cDNA library using

a highly error prone one-pass sequencing strategy [139]. Despite the relatively high

sequence error rate, ESTs can often be mapped to unique genomic sequence, thus im-

plicating that region as a site of transcription. For quantitative information, various

other tag-based strategies can be used. Serial analysis of gene expression (SAGE),

for example, uses sequence-specific endonucleases to fragment a cDNA sample into

short pieces, ∼10-20 nts long [140, 141]. These “tags” are ligated together into long

DNAs that are then sequenced. Relative frequencies of each tag sequence correspond

to the relative quantities of each transcript the tags identify, assuming they can be

identified unambiguously.
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Recently, so-called “next-generation” sequencing technologies have become a vi-

able option for high-throughput sequencing applications, including transcriptome pro-

filing. These methods can generate gigabases of sequence data in a matter of days, in

the form of short sequence read fragments ranging in length from ∼50 to a few hundred

nucleotides. The 454 platform uses pyrosequencing chemistry to couple DNA strand

synthesis with a chemiluminescent signal specific to each base type that is added to

the growing strand [142]. The sequencing reaction takes place on streptavidin-coated

beads, with each bead containing several copies of a bound single-stranded DNA tem-

plate to be sequenced. The specific pattern of light emission from each of the identical

synthesis reactions per bead reports the sequence of the template.

Illumina (formerly Solexa) technology uses a modified Sanger reaction on tem-

plate sequences immobilized on a slide [143]. DNA templates are ligated to adapter

sequences on both ends, both of which bind via complementarity to the slide surface,

forming a bridge structure. Amplification of the sequence occurs by priming off of

the adapter sequence, which generates large clusters (“polonies”) of identical tem-

plate sequences. During sequencing, fluorescent reversible terminator nucleotides are

added one at a time, and at each step, the base-specific fluorescent signal for each

polony is read. Temporary terminator groups at the end of the added nucleotides

prevent multiple nucleotides from incorporating in the same round; these terminator

groups are removed at the end of the round to begin the next synthesis reaction.

In contrast to the above technologies, the ABI SOLiD platform of Applied Biosys-

tems uses a technique called sequencing by ligation, in which short fluorescently la-

beled oligomers of eight to nine nucleotides are successively ligated together by DNA

ligase along the length of the template to be sequenced [144]. Oligomers are prefer-

entially ligated so that the two 5′ -most nucleotides of the oligomer are base com-

plementary to the template sequence, so the fluorescence signal of the oligomer that
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was added corresponds to the dinucleotide sequence at that position in the template.

Nucleotide identity is thus determined as di-bases spaced every few nucleotides along

the template; varying the starting point of the ligation process ensures that every

nucleotide in the template is covered.

For transcriptome analysis, evaluation of the sequence reads entails determining

their source, often a non-trivial task given the short length of the sequence reads

and the large number of reads per experiment, as well as the somewhat error-prone

nature of the sequencing reads. Several read-alignment algorithms (e.g., Eland (part

of the Illumina GA Pipeline, unpublished), Maq [145], SOAP [146], Bowtie [147])

are optimized for short-read alignment to large genomes. However, in many cases

the length of the reads prevents unambiguous assignment of a genomic locus, if the

sequence appears in multiple locations in the genome. One way to alleviate this

problem is to use paired-end sequencing, in which the same template is sequenced

from both ends, resulting in a mate pair consisting of two sequence reads known to

be separated by a short distance (typically about 200 nucleotides). The additional

information often is sufficient to anchor an otherwise ambiguous read alignment to

one specific locus. The Illumina platform accommodates paired-end experiments by

running the sequencing reaction twice in succession, on the two strand orientations

in a polony [148].

2.5.4 Computational RNA gene-finding

There are several drawbacks to purely wet-experimental approaches to RNA identifi-

cation. First, absence of an RNA from a transcriptome sample does not imply that a

sequence is never transcribed; it may be expressed at low levels below the detection

threshold of the technique used, or it may be conditionally expressed in particular tis-

sues, developmental stages, or environmental contexts, and it is generally not possible
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to obtain RNA samples from all possible combinations of these. Second, transcription

of a sequence does not necessarily mean it is functionally significant – a somewhat

controversial claim based on speculation that transcription may be a noisy mechanism

[149] – or more generally, does not always provide information about how a sequence

is functionally significant. Third, the techniques involved can be expensive and time

consuming.

The flexibility and high-throughput nature of many computational approaches

to RNA identification make them amenable to addressing some of these issues. All

such approaches assume that there is some identifiable set of characteristics that

distinguish functionally significant RNAs from background genomic sequence.

In one class of methods, explicit or implicit comparison to known RNA sequences

is performed, and similarity to one or more exemplars belonging to a specific RNA

family or subfamily generates a hypothesis that the unknown sequence being queried

comes from the same family. Direct sequence comparison using algorithms such as

BLAST [150] is often useful when there is a high level of sequence similarity over

all or part of the query RNA to known RNAs; however, in many cases, sequence is

poorly conserved despite structural and functional similarity [151]. Thus, secondary

structure comparison is also commonly used. The simplest strategy is to apply string

comparison algorithms to the Vienna dot-parenthesis structure representations, as

implemented by the RNAdistance program in the Vienna Package [10].

Structure distance often provides a good heuristic for determining coherent sets

of RNAs (e.g., [152, 153]) but generally assigns equal weight to all types of structural

mutations. In actuality, particular classes of RNAs may vary greatly over one axis,

say stem length of one helix, but not over another, such as loop size; in this case, a

model that captures this sort of variational information may be a better fit, such as

a generative or probabilistic model. The observation that the base-pairing pattern of
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an RNA is often stable over evolutionary time, while the base identity in the base

pairs can change, motivates the class of covariance models [127, 154]. Such models

encode the patterns of base substitutions, obtained from sequence alignments, that

are consistent with the maintenance of secondary structure features, and weight these

features to form a consensus structure that can be used to classify new instances.

Stochastic context free grammars (SCFGs) have also been used to model sequence

and structure variation over a set of exemplar RNAs [155]. A grammar is learned

where the production rules generate patterns of base pairs and unpaired nucleotides

with probabilities derived from the training RNAs. Applying an SCFG to a novel

sequence returns the probability that the grammar would be able to produce that

sequence, which can be compared to similar probabilities from other SCFGSs or from

other sequences. Other custom strategies exist for several classes of RNAs, such as

miRNAs (reviewed in [156]) and snoRNAs [157].

In the absence of exemplar information, or as an augment to it, general properties

of natural RNA sequences structures can be used to determine how likely an unknown

sequence codes for a functional RNA. One such property is the thermodynamic sta-

bility of the RNA, as indicated by the free energy of the most stable structure (mfe),

which is low for a highly structured RNA. Comparison of the mfe to a background

distribution, for example as generated by computationally folding artificially shuffled

versions of the query RNA sequence [158, 159], can often distinguish RNA sequences

that are more stable than expected by chance, though this is often not a sufficient con-

dition for assessing function significance [160]. Other salient characteristics include

nucleotide bias, proportion of bases involved in base pair interactions, or the plastic-

ity of the RNA as measured by the number of different low-energy configurations the

sequence adopts [161, 162].
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2.6 Conclusions

In this chapter, we reviewed several aspects of RNA biology, simultaneously showing

the diversity of function that RNAs can possess and the diversity of methods with

which to study RNAs. The subsequent chapters of this dissertation draw heavily

from this diversity and attempt to synthesize a holistic view of RNAs, based on a

decomposition of their parts.

References

[1] Westheimer FH (1986) Polyribonucleic acids as enzymes. Nature 319:534–5.

[2] Gilbert W (1986) Origin of life: The RNA world. Nature 319:618.

[3] Crick FH (1958) On protein synthesis. Symp Soc Exp Biol 12:138–63.

[4] Holley RW, Apgar J, Everett GA, Madison JT, Marquisee M, et al. (1965)

Structure of a ribonucleic acid. Science 147:1462–5.
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Chapter 3

The modularity of RNA structures

Appeared in: Lee MT and Kim J. 2008. Self containment, a property of modular RNA

structures, distinguishes microRNAs. PLoS Comput. Biol. 4(8).

3.1 Introduction

The minimum length of a well-formed RNA secondary structure is about seven nu-

cleotides, consisting of a two-base-pair stem with a three-nucleotide loop. Depending

on the nucleotide composition of both the loop region and the base-paired stem, the

stability of such a minimal hairpin will vary.

Biologically relevant RNAs tend to be larger. In some cases, such as the SECIS

element or precursor miRNAs (pre-miRNAs), they consist of the same basic hairpin

structure, with longer loops and stems. In other cases, such as ribosomal RNAs, the

RNAs form structures that are essentially combinations of these basic hairpin shapes,

linked together with additional structured or unstructured sequence. Conceptually,

we can think of these complex RNAs as being composed of a set of structured build-

ing blocks, whose specific nucleotide sequence and structure individually combine to

confer a specific structure and function to the entire RNA molecule.
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In an attempt to better understand the characteristics of these building blocks,

we might try to catalog them and look for common patterns. [1] and [2] for exam-

ple invoke the idea of an RNA building block strongly grounded in the properties of

nucleotide-nucleotide interactions. Partly due to scope and partly due to the avail-

ability of accurate biophysical data, these building blocks are all small, yet biologically

significant fragments of RNA structure – e.g., the GNRA tetraloop, a hairpin motif

commonly found in ribosomal RNAs and ribozymes; or the D-loop, one of the do-

mains of tRNA. Using a more computationally-driven approach and a larger scale,

[3] defines RNA structures using topological descriptors, such that individual RNA

structures are abstracted to simple graphs with edges representing stems and edges

representing loops. These can be compared directly or through their graph properties,

such as connectivity, and in fact, using this approach the authors show that certain

topologies are more “natural” than others by virtue of their patterns of occurrence

among known RNAs.

The parts-list enumeration approach in essence defines constraints on RNA struc-

ture space and shows that RNA structures draw from a finite set of components and

topologies. However, there is an aspect of temporal invariance that is not explicitly

captured here, one that is important for understanding these building blocks from a

use/reuse perspective.

On the shorter end of biological timescales are the biogenesis processes that many

RNAs undergo. Many RNAs, particularly rRNAs, are subject to snoRNA- and

snRNA-mediated RNA editing and splicing on the basis of their sequence and shape

specificity [4, 5]. Eukaryotic tRNAs are transcribed as longer precursor transcripts,

which are recognized and cleaved on both the 5′ and 3′ ends by RNaseP and an

uncharacterized endonuclease, respectively [6, 7]; some tRNAs also contain introns,

which disrupt the canonical cloverleaf structure and are spliced out before the ma-
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ture tRNA is exported out of the nucleus [6, 7]. The eukaryotic 18S, 5.8S, and 28S

rRNAs are transcribed as a single unit and subsequently cleaved apart [8, 9]. The

hammerhead ribozyme is an example of a self-splicing RNA, such that its three helices

mediate cleavage of a motif that occurs on the same RNA molecule [10].

miRNA biogenesis begins with the transcription of long primary transcripts (pri-

miRNAs), which fold into large structures that serve as substrates for the endonucle-

ase Drosha [11]. Drosha, in complex with Pasha to form the Microprocessor complex,

recognizes specific hairpin substructures in the pri-miRNA and cleaves them at the

base of the helical stem region, yielding the pre-miRNA hairpins [12, 13]. These range

in size from ∼ 60 − 120 nucleotides and are subsequently processed by Dicer, which

targets the pre-miRNAs on the basis of their hairpin shape [14, 15]. miRNAs are

notable in that the sequence of the pre-miRNA hairpin remains a robust structure

through these biogenesis steps, regardless of the sequence context: when embedded

in the larger primary sequence, the pre-miRNA subsequence folds into a hairpin, and

when it is cleaved off to form an independent unit, the sequence folds into the same

hairpin [16].

The need for context-independent structural conservation, as exemplified by the

miRNA biogenesis pathway, is a hallmark of the broader phenomenon of modular

composability that follows from the concept of RNA building blocks, with relevance

on the longer timescales of evolutionary change. It is now well recognized that novel

proteins can arise from shuffling of structural domains, the most vivid example being

circularly permuted proteins [17, 18]. Given the critical role of structural features

in RNA function and the already recognized motifs as compiled in databases such

as RFAM [19], it is conceivable that many RNAs might also have arisen from evolu-

tionary steps of domain shuffling and domain fusions. Such a process would require

that the novel molecule reach a folded state that is a composition of the structural

81



features of its parts – i.e., the structural features of the combinatorial pieces need to

be invariant to composition with other sequences.

On the one hand, structural context robustness may be a product of the specific

relationship between each sequence and its genomic context, a property that has been

exploited in computational miRNA finders such as in [20]. On the other hand, cer-

tain subsequences may have some intrinsic tendency to be structurally indifferent to

their surrounding sequence, irrespective of the particular identity of that surrounding

sequence – e.g., a pre-miRNA would still be structurally robust if it were inserted

into a different context. We call this property of intrinsic structural invariance “self

containment.” A self-contained structural RNA (or protein) has the potential to be

a modular building block in a larger structure, carry out consistent function through

biochemical modifications of surrounding sequences, and potentially maintain func-

tion when inserted into novel contexts, as might occur with viral elements.

Previously, while studying the general mutational robustness of 170 structural

elements of RNA viral genomes, Wagner and Stadler found that there was a trend

toward higher structural robustness in conserved elements than in non-conserved el-

ements when placed in short non-genomic contexts [21]. Using a similar approach,

Ancel and Fontana studied the intrinsic context insensitivity of a set of canalized ar-

tificial RNAs, selected to have reduced environmental plasticity, and found a positive

relationship between environmental canalization and modularity [22]. Other work in

RNA (e.g., [23, 24]) and proteins (e.g., [25]) suggests that there is an intimate rela-

tionship between mutational robustness and domain modularity with folding kinetics,

thermodynamic stability, as well as other biogenerative processes.

In this chapter, we analyze self containment over a broad range of biological RNAs

using an intuitive scoring method to quantify different degrees of context robustness.

We show that in fact pre-miRNAs do exhibit a high degree of intrinsic self contain-
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ment, while most other biologically relevant RNAs tend not to show such self contain-

ment. We relate self containment to other sequence and structural features of RNA

and find that no simple combination of features can completely explain self contain-

ment. Finally, we show that variation among miRNAs in degree of self containment

is correlated with genomic location and miRNA-family membership, as well as their

biogenerative process, as illustrated by miRNAs produced by the alternate mirtron

pathway. We propose that high self containment is an intrinsic property of particu-

lar RNA sequences and may be an evolutionarily selected characteristic in molecules

that need to maintain structural robustness for some aspect of their function in the

face of genetic perturbations, generative perturbations, and modular composition in

combinatorial contexts.

3.2 The Self-Containment Index measures RNA

structural modularity

3.2.1 Measuring self containment

Given a sequence of nucleotides xwy, where w is a sequence of interest and x and

y are arbitrary upstream and downstream sequences, w is structurally invariant if

the substructure of the w portion is identical to the structure of w in isolation. In

this scenario, the paired bases in w are paired exclusively with other bases in w and

do not involve the nucleotides in x and y. If w is structurally invariant regardless

of the nucleotide identity of x and y, we call w self contained. We formulate self

containment as a quantitative trait of w that varies with the degree of structural

invariance vis-a-vis the pool of possible x and y sequences.

We developed a scoring method to measure the degree of self containment of an

RNA molecule, similar to the methods used in [21] and [22] but better encapsulating
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the severity of structure change over a varied number of contexts. The score is

calculated as follows: for each RNA sequence w of length L folding into a particular

minimum free energy (mfe) secondary structure, we create a larger sequence of length

3L by embedding the original sequence in between randomly generated sequences x

and y of equal length, forming a concatenated molecule xwy. We fold the resulting

larger sequence and measure the proportion of the original structure preserved in

the larger structure (Figure 3.1). We repeat the process using 1000 different random

embeddings and average the proportions to generate a single value that ranges from

0.0 to 1.0, with 1.0 indicating a maximal degree of self containment. We call this

score the self-containment index (SC).

Figure 3.1: Example of varying degrees of structure preservation. (A) An RNA
sequence that folds into a hairpin in isolation. (B-D) Embedding the original sequence
in different surrounding sequence contexts causes varying degrees of preservation of
the hairpin in the global mfe structure: complete preservation (B); loss of one base
pair (C); and complete disruption of the original hairpin (D).

When applied to a set of 493 human miRNA stem loops downloaded from miRBase

[26, 27], filtered to exclude sequences of > 90% sequence identity using the greedy

sequence clustering algorithm Cd-hit [28], we found that the SC index produced a

heavily right-shifted distribution, with an average SC value of 0.88 (Figure 3.2). We
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repeated the analysis on the stem-loop sequences after trimming the 5′ and 3′ ends

to align with the mature miRNA sequence while including the characteristic 2-nt 3′

overhang [11, 16], thus yielding true pre-miRNA stem loops as would be produced

by Drosha processing, and found the same right-shifted distribution, again with an

average SC of 0.88, though true pre-miRNA SC values tend to be slightly higher than

the corresponding foldback values (p = 0.021, Wilcoxon signed rank test) (Figure

3.2). In contrast, when applied to a set of 500 randomly-generated structured RNAs,

generated to approximately match the length and degree of base pairing of human

miRNA foldbacks (see Materials and Methods), the SC index produced a roughly

normal distribution of values centered around 0.54 (Figure 3.2). Thus, the miRNAs

exhibit a significantly higher degree of self containment than random (p < 2.2×10−16,

Wilcoxon rank sum test).
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Figure 3.2: Self containment values for human pre-miRNA foldbacks versus random
structures. Histograms of self-containment index values are shown for the 493 human
miRNA stem loops, the stem loops trimmed to represent true pre-miRNAs, and 500
random structured RNAs.

85



Table 3.1: Effects of varying the number of random contexts used to calculate the
self-containment index

Num. contexts used RNA Slopea r2 b

100
miRNA 1.00 0.98

rand 0.97 0.98

5000
miRNA 1.00 1.00

rand 0.99 0.99

aSlope of the linear regression line for the modified score as a function of the normal formulation of

SC (using 1000 random contexts). b Correlation coefficient between the modified score and the

normal formulation of SC.

We tested the robustness of the SC index by varying the number of random

embeddings used and found that the index gave consistent results using as few as 100

embeddings when applied to random 100-sequence subsets of the miRNA stem loops

and random structures. A Pearson correlation between SC values using 100 random

embeddings versus 1000 random embeddings yielded an average slope of 0.99 with

an average r2 of 0.98, indicating that the SC index can be reliably estimated with

a small sample of randomizations (Table 3.1). Similarly, increasing the number of

random embeddings to 5000 also did not affect the scores (Table 3.1).

We also tested the effect of varying the length of the random context by comparing

SC values obtained using the normal formulation – left and right random contexts

of length L – with values obtained using context lengths ranging from 0.1L to 2L.

Longer contexts produced comparable SC values to the original formulation over

both miRNAs and random structures, with Pearson correlations ranging from 0.98

to 0.99 and slopes from 0.98 to 1.08. SC values were slightly but significantly lower

with longer context lengths, with an average difference of 0.01 for the miRNAs and

0.04 for the random structures between the L- and 2L-derived values (p < 1 × 10−9,

Wilcoxon signed rank test). Conversely, shorter contexts produced lower correlations

and inflated SC values, with the context length of 0.1L yielding Pearson correlations
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Table 3.2: Effects of varying the length of the random contexts used to calculate the
self-containment index

Length of contexta RNA Slopeb r2 c SC diff.d p-valuee

0.1L
miRNA 0.46 0.65 0.06 2.20E-16

rand 0.78 0.61 0.21 2.20E-16

0.5L
miRNA 0.90 0.99 0.01 2.22E-16

rand 0.98 0.97 0.05 2.20E-16

1.5L
miRNA 1.06 0.99 -0.01 9.76E-10

rand 0.98 0.99 -0.02 2.20E-16

2L
miRNA 1.08 0.99 -0.01 6.55E-15

rand 0.99 0.98 -0.04 2.20E-16

aLength of the random context appended to each end of the query sequence, with respect to L, the

length of the query sequence. Under the normal formulation of SC, the context length is equal to

L. bSlope of the linear regression line for the modified score as a function of the normal formulation

of SC (using a context length of L). cCorrelation coefficient between the modified score and the

normal formulation of SC. dAverage difference between the average SC value obtained using

contexts of length L and the average SC value using the modified length context. eBy a Wilcoxon

signed rank test.

of 0.61 to 0.65 and an average increase in SC value ranging from 0.06 to 0.21 (p

< 2.2 × 10−16, Wilcoxon signed rank test) (Table 3.2). These data indicate that a

context length of L is sufficient to model the effects of large sequence surroundings,

but lengths much shorter than L may be insufficient.

Finally, we tested the degree to which the base composition of the random con-

texts affected the SC values and found that substituting random contexts with cod-

ing sequence, intronic sequence, or versions of these with shuffled dinucleotides (i.e.,

the nucleotide sequences were randomly permuted in a way that preserves both the

mononucleotide and dinucleotide frequencies of the original [29, 30]) had little effect

on SC values. Pearson correlations between SC values produced by the original for-

mulation compared to each of these variants, for each of the RNA classes, yielded

slopes ranging from 0.91 to 1.08 with r2 values from 0.86 to 0.98 (Table 3.3), again

suggesting that the SC index can be well estimated using randomization experiments.
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Table 3.3: Effects of varying the source of the random contexts used to calculate the
self-containment index

Context source RNA Slopea r2 b

coding sequence
miRNA 1.04 0.98

rand 1.02 0.98

intron
miRNA 0.92 0.97

rand 0.99 0.96

shuffled coding
miRNA 1.01 0.98

rand 1.01 0.98

shuffled intron
miRNA 0.89 0.96

rand 0.99 0.96

aSlope of the linear regression line for the modified score as a function of the normal formulation of

SC (using random contexts). bCorrelation coefficient between the modified score and the normal

formulation of SC.

3.2.2 RNA classes have varying degrees of self containment

Using the SC index, we measured the self containment of several other classes of

structural RNAs that have been compared previously using other measures (e.g.,

[31, 29, 32]): tRNAs, U1 and U2 spliceosomal RNAs, Hammerhead type III ribozymes,

and 5S rRNAs (Table 3.4). All of these yielded SC ranges much lower than for the

miRNAs (Figure 3.3a). The Hammerhead III ribozymes exhibited the highest average

degree of self containment at 0.69, which is still significantly lower than those for the

miRNAs (p = 3.95× 10−8, Wilcoxon rank sum test), while the remaining classes had

average SC values ranging from 0.38 for U1 to 0.54 for the 5S rRNA (Figure 3.3a).

To determine whether high self containment is a product of a strong hairpin

shape, which these other RNA classes lack, we additionally analyzed selenocysteine

insertion sequences (SECIS) and bacterial signal recognition particle (SRP) RNAs

from RFAM [19], both of which exhibit strong hairpin secondary structures. We also

tested a set of hairpins derived from the protein-coding regions of mRNA transcripts,
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Table 3.4: Average self-containment index values for RNA classes analyzed

RNA Class Num. Sequences Average SC

miRNA (all species) 4429 0.90

miRNA (human) 493 0.88

Hammerhead III ribozyme 19 0.69

Bacterial SRP 47 0.69

RFAM-extracted hairpins 9572 0.65

SECIS elements 47 0.60

5S rRNA 290 0.54

Random structures 500 0.54

tRNA 751 0.51

U2 spliceosomal 30 0.46

CD hairpins 168 0.43

U1 spliceosomal 31 0.38

originally curated to serve as a negative training set for pre-miRNA detection (CD

hairpins) [33]. Both the SECIS and SRP RNAs exhibited higher SC values than all

the other structural RNAs except for the Hammerhead ribozymes, yielding average

values of 0.60 and 0.69, respectively; however, this was still significantly lower than

for the miRNAs (p = 2.2 × 10−16 for SECIS, p = 7.24 × 10−12 for SRP, Wilcoxon

rank sum test) (Figure 3.3b). The CD hairpins, despite their structural similarity to

pre-miRNAs, turned out to have very low self containment, with an average SC value

of 0.43, greater only than that of the U1 RNAs (Figure 3.3b, Table 3.4).

3.2.3 Two additional groups of hairpins show high self containment

In a further attempt to find groups of RNAs with similar SC distributions to the

miRNAs, we considered the entire set of RFAM sequences [19, 34], filtered to > 90%

sequence identity. We extracted all unbranched hairpins greater than 50 nucleotides

in length, with at least half of the nucleotides involved in base pairs; these hairpins

were either full-length RNAs, or they were structurally decomposable portions of full
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Figure 3.3: Self containment values for RNA classes. Histograms of self-containment
index values are shown for (A) tRNAs, 5S rRNAs (5S), Hammerhead type III ri-
bozymes (H III), U1 spliceosomal RNAs, and U2 spliceosomal RNAs, as compared to
random structures; and (B) SECIS elements, bacterial SRP RNAs (bact SRP), and
hairpins derived from protein-coding regions of mRNAs (CD hairpin), as compared
to random structures.
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RNAs. In all, we obtained 9572 hairpins, of which 335 were miRNAs.

We computed SC values for each hairpin. As a whole, there exists a bias toward

higher SC values, though the distribution is roughly uniform among the SC values

greater than 0.5 (Figure 3.4). We extracted the top 15% scoring hairpins, which cor-

responds to having an SC value greater than 0.900, and looked for overrepresentation

of hairpins deriving from particular RFAM families. Nineteen classes show significant

enrichment with p < 0.001 according to a Fisher’s exact test, of which 12 are miRNA

families (Table 3.5). Of the remaining classes, the eukaryotic SRP RNA and the

hepatitis C virus stem-loop VII show the most significant skews toward high self con-

tainment, with the majority of the individuals having SC values greater than 0.9, as

was observed among the miRNA stem loops. The next most significant non-miRNA

class are hairpins derived from U2, which do not show as pronounced a skew.

0.2 0.4 0.6 0.8 1.0

0
5

0
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1
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0
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t

Figure 3.4: Histogram of self-containment index values for the 9572 hairpins extracted
from RNAs annotated in RFAM.
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Table 3.5: RFAM families whose hairpin structures are significantly enriched for high
self containment

Class Total Num.
Hairpins

Observed in
Top 15% SC

Expected
by Chance

p-valuea

MIR (combined)b 335 285 50.3 3.70×10−82

RF00017 SRP euk arch 171 105 25.7 9.76×10−25

RF00468 HCV SLVII 41 31 6.2 4.11×10−10

RF00451 mir-395 31 27 4.7 6.32×10−10

RF00075 mir-166 21 20 3.2 3.74×10−8

RF00445 mir-399 17 16 2.6 9.49×10−7

RF00073 mir-156 15 15 2.3 1.26×10−6

RF00004 U2 113 43 17.0 1.93×10−6

RF00169 SRP bact 110 37 16.5 7.17×10−5

RF00247 mir-160 10 10 1.5 7.70×10−5

RF00074 mir-29 9 9 1.4 1.78×10−4

RF00238 ctRNA pND324 10 9 1.5 2.98×10−4

RF00103 mir-1 10 9 1.5 2.98×10−4

RF00551 bicoid 3 19 12 2.9 3.15×10−4

RF00256 mir-196 13 10 2.0 3.28×10−4

RF00027 let-7 13 10 2.0 3.28×10−4

RF00053 mir-7 8 8 1.2 4.12×10−4

RF00047 mir-2 8 8 1.2 4.12×10−4

RF00042 CopA 12 9 1.8 7.41×10−4

RF00244 mir-26 7 7 1.1 9.62×10−4

aBy Fisher’s exact test.
bAll miRNA families combined.
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3.2.4 Self-containment index correlates with other RNA measures

Having characterized the extent to which self containment varies among different

RNAs, we next sought to understand the biophysical basis of SC by comparing it to

other measures on structured RNAs. We compared SC values with 14 other measures

drawn in part from [31] and [32]: sequence length; %GC nucleotide content; mfe

and mfe normalized by length [31, 35] and GC content [35, 36]; normalized Shannon

entropy of base-pair probabilities among all the structures in the thermodynamic

ensemble (Q) [37]; base-pairing proportion overall (P) and the proportion of those

pairs that are AU, GC, and GU pairs; z-scores of mfe, Q, and R when compared

to a set of shuffled sequences preserving dinucleotide frequencies [29, 30]; and the

stability of the mfe structure with respect to competing alternate structures, which

is approximated by the number of structures in the thermodynamic ensemble within

2 kcal/mol of the mfe [23, 38] (see Materials and Methods). To test whether self

containment is related to the complexity of an RNA sequence, we also compared SC

to the Shannon entropy of nucleotide, dinucleotide, and trinucleotide probabilities

across the sequence. Finally, we tested whether self containment depends more on

the strength of base interactions in the 5′ and 3′ ends of the sequence rather than in

the interior of the structure, using the base-pairing proportion measure limited to the

distal portions of the sequence (see Materials and Methods).

We used four RNA classes for comparison: human miRNA stem loops, ran-

dom structured RNAs, 5S rRNAs, and tRNAs. The correlations between variance-

stabilized SC values – using an arcsin square-root transform (see Materials and Meth-

ods) – and values obtained from each of these measures are presented in Table 3.6,

and scatter plots for length, GC content, mfe, mfe z-score, Q, Q z-score, P, and

end-restricted P are presented in Figure 3.5.
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Table 3.6: Correlation coefficients (r2) between self-containment index and other
RNA measures

Measure miRNA Random 5S rRNA tRNA

length 0.04 0.01b 0.12 0.00b

GC proportiona 0.15 0.18 0.02 0.01b

mfe 0.07 0.00b 0.46 0.04

length-normalized mfe 0.21 0.03 0.44 0.05

GC-normalized mfe 0.31 0.06 0.63 0.27

mfe z-score 0.58 0.35 0.72 0.48

base pair entropy (Q) 0.56 0.35 0.59 0.25

base pair entropy z-score 0.58 0.37 0.56 0.28

base pair proportion (P)a 0.25 0.00b 0.26 0.01

base pair proportion z-score 0.30 0.04 0.29 0.05

AU base pair proportiona 0.21 0.14 0.00b 0.01

GC base pair proportiona 0.13 0.06 0.03 0.00

GU base pair proportiona 0.05 0.02 0.03 0.09

end base pair proportiona 0.33 0.04 0.27 0.01

end AU base pair proportiona 0.16 0.08 0.00b 0.01

end GC base pair proportiona 0.09 0.02 0.02 0.00b

end GU base pair proportiona 0.03 0.03 0.03 0.09

num. alternate structures 0.12 0.04 0.14 0.09

nucleotide entropy 0.02 0.12 0.02 0.00b

dinucleotide entropy 0.01 0.05 0.01b 0.01

trinucleotide entropy 0.00b 0.01b 0.00b 0.01

aProportion metrics were variance stabilized by performing an arcsin-square root transform before
correlation was calculated.
bCorrelation was not significant (p > 0.05).
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Figure 3.5: Comparison of self containment with other RNA measures. Scatter plots
showing self-containment index plotted against eight other RNA measures: sequence
length (length); proportion of G and C nucleotides (GC); minimum free energy of
the structure (MFE); z-score of the mfe compared to 1000 dinucleotide-shuffled se-
quences (MFE z); normalized Shannon entropy of base-pair probabilities among all
the structures in the thermodynamic ensemble (Q); z-score of Q compared to 1000
dinucleotide-shuffled sequences (Q z); proportion of bases involved in base pairs over
the entire structure (P); and proportion of bases involved in base pairs, limited to the
5′ and 3′ ends of the sequence. Four sets of RNAs are overlaid in each plot: tRNAs,
random structures, 5S rRNAs, and human pre-miRNAs.

For many of these measures, the relationship with SC varies depending on the class

of RNA considered. Minimum free energy, for example, is moderately correlated with

SC in the 5S rRNAs, but this is not the case for the other classes. Similarly, base-

pairing proportion – overall, partitioned into base-pair type, or limited to particular

regions of the structure – is moderately predictive for miRNAs and 5S, but not for tR-

NAs. Sequence complexity, as described by the nucleotide entropy measures, appears

to have little to no relationship on self containment. The strongest correlations are
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between SC and mfe z-score, as well as with base pair entropy and the corresponding

z-score, which themselves have all been shown to have strong correlations with one

another [31].

We performed a multiple regression using all 21 variables, to assess how SC relates

to a linear combination of the various RNA measures. The linear model yielded an r2

of 0.52 for the random structures, 0.65 for tRNAs, 0.76 for miRNAs, and 0.81 for the

5S rRNAs. However, the significantly predictive variables for the regression model

differed between the RNA classes, suggesting that self containment reflects a subtler

sequence-structure relationship that is not captured in a common model across these

factors and RNA classes.

3.2.5 RNA sequences have enhanced self containment given their

structure

To further characterize the relationship between structure and sequence in deter-

mining degree of self containment, we generated an ensemble of 100 inverse-folded

sequences for each human miRNA stem loop using RNAinverse from the Vienna

RNA Package [39]; each inverse-folded sequence is predicted to adopt the respective

miRNA structure with minimum free energy. We then measured self containment for

each set of sequences to produce a distribution of SC values for each miRNA structure

and compared these distributions.

Some of the structures have very narrow ranges of admissible SC values, particu-

larly on the high end where it appears that there are structures that are context-robust

regardless of the sequence. However, most of the structures admit a wide range of

possible SC values, even among structures whose real miRNA sequences exhibit very

high self containment, indicating that self containment is not simply determined by

structure but is an evolved feature of the sequence given a particular structure (Fig-
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Figure 3.6: Self containment values for natural RNAs versus inverse-folded sequences.
(A) Scatter plot showing self-containment index values for each original pre-miRNA
versus the range of SC values observed among 100 inverse-folded sequences with the
same structure as that miRNA. A range value of 0 indicates homogeneity among
the SC values obtained over all 100 inverse-folded sequences, while higher values
indicate higher diversity. The marginal histogram of range values is also shown. (B)
Histograms showing the RNA class distributions of z-scores calculated from the self-
containment index values of each RNA compared to the SC values of its 100 inverse-
folded sequence ensemble. Classes shown are human pre-miRNAs (miRNA), hairpins
derived from protein-coding transcripts (CD), hairpins derived from eukaryotic signal
recognition particle RNAs (SRP), 5S rRNAs (5S), and tRNAs.

ure 3.6a). The same trend was observed when other types of RNA were considered

(data not shown).

Using the ensemble of 100 inverse-folded sequences per miRNA stem-loop struc-

ture, we calculated the average SC value and standard deviation and compared this

to the SC value of the true miRNA sequence by computing a z-score. We found a

strong tendency for the real sequences to have higher self containment than average,

though few of them had z-scores greater than 2 (Figure 3.6b). We performed the same

analysis on random 100-sequence subsets of the 5S rRNAs, tRNAs, CD hairpins, and
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the eukaryotic SRP RNA-derived hairpins we previously extracted, and found that

all classes displayed right-shifted z-score distributions, indicating that the biological

RNA sequences tend to be more self contained than artificial sequences that fold into

the same structure (Figure 3.6b).

3.3 Precursor microRNA hairpins exhibit a high degree

of modularity

3.3.1 microRNA self containment is prevalent across diverse species

To confirm that high self containment is not particular to miRNAs in humans, we

measured the self containment of the miRNA stem loops spanning 56 other species

represented in miRBase [26, 27]. We found that among species with at least five

annotated miRNAs in miRBase, the average SC was between 0.85 and 0.98 (Table

3.7, 3.8), and that the distributions of scores when grouped into larger taxonomic

classes were all heavily right shifted, as was the case for the human miRNAs (Figure

3.7).

3.3.2 Mirtrons are less self contained than canonical miRNAs

The high self containment that distinguishes miRNAs is hypothesized to be partly a

function of their unique biogenesis mechanism; therefore, we tested whether enhanced

self containment would still be present in the absence of the biogenesis constraint.

Recently, several intronic miRNAs were characterized in Drosophila melanogaster

[40, 41] and Caenorhabditis elegans [41] that bypass the Drosha cleavage pathway.

Instead, these “mirtrons” are full-length intronic sequences that are spliced from

protein-coding transcripts through the normal splicing pathway, giving rise to pre-

miRNA foldbacks that are subsequently processed by Dicer to yield mature miRNAs.
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Table 3.7: Average self-containment index values for metazoan miRNAs

Abbrev. Species Cladea nb Average SC

xla Xenopus laevis Amphibia 7 0.86

xtr Xenopus tropicalis Amphibia 177 0.92

aga Anopheles gambiae Arthropoda 38 0.89

ame Apis mellifera Arthropoda 54 0.89

bmo Bombyx mori Arthropoda 20 0.93

dme Drosophila melanogaster Arthropoda 93 0.89

dps Drosophila pseudoobscura Arthropoda 26 0.91

gga Gallus gallus Aves 154 0.91

age Ateles geoffroyi Mammalia 45 0.90

bta Bos taurus Mammalia 105 0.91

cfa Canis familiaris Mammalia 5 0.90

cgr Cricetulus griseus Mammalia 1 0.98

ggo Gorilla gorilla Mammalia 86 0.88

lla Lagothrix lagotricha Mammalia 48 0.88

lca Lemur catta Mammalia 16 0.86

mml Macaca mulatta Mammalia 71 0.89

mne Macaca nemestrina Mammalia 75 0.90

mdo Monodelphis domestica Mammalia 100 0.91

mmu Mus musculus Mammalia 432 0.87

oar Ovis aries Mammalia 3 0.74

ppa Pan paniscus Mammalia 89 0.89

ptr Pan troglodytes Mammalia 83 0.89

ppy Pongo pygmaeus Mammalia 84 0.89

rno Rattus norvegicus Mammalia 290 0.90

sla Saguinus labiatus Mammalia 42 0.88

ssc Sus scrofa Mammalia 53 0.92

cbr Caenorhabditis briggsae Nematoda 90 0.90

cel Caenorhabditis elegans Nematoda 134 0.88

dre Danio rerio Osteichthyes 337 0.89

fru Fugu rubripes Osteichthyes 131 0.93

tni Tetraodon nigroviridis Osteichthyes 78 0.92

sme Schmidtea mediterranea Platyhelminthes 63 0.91

aTaxonomic group by phylum or by class for vertebrates. bNumber of miRBase-annotated
miRNAs for the species, after filtering to remove sequences with >90% similarity.
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Table 3.8: Average self-containment index values for non-metazoan miRNAs

Abbrev. Species Cladea nb Average SC

cre Chlamydomonas reinhardtii Protistae 39 0.96

ath Arabidopsis thaliana Viridiplantae 174 0.92

bna Brassica napus Viridiplantae 3 0.99

gma Glycine max Viridiplantae 21 0.91

mtr Medicago truncatula Viridiplantae 17 0.98

osa Oryza sativa Viridiplantae 189 0.94

ppt Physcomitrella patens Viridiplantae 211 0.86

pta Pinus taeda Viridiplantae 22 0.93

ptc Populus trichocarpa Viridiplantae 151 0.92

sof Saccharum officinarum Viridiplantae 8 0.94

smo Selaginella moellendorffii Viridiplantae 54 0.96

sbi Sorghum bicolor Viridiplantae 60 0.94

tae Triticum aestivum Viridiplantae 29 0.85

zma Zea mays Viridiplantae 79 0.95

ebv Epstein Barr virus Viruses 22 0.89

hsv Herpes Simplex Virus 1 Viruses 2 0.94

hcm Human cytomegalovirus Viruses 11 0.91

hiv Human immunodeficiency virus 1 Viruses 2 0.48

ksh Kaposi sarcoma-assoc. herpesvirus Viruses 12 0.87

mdv Mareks disease virus Viruses 25 0.89

mgh Mouse gammaherpesvirus 68 Viruses 9 0.91

rlc Rhesus lymphocryptovirus Viruses 16 0.92

rrv Rhesus monkey rhadinovirus Viruses 7 0.96

sv4 Simian virus 40 Viruses 1 0.90

aTaxonomic group. bNumber of miRBase-annotated miRNAs for the species, after filtering to
remove sequences with >90% similarity.
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Figure 3.7: Self containment values for pre-miRNAs from various lineages. Box-and-
whisker plots showing the self-containment index distribution among pre-miRNAs
found in miRBase, indicating the median in bold, the interquartile range enclosed
by the box, the smallest and largest non-outliers indicated by the whiskers, and
outliers represented as individual points. The lineages displayed are, from left to right:
viruses; protists; plants; and animals divided into the phyla arthropods, nematodes,
flatworms, and chordates, which are further subdivided into classes/superclasses of
fish, amphibians, birds, and mammals. Number of miRNAs for each lineage is shown
in parentheses, and box width is proportional to the square root of this number.

Since mirtrons are processed as introns, structural robustness of the hairpin shape

is not as critical to biogenesis as it is for pre-miRNAs that need to be excised by

Drosha. We hypothesized that this effect would be reflected in lower SC values for

mirtrons as compared to canonical pre-miRNAs.

For the mirtrons identified in Drosophila [40, 41], this does appear to be the

case. We compared the SC values of the 14 mirtrons dme-mir-1003–1016 against the

remaining 76 Drosophila miRNAs (filtered to exclude sequences > 90% similar) and

found that mirtrons have lower SC values on average – 0.83 for mirtrons versus 0.91 for

canonical miRNAs; this difference achieves a significance level of p = 0.062 according

to a t test on logit-transformed SC values. An additional degenerate Drosophila

mirtron was characterized, dme-mir-1017, that is aligned to only the 5′ splice site
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Table 3.9: Average self-containment index differences between mirtrons and canonical
pre-miRNAs

Species Num. Mirtrons Avg. Mirtron SC Avg. miRNA SC p-valuea

D. melanogaster 15 0.83 0.91 4.83×10−2

C. elegans 4 0.98 0.88 7.06×10−3

H. sapiens 13 0.50 0.88 4.96×10−6

M. mulatta 11 0.67 0.89 2.39×10−5

aBy a Wilcoxon rank sum text (C. elegans) or by a t test (all others).

and has a long 3′ overhang, which presumably is cleaved subsequent to intron splicing

[41]. Including dme-mir-1017 in the analysis, after trimming the sequence from the 3′

end to yield a canonical hairpin, achieves a 5% significance level (p = 0.0483) (Table

3.9).

Among mammalian mirtrons that have recently been characterized [42], the effect

is much stronger. Thirteen human and 11 Macaque mulatta mirtrons were identified

with strong cloning evidence and sequence conservation, including one previously

annotated miRNA, mir-877. When we compared SC values between the human

mirtrons and the set of canonical miRNA stem loops excluding hsa-mir-877, we found

that human mirtrons had an average SC of 0.50 compared to the canonical 0.88 with

p = 4.96×10−6, using a Wilcoxon rank sum test due to the non-normality of the data

(Table 3.9). Similarly, macaque mirtrons also had a significantly lower average SC

of 0.67, compared to 0.89 for the canonical miRNAs (p = 2.39 × 10−5, t test) (Table

3.9).

In contrast, this trend was not observed in C. elegans – all four of the mirtrons

identified in C. elegans [41] were found to be more highly self-contained than the

average C. elegans miRNA (p = 7.06 × 10−3, t test) (Table 3.9). Since mirtrons in

different lineages may not have a common ancestry [42], perhaps this trend reflects a

different biogenesis mechanism or evolutionary history.
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3.3.3 Self containment distinguishes miRNA subclasses

Although high self containment seems to be a distinguishing characteristic for Drosha-

processed miRNAs, there is still variability in the degrees of self containment among

these miRNAs. We sought to account for some of this variability by measuring mean

differences in SC along several functional partitions of the set of human miRNAs.

Among the full set of 533 unfiltered human miRNAs, we tested the tendency for

self containment to differ among miRNAs depending on their family membership.

The miRNAs belonging to a miRNA family as annotated in miRBase [26, 27] – i.e.,

possessing at least one ortholog or paralog – were found to be significantly more self

contained, with an average SC of 0.91, than the non-conserved miRNAs, which had

an average SC of 0.78 (p = 1.32 × 10−7, Wilcoxon rank sum test) (Table 3.10). This

significance is possibly inflated by the fact that, by definition, miRNAs in a family

share nucleotide sequence, which would cause some correlation in SC values among

individuals in the same family. Using a more stringent formulation, obtained by

averaging the human SC values per family and performing a rank sum test on family

averages versus the SC values of the non-conserved miRNAs, we were still able to

see the significant difference (p = 1.37× 10−4). Additionally, we confirmed the result

by performing a randomization test (see Materials and Methods), which is robust to

sampling bias and distribution shape (p < 10−5). Restricting the analysis to only

the miRNAs with human paralogs, we again found a significantly higher degree of

self containment when compared to the human miRNAs lacking human relatives (p

= 1.05 × 10−4, Wilcoxon rank sum test; p < 10−5, randomization test).

A large proportion of human miRNAs occur in genomic clusters [43] as part of the

same primary transcript [16, 44, 45]. Using a liberal definition of clustering proposed

by [20], such that a miRNA is part of a cluster if it is <10,000 nucleotides from an-
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Table 3.10: Average self-containment index differences across different human pre-
miRNA groups

miRNA group In-
Group
Count

In-
Group
Avg. SC

Out-of-
Group
Count

Out-of-
Group
Avg. SC

p-valueb

In miRNA family 404 0.91 129 0.78 1.00×10−5

In human miRNA familya 251 0.92 282 0.84 1.00×10−5

Intergenic 225 0.91 303 0.86 1.54×10−3

Exon overlapping 53 0.81 475 0.89 7.69×10−3

Clustered 241 0.91 287 0.86 1.20×10−4

aBelonging to a miRNA family with multiple human members.
bBy a randomization t test (see Materials and Methods).

other miRNA on the same strand, we found that miRNAs occurring in clusters are

significantly more self contained than isolated miRNAs (p = 1.48 × 10−4, Wilcoxon

rank test) (Table 3.10). Since clustering turns out to be correlated with family mem-

bership (p < 2.2×10−16, χ2 test, 1 degree of freedom), we again used a randomization

test to confirm significance (p = 1.2 × 10−4).

Finally, we tested whether miRNAs overlapping genes had differing self contain-

ment from intergenic miRNAs. Using miRBase annotations [26, 27], miRNAs classi-

fied as intergenic were significantly more self contained than gene-overlapping miR-

NAs (p = 0.0195, Wilcoxon rank sum test) (Table 3.10). When broken down into

intron- versus exon-overlapping miRNAs, the effect is stronger, with exon-overlapping

miRNAs significantly less self contained than non exon-overlapping miRNAs (p =

1.5 × 10−4, Wilcoxon rank sum test). Again, among human miRNAs there is an

association between family membership and genomic location – intergenic miRNAs

are overrepresented in families (p = 2.86 × 10−10, χ2 test, 1 degree of freedom) and

exon-overlapping miRNAs are underrepresented in families (p = 4.84× 10−3, χ2 test,

1 degree of freedom). Randomization tests again confirmed significance of the SC
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differences (p = 1.54 × 10−3 for intergenic versus gene-overlapping, p = 7.69 × 10−3

for exon-overlapping versus non).

3.4 Discussion and conclusions

In the previous sections we showed that there exist RNA sequences that have an intrin-

sic tendency to maintain their specific folded structure regardless of their embedded

sequence context. We developed a way to measure this tendency, the self-containment

index, and we used the index to show that degree of self containment varies among

functional classes of RNA. miRNAs, with their need to maintain structural invariance

through two cleavage steps during biogenesis, exhibit an enhanced degree of self con-

tainment, in contrast to other classes of RNAs without such a restriction. When we

considered a subset of miRNAs, mirtrons, that bypass one of these cleavage steps, we

found a significantly lower average self containment in three species. Among human

miRNAs, we found a positive association of high self containment with membership

in human-specific or cross-species miRNA families and putative transcription in a

polycistronic cluster; as well as with location of the miRNAs in genomic regions not

overlapping protein-coding genes. We postulate that self containment is potentially

an evolved feature of particular RNA classes rather than a characteristic purely de-

termined by the physicochemical characteristics of folded RNA.

It is possible that possessing some degree of self containment is simply an inher-

ent property of biological RNAs. For example, small RNA subsequences that are

also thermodynamically stable may be fast-folding in the kinetic folding pathway (P.

Higgs, pers. comm.). Such elements would obtain their base pairing first, which

would inhibit their interaction with larger sequence elements. Thus, a certain degree

of self containment may be posited to be an epiphenomenon of the folding kinetics.
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We did observe a strong relationship between SC and other measures that typically

denote structurally relevant RNAs, particularly measures for structural saturation

(base pair proportion), sequence-conditional structural stability (mfe z-score), and

structural specificity (base-pair entropy) (Table 3.6). And, the fact that biological

RNA sequences appear to have enhanced self containment given their structure (Fig-

ure 3.6b) reflects this trend as well. However, the extreme degree of self containment

exhibited by the miRNAs and not by many other similarly shaped and stable RNAs

seems to suggest that there is functional relevance to self containment that goes be-

yond being just a byproduct of structural relevance. And, as pointed out in Hartling

and Kim [25] as well as Ancel and Fontana [22], there may be an inherent coupling

between the modularity of biopolymer structures and both the equilibrium distribu-

tion and kinetic pathways of the folding process. Thus, selection for self containment

may be mediated through fast-folding and vice versa.

The decreased self containment of mirtrons as compared to miRNAs that are pro-

cessed by Drosha (Table 3.9) is evidence that the structural requirements of miRNA

biogenesis at least partly explain the tendency toward high self containment. The cur-

rent model for mirtron biogenesis suggests that mirtrons are spliced from mRNAs as

conventional introns, with the formation of a lariat structure covalently linking the 5′

splice junction with the 3′ branch point, effectively isolating the mirtron sequence from

the surrounding exonic sequence; it is only after splicing and subsequent debranch-

ing that the characteristic pre-miRNA hairpin shape is fully realized [40, 41]. Thus,

mirtrons do not need to be “presented” as a context-insensitive substructure the way

canonical miRNA hairpins are in the context of the primary transcript. As a result,

mirtrons may be more free to accumulate nucleotide changes that lead to lower self

containment, provided that the final spliced hairpin structure is not affected, whereas

changes in a canonical pre-miRNA might affect recognition by Drosha due to struc-
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ture disruption in the context of the primary transcript. Or, a novel proto-mirtron

with lower self containment might more easily enter the miRNA processing pathway

than a corresponding proto-canonical miRNA, which would additionally have to be

structurally compatible with its surrounding sequence.

Still, the biogenesis mechanism may not provide sufficient a priori reason why

pre-miRNAs should exhibit high intrinsic structural robustness, as opposed to struc-

tural invariance given their specific genomic contexts. Perhaps the ability to remain

robust over many different genomic contexts reflects an explicit mechanism to buffer

against change. At the local level, genomic instability of the surrounding primary

transcript would be unlikely to affect the structure of a highly self-contained precur-

sor stem loop, and hence would be less likely to disrupt Drosha recognition. Primary

transcript sequence immediately surrounding the stem-loop sequence has been shown

to be poorly conserved [43, 46], suggesting that miRNA precursor sequences do expe-

rience a high degree of instability of surrounding sequence. On a more global scale,

high self containment would allow for reinsertion of a pre-existing miRNA or a copy

into a novel genomic context, again with a high probability that the embedded stem-

loop structure would be preserved. The trend for conserved and clustered miRNAs to

exhibit higher self containment (Table 3.10) supports the idea that functional miR-

NAs arising from genomic modifications such as duplications and rearrangements [47]

were better buffered against context change and thus were maintained. Conversely, a

miRNA with low self containment would be less likely to give rise to functional par-

alogs – the duplicated sequence would tend not to fold correctly in the new context,

making preservation of the duplicate miRNA sequence less likely due to significant

loss of function.

If high self containment allows miRNA stem loops to be modular units, potentially

able to function in different genomic contexts, then we might ask why selection for
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modularity would exist for miRNAs. In fact, the organization of miRNAs into pri-

mary polycistronic transcripts would seem to be facilitated by modularity of the stem

loops, especially given that there are several clusters that contain unrelated miRNAs

[43] that may have resulted from several insertion events. The role of the primary

transcript appears to be to facilitate the expression of several miRNAs at once [16],

which would allow easy neofunctionalization of a duplicated miRNA if it is inserted

into a primary transcript under different regulation from the source miRNA. But we

might also imagine a situation where the release of individual pre-miRNAs from the

primary transcript can be modulated, perhaps through RNA binding elements that

block access by Drosha. This suggests a model of the primary transcript as a way

to organize functionally related miRNAs while simultaneously allowing for fine-tuned

control of their individual activities. Furthermore, if miRNA hairpins can be easily

inserted or moved around, we can then envision the primary transcript as a collection

of miRNA building blocks that can be combined and swapped over evolutionary time

according to the evolving regulatory needs of the cell, a mechanism that would be

difficult to attain if miRNAs were not as highly self contained.

The high self containment of miRNAs is also interesting given that they have ad-

ditional sequence constraints that are ostensibly unrelated to the hairpin structure.

Among miRNAs that overlap functional regions of another gene, we observed a signif-

icant decrease in average self containment (Table 3.10), indicating that these miRNAs

are not as free to evolve high self containment, since any nucleotide changes leading

to higher self containment might adversely affect the function of the overlapping gene.

miRNAs are also constrained to maintain target specificity – loss of complementarity

of the mature sequence with the target inhibits miRNA-driven regulation [48], so in a

sense, miRNA hairpins are not as freely able to evolve toward highly self-contained se-

quences, unless compensatory changes occur in the target sequence as well. However,
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given that the majority of miRNAs do have high self containment, it is also possible

that there are constraints on the space of possible target sequences, such that some

classes of sequences are disfavored as targets if the resulting complementary miRNA

hairpins would all have low self containment. Further work is necessary to determine

whether this is a quantifiable effect that can be exploited for target prediction.

As a strong indicator for miRNAs, the property of self containment can be used

in future computational miRNA search strategies, as evidenced by the ability of SC

to discriminate between pre-miRNAs and pseudo-hairpins (Figure 3.3b, Table 3.4),

which have been repeatedly used as negative training data for miRNA prediction

(e.g., [33, 49, 50]). For de novo design applications, ensuring high self containment

among candidate structures would serve as an effective filter for hairpins that can be

robustly inserted into different genetic contexts.

Beyond its potential role in miRNAs, self containment is to a certain degree a

requisite property of biopolymers that form through combinatorial elaboration of

modular parts. A functional fusion biopolymer cannot be generated if the fused

sequences do not retain their original substructures. Recently, Rigoutsos et al. [51]

have described the existence of an extensive collection of repeated nucleotide elements

in the human genome that have combinatorial arrangements, potentially suggesting

that combinatorial generation might be an important feature of novel RNA elements.

We propose that understanding the self-containment properties of RNAs and their

structural components is fundamental to understanding the extent to which RNAs are

modular molecules, such that large RNAs can be decomposed into a set of structurally

robust building blocks that can potentially be swapped out or rearranged.
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3.5 Materials and methods

Software and implementation We used the default settings of the standalone

RNAfold and RNAinverse programs bundled in the Vienna RNA Secondary Structure

Package [39] for RNA secondary structure prediction and inverse folding respectively.

We used a Python implementation of the Altschul-Erikson algorithm [52] for dinu-

cleotide shuffling written by P. Clote [53]. All other code was custom written using

Python and run on Linux machines. High-volume computation, including calculat-

ing SC and other structural measures on RNAs, was performed using approximately

40-60 nodes of a Linux cluster. Sequence filtering to exclude highly similar sequences

was done using Cd-hit, which implements a greedy clustering algorithm [28]. RNA

structure drawings were produced using RNAViz [54]. Graphs were produced using

R [55].

RNA sequence sets All miRNA foldback sequences were obtained from miRBase

release 10.0 [26, 27]. To obtain the “true” pre-miRNA set, we trimmed these sequences

according to the structure annotation found on miRBase such that the hairpin was

truncated on the 5′ end to align with the mature sequence in the case of 5′-derived

mature miRNAs or the miR* sequence in the case of 3′-derived mature miRNAs; and

similarly truncated on the 3′ end, creating a 2-nt 3′ overhang. CD hairpin sequences

were obtained from [33]. All other RNA sequences were obtained from RFAM 8.0 seed

and full sequence lists [34, 19]. Any wildcard IUPAC nucleotide characters found in

the RFAM sequences were replaced with a random consistent RNA nucleotide (e.g.,

’B’ would be replaced with either ’C’, ’G’, or ’U’ with equal probability).

Random RNA sequences were generated to approximately match the statistics

of human miRNA foldbacks. For each candidate sequence, a random length was
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chosen from a normal distribution with mean 89 and standard deviation 12.6 (the

approximate average length and standard deviation of human miRNA foldbacks),

and an RNA sequence was generated using uniform nucleotide probabilities; sequences

shorter than 61 or longer than 137 nucleotides (again based on human miRNA shortest

and longest lengths) were discarded. Candidates were folded using RNAfold, and

only candidates with mfe values within one standard deviation of the average mfe

for a miRNA foldback of that length were retained. The resulting set of 500 random

sequences had an average length of 88.9 bases and an average minimum free energy

of −32.8 kcal/mol.

Genomic coordinates, gene overlap, and family membership for the human miR-

NAs were also obtained from miRBase [26, 27]. Of the 533 human miRNAs in the

database, five lacked genomic location information (hsa-mir-672, hsa-mir-674, hsa-

mir-871, hsa-mir-872, and hsa-mir-941-4) and were thus left out of any analysis that

depended on these features.

Calculating the self-containment index For each sequence of interest w

with length L, a set of 2n random sequences of length L are generated, where n is a

user-defined parameter determining the number of random contexts to test – typically

1000. The sequence w is folded using RNAfold and the structure stored in Vienna

RNA parenthesis-dot notation, struct(w). For each pair of random sequences x and

y, a concatenated sequence xwy is created and folded using RNAfold, then the por-

tion of the Vienna structure corresponding to the index positions of w is extracted,

struct′(w). struct′(w) is modified to create a legal RNA structure by replacing in-

consistent parentheses (indicating bases paired with bases outside of w) with dots

(indicating unpaired bases). Hamming distance is calculated between struct(w) and

struct′(w) and divided by L, and the resulting proportion is subtracted from 1 to
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obtain pi for the ith random context. All of the pi’s are averaged to obtain the final

self containment index value.

For the runs using biological sequence contexts rather than random contexts,

we generated a set of one thousand coding and intronic segments from randomly

selected human NCBI Reference Sequence genes [56] downloaded from the UCSC

Genome Bioinformatics Site [57]. Segments were extracted from a random interval at

least 20 nucleotides from either end of the spliced transcript sequence for the coding

sequence, or of the concatenated introns with any repetitive sequence removed using

RepeatMasker [58] for the intronic sequence. Dinucleotide-shuffled sets were created

from these sets as well.

RFAM hairpin extraction We started with the entire RFAM full RNA set

and filtered it using Cd-hit to exclude 90% similar sequences, resulting in 26,239

sequences. We folded all of the sequences using RNAfold, then extracted all hairpin

substructures. We discarded all substructures of length less than 50 nucleotides,

substructures where fewer than half the bases were involved in base pairs, and any

hairpins with branching, defined in terms of the Vienna representation as containing

a left parenthesis in the string to the right of the first right parenthesis. We calculated

SC on the resulting set of 9572 hairpins, using n = 100 random contexts.

RNA sequence and structural measures All measures were calculated based

on previous descriptions (e.g., [31, 32]). Base pairing entropy (Q) was calculated using

the formulation in [37]. End base pairing proportion was calculated by summing the

number of paired bases contained in the first (5′) one-fourth and the last (3′) one-

fourth of the sequence and dividing by half the sequence length. Sequence entropies

were calculated using single base probabilities (i.e., the number of A, C, G, and U

bases occurring in the sequence each divided by the length of the sequence) in the
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Shannon entropy equation H = −Σpi log2(pi) for the mononucleotide case; using

probabilities of each of the possible 16 consecutive nucleotide combinations (e.g., AA,

AC, ..., UU) in the dinucleotide case; and using the 64 three-consecutive nucleotide

combinations in the trinucleotide case.

We reimplemented the algorithm described in [23] to characterize the number

of alternate suboptimal structures of a sequence. For each sequence, all suboptimal

structures within 2 kcal/mol of the mfe were obtained using RNAsubopt in the Vienna

RNA Package. We filtered the results and kept only local minimum structures, defined

to be structures such that removal or addition of a single base pair increases the global

free energy.

Correlations were calculated using arcsin-square-root (sin−1 √x) transformed val-

ues for the proportion measures such as SC (i.e., with values on [0,1]) to normalize

the variances – the arcsin transformation spreads out values near 0 and 1, reducing

the impact of low variance at these boundaries on the statistical analysis [59]. Values

from non-proportion measures were used directly.

Statistical tests For the randomization tests, we randomly shuffled the assign-

ment of arcsin-square-root transformed SC values to labels (miRNA names, belonging

to group A versus group B) N=100,000 times and calculated a two-sided p-value as

the number of times the absolute t statistic was greater than the original absolute t

statistic, divided by N . We used the Welch t statistic for unequal sample variances,

(x̄A − x̄B)/
√

(s2
A/nA + s2

B/nB) where x̄A is the average of the group A values, s2
A the

sample A variance, and nA the number of members in group A; and similarly for

group B.

For parametric hypothesis testing, SC values were logit transformed (ln(x/(1−x))

to normalize the data – similar to the arcsin transform, the logit transform spreads out
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values near 0 and 1, though in a more extreme manner to shape the data to assume

a more normal-like distribution [59]. Normality was verified using the Shapiro-Wilk

test, and similarity of variance was assessed using an F test. Mean differences were

tested using a two-sample, two-sided independent t test, with null hypothesis that

the mean difference is 0. Data that did not exhibit normality were subjected to a

two-sided Wilcoxon rank sum test, or signed rank test if paired.

Availability A Python implementation of the self-containment index calculation,

as well as a web interface for direct sequence queries, is available at

http://kim.bio.upenn.edu/software/.
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Chapter 4

Intronic RNA modules and the

co-option of transposable elements

Appeared in part in: Buckley PT*, Lee MT*, Sul JY, Miyashiro KY, Bell TJ, Fisher

SA, Kim J, Eberwine J. 2009. Retention of specific intronic sequences is a common feature

of mRNA targeted to neuronal dendrites. Submitted. (*joint first authors)

4.1 Introduction

The context for module insertion In the previous chapter we explored the

role of structural robustness in facilitating modularity, as a necessary condition to

ensure that a structured module does not change shape (and by extension, function)

upon insertion into a novel context. Of course, there is also a reciprocal question –

what is the structural/functional effect on the context when a module is inserted?

E.g., if a precursor miRNA module is introduced into a primary transcript as a result

of in-place or trans duplication, would the overall structure of the primary transcript

be disrupted in some negative way?

There is some evidence that RNA structures can be phenotypically robust to
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insertions. Ribosomal RNAs, although highly conserved in their core functional re-

gions across long evolutionary distances, do differ between lineages in terms of se-

quence length and corresponding structure size [1]. The Escherichia coli 23S rRNA

component of the large prokaryotic ribosomal subunit is 2094 nucleotides, while the

eukaryotic homologs are hundreds (e.g., yeast 26S) to thousands (e.g., human 28S)

of nucleotides longer, due in large part to inserted “expansion segments,” implying

that rRNAs have some amount of structural flexibility. In fact, recent experimental

work has shown that E. coli 23S rRNA is tolerant to de novo short insertions across

multiple loci in the RNA sequence [2]. On a smaller scale, pre-miRNAs consist of

a base-paired stem terminated by an unstructured loop. Drosha activity requires a

minimum-sized loop for efficient miRNA processing [3], but even among family mem-

bers, miRNAs have variable sized loops, suggesting that insertion of sequence in the

loop region should have minimal effect on miRNA function. But in general, because

RNA function is largely a product of structure, we would a priori expect structural

changes to cause phenotypic changes.

Specific sequence constraints would tend to magnify the issue. Whereas an RNA

structure might be robust to sequence insertions occurring in a loop region, disruption

of a recognition sequence, or at the extreme, a protein-coding sequence in the case of

messenger RNAs, would likely affect phenotype, possibly negatively. There are many

well-characterized disease-causing insertional mutations (reviewed in [4, 5, 6]) in which

protein-coding or regulatory gene sequence is interrupted by intervening nucleotide

sequence. Tay-Sachs disease, a neurological disorder severely affecting mental and

physical function, is caused by a four-nucleotide insertion in the gene coding for the

alpha chain of beta-hexosaminidase in a majority of affected individuals in the Ashke-

nazi Jewish population [7]. The insertion changes the coding sequence by introducing

a premature termination signal, thus resulting in truncation of the protein product.
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Trinucleotide repeat disorder, a class of insertion-causing diseases including Hunting-

ton’s disease, is characterized by expansion of an in-frame nucleotide triple, resulting

in an abnormal number of consecutive codons and a correspondingly abnormal tract

of repeated amino acids in the protein product (glutamine for Huntington’s [8, 9]).

Retroviruses (e.g., Human Immunodeficiency Virus, Hepatitis B), whose replication

depends on integration of their genetic material into the host genome, are associ-

ated with oncogenesis (reviewed in [10]) due to their propensity to insert into tumor

suppressor or proto-oncogene loci and cause transcriptional modulation.

Of course, evolution is mediated by genetic change, so it is not the case that every

mutation is deleterious; however, in most cases there is strong selective pressure to

maintain the integrity of genetic instructions. The need for an mRNA to robustly

encode a primary sequence is often accompanied by a need to encode higher-order

information – not only how to make a protein product, but also in what manner

that product is expressed. Many mRNAs encode sequence and structure elements

aiding in the regulation of translation, but in order not to disrupt coding sequence,

these elements are often located outside the protein-coding region of the transcript

– i.e., in the upstream (5′) and downstream (3′) untranslated regions (UTRs). Ex-

amples of such elements include the internal ribosome entry site (IRES) in viral 5′

UTRs, which guide the ribosome to use specific non-canonical translation initiation

sites [11], and microRNA target sites, which for animals exist predominantly in the

3′ UTRs of genes and serve as recognition motifs for miRNAs to mediate transla-

tion inhibition [12]. UTRs also can contain spatial-control elements. The mRNA

of bicoid, a Drosophila melanogaster body pattern-specifying gene, is localized to

the anterior pole of the developing oocyte by means of a structural motif in the 3′

UTR [13]; the spatial organization of the bicoid mRNA facilitates localized protein

translation of the Bicoid protein and the formation of a concentration gradient that
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determines developmental patterning along the anterior-posterior axis. Other de-

velopmentally important Drosophila transcripts including nanos, oskar, and gurken

have similar mechanisms for localization ([14]). Similarly, in neurons, localization of

Ca2+/calmodulin-dependent protein kinase II (Camk2a) and microtubule-associated

protein 2 (Map2 ) transcripts from the cell soma to dendrites is mediated by distinct

sequence elements in their 3′ UTRs [15, 16].

Although many examples of such regulatory elements have been characterized,

there remains an excess of regulatory phenomena that do not have an identified as-

sociated UTR element. In the case of dendritic localization, the Camk2a and Map2

elements remain the only examples [17], despite there being potentially hundreds of

transcripts that are hypothesized to be actively transported to the dendritic compart-

ment [18]. The difficulty may lie in the fact that a common or evolutionarily conserved

sequence/structure element simply does not exist, which would complicate computa-

tional motif-finding approaches. Alternatively, the elements may lie elsewhere on the

transcript.

It is possible that regions of the protein-coding portion of mRNAs might also

encode secondary information. For example, plant miRNA target sites are in fact

predominantly located in coding regions [19, 20] rather than the UTRs. Recently a set

of localization elements was identified for glutelin RNAs in rice endosperm cells that

overlap the protein-coding region [21]. The redundancy of the protein code, such that

most of the 20 amino acids can be specified by multiple different nucleotide codons,

suggests that selection of particular codons could allow for higher-order structure

or information to be encoded. Codon bias, the phenomenon of non-uniform codon

frequency, has been characterized in many organisms and can vary between organisms

or even between genes in the same organism [22]. Although the role of codon bias

on the secondary structure of the transcript has been widely studied on a whole-
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transcript level (e.g., [23]), no specific function has been associated with localized

codon usage.

Signals may also be encoded in sequence regions previously believed to be pheno-

typically unnecessary. A canonical eukaryotic mRNA is transcribed as a long primary

transcript containing alternating regions of exons and introns. Through the act of

splicing, intronic sequence is removed and the exons are ligated together to form the

mature mRNA before export from the nucleus. What was once believed to be an in-

variant code is now known to be a differentially regulated process, in which skipping

certain exons or inclusion of non-canonical exonic sequence can occur. This process,

called alternative splicing, is well documented (reviewed in [24]) and evidence suggests

that at least 75 percent of human genes have alternative splice forms [25]. Alterna-

tive splice forms generally encode different protein products, since the included or

excluded sequence is exonic and thus affects coding sequence. In contrast, Bell et

al. ([26]) report a fundamentally different phenomenon in which intronic sequence is

retained. In rat hippocampal neurons, a small proportion of BKCa α-subunit mR-

NAs retain a specific intron, whose inclusion was demonstrated to have phenotypic

effects on the distribution of the BKCa protein in the dendrite as well as firing prop-

erties of the neuron [26]. Further evidence suggests the intron-retaining transcript

undergoes extranuclear splicing [27] prior to translation. The specific function of the

retained intron remains unclear, but perhaps it is in these retained introns that RNA

regulatory modules can exist without affecting coding sequence integrity.

The mechanisms driving modular insertion Given the potential for RNA

modules to exist, how do they come to be inserted at the site of need? Genomic

instability in the form of chromosomal rearrangements, insertions, and deletions has

been well documented [28]. These arise from double-stranded breaks in the DNA
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molecule, resulting from endogenous processes such as homologous recombination

during chromosome replication, or external forces such as mutagens or endonucleases.

Duplications of large chromosomal regions are evident in specific loci such as the

developmental Hox genes, which in vertebrates occur in four paralogous clusters that

resulted from two separate cluster duplication events of ancestral genes [29]. In closely

related species, such as mouse and rat or chimpanzee and human, although there is

a high degree of gene conservation, the architecture of the chromosomes is vastly

different, resulting from reorientation and recombination of chromosome segments to

yield the gene order found in the modern lineages [30, 31]. On a smaller scale, there

are many examples of segmental duplications facilitated by mutagenesis or errors in

the replicatory machinery, which create in-place paralogous sequence [32], as well as

duplications that result in sequence insertion into distant parts of the genome [33]

and possibly the formation of novel genes.

Mobile transposable elements play a large role in effecting genome architecture

change. Retrotransposition machinery encoded by active autonomous retrotrans-

posons, such as LINE-1 (L1) in mammals, catalyzes the cleavage of genomic DNA

and the insertion of novel DNA sequence at the break site that is created from RNA

templates by reverse transcription. Processed pseudogenes arise when the RNA tem-

plate is a functional protein-coding mRNA or ncRNA, causing the introduction of

pseudo-genic sequence back into the genome in a location unrelated to the original

gene [34]. Since these sequences tend to lack promoters at their site of insertion, the

pseudogenes are not transcribed and thus accumulate neutral mutations over evolu-

tionary time that are characteristic of non-functional genomic sequence. However,

there is evidence that re-functionalization of pseudogenes can occur [35], notably the

Drosophila alcohol dehydrogenase pseudogene, which upon retrotransposition incor-

porated several exons and introns from an upstream gene to form a new chimeric
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gene, jingwei [36].

Transposon sequence itself can also become functionalized, in what tends to be a

lineage-specific process due to the variability in transposon activity and composition

in different species. L1, in addition to making retrotransposed copies of itself, also

mobilizes SINE retrotransposons [37], including human Alu elements [38] and rodent

B1 [39]. “Domestication” of such elements has led to the creation of new regulatory

sequence [40] or protein-coding exons [41] at the site of insertion. Several miRNAs

appear to have derived from repetitive elements, including rodent-specific mir-327

and mir-341 [42], as well as other ncRNAs such as primate BC200, a neuronal RNA

that was formed from Alu sequence [43]. A general role of transposon element-driven

neofunctionalization has been proposed [44, 45], and it is an appealing hypothesis

that transposable elements can provide a source of mobile RNA building blocks that

can become functional components of larger RNAs.

Chapter overview This chapter explores these questions concerning the context

surrounding the exaption of modular RNA building blocks, as pertaining to a specific

mechanism, the active transport of mRNA transcripts to the dendritic compartments

of rat neurons. A large number of mRNA transcripts are detectable within neuronal

dendrites, and many of these are translated locally [46, 47, 48, 49, 50, 51, 52, 53, 54],

though the mechanism of targeting specific mRNAs to neuronal projections has proven

to be difficult to define (reviewed in [17, 52, 55]). It is assumed that multiple RNA-

binding proteins (RBPs) are involved, as well as a variety of RNA-containing granules;

however, a single consensus sequence or structural motif responsible for targeting has

yet to be identified within dendritically localized transcripts.

Only two separate RNA localization elements have been found – one for Map2

[16] and one for Camk2a [15], both of which reside in the 3′ UTR of their respective
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mRNAs. The lack of similar elements for other targeted RNAs suggests that the tar-

geting element may be transiently associated with the RNA, perhaps as a secondary

structure or a primary sequence that can be removed. In Section 4.2, we describe

the phenomenon of intron retention among neuronally expressed transcripts, which

we believe is functionally coupled with their dendritic localization. Contained within

these retained introns are a class of retrotransposons called Identifier (ID) elements,

which occur in high copy number in the rat genome and are capable of driving den-

dritic localization of the transcripts in which they occur. Based on a genome-wide

analysis, there is evidence that ID-mediated localization is widespread among many

different transcripts despite being an evolutionarily young innovation.

In Section 4.3 we focus on the previously-characterized localization element re-

sponsible for the dendritic localization of Camk2a mRNA and show that potentially

target-competent versions of this sequence occur throughout the genome and prefer-

entially occur overlapping Alu retroelements, suggesting that co-option of Alu-derived

sequence may be a way for a transcript to obtain a Camk2a-style localization phe-

notype. These results indicate that a closer examination of repetitive elements for

possible localization motifs is warranted.

These examples highlight the potential for transposable elements to mediate lineage-

specific broad evolutionary change in processes that a priori might appear to be

fundamental and strongly evolutionarily conserved.

4.2 ID elements in introns effect rat neuronal

transcript localization

Intronic sequences are often only considered to play a strong role in mRNA metabolism

through splicing and non-sense mediated decay (reviewed in [56, 57, 58, 59]). Recent
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studies indicate that the retention of specific intronic sequences within cytoplasmic

mRNA in both mammalian neurons and platelets plays an important role in produc-

ing functional proteins. Intronic retention in neuronal Kcnma1 mRNA contributes

to the firing properties of the hippocampal neurons and has a role in proper channel

localization in hippocampal dendrites [26]. Specific intron retention in cytoplasmic

oxytocin transcripts has also been shown in the rat supraoptic nuclei [60]. Intronic

retention within IL1 -β mRNA in anucleate platelets has been implicated in governing

activity-dependent splicing and translation of the transcript upon activation of the

cell [61].

Introns contain a number of known regulatory sequence elements, many of which

are presumed to be involved in the control of pre-mRNA splicing (reviewed in [62]).

Previously it was demonstrated that rat hippocampal neurons contain spliceosome

components localized outside of the nuclear compartment in the soma and dendrites,

and isolated dendrites have the capacity to splice pre-mRNA reporter constructs

[63]. Additionally, non-coding sequences of intron-retaining transcripts may also serve

as RBP binding sites, making regulatory elements found in these retained introns

important to the cellular function of intron-retaining transcripts.

Here we report that the retention of introns is a mediator of dendritic localization

for a number of neuronal transcripts. Using a candidate group of genes whose mRNAs

are targeted to dendrites, we identified a large and diverse group of retained introns

within the dendritically localized mRNAs. Candidates were initially identified by

microarray analysis of dendritic mRNA and dendritic localization was confirmed by in

situ hybridization. A computational analysis of a sub-group of these intron candidates

for possible regulatory RNA sequences revealed the enrichment of BC1-derived SINE

elements, called ID elements, across positive candidates. We hypothesize that these

elements play a role in the dendritic localization of their host genes.
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We performed Illumina sequencing on soma and isolated dendrite RNA and were

able to confirm the intron retention patterns observed in the microarray. Additionally,

we confirmed the presence of a large number of individual ID element loci in the tran-

scriptome samples. Individual intronic ID elements from different genes were cloned,

exogenously expressed in primary neurons, and evaluated by in situ hybridization for

their ability to target mRNA to dendrites. ID elements that were targeting-competent

by transgene expression were also shown to compete with endogenous transcripts for

dendritic targeting machinery, thereby selectively disrupting the transcripts’ normal

distribution patterns. Beyond these genes of interest, we found a genome-wide pat-

tern of ID element insertion into genes that have neuronal function, suggesting that

the phenomenon of ID element-driven localization may be widespread in rat.

4.2.1 Intron-retaining sequences are detectable in dendritic mRNAs

by microarray and in situ

Based on previous results, we hypothesized that intron retention is a wide phe-

nomenon among rat dendritic transcripts. To test this hypothesis, we built a custom

microarray using probe intronic sequence from 33 candidate genes whose RNAs can be

dendritically localized [18] (Table 4.1). These probes were designed to contain 30 bp

of the 3′ exonic sequence followed by approximately 300-500bp of intronic sequence,

for up to three introns per gene: the first intron following the initiator methionine

codon, the last intron preceding the termination codon, and an intron located roughly

midway through the gene sequence.

We obtained microarray data from three independent rat dendritic samples. High

Spearman’s correlation between the arrays was found (ρ > 0.94, p < 2.2 x 10−16),

indicating a consistent rank ordering among intron signal intensities. A wide varying

range of signal was found across the arrayed intronic sequences, with 33 of 92 introns
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Table 4.1: Genes with introns represented on the microarray

RefSeq ID Symbol Description Coordinate Intronsa

NM 031007 ADCY2 Adenylate cyclase 2 chr17:4543490-5040433 + 1, 4, 20 (23)

NM 130779 ADCY3 Adenylate cyclase 3 chr6:27118400-27202275 + 2, 3, 21 (21)

NM 019285 ADCY4 Adenylate cyclase 4 chr15:33930534-33946315 - 2, 11, 24 (25)

NM 022600 ADCY5 Adenylate cyclase 5 chr11:67290968-67437468 - 1, 3, 20 (20)

NM 012821 ADCY6 Adenylate cyclase 6 chr7:137339933-137360020 - 1, 2, 21 (21)

NM 134326 ALB Albumin chr14:19126965-19142199 - 1, 6, 14 (14)

NM 019288 APP Amyloid beta (A4) precursor
protein

chr11:24457855-24693851 - 1, 6, 17 (17)

NM 147141 CACNA1B Calcium channel, voltage-
dependent, N type, alpha 1B
subunit

chr3:2873391-3039747 - 1, 18, 45 (45)

NM 153814 CACNA1H Calcium channel, voltage-
dependent, T type, alpha 1H
subunit

chr10:14621372-14679051 - 1, 5, 33 (33)

NM 012920 CAMK2A Calcium/Calmodulin-dependent
protein kinase II alpha subunit

chr18:56879247-56948537 + 1, 3, 10 (11)

NM 021739 CAMK2B Calcium/Calmodulin-dependent
protein kinase II beta subunit

chr14:86634690-86721261 - 1, 3, 15 (20)

NM 012519 CAMK2D Calcium/Calmodulin-dependent
protein kinase II, delta

chr2:223840650-224108082 + 1, 4, 18 (19)

NM 133605 CAMK2G Calcium/Calmodulin-dependent
protein kinase II gamma

chr15:3729433-3786057 + 2, 9, 18 (19)

NM 031334 CDH1 Cadherin 1 chr19:36442693-36512091 + 1, 3, 15 (15)

NM 031017 CREB1 CAMP responsive element binding
protein 1

chr9:63170785-63234725 + 2, 6, 8 (8)

NM 052804 FMR1 Fragile X mental retardation
syndrome 1 homolog

chrX:154756031-154793782 + 1, 7, 15 (15)

NM 031028 GABBR1 Gamma-aminobutyric acid B
receptor 1

chr20:1553313-1582398 - 6, 11, 21 (22)

NM 080587 GABRA4 Gamma-aminobutyric acid A
receptor, subunit alpha 4

chr14:39047461-39122526 + 1, 7, 8 (8)

NM 017289 GABRD Gamma-aminobutyric acid A
receptor, delta

chr5:172203065-172214960 - 1, 2, 8 (8)

NM 024370 GABRG3 Gamma-aminobutyric acid A
receptor, subunit gamma 3

chr1:108189311-108821051 - 2, 5, 9 (9)

NM 032990 GRIA3 Glutamate receptor, ionotropic,
AMPA3 (alpha 3)

chrX:3454606-3719276 - 1, 4, 14 (15)

NM 017263 GRIA4 Glutamate receptor, ionotropic, 4 chr8:957190-1438021 - 2, 4, 16 (16)

NM 017241 GRIK1 Glutamate receptor, ionotropic,
kainate 1

chr11:27703875-28106450 - 1, 3, 16 (16)

NM 017010 GRIN1 Glutamate receptor, ionotropic,
N-methyl D-aspartate 1

chr3:3453784-3480381 - 1, 8, 19 (19)

NM 031040 GRM7 Glu. receptor, metabotropic 7 chr4:146332578-147270224 + 1 (6)

NM 012970 KCNA2 Potassium voltage-gated channel,
shaker-related subfamily, memb. 2

chr2:202560175-202564305 + 1 (2)

NM 031730 KCND2 Potassium voltage-gated channel,
SHAL-related family, memb. 2

chr4:47541787-48047906 + 1, 2, 4 (5)

NM 013066 MAP2 Microtubule-associated protein 2 chr9:65174379-65255995 + 3, 4, 12 (12)

NM 019169 SNCA Synuclein, alpha chr4:89613731-89722807 - 2, 4 (5)

NM 080777 SNCB Synuclein, beta chr17:15907598-15915704 + 2, 5 (5)

NM 031688 SNCG Synuclein, gamma chr16:10025979-10030513 - 1, 4 (4)

NM 053788 STX1A Syntaxin 1A (brain) chr12:22737113-22765064 - 1, 3, 9 (9)

NM 012700 STX1B2 Syntaxin 1B2 chr1:187089182-187108643 - 1, 4, 7 (9)

aIntrons spotted on the array (total number of introns in the canonical splice form).
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showing high signal intensity (>75th percentile expression on at least one array),

ranging from 1.5x to 22x normalized median intensity; an additional 27 introns with

above-median intensity are also reported (Table 4.2).

We performed in situ hybridization experiments for some of these transcripts to

visualize their subcellular location in the neurons (Figure 4.1), using probes synthe-

sized from the intronic PCR products represented on the intron microarray. The

PCR products were subcloned into pCRII TOPO (Invitrogen Corporation, Carlsbad,

CA) vectors and sequenced. Labeled antisense riboprobes were then generated for

both positive and negative microarray sequences and used for in situ hybridization

to rat neurons in primary cell culture (Figure 4.1). Hippocampi were harvested from

embryonic day 18 rat pups and dispersed cells were grown in culture for 14 days

before paraformaldehyde fixing in all in situ experiments. Cells were co-stained for

MAP2 protein to indicate dendrito-somatic regions of neurons (data not shown) and

to assess healthy morphology of the cells. All sequences tested reflected microarray

results and showed detectable signal in at least the proximal dendrites for microarray

positives, while microarray negatives were restricted to the cell soma or not detectable

in neurons.

Multiple dendritic distribution patterns can be seen for the intronic probes from

any given RNA and across probe sets. In the case of Stx1b2, all three intronic regions

identified as present from the microarray data are readily detectable in the dendrites

by in situ hybridization showing a punctate pattern for each probe. In contrast,

though FMR1i1 shows a similar punctate pattern, FMR1i7 is far more diffuse with

an even intensity throughout the projections as seen for other mRNAs [64, 65, 66].

ALBi6 shows a diffuse pattern similar to FMR1i7, although the intensity is much

greater (Figure 4.1). Such diffuse patterns may result from these particular forms of

these mRNAs not yet assembling into granules.
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Table 4.2: Intron sequences detected by microarray and Illumina sequencinga

Intron A Intron B Intron C

RefSeq ID Symbol i M SD SS i M SD SS i M SD SS

NM 031007 ADCY2 1 ++ + + 4 - - - 20 - - -

NM 130779 ADCY3 2 ++ ++ ++ 3 ++ ++ + 21 - - -

NM 019285 ADCY4 2 ++ + - 11 ++ ++ - 24 + - -

NM 022600 ADCY5 1 + ++ ++ 3 ++ + + 20 ++ - -

NM 012821 ADCY6 1 ++ ++ ++ 2 ++ - - 21 - - -

NM 134326 ALB 1 + - - 6 ++ - ++ 14 - - -

NM 019288 APP 1 - ++ ++ 6 + ++ ++ 17 + + +

NM 147141 CACNA1B 1 ++ - - 18 + - - 45 ++ + -

NM 153814 CACNA1H 1 - ++ ++ 5 + - - 33 - - -

NM 012920 CAMK2A 1 - + + 3 - + ++ 10 - - -

NM 021739 CAMK2B 1 + ++ ++ 3 + + ++ 15 ++ - -

NM 012519 CAMK2D 1 - - - 4 - ++ ++ 18 - ++ -

NM 133605 CAMK2G 2 - - - 9 ++ ++ - 18 - ++ ++

NM 031334 CDH1 1 ++ - - 3 + + ++ 15 - ++ -

NM 031017 CREB1 2 - + - 6 ++ + + 8 - ++ ++

NM 052804 FMR1 1 ++ ++ + 7 + + - 15 - - -

NM 031028 GABBR1 6 + ++ + 11 - + ++ 21 + - -

NM 080587 GABRA4 1 ++ - - 7 - - + 8 ++ ++ ++

NM 017289 GABRD 1 + - + 2 - - - 8 ++ - -

NM 024370 GABRG3 2 - ++ + 5 + ++ ++ 9 - ++ +

NM 032990 GRIA3 1 ++ - - 4 - ++ ++ 14 + ++ -

NM 017263 GRIA4 2 - - - 4 - ++ ++ 16 + - -

NM 017241 GRIK1 1 + ++ ++ 3 + ++ ++ 16 - ++ ++

NM 017010 GRIN1 1 ++ - - 8 ++ ++ ++ 19 ++ - -

NM 031040 GRM7 1 + ++ ++

NM 012970 KCNA2 1 + - -

NM 031730 KCND2 1 + ++ ++ 2 - - + 4 + - ++

NM 013066 MAP2 3 ++ - - 4 + ++ ++ 12 - + -

NM 019169 SNCA 2 ++ ++ ++ 4 - ++ ++

NM 080777 SNCB 2 ++ ++ - 5 ++ - -

NM 031688 SNCG 1 + - - 4 + - -

NM 053788 STX1A 1 ++ ++ + 3 ++ + + 9 ++ - -

NM 012700 STX1B2 1 ++ - - 4 + ++ ++ 7 ++ + +

aIntrons by number (i) marked as present with high confidence (++), moderate confidence (+), or
absent (-) on microarray (M), Illumina sequencing on dendrite samples (SD), and Illumina
sequencing on soma samples (SS).
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Figure 4.1: Intronic sequences are detectable in dendritic mRNA using in situ hy-
bridization. In situ hybridization results are shown for 14 intronic riboprobes on
paraformaldehyde fixed 14d cultured rat hippocampal neurons. Panels are labeled
according to intronic probe detected. Insets represent MAP2 immunostaining. Sig-
nal range indicator displayed in top left panel. Scale bars = 20µm.
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Some probes (CAMK2Di4, ALBi14) had detectable signals in the cytoplasm of

non-neuronal cells that are present in cultures as evidenced by hybridization to MAP2-

negative cells (astrocytes), showing that intron retention in the central nervous system

is not restricted to neurons and may have functional relevance in other cell types

(Figure 4.1).

We also performed additional in situ hybridization for exons and retained-introns

of dendritically targeted mRNAs. For Camk2b, Fmr1, Gabrg3, and Grik1, riboprobes

were synthesized corresponding to the exon immediately 5′ to a retained-intron and

were then used for in situ hybridization to rat hippocampal neurons (Figure 4.2).

These probes were unique and did not contain any repetitive sequences. In all cases,

exon and intron probes are detectable in dendrites, showing that sequences from

both coding and non-coding regions within each of these transcripts are localized

to dendrites. The distribution patterns of our exon and intron probes show aspects

of commonality along with some of distinctions. The exon probes for these targets

appear to be discretely localized in puncta compared to their intronic counterparts,

which are more diffusely distributed along dendrites. The intron and exon probes

for Fmr1 show the most similarity in distribution pattern to each other among this

subset of targets, while the intronic probes for GRIK1i1 are much more intense and

dendritically localized than the GRIK1e1 exon probe. These data suggest that intron-

retaining transcripts may have different mechanisms of regulation when compared to

mature transcripts and when assessed across different mRNAs.

As controls for the in situ hybridization studies, we have performed the same types

of controls as recommended by the Allen Mouse Brain Atlas (http://mouse.brain-

map.org/documentation/index.html). We have used different detection systems (DAB

and Quantum Dot), tested for background signal in ISHs performed without probes,

and repeated the ISH studies on distinct cultures from different dates of harvesting
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Figure 4.2: In situ hybridization of intron and exon riboprobes reveals both distinct
and common patterns in neurons. Confocal evaluation of paraformaldehyde fixed 14d
cultured primary rat hippocampal neurons hybridized with biotin-labeled riboprobes
detected with streptadivin-Qdot605. Panels are labeled according to intronic probe
detected. Sequences used are (A) Gabrg3 exon5 (top), intron 5 (bottom), (B) Grik1

exon1 (top) intron1 (bottom), (C) Camk2b exon3 (top) intron3 (bottom), (D) Fmr1

exon1 (top) intron1 (bottom). Scale bars = 20µm.

and different litters. Additionally, two controls that directly address the specificity of

the ISH signal were performed using other types of probes – short oligo probes and

probes to different regions of the RNA – and then assessing the similarity of expres-

sion patterns. ISH that is specific should show similar hybridization patterns for each

of the sequence-distinct probes. For a subset of the introns probes, we used three

different oligonucleotide probes that corresponded to regions of the selected introns

and would hybridize to the same area as the longer riboprobe, and obtained similar

hybridization patterns (data not shown). Further, for some of the retained introns,

we additionally controlled for specificity by using probes corresponding to the exon

immediately 5′ to the detected intron (Figure 4.2). The similarity in hybridization

signal localization highlights the specificity of the in situ hybridization.
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4.2.2 Hypothesized retained intron sequence shows an abundance of

ID elements

We analyzed the array-positive introns to find sequences that could contain potential

regulatory elements. In an initial attempt to find large regions of high sequence

similarity, we performed pairwise BLAST between the full genomic sequence for each

of the 60 introns with above-median array intensity. We clustered the results using

an agglomerative single-linkage method, grouping together alignments on overlapping

genomic regions, and obtained 36 sequence clusters, which we number R1 through

R36. We annotated these clusters using RepeatMasker [67] and found that all of the

clusters except for one were comprised of repetitive sequence (Table 4.3).

Upon further inspection, we noticed that the sequences contained in cluster R4

folded into strong hairpin secondary structures, using a computational structure pre-

diction program [68]. These sequences are all annotated by RepeatMasker as identifier

(ID) elements. Although the ID element is not exclusive to the set of retained in-

trons, we became interested in it due to its evolutionary history. ID elements are

short interspersed repetitive sequence elements (SINE) originally derived from the

noncoding RNA BC1 [69]. They are greatly expanded in the rat genome as a result

of active retrotransposition of both the master gene BC1 RNA as well as a number

of early progenitor ID elements, which are presumed to have been transcriptionally-

active [69]. ID elements share structural similarities with BC1, the 5′ domain of

which has been implicated in dendritic targeting in vitro via the presumed folding of

its primary sequence into functional secondary structure motifs [70] (Figure 4.3). If

ID elements are present in introns that remain intact in the mature transcript, and

the ID elements retain the essential structural characteristics of BC1, then perhaps

the machinery responsible for targeting BC1 to dendrites can also bind these ID-
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Table 4.3: Sequence clusters found in array-positive introns

Cluster N. Seqs N. Intronsa N. Genesb Repetitive Elementsc

R1 307 8 8 Alu, B2, B4, ID, L1, L2, ERV1, ERVK, ERVL, MaLR, DNA,

MER1, MER2, Low complexity, Simple repeat, Unknown, Other

R2 94 6 6 Alu, B2, ID, MIR, CR1, L1, ERVK, ERVL, MaLR, MER1,

Low complexity, Simple repeat, Unknown

R3 35 15 13 Alu, B4, ID, L1, MaLR, scRNA

R4 35 14 12 B2, B4, ID, L1, ERVL, MaLR, scRNA, Simple repeat

R5 21 4 4 L1, MaLR, Unknown

R6 18 11 11 B2, B4, L1

R7 13 3 3 L1, MaLR, Simple repeat

R8 13 9 8 Alu, B2, L1, MaLR, Low complexity, Simple repeat

R9 11 7 7 Alu, B4, ERVL, MaLR, MER1

R10 11 8 7 Alu, B4, L1

R11 7 4 4 L1, MaLR

R12 5 3 3 L1

R13 5 2 2 ID, L1

R14 4 3 3 L1, Simple repeat

R15 4 3 3 B4, L1, ERV1, MaLR, Low complexity, Simple repeat

R16 3 3 3 ERVK

R17 3 2 1 scRNA, Satellite

R18 3 2 2 MaLR

R19 2 2 2 L1, ERVK, Simple repeat

R20 2 2 2 L1

R21 2 2 2 ERVK

R22 2 2 2 ERVK

R23 2 2 2 L1

R24 2 2 2 none

R25 2 2 2 ID, Low complexity

R26 2 1 1 L1

R27 2 2 2 B4, ERV1

R28 2 2 2 ERVK, Simple repeat

R29 2 2 2 ERVK

R30 2 1 1 L1

R31 2 2 2 L1

R32 2 2 2 MER1

R33 2 2 2 L1

R34 2 2 2 L1

R35 2 2 2 L1

R36 2 2 2 ERVK

aNumber of unique introns in the cluster. bNumber of unique genes in the cluster. cRepetitive
element families found in the cluster sequences; elements may overlap. Classes include SINE (Alu,
B2, B4, ID, MIR), LINE (CR1, L1, L2), LTR (ERV1, ERVK, ERVL, MaLR), and DNA (DNA,
MER1 type, MER2 type) elements.
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containing transcripts, causing them to be localized to dendrites as well. However, in

order for an ID-element mediated dendrite-localization mechanism to be plausible, we

needed to verify that ID elements are in fact retained, and that ID elements possess

targeting competency.

U22
bulge

U22
bulge

KT
motif

KT
motif

GU
rich stem

GU
rich stem

ID element

BC1 RNA

Figure 4.3: Secondary structures of the ID element and BC1 RNA. BC1 5′ domain is
colored blue, 3′ domain is colored red. Corresponding motifs on the ID element and
BC1 5′ domain are labeled.

4.2.3 Short read sequencing confirms extensive intron retention

To verify intron retention and to determine whether specific ID-containing loci are

retained, we performed Illumina (formerly Solexa) short-read sequencing on RNA

material isolated from primary rat hippocampal neurons. We performed sequencing

runs on five single cell soma and four groups of pooled RNA each from 150-300

individually-dissected dendrites using paired-end technology (dendrite samples D1-D3

and soma samples S1-S3) and single-read sequencing (dendrite sample D4 and soma
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Table 4.4: Summary of short read sequencing results

Soma samples

S1 S2 S3 S4 S5

Read length 50 50 50 36 42

Technology Paired Paired Paired Single Single

Total number error-free reads 24,054,234 28,360,642 27,723,528 11,177,563 11,256,670

Genome-wide uniquely matching reads 5,410,480 7,422,480 7,427,020 2,223,767 2,685,506

Gene-overlapping reads 2,753,892 3,389,382 3,772,206 908,405 1,118,723

Num. genes with read coverage 6075 5745 5865 10494 10534

Num. genes with intron read coverage 3219 2880 2430 8262 8260

Dendrite samples

D1 D2 D3 D4

Read length 50 50 50 42

Technology Paired Paired Paired Single

Total number error-free reads 25,923,420 25,428,726 21,647,526 11,463,613

Genome-wide uniquely matching reads 9,830,588 4,642,310 8,701,334 2,808,693

Gene-overlapping reads 5,208,384 2,348,138 4,762,266 1,044,267

Num. genes with read coverage 8584 6351 9242 12280

Num. genes with intron read coverage 4925 2563 5370 10678

samples S4-S5) (Table 4.4). Each sample underwent three rounds of amplification

using the aRNA protocol [71].

For the 33 genes of interest, we performed specific read alignment using Bowtie

[72] (see Materials and Methods). All of these genes were detectable based on the

presence of at least one read uniquely matching the exonic region, with a median

coverage of eight reads per detectable exon. Additionally, we found a large number of

reads uniquely aligning to intronic sequence (Table 4.2). Of these, a large number of

microarray positives were independently verified. Over half (31 of 60) of the introns

with detectable sequences by microarray show a high level of sequencing coverage. An

additional four introns are also detectable using less stringent criteria (see Materials

and Methods) (Table 4.2).

The difference in array versus sequencing results is likely due to the coverage dif-

ference of the two platforms. The spotted microarray elements cover ∼ 500 bases of

intronic sequence and can anneal to any intronic sequence within that region whereas
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the Illumina reads cover only ∼ 50 bases of sequence information, and in our Il-

lumina analysis we conservatively considered only uniquely aligning reads, ignoring

non-unique genomic sequences, which are highly prevalent in intronic sequences.

Reads were evaluated across our dendrite and soma samples and scored as absent,

present, or highly represented based on the number of reads found for a given intron.

Forty-three introns represented on our microarray were scored as absent, showing no

detectable uniquely-aligning read coverage within that intron in any dendrite sample.

Eighteen introns were scored as present having from one to eight uniquely-aligning

reads in at least one sample, while 33 introns were scored as highly represented based

on the presence of greater than eight uniquely-aligning reads from that intron in at

least one sample (Table 4.2)

We considered whether these results are due to the presence of actual intronic

sequence in the transcriptome, or whether non-transcribed genetic material was in-

cluded with our samples; however, several factors in our assays and experimental

design suggest that genomic DNA contamination is highly unlikely. Dendrites are

mechanically isolated from cell bodies, thereby preventing any genomic DNA from

contaminating the sample. If this were not the case, the microarray results would

show uniform signal across all probes, indicating non-specific intron sequence detec-

tion. Since there is heterogeneity in microarray signal across different introns of the

same gene, it is likely that these signals are specific.

We also analyzed the Illumina sequence data for evidence of non-specific read cov-

erage. For each of the 33 genes of interest, we calculated the cumulative intron length

and then obtained roughly equal amounts of upstream and downstream intergenic

sequence to serve as a background sequence set. Intergenic sequences were chosen

to minimize overlap of known and predicted transcribed units, as well as repetitive

sequence. When we compared unique read alignment in six of the Illumina sequenc-
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Table 4.5: Sequence coverage in exonic, intronic, and intergenic regions

Dendrite samples Soma samples

D1 D2 D3 S1 S2 S3

N. reads per 1000 nts

Exonic 29.15 29.51 66.28 45.58 38.48 54.62

Intronic 0.34 0.09 0.25 0.84 2.76 0.83

Intergenic 0.30 0.08 0.08 0.03 0.47 0.17

p-value (Binomial test)

Exonic vs intergenic < 2x10−16 < 2x10−16 < 2x10−16 < 2x10−16 < 2x10−16 < 2x10−16

Intronic vs intergenic 2x10−7 1x10−2 < 2x10−16 < 2x10−16 < 2x10−16 < 2x10−16

ing runs (three dendrite, three soma) onto the intergenic regions compared to the

genic regions, we found enrichment in both intronic (p ≤ 0.01 by the Binomial Pro-

portion Test) and exonic regions (p < 2 x 10−16), indicating that read alignments

within the gene boundaries are unlikely to arise from non-transcribed sequence (Ta-

ble 4.5). Although we took efforts to ensure the intergenic sequences are taken from

transcription-free regions, it is not possible to guarantee that previously uncharac-

terized transcripts are not present in those loci, so we treat this statistic to be a

conservative measure of background read coverage. In fact, inspection of individ-

ual instances of intergenic read coverage reveals large amounts of localized coverage,

strongly suggesting the presence of previously uncharacterized transcription units

(data not shown).

We additionally found evidence for extensive genome-wide intron retention. On

average, about 60 percent of detectable genes throughout the sequencing experiments

had unique intronic read coverage, with comparable proportions in both the dendrite

and soma samples (Table 4.4).

4.2.4 Specific ID element-containing loci have sequencing support

We further analyzed the read alignments to determine whether there was evidence

for transcription spanning any of the ID-containing loci in our introns of interest. ID-
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element sequence occurs in high copy number throughout the rat genome; therefore,

we would not expect to be able to uniquely align reads to every potentially present

ID locus.

Using RepeatMasker and BLAST search algorithms, we were able to identify a

total of 308 blocks of ID-derived sequence across our focused set of 33 genes. Based on

prior research that characterized the functionally significant components of the BC1

RNA localization domain [73], we defined a subset of 136 of these ID elements to

be targeting-competent. Each of these ID elements has at least 90 percent alignable

nucleotide sequence to the 5′ BC1 domain; is computationally predicted to form a

hairpin in its minimum-free-energy secondary structure configuration; and contains

an unpaired uracil at nucleotide position 22 in a basal-medial unbranched helix, which

is necessary for BC1 localization. Of the 136 targeting-competent ID elements, 70

are found in the sense direction relative to the direction of the gene, and 37 of the

70 are found in our introns of interest. All 37 ID elements have extremely high self

containment [74] with an average SC index of 0.9, indicating that the ID elements

are robust substructures in the intron.

Of these 37 ID elements, all but one (CAMK2Gi2ID1) are contained in predicted

retained introns that have unique short-read sequence coverage; 31 additionally have

microarray support (Table 4.6). Nineteen of these ID elements have cis sequencing

evidence, with reads uniquely aligning to positions within one read length (50 nu-

cleotides) of the element. Eight of these are spanned by uniquely-aligning mate pairs,

providing the most direct evidence that these specific ID-element-containing loci are

in fact present in the RNA samples (Table 4.6).

Beyond our introns of interest, there is sequencing evidence for an additional

16 of the 70 ID elements in our gene set, six of which are spanned by mate pairs.

Genome-wide we were able to find a total of 3658 unique ID loci spanned by a total
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Table 4.6: ID elements found in candidate introns

RefSeq Intron Coordinate ID element Ma S-Ib S-50c S-MPd

NM 031007 1 chr17:4557075-4557148 ADCY2i1ID1 ++ +

NM 022600 1 chr11:67398142-67398213 ADCY5i1ID1 + ++ + +

NM 022600 3 chr11:67338681-67338754 ADCY5i3ID1 ++ + +

NM 021739 1 chr14:86712517-86712590 CAMK2Bi1ID1 + ++ + +

NM 021739 3 chr14:86667060-86667132 CAMK2Bi3ID1 + ++

NM 012519 4 chr2:224012159-224012231 CAMK2Di4ID1 - ++ +

NM 133605 2 chr15:3748334-3748403 CAMK2Gi2ID1 -

NM 133605 18 chr15:3784885-3784955 CAMK2Gi18ID1 - ++ + +

NM 052804 1 chrX:154759680-154759747 FMR1i1ID1 ++ ++ +

NM 024370 5 chr1:108287957-108288025 GABRG3i5ID1 + ++

NM 024370 5 chr1:108285219-108285291 GABRG3i5ID2 + ++ +

NM 024370 5 chr1:108273028-108273101 GABRG3i5ID3 + ++

NM 024370 5 chr1:108394161-108394234 GABRG3i5ID4 + ++ +

NM 032990 4 chrX:3569721-3569788 GRIA3i4ID1 - ++ + +

NM 017263 4 chr8:1236057-1236129 GRIA4i4ID1 - ++

NM 017241 1 chr11:27943131-27943204 GRIK1i1ID1 + ++

NM 017241 1 chr11:27913623-27913697 GRIK1i1ID2 + ++ +

NM 017241 1 chr11:28081118-28081190 GRIK1i1ID3 + ++ +

NM 017241 1 chr11:28044738-28044811 GRIK1i1ID4 + ++

NM 017241 1 chr11:28098620-28098693 GRIK1i1ID5 + ++

NM 017241 16 chr11:27709224-27709296 GRIK1i16ID1 - ++

NM 017010 8 chr3:3462386-3462457 GRIN1i8ID1 ++ ++ +

NM 017010 8 chr3:3461694-3461767 GRIN1i8ID2 ++ ++ + +

NM 031040 1 chr4:146624192-146624265 GRM7i1ID1 + ++ +

NM 031040 1 chr4:146736661-146736734 GRM7i1ID2 + ++

NM 031040 1 chr4:146746191-146746264 GRM7i1ID3 + ++

NM 031040 1 chr4:146760671-146760744 GRM7i1ID4 + ++

NM 031040 1 chr4:146937318-146937390 GRM7i1ID5 + ++ + +

NM 031040 1 chr4:146951304-146951377 GRM7i1ID6 + ++

NM 031040 1 chr4:146433109-146433182 GRM7i1ID7 + ++

NM 031730 1 chr4:47841144-47841217 KCND2i1ID1 + ++ + +

NM 031730 1 chr4:47972539-47972610 KCND2i1ID2 + ++

NM 031730 1 chr4:47998363-47998436 KCND2i1ID3 + ++ +

NM 031730 1 chr4:48009814-48009886 KCND2i1ID4 + ++

NM 031730 1 chr4:47642184-47642253 KCND2i1ID6 + ++ + +

NM 019169 2 chr4:89713754-89713825 SNCAi2ID1 ++ ++

NM 012700 4 chr1:187098603-187098671 STX1B1i4ID1 + ++ +

aID elements marked as present with high confidence (++), moderate confidence (+), or absent (-) on microarray
(M); bIllumina sequencing read coverage in the containing intron, cwithin 50 nucleotides of the ID locus, and
dspanning the ID locus with mate pairs.
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Table 4.7: Short-read sequence coverage for intronic ID element loci

Dendrite samples Soma samples

D1 D2 D3 S1 S2 S3 Overall

Num. uniquely aligning reads spanning intronic ID elements

Sensea

Targeting-competent 12,440 3,169 3,919 26,287 9,317 8,652 63,784

Non-competent 3,302 396 692 3,660 1,652 440 10,142

Antisense 4,242 3,190 2,371 3,780 4,064 2,371 20,018

Num. individual ID loci with read coverage

Sense

Targeting-competent 770 144 533 584 275 163 2046

Non-competent 137 26 99 103 40 23 365

Antisense 396 148 388 173 167 91 1247

Num. genes containing ID loci with read coverage

Sense

Targeting-competent 697 143 505 526 264 155 1617

Non-competent 137 27 99 100 40 28 345

Antisense 385 158 376 163 166 90 1109

aStrand of the ID element with respect to the gene.

of 63,784 mate pairs in six sequencing experiments, contained in 2590 genes; 2411 of

these loci occur in the sense direction, and of these 2046 are predicted to be targeting

competent (Table 4.7). The 60 intronic loci supported by three or more sequencing

runs are summarized in Tables 4.8 and 4.9.

These data show a significant enrichment in sense-direction ID elements compared

to antisense-direction ID elements, 1.93 fold, compared to the genomic occurrence of

ID elements, which favors antisense elements by 1.43 fold (see Section 4.2.8). We note

that it is possible that antisense elements are also functionally significant despite

their lack of the correct BC1 targeting features; however, in the absence of such

functionality, we would expect antisense elements to be present as part of the retained

intron in which they occur, whose retention is mediated by other factors.
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Table 4.8: Targeting-competent sense-strand ID element loci retained in a majority
of soma samples

Num. samplesa

Coord RefSeq: intron Symbol Dendrite Soma

chr11:66544722-66544790 + NM 001029903:i5 Fam162a 3 3

chr4:66045882-66045955 + NM 001134553:i13 Ubn2 2 3

chrX:89735678-89735751 + NM 017107:i5 Ogt 1 3

chr4:149005586-149005659 + NM 001106614:i18 Setd5 1 3

chr3:11440674-11440746 - NM 080689:i18 Dnm1 2 2

chr10:75491508-75491562 + NM 001108288:i22 Trim37 2 2

chr3:159115619-159115692 + NM 012637:i8 Ptpn1 2 2

chr10:71576187-71576260 + NM 001105824:i6 Taf15 2 2

chr1:85079016-85079089 - NM 001100991:i2 LOC499124 2 2

chr6:25465217-25465290 - NM 001126372:i11 LOC362710 2 2

chr8:77257195-77257267 + NM 012986:i1 Nedd4 2 2

chr12:34866906-34866979 +
NM 031338:i2 Camkk2

1 2
NM 001080147:i7 Anapc5

chr7:127871488-127871560 + NM 021676:i21 Shank3 1 2

chr3:34693830-34693901 - NM 001106480:i5 Prpf40a 1 2

chr5:142363851-142363924 + NM 001108676:i4 Trit1 1 2

chr7:2154725-2154798 + NM 001033070:i9 Sarnp 1 2

chr13:40909312-40909385 + NM 001134867:i19 R3hdm1 1 2

chr8:95142917-95142990 - NM 001108175:i4 Tbc1d2b 1 2

chr9:59052166-59052231 + NM 173143:i6 Abi2 1 2

chr1:80288452-80288525 - NM 012506:i16 Atp1a3 1 2

chr7:117598975-117599048 - NM 001130581:i1 LOC685444 1 2

chr6 random:442356-442429 - NM 017359:i3 Rab10 1 2

chr12:33774296-33774369 - NM 001134766:i4 Ccdc62 1 2

chr17:48502769-48502841 - NM 001107354:i1 Hist1h2an 1 2

chr15:27752648-27752720 - NM 001024794:i1 Mettl3 1 2

chr19:53569106-53569179 - NM 001107440:i4 1 2

chr7:120656200-120656273 + NM 019375:i2 Sept3 1 2

chr5:65069567-65069640 + NM 001107932:i6 Invs 1 2

aNumber of dendrite and soma sequencing experiments in which unique read coverage overlapped
the ID element locus.
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Table 4.9: Targeting-competent sense-strand ID element loci retained in a majority
of dendrite samples

Num. samplesa

Coord RefSeq: intron Symbol Dendrite Soma

chr1:168012312-168012385 - NM 001134970:i27 LOC691036 3 2

chr20:3614357-3614429 -
NM 001002807:i5 Clic1

3 2
NM 133300:i6 Bat1

chr6:74989905-74989978 - NM 001134987:i6 Eapp 3 2

chr14:104496291-104496363 - NM 001100971:i16 RGD1305110 3 2

chr18:74627136-74627209 - NM 001107374:i1 RGD1308601 3 1

chr8:118512730-118512803 + NM 053722:i17 Clasp2 3 1

chr5:91974244-91974317 + NM 001106662:i12 Frmd3 3 1

chr17:11151503-11151576 + NM 001106100:i26 Agtpbp1 3 0

chr7:115353524-115353596 - NM 001079895:i1 Rbm9 3 0

chr5:130378024-130378096 + NM 012993:i7 Nrd1 2 1

chr10:64382492-64382565 - NM 001105803:i1 Sdf2 2 1

chr7:1658380-1658453 - NM 001108727:i2 Coq10a 2 1

chr3:11440038-11440111 - NM 080689:i18 Dnm1 2 1

chr13:107842967-107843040 +
NM 001109376:i5 LOC679692

2 1
NM 001047894:i3 LOC317456

chr10:71575745-71575818 + NM 001105824:i6 Taf15 2 1

chr19:10031165-10031238 + NM 001107409:i4 Csnk2a2 2 1

chr3:41009974-41010047 + NM 001106482:i4 Pkp4 2 1

chr5:152641779-152641852 + NM 001109358:i1 RGD1566319 2 1

chr1:226509592-226509665 - NM 001106357:i17 Smc5 2 1

chr12:46591220-46591293 - NM 001047901:i3 Ankle2 2 1

chr1:82534406-82534479 + NM 001106236:i1 Blvrb 2 1

chr1:107337799-107337872 - NM 001107518:i6 Nipa2 2 1

chr5:61407500-61407573 + NM 001106658:i4 Zcchc7 2 1

chr1:56509832-56509904 - NM 172323:i2 Has1 2 1

chr1:233830886-233830959 + NM 001107585:i10 Uhrf2 2 1

chr9:84086618-84086691 + NM 001108804:i1 Fbxo36 2 1

chr8:34997093-34997166 + NM 001034150:i13 Srpr 2 1

chr11:60755156-60755228 - NM 017242:i1 Lsamp 2 1

chr5:148336165-148336237 - NM 001134628:i5 RGD1564943 2 1

chr8:113101807-113101871 - NM 001108186:i5 Rbm6 2 1

chr20:19735536-19735609 - NM 031805:i1 Ank3 2 1

chr3:89453560-89453633 - NM 001109606:i10 Fbxo3 2 1

aNumber of dendrite and soma sequencing experiments in which unique read coverage overlapped
the ID element locus.
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4.2.5 ID element sequence is enriched in sequencing reads

Since we used a conservative policy of only considering unique read matches to the

genome, a large number of reads are unassigned to genomic loci; on average, only

about 30 percent of the reads per sequencing experiment matched uniquely to the

genome (Table 4.4). Correspondingly, it is not possible to assign reads to all genomic

loci containing ID elements if the surrounding sequence context is not genomically

unique. Thus, to quantify the amount of excess read coverage purported to derive

from some ID-element containing locus, we created BLAST databases using the full

set of reads for each of the sequencing runs and performed nucleotide BLAST querying

a prototypical rat ID element sequence from RepBase [75]. In each of the samples, a

large number of reads (∼ 30,000 - 200,000) had significant similarity to the 74-nt ID

element hairpin with e-value < 0.001 (Table 4.10). To ensure that these reads were

matching ID elements and not to BC1 RNA, we also queried the BC1 3′ domain (78

nt) and found only a single match across all sequence runs; thus, the vast majority of

the ID-matching reads must derive from ID-element loci in the genome. Compared

to the number of mate-pair results from the previous section, these data suggest that

the degree of ID locus retention is somewhere between 7 and 34 fold under-reported

using a policy of only allowing uniquely-aligning reads (Table 4.10).

We also compared the degree of read coverage of ID elements to that of B2 ele-

ments, another ubiquitous SINE element in the rat genome that occurs approximately

2.18 times more frequently than the ID element as annotated by RepeatMasker.

BLAST matches to the B2 element were found throughout the sequencing runs, but

at a much lower frequency than for the ID elements (Table 4.10). When normalized

by genomic frequency, ID elements have a 10 to 28 fold greater proportion of aligning

sequence reads than B2 elements. Assuming that the Illumina sequencing data is an

147



Table 4.10: Sequence reads aligning to ID elements

Soma samples

S1 S2 S3 S4 S5

Total number reads 24,054,234 28,360,642 27,723,528 11,177,563 11,256,670

Num. reads aligning

ID 5′ hairpin (74 nt) 205,658 105,821 78,824 30,259 60,855

BC1 3′ domain (78 nt) 0 0 0 0 1

B2 5′ portion (74 nt) 16,170 17,768 9,494 5,561 11,374

Genomic coveragea

ID (161,321 total) 1.275 0.656 0.489 0.188 0.377

B2 (352,447 total) 0.046 0.050 0.027 0.016 0.032

Fold enrichment ID > B2 27.8 13.0 18.1 11.9 11.7

Dendrite samples

D1 D2 D3 D4

Total number reads 25,923,420 25,428,726 21,647,526 11,463,613

Num. reads aligning

ID 5′ hairpin (74 nt) 101,981 109,919 75,227 66,127

BC1 3′ domain (78 nt) 0 0 0 0

B2 5′ portion (74 nt) 11,793 8,603 11,143 14,062

Genomic coverage

ID (161,321 total) 0.632 0.681 0.466 0.410

B2 (352,447 total) 0.033 0.024 0.032 0.040

Fold enrichment ID > B2 18.9 27.9 14.7 10.3

aTotal number of elements in the genome divided by number of aligning sequencing reads. Genome
element totals are as reported by RepeatMasker.
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accurate representation of the rat transcriptome, these results imply a large number

of transcripts contain ID element sequences, more than would be expected from any

sort of background or random transcription phenomenon.

4.2.6 In situ analysis reveals target competency of individual ID

elements

We chose several ID elements from retained introns on the basis of host gene and

structural characteristics for further analysis. PCR primers were designed to amplify

these ID elements using genomic DNA as the template. Amplified fragments include

the ID sequences (approximately 74bp) and approximately 500-1000bp of flanking se-

quence. The lengths of these PCR products were determined based on the availability

of well-defined genomic sequence in the regions of interest. ID PCR products were

subcloned into pCRII TOPO vectors and then further subcloned into pEGFP-N1

expression vectors (CMV promoter driven) to generate ID-EGFP transcripts upon

transfection into primary rat hippocampal neurons (Figure 4.4a).

ID-EGFP vectors were transfected into primary cultures of neurons, and 48 hours

later the cells were analyzed by in situ hybridization using probes directed to the

EGFP portion of the exogenously expressed mRNA (Figure 4.4b). The in situ results

in the figures, and quantified below, suggest that ID elements from the retained introns

can confer dendritic targeting to the transgene mRNA.

To quantify the targeting capacity of the fusion construct we developed a custom

program using Igor (WaveMetrics, Inc.) to measure probe intensity along a curve

drawn in the in situ images. The quantification paths are manually drawn, tracing

dendrites of selected cells based on MAP2 immunostaining. Paths originate at the

somal end of the dendritic process. For each of the assays described below three

dendrites were quantified per cell and 8 or 10 cells were quantified for each probe.
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Figure 4.4: (a) pEGFP-N1 transfected control cells in situ hybridized with antisense bi-
otinylated EGFP probe. Blue text indicates transfected DNA construct, white text indi-
cates in situ probe sequence. (b) ID-EGFP targeting in situ hybridization results. Blue
text indicates transfected DNA construct, white text indicates in situ probe sequence. A
representative set of signals is shown for imaging results along with a plot of normalized
signal intensity against distance from the cell soma in microns. Blue lines represent EGFP
control signal, red lines represent ID-EGFP signal. Each transfected ID-EGFP experiment
(red boxes) is then binned to find average intensity values across 8µm distances and sub-
tracted from binned EGFP signal to generate mean and SEM values to distances of 48µm.
These values are plotted as ∆f/f against distance in microns. Blue lines represent level of
EGFP signal. Scale bars = 20µm.
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Comparing the relative distances in microns from the cell body at which in situ

signal can be detected for an ID-EGFP transfected cell to an EGFP transfected

control cell shows that ID-containing transcripts are localized to more distant regions

along the dendrite (Figure 4.4c). A greater level of signal can be seen in ID-EGFP

transfected cells at distances of 20µm for all four ID elements presented. At distances

beyond 20µm, only signals for FMR1i1ID1 and GABRG3i5ID2 have mean and SEM

values that are greater than EGFP transfected cells. These signals continue to be

greater than control out to distances beyond 44µm along the length of dendrite.

However, as 44µm is the length of the shortest dendrites analyzed in this study and

we restricted our statistical analysis to this length of dendrite.

The main signature of RNA transport for our probes is in both the differential

intensity levels and differential gradient of intensity along the dendrites. Actively

transported RNAs are expected to have greater intensity and a shallower gradient

along the length of the dendrite while non-transported RNA are expected to have

less intensity and steeper gradients. We first tested the differential intensity levels

along the dendrites (after normalizing the highest intensity pixel to 1). The RNA

intensity differences were pooled in 8 µm intervals and paired t-tests were carried out

to assess the significance of the difference between the test probe and control EGFP

probe within each interval. The resulting set of t-tests may not be independent

due to shared residuals from a gradient-like generating process along the dendrites.

Therefore, we carried out a conservative Bonferroni correction for non-independent

multiple tests. The significance of the overall differences along the entire dendrite(s)

was assessed using Fisher’s combined p value test for the Bonferroni corrected t-test

p values. The Fisher’s combined p statistic and probability of Fisher’s combined

p values were as follows: CAMK2Bi3ID1 (2*LogLikelihood = 80.36, p < 10−11),

FMR1i1ID1 (2*LogLikelihood = 83.61, p < 10−11), GABRG3i5ID2 (2*LogLikelihood
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= 83.24, p < 10−11), GRIK1i1ID4 (2*LogLikelihood = 58.06, p < 10−7).

We next tested the differential gradient by fitting the entire probe intensity curve

to a negative hyperbolic function of the form I = c − sd/(g + d), where I represents

probe intensity and d represents distance from soma. The parameters c and s rep-

resent translation and scale of the curve with (c − s) forming the asymptote of the

curve. The parameter g represents the steepness of the curve – i.e., the steepness of

the gradient – and is therefore the parameter of interest. The ISH signals for control

EGFP probes (n = 8) and test probes (n = 10, each) were fitted using a nonlinear

least-squares fitting procedure (R statistical package). The 95 percent confidence in-

terval for the parameter g are: EGFP = 1.63±0.241, CAMK2 = 2.32±0.420, FMR1

= 4.94±1.133, GABR = 3.56±0.499, GRIK1 = 4.96±0.866. Thus, EGFP forms a

significantly steeper gradient along the dendrites than any of the four quantified test

probe ISHs suggesting more active transport of the mRNA corresponding to the test

probes. It should be noted that the parameter estimate g provides an overall expres-

sion level independent assessment of the RNA gradient (because of the other fitted

parameters). In effect, fitting a hyperbolic curve and then testing the steepness pa-

rameter establishes the spatial pattern as self-control that is invariant of expression

levels or probe specific effects.

A variety of distribution patterns can also be observed across these distances

and can best be described as diffuse (GABRG3i5ID2), punctate (CAMK2Bi3ID1)

and intense (FMR1i1ID1). These findings suggest different targeting mechanisms

for ID-containing sequences that may be governed by flanking sequence or subtle se-

quence/structural variations across the elements presented. Regardless of the mecha-

nisms involved, an in situ signal can clearly be seen at greater distances from the cell

soma in the dendrites of ID-EGFP expressing cells when compared to EGFP express-

ing cells. These results show that intronic ID elements can act as dendritic-targeting
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elements for exogenously expressed fusion constructs.

The sequence required for independent folding of the ID element is approximately

74nt; however, hundreds of bases of flanking sequence are present in the “full-length”

ID-EGFP fusion constructs. In an effort to narrow the amount of sequence required

for dendritic targeting of reporter gene mRNA, constructs were generated with signif-

icantly less intronic flanking sequence than the full-length ID element PCR products.

Using PCR primers designed to anneal approximately 40 bases upstream and down-

stream of the 74 base intronic ID element, PCR products were amplified which were

only 137-152 bases in length (Figure 4.5a). These products were cloned into pEGFP-

N1 expression vectors and assessed for targeting capacity by in situ hybridization

with probes targeted at the EGFP sequence (Figure 4.5b).

All of the four discrete ID element constructs tested conferred significant dendritic

targeting to exogenously expressed reporter transcripts compared to control EGFP

transfected cells using the Fisher and Bonferroni statistical approach previously de-

scribed (Figure 4.5c). The Fisher’s combined p statistic and probability of Fisher’s

combined p values were as follows: CAMK2Bi3ID1dis (2*LogLikelihood = 71.99, p

< 10−9), FMR1i1ID1dis (2*LogLikelihood = 89.02, p < 10−11), GABRG3i5ID2dis

(2*LogLikelihood = 74.19, p < 10−10), GRIK1i1ID4dis (2*LogLikelihood = 74.19, p

< 10−10). In all cases except GABRGi5ID2dis, discrete ID sequences have mean plus

SEM signals greater than control at greater distances than their full-length counter-

parts. This may result from removing flanking intronic sequences that are important

to dendritic targeting as separate targeting elements or as enhancers of this partic-

ular ID elements ability to target. In all cases, signals above control can be seen to

distances of 28µm, for CAMK2Bi3ID1dis and FMR1i1ID1dis mean plus SEM signals

can be seen out to 44µm.

153



0

1.0

10 20 30 40

0.2

0.4

0.6

0.8

50
0.0

Distance (um)

N
o

rm
. 

s
ig

n
a

l 
in

te
n

s
it

y

∆
f/

f

0
-1.0

10 20 30 40

1.0

2.0

3.0

4.0

50

0.0

Distance (um)

0

1.0

10 20 30 40

0.2

0.4

0.6

0.8

50
0.0

Distance (um)

N
o

rm
. 

s
ig

n
a

l 
in

te
n

s
it

y

0

1.0

10 20 30 40

0.2

0.4

0.6

0.8

50
0.0

Distance (um)

N
o

rm
. 

s
ig

n
a

l 
in

te
n

s
it

y

0

1.0

10 20 30 40

0.2

0.4

0.6

0.8

50
0.0

Distance (um)

N
o

rm
. 

s
ig

n
a

l 
in

te
n

s
it

y

∆
f/

f

0
-1.0

10 20 30 40

1.0

2.0

3.0

4.0

50

0.0

Distance (um)
∆

f/
f

0
-1.0

10 20 30 40

1.0

2.0

3.0

4.0

50

0.0

Distance (um)

∆
f/

f

0
-1.0

10 20 30 40

1.0

2.0

3.0

4.0

50

0.0

Distance (um)

FMR1i1ID1

FMR1i1ID1dis

A

C

B

Figure 4.5: Intronic ID element sequences confer dendritic localization to reporter gene
mRNA with minimal flanking sequences. (a) Schematic of discrete ID element generation.
(b) pEGFP-N1 transfected control cells in situ hybridized with antisense biotinylated EGFP
probe. Blue text indicates transfected DNA construct, white text indicates in situ probe
sequence. (c) Discrete ID-EGFP targeting in situ hybridization results. Blue text indicates
transfected DNA construct, white text indicates in situ probe sequence. A representative
set of signals is shown for imaging results along with a plot of normalized signal intensity
against distance from the cell soma in microns. Blue lines represent EGFP control signal,
red lines represent ID-EGFP signal. Each transfected ID-EGFP experiment (red boxes)
is then binned to find average intensity values across 8µm distances and subtracted from
binned EGFP signal to generate mean and SEM values to distances of 48µm. These values
are plotted as ∆f/f against distance in microns. Blue lines represent level of EGFP signal.
Scale bars = 20µm.
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4.2.7 Transgenic intronic ID elements compete with endogenous

transcripts for targeting machinery

Exogenous expression of ID elements was also used to assess their capacity to modify

the localization of endogenous transcripts in an in vivo competition assay. Neu-

rons were transfected with full-length ID-EGFP fusion constructs. Forty-eight hours

post-transfection, in situ hybridization was performed using probes directed at the

intronic region used for microarray analysis and absent in the ID-EGFP transcripts.

Only endogenous transcripts containing this region of the introns will be detected,

thus allowing the study of the ID-EGFP transcript’s effect on endogenous intron-

containing mRNA (Figure 4.6). In all cases tested, transfection of the full-length

ID-EGFP fusion constructs disrupted the localization of their analogous endogenous

intron-retaining transcripts compared to transfection with EGFP. Fisher and Bon-

ferroni statistical analysis was performed as described previously for our targeting

experiments, and again showed significant differences. The degree of competition

and pattern of remaining dendritic signal for endogenous intron-retaining transcript

ranges from a 0.2 to 0.4 fold decrease in dendritic signal at all distances along the

dendritic length where endogenous intron-retaining transcripts are detectable. These

data show that exogenous expression of an ID element from a particular intron limits

the dendritic localization of endogenous transcripts retaining that intron.

Given the effect of exogenous expression of an ID-EGFP construct on related

intron-retaining transcripts, cross-competition experiments were also performed to

assess the potential for a transfected ID element to disrupt the localization of all

intron-retaining transcripts or select intron-retaining transcripts. Exogenously ex-

pressed ID-EGFP sequences will compete with endogenous transcripts for targeting

machinery as described previously, and probing for an unrelated intron-retaining tran-
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Figure 4.6: Intronic ID element sequences disrupt dendritic localization patterns of
endogenous mRNA. Blue text indicates transfected DNA construct, white text in-
dicates in situ probe sequence. A representative set of signals is shown for imaging
results along with a plot of normalized signal intensity against distance from the cell
soma in microns. Blue lines represent control signal for endogenous transcripts fol-
lowing EGFP transfection, red lines represent level of endogenous signal following
ID-EGFP transfection. Each transfected ID-EGFP experiment (red boxes) is then
binned to find average intensity values across 8µm distances and subtracted from
binned EGFP signal to generate mean and SEM values to distances of 48µm. These
values are plotted as ∆f/f against distance in microns. Blue lines represent level of
endogenous signal following EGFP transfection. Scale bars = 20µm.

script will show if the mechanisms governing dendritic targeting are specific to par-

ticular ID elements or common to all targeted transcripts that use this motif. This

was tested using probes to introns from genes that do not contain the particular ID

element being exogenously expressed (Figure 4.7).
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Figure 4.7: Intronic ID element sequences differentially cross-compete with en-
dogenous mRNA of different genes. CAMK2Bi3ID1 disrupts localization of
FMR1i1 intron-retaining transcript, but FMR1i1ID1 does not disrupt localization
of CAMK2Bi3. Blue text indicates transfected DNA construct, white text indicates
in situ probe sequence. A representative set of signals is shown for imaging results
along with a plot of normalized signal intensity against distance from the cell soma
in microns. Blue lines represent control signal for endogenous transcripts following
EGFP transfection, red lines represent level of endogenous signal following ID-EGFP
transfection. Each transfected ID-EGFP experiment (red boxes) is then binned to
find average intensity values across 8µm distances and subtracted from binned EGFP
signal to generate mean and SEM values to distances of 48µm. These values are
plotted as ∆f/f against distance in microns. Blue lines represent level of endogenous
signal following EGFP transfection. Scale bars = 20µm.

Transfection of CAMK2Bi3ID1 or FMR1i1ID1 disrupts the intronic in situ pattern

of their endogenous intron-retaining transcripts, namely CAMK2Bi3 and FMR1i1.

While transfection of FMR1i1ID1 disrupts the intronic in situ pattern of FMR1i1

transcripts, dendritic targeting of CAMK2Bi3 transcripts is unaffected. This shows

that the FMR1i1ID1 sequence specifically targets the endogenous Fmr1 i1 containing

sequence but not the endogenous Camk2b transcript containing the i3 sequence.

Conversely, transfection with CAMK2Bi3ID1 disrupts the dendritic targeting of

not only CAMK2Bi3 transcripts, but FMR1i1 transcripts as well (Figure 4.7). This

CAMK2Bi3ID1 disruption of endogenous FMR1i1 transcript targeting is of equal
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or greater magnitude than transfection with FRM1i1ID1. Cross-competition of the

CAMK2Bi3ID1 element with endogenous Camk2b and Fmr1 intron-retaining tran-

scripts indicates that a shared targeting mechanism is associated with those tran-

scripts containing the CAMK2Bi3 ID element.

4.2.8 Genome-wide characterization of ID elements shows broad

distribution in the rat genome

In an attempt to characterize the ID element landscape outside of the 33 genes of

interest, we constructed a catalog of ID elements over the entire rat genome using

a BLAST-based approach. We used the 74-nt BC1 RNA 5′ hairpin targeting motif

as a query sequence for nucleotide BLAST and chose an e-value cutoff of 1x10−13 –

this cutoff roughly corresponds to a p-value < 0.001 using a Bonferonni correction

for multiple tests set to the approximate size of the rat genome, 2.5 gigabases. In

all, we found 146,785 distinct ID element loci evenly distributed on the Watson and

Crick strands (Table 4.11) – fewer overall than the approximate number of loci re-

ported by RepeatMasker, 161,321, which is a result of our more stringent criteria in

requiring high sequence similarity to BC1 in the 74-nt hairpin region, though in sev-

eral cases, we found that RepeatMasker fails to annotate ID element loci overlapping

other repetitive sequence. Thus, our results represent both a more specific and more

sensitive catalog of ID element hairpins.

These 146,785 ID elements are comprised of 62,101 unique ID element sequences,

indicating a high degree of degeneracy from the canonical BC1 RNA sequence, which

may be due to selective pressure (positive or negative) or drift. Using the criteria

defined in Section 4.2.4, we assessed the ID elements for targeting competency and

found that 78 percent of the elements satisfied the criteria for being capable of func-

tioning as dendrite-targeting elements. By comparison, using the same parameters
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Table 4.11: ID elements in the rat genome

Targeting competent

Num. Num. Percent

Total rat genomic ID elements 146,785 115,004 78.4

Watson (+) strand elements 73,527 57,586 78.3

Crick (–) strand elements 73,258 57,418 78.4

Intergenic elements 106,412 82,839 77.8

Genic elements 40,373 32,165 79.7

Antisense elements 23,183 18,475 79.7

Sense elements 17,190 13,690 79.6

Unique rat ID sequences 62,101 37,960 61.1

and the mouse-specific BC1 RNA, we identified only 682 ID elements, consistent with

previous estimates [76]. These results confirm that the majority of the ID elements

in the rat genome arose after the mouse-rat lineage split.

We annotated each locus according to RefSeq gene annotations and found that 27.5

percent of genomic ID elements are found in 8,784 genes, indicating slight enrichment

when compared to the proportion of the rat genome annotated by RefSeq as genic

(< 25.2 percent). A slightly but significantly greater proportion of the genic elements

are targeting competent compared to the genome-wide frequency (79.6 percent, p =

3.6 x 10−5 by Binomial Test). Among gene-overlapping ID elements, there is a bias

toward antisense placement with respect to the gene orientation, 57.4 percent, that

is similar to values we calculated for B2 elements. There is no difference in rate of

target competency between sense and antisense elements (Table 4.11).

Focusing our attention on putatively target-competent elements, ID element con-

tent per gene is correlated with the length of the gene for both sense (r2 = 0.42, p <2

x 10−16) and antisense (r2 = 0.32, p < 2 x 10−16) elements, though the proportion
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of sense to antisense elements varies greatly per gene (Figure 4.8). In fact, there

is almost no correlation between gene length and sense-strand surplus (r2 = 0.002),

which we define as the number of target-competent sense elements in a gene minus

the number of target-competent antisense elements. The average sense-strand surplus

over all genes containing ID elements is -0.57, which reflects the overall antisense bias

among genic ID elements. (Figure 4.9)
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Figure 4.8: Number of sense-versus antisense-direction ID elements per gene. A
concentric circle around a point defines an area that is proportional to the number of
genes containing the given number of sense and antisense ID elements.

The vast majority of the gene-overlapping ID elements are intronic; however, 118

target-competent elements occur in 3′ UTR exons while eight occur in 5′ UTR ex-

ons. The role of these exonic elements is unclear, and given that they have not

previously been characterized as functional dendritic targeting sequences suggests
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Figure 4.9: Surplus of sense-direction ID elements compared to gene length in nu-
cleotides. Each point represents one gene.

that the placement of ID elements in introns is important in their efficacy as local-

ization elements. Interestingly, there are three examples of ID elements spanning

annotated splice boundaries – chrUn:25,471,736-25,471,806 (NM 001008882 exon 1

and intron 1), chr4:134,544,564-134,544,637 (NM 001047956 exon 1 and intron 1),

and chr1:158,440,020-158,440,093 (NM 017255 exon 3, intron 3, and exon 4). Each

of these elements is novel in the rat lineage, implying that in these instances, evo-

lutionarily recent ID-element insertion has altered splicing patterns, though whether

there are functional consequences of these changes is unknown. The fact that minor

variants of the canonical ID element sequence can harbor both splice donor and ac-

ceptor sites may be significant in understanding their regulation as part of retained

intronic sequence.
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4.2.9 Neuronal function is associated with ID element-enriched

genes

Given the wide distribution of gene-overlapping ID elements in the rat genome, we

performed a Gene Ontology (GO) enrichment analysis to determine whether partic-

ular functions were associated with these genes. Since there is a length effect on

the number of ID elements that appear in a gene, which may bias the results of

a GO enrichment test, we focused on the subset of genes containing a surplus of

target-competent sense-direction ID elements, which has no correlation with length

(Figure 4.9). Since there is an overall antisense bias for ID element orientation, genes

with excess sense-direction ID elements may reflect selection for target-competent ID

elements in particular genes (or perhaps lack of selection against target-competent

ID elements). A total of 2762 RefSeq-annotated genes contain a surplus of sense

targeting-competent ID elements; performing a GO analysis on these genes yields

highly significant enrichment in GO terms related to neuronal activity (Table 4.12),

including several terms consistent with genes expected to be present in dendrites,

such as “synapse,” “plasma membrane,” and “gated channel activity.” These results

indicate that neuronal function is associated with potentially functional ID elements

on a genome-wide level.

We also looked for GO terms enriched in genes containing ID elements with se-

quencing support. Target-competent ID elements are spanned by uniquely-aligning

mate pairs in 1617 genes. Significantly enriched GO terms include neuronal functions,

as expected since the sequencing experiments were performed on neuron transcrip-

tomes; interestingly, the most significant of these terms are specifically related to

binding and localization (Table 4.13), which are consistent with genes involved in

active transcript targetting.
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Table 4.12: Most significantly enriched Gene Ontology terms in genes with a sense-
strand-ID element surplus

Cat.a Term Description p value Enrich.b Bonferronic

MF GO:0005488 binding 1.16E-22 1.17 3.22E-19

CC GO:0045202 synapse 1.26E-19 3.17 1.03E-16

MF GO:0005515 protein binding 3.57E-18 1.30 9.91E-15

CC GO:0005737 cytoplasm 1.72E-17 1.34 1.41E-14

CC GO:0044424 intracellular part 1.60E-16 1.21 9.07E-14

BP GO:0019226 transmission of nerve impulse 4.19E-16 2.30 2.24E-12

CC GO:0005886 plasma membrane 8.46E-16 1.55 7.26E-13

BP GO:0007268 synaptic transmission 1.56E-14 2.33 7.88E-11

CC GO:0000267 cell fraction 1.90E-14 1.76 1.55E-11

CC GO:0044444 cytoplasmic part 3.34E-14 1.37 2.73E-11

CC GO:0044459 plasma membrane part 4.90E-14 1.59 4.00E-11

BP GO:0051234 establishment of localization 8.49E-14 1.43 4.28E-10

MF GO:0022836 gated channel activity 1.30E-13 2.64 3.62E-10

MF GO:0005216 ion channel activity 1.30E-13 2.43 3.62E-10

BP GO:0006810 transport 1.47E-13 1.43 7.38E-10

MF GO:0022838 substrate specific channel activity 2.62E-13 2.38 7.29E-10

CC GO:0044456 synapse part 2.87E-13 3.42 2.34E-10

MF GO:0015267 channel activity 5.95E-13 2.33 1.65E-09

MF GO:0022803 passive transmembr. transporter act. 5.95E-13 2.33 1.65E-09

CC GO:0005624 membrane fraction 8.55E-13 1.83 6.99E-10

BP GO:0051179 localization 8.93E-13 1.37 4.50E-09

MF GO:0005215 transporter activity 1.02E-12 1.63 2.84E-09

BP GO:0007267 cell-cell signaling 5.04E-12 1.85 2.54E-08

MF GO:0022892 substrate-specific transporter activity 5.11E-12 1.71 1.42E-08

MF GO:0022857 transmembrane transporter activity 2.86E-11 1.72 7.96E-08

aGene Ontology category: BP = biological process, CC = cellular compartment, MF = molecular
function. bFold enrichment over expectation. cp value for enrichment after Bonferroni multiple test
correction.

163



Table 4.13: Most significantly enriched Gene Ontology terms in genes containing ID
elements supported by sequencing reads

Cat.a Term Description p value Enrich.b Bonferronic

BP GO:0051179 localization 1.44E-19 1.88 7.23E-16

MF GO:0005488 binding 4.82E-18 1.26 1.34E-14

MF GO:0005515 protein binding 6.66E-18 1.55 1.85E-14

BP GO:0051234 establishment of localization 6.10E-16 1.86 2.79E-12

BP GO:0006810 transport 8.41E-16 1.88 4.47E-12

BP GO:0016043 cell. component organiz., biogenesis 6.29E-15 1.85 3.19E-11

BP GO:0051649 establishment of cellular localization 1.24E-14 2.64 6.20E-11

BP GO:0051641 cellular localization 2.31E-14 2.61 1.16E-10

CC GO:0045202 synapse 3.48E-14 4.69 2.85E-11

CC GO:0005737 cytoplasm 3.72E-14 1.56 3.04E-11

CC GO:0044444 cytoplasmic part 3.21E-11 1.60 2.62E-08

CC GO:0044424 intracellular part 3.41E-11 1.30 2.79E-08

BP GO:0045045 secretory pathway 4.16E-11 3.89 2.09E-07

MF GO:0000166 nucleotide binding 1.67E-10 1.85 4.64E-07

MF GO:0017076 purine nucleotide binding 1.70E-10 1.93 4.72E-07

BP GO:0032940 secretion by cell 2.02E-10 3.49 1.02E-06

CC GO:0005622 intracellular 3.68E-10 1.26 3.01E-07

BP GO:0046903 secretion 6.08E-10 3.04 3.06E-06

BP GO:0019226 transmission of nerve impulse 1.50E-09 2.85 7.54E-06

BP GO:0016192 vesicle-mediated transport 1.50E-09 2.85 7.54E-06

MF GO:0032555 purine ribonucleotide binding 2.09E-09 1.89 5.80E-06

MF GO:0032553 ribonucleotide binding 2.09E-09 1.89 5.80E-06

BP GO:0033036 macromolecule localization 7.35E-09 2.36 3.70E-05

CC GO:0043005 neuron projection 1.07E-08 3.66 8.76E-06

aGene Ontology category: BP = biological process, CC = cellular compartment, MF = molecular
function. bFold enrichment over expectation. cp value for enrichment after Bonferroni multiple test
correction.
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4.3 Conversion of Alu sequence into Camk2a-style

localization elements

In our search for localization factors in the retained introns of our 33 dendritically

localized genes, we looked for sequence motifs similar to the two previously charac-

terized dendrite-localization elements – the Camk2a element and the Map2 element,

both found in their respective gene’s 3′ UTR. The minimal Map2 element is large

(∼640 nts) and is predicted to form an extensive secondary structure [16]. We were

not able to find this element in any of the intronic sequences, though it is still possible

that specific submotifs may be present.

In contrast, the minimal Camk2a targeting element is small (∼50 nts). Mori

et al [15] characterized this element using deletion constructs as the necessary and

sufficient element for directing Camk2a mRNAs to the dendritic compartment. Based

on manual assessment of nucleotide sequence similarity, they were also able to identify

a corresponding element in neurogranin that also conferred dendritic targeting that

had ∼30 nt similarity with the Camk2a element.

4.3.1 Camk2a localization motif forms a local hairpin structure

Although Mori et al did not report any form of structural similarity among the

Camk2a and neurogranin localization elements, we hypothesized that secondary struc-

ture may contribute to their functional specificity. We performed a consensus sec-

ondary structure prediction using RNAalifold [77] on the rat and mouse Camk2a

localization elements as well as the rat neurogranin localization element, and found

that the sequences folded into a stable hairpin structure spanning 19 nucleotides of the

motif (Figure 4.10). A core region of three base pairs is perfectly conserved between

the three elements.
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Figure 4.10: Predicted structure of the Camk2a localization element. Consensus
secondary structure was determined using RNAalifold on rat and mouse Camk2a

element and rat neurogranin element. Red shaded base pairs indicate high-probability
interactions.

We investigated the stability of the hairpin in the context of the surrounding

transcript. In the context of the full UTR, none of the base pairs has greater than

0.01 probability of forming, as determined using RNAplfold [78], which measures

the local stability of structures in context. However, the hairpin does have high self

containment (SC = 0.96), indicating that in other contexts, the hairpin would have

a high probability of robustly folding. Given that transcript localization appears to

be modulated by additional motifs in the Camk2a 3′ UTR [15], these results are

not inconsistent, and may indicate that formation of the hairpin is regulated – i.e.,

by sequestering the sequence to allow it to fold properly – depending on whether

localization is desired.

4.3.2 Genome-wide scan reveals a large number of similar motifs

strongly associated with Alu elements

Using this structural specification along with the nucleotide similarity between the

localization elements, we constructed a search protocol to scan nucleotide sequences
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for candidate localization elements. We extracted all 19-nt segments with an N4-AGA-

N5-TCT-N4 sequence pattern (where Nk is any nucleotide sequence of length k) with

a predicted hairpin secondary structure. We additionally filtered out any sequences

with less than 11/19 nucleotide similarity to the rat Camk2a element, corresponding

to the sequence distance separating the neurogranin and Camk2a elements.

When we ran the search over the 33 dendritic genes, we found 282 instances of

candidate motifs spanning 29 of the genes, or an incidence rate of five per 100,000

nucleotides. Genome wide we found 138,967 candidates, corresponding to a roughly

equivalent incidence rate.

Upon closer examination of the genome-wide results, we found an enrichment in

candidate elements associated with repetitive sequence – 54 percent of the elements

overlapped a RepeatMasker-annotated repetitive element, compared to an overall

rat repeat genomic frequency of about 41 percent. Given that repetitive elements,

consisting of different classes of transposons plus low complexity sequence, may have a

higher tendency to form secondary structures, this result is not necessarily surprising.

However, when we broke down the repeats into their respective families, we found

a marked enrichment in Camk2a elements overlapping SINE/Alu-derived sequence

– nearly a five-fold enrichment over genomic frequency (Table 4.14), which is an

extremely significant deviation (p < 10−323 by a binomial test). These elements

include various B1 and proto-B1 (PB1 and PB1D) classes of retrotransposons, all of

which show enrichment over genomic frequencies (data not shown).

To verify that we were not biasing the results due to the secondary structure of

the Camk2a element, we constructed a ”decoy” element with the same secondary

structure but shuffled sequence, and performed an identical genome scan to the origi-

nal Camk2a scan, and found that the Camk2a candidates were enriched in SINE/Alu

sequence over the decoy frequencies as well (5.8 fold) (Table 4.14). We additionally
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Table 4.14: Rat repeat element families most frequently overlapping candidate
Camk2a-style elements

Genomic DECOY MOTIF CAMK2A MOTIF

Repeat Family Prop.a Countb Propc Enrichd Count Prop Enrich Enrich (d)e

LINE/L1 0.202 13018 0.232 1.150 32944 0.237 1.174 1.021

LTR/MaLR 0.036 4365 0.078 2.145 5774 0.042 1.145 0.534

LTR/ERVK 0.030 1664 0.030 1.006 4682 0.034 1.142 1.135

Simple repeat 0.022 943 0.017 0.775 3465 0.025 1.149 1.483

SINE/B4 0.020 1377 0.025 1.233 5973 0.043 2.159 1.750

SINE/B2 0.020 2433 0.043 2.222 1952 0.014 0.719 0.324

SINE/Alu 0.015 698 0.012 0.814 9981 0.072 4.699 5.770

Unknown 0.010 447 0.008 0.825 976 0.007 0.727 0.881

LTR/ERV1 0.009 406 0.007 0.797 1603 0.012 1.270 1.593

LTR/ERVL 0.008 518 0.009 1.131 2000 0.014 1.762 1.558

aProportion of rat genome annotated with the repeat family by RepeatMasker. bNumber of motifs
overlapping the repeat family. cProportion of the motifs that overlap the repeat family.
dFrequency of repeat overlaps for the motif divided by the genomic frequency. eFrequency of the
repeat overlaps for the Camk2a motif divided by the frequency for the decoy.

generated 1000 such decoy elements using an inverse folding algorithm (RNAinverse

[68]) and compared the frequency with which the Camk2a motif overlaps Alu ele-

ments to the frequencies for the decoys. Decoys overlap an average of 127.45 Alu

elements on chromosome 1, corresponding to an average Alu-overlap incidence rate

of 0.025 for decoy motifs. In contrast, 1070 of the 12,701 total Camk2a matches on

chromosome 1 overlap an Alu element, yielding a significantly higher incidence rate

of 0.084 (p << 1 x 10−16 by a Chi-squared goodness of fit test). Thus, the specific

Camk2a motif and not just hairpin motifs in general has significant similarity to Alu

elements.

We performed a similar analysis on the mouse genome and found 141,907 candi-

date elements that again showed a marked preference for overlapping Alu elements

(Table 4.15), at a rate 3.7 times the expected frequency. Additionally, we found that

B4 SINE elements as well as ERVL LTR elements occurred at more than twice the
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Table 4.15: Mouse repeat element families most frequently overlapping candidate
Camk2a-style elements

Genomic CAMK2A MOTIF

Repeat Family Prop.a Countb Propc Enrichd

LINE/L1 0.193 24945 0.176 0.910

LTR/MaLR 0.043 6368 0.045 1.037

LTR/ERVK 0.042 7146 0.050 1.198

SINE/Alu 0.025 13044 0.092 3.738

Simple repeat 0.024 4705 0.033 1.382

SINE/B2 0.022 1945 0.014 0.626

SINE/B4 0.022 6524 0.046 2.103

LTR/ERVL 0.011 3750 0.026 2.343

LTR/ERV1 0.010 1597 0.011 1.171

Low complexity 0.007 1167 0.008 1.108

aProportion of mouse genome annotated with the repeat family by RepeatMasker. bNumber of
motifs overlapping the repeat family. cProportion of the motifs that overlap the repeat family.
dFrequency of repeat overlaps for the motif divided by the genomic frequency.

expected frequency.

4.3.3 Genes with candidate Camk2a elements have neuronal

function

We performed a Gene Ontology enrichment analysis to determine if there was any

functional coherence in the genes containing candidate Camk2a motifs. Due to the

possible confounding effect of gene length – longer genes will be more likely to contain

matching motifs by chance, which would bias an enrichment analysis toward terms

associated with longer genes – it was necessary to construct a background set of genes

with similar length characteristics to the test set. 7779 RefSeq-annotated rat genes

contain Camk2a candidate motifs. From these, we partitioned a subset (∼ 10 percent)

with the highest degree of sequence similarity to the actual Camk2a localization

element, and tested enrichment in GO functional categories in this subset compared to

a background consisting of the entire gene list. Any overall length differences between
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Table 4.16: Most significantly enriched Gene Ontology terms in genes containing
motifs similar to the Camk2a localization element

Cat.a Term Description p value Enrich.b Bonferronic

CC GO:0016020 membrane 3.67E-09 1.26 2.41E-06

CC GO:0045202 synapse 7.04E-09 2.44 4.63E-06

MF GO:0060089 molecular transducer activity 1.77E-07 1.55 3.56E-04

MF GO:0004871 signal transducer activity 1.77E-07 1.55 3.56E-04

CC GO:0044456 synapse part 2.56E-07 2.72 1.68E-04

BP GO:0003001 gener. of a signal / cell-cell signaling 6.78E-07 2.93 2.64E-03

BP GO:0022610 biological adhesion 6.91E-07 2.00 2.69E-03

BP GO:0007155 cell adhesion 6.91E-07 2.00 2.69E-03

BP GO:0042476 odontogenesis 1.09E-06 6.94 4.23E-03

MF GO:0004872 receptor activity 1.56E-06 1.57 3.12E-03

BP GO:0007269 neurotransmitter secretion 2.98E-06 3.16 1.15E-02

BP GO:0007154 cell communication 3.94E-06 1.30 1.52E-02

BP GO:0007156 homophilic cell adhesion 7.08E-06 3.11 2.72E-02

CC GO:0045211 postsynaptic membrane 1.42E-05 2.71 9.28E-03

BP GO:0007399 nervous system development 1.50E-05 1.71 5.68E-02

aGene Ontology category: BP = biological process, CC = cellular compartment, MF = molecular
function. bFold enrichment over expectation. cp value for enrichment after Bonferroni multiple test
correction.

the genes in the foreground and background sets should not be due to random effects,

since there is no a priori reason to expect that motifs with more sequence identity

to the Camk2a element would be found more often in longer genes than equal-length

motifs with less sequence identity. Significantly enriched GO terms are show in Table

4.16 and include several terms relevant to neuronal biology such as “membrane,”

“synapse,” and “molecular transducer activity.”

A similar GO analysis performed using genes containing the decoy motif produced

no significantly enriched terms after multiple test correction.
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4.4 Discussion and conclusions

In this chapter we presented examples of modular RNA functionality mediated by

transposable elements. In the first section, we characterized the phenomenon of intron

sequence retention among a large number of dendritically localized mRNA of primary

rat hippocampal neurons; these introns provide a previously unreported context in

which localization elements may reside. Many of these introns harbor ID elements,

a class of SINE retrotransposon, that we showed confer dendritic targeting capacity

for the host transcript. Genome-wide characterization of ID elements revealed a

wide distribution across many transcripts, particularly neuron-function associated

genes. In the second section, we showed that the RNA structural motif responsible

for dendritic targeting of the Camk2a mRNA occurs throughout the rat genome and

is significantly associated with sites of SINE Alu element insertion, and again appears

to show a preference for arising in neuron-function genes. Both the ID element and

the Camk2a/Alu element show the capacity for the functionalization of transposable

elements in a way that affects fundamental neurobiology.

ID elements were previously implicated in brain-specific regulation [79]. Members

of the Brosius lab created transgenic mice with various ID elements, as well as the

5′ ID domain of BC1, fused to the 3′ UTR of EGFP and found that these sequences

were not sufficient for dendritic targeting in vivo. Additionally, ID elements occurring

endogenously in the 3′ UTR of neuronally expressed genes were tested for dendritic

localization and also found to be restricted to cell bodies [80]. In our experiments,

ID elements along with some degree of flanking intronic sequences were fused to the

5′ end of EGFP and transfected into cultured neurons. The sequence context in

which ID elements are presented in this system is, therefore, different from that of ID

sequences arising from coding or UTR sequences. There is evidence that targeting
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mechanisms can depend on intronic sequence. In Drosophila, correct localization of

oskar mRNA to the posterior pole of a developing oocyte requires the presence of an

intron [81], as the localization mechanism appears to be coupled to splicing.

An alternate explanation may be that the ID elements in rats have acquired novel

functional roles restricted to this species in comparison to mice. ID elements have

undergone great expansion in rats, with more than 145,000 instances of the 5′ target-

ing domain according to our analysis, while the mouse genome contains two orders of

magnitude less (approximately 680 instances). These numbers are consistent with a

previous survey of ID elements in rodents, which suggested a wide variety of genomic

distributions from estimates of 200 (guinea pig) to hundreds of thousands (rat) [76].

This suggests a surprising finding that evolutionarily-novel element expansion may

play a critical functional role in neuronal physiology. The acquisition of this func-

tional role may be mediated by the novel processing of retained introns, which creates

a different sequence context from the 3′ UTR sequences as well as a substrate for other

specificity-determining RBP factors. Functionalization of retroelements has been sug-

gested to provide a dynamic reservoir of rapid genome evolution [82, 83]. Here, we

provide strong evidence for evolutionarily rapid functionalization of a mobile element.

The variety of distribution patterns in our intronic in situ hybridization results

also highlights that there are multiple mechanisms for targeting of intron-retaining

transcripts in dendrites. The fact that exogenous expression of any particular intronic

ID element does not disrupt targeting of all intron-retaining transcripts shows that

targeting of intron-retaining transcripts involves multiple targeting mechanisms. If a

single mechanism were in place, transfection of any intronic ID element would block

the targeting all endogenous intron-retaining transcripts containing an ID element.

Our data indicate that at least three targeting mechanisms exist for intron-retaining

transcripts in dendrites: one which is common to CAMK2Bi3iD1 and FMR1i1ID1,
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one which is distinct for FMR1i1ID1, and one which is ID element independent. These

mechanisms coupled with those already proposed for the targeting of non-intron con-

taining mRNAs – i.e. those specific to Map2 and Camk2a – indicate that minimally

five distinct dendritic targeting mechanisms exist. The fact that neither these char-

acterized localization elements nor ID elements appear in all transcripts hypothesized

to be localized to the dendrites suggests that there are even more mechanisms in play.

The complexity of the dendritic mRNA targeting mechanisms further highlights

the fact that localization of mRNAs within the dendrite is important for neuronal

function. Indeed, when particular RNAs are present in dendrites their translation

can cause cell death [84], whereas other RNAs are important for aspects of learning

and memory [85, 86, 87, 88]. The evolutionary novelty of the ID elements within

the rat genome also suggests that the variety of localization mechanisms may rapidly

evolve and modulate species-specific characteristics of individual neuronal function.

As these targeting mechanisms come to be understood, insight into how they may

be regulated promises to provide important information with regard to maintaining

dendrite viability and function.

ID elements constitute an example of wholesale cooption of the sequence of a

transposable element, which, coupled with regulation in the form of intron retention

and possibly other mechanisms, can rapidly attain functionality. In the case of the

Camk2a localization motifs, our results suggest that transposable elements may also

provide the raw material for “cooption with modification,” such that a minimal num-

ber of nucleotide changes allow transposon-derived sequence to become functional

RNA elements. This appears to have been the case in Drosophila: versions of the

gurken mRNA localization signal are also found in G2, Jockey, and I factor transpos-

able elements, whose targeting competency and specificity was verified by injecting

labeled transposons into oocytes [89]. It is possible that the Camk2a element is itself
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derived from a transposon sequence or shares common ancestry with the Alu master

gene, which interestingly is believed to be the 7SL RNA [90, 91], the RNA compo-

nent of the signal recognition particle, which is responsible for protein localization.

The fact that many retrotransposons derive from ancestral RNAs [45], and thus may

still contain a high degree of biologically-relevant structure, reinforces the idea that

transposons constitute a supply of RNA building blocks from which novel function

can arise.

Many questions remain. Given the frequency with which ID elements appear

throughout the rat genome, regulation of intron retention must play a role in deter-

mining which of these are allowed to drive localization; however, the nature of this

regulation is still unclear. In particular, many of the ID-containing introns are orders

of magnitude longer than the coding exon, which would result in the export of an

extremely long quasi-mature mRNA out of the nucleus if the entire intron sequence is

retained; thus, perhaps only portions of the full intron are retained, possibly through

the use of cryptic splice sites.

As we described above, ID elements are not found in large number in the mouse

genome, implying that an alternate yet analogous mechanism could exist for mouse

dendritic localization. Preliminary evidence from our lab suggests that intron re-

tention is also present in mouse dendritic transcripts, so it remains to be seen if a

corresponding localization element can be found among these introns. If such an

element turns out to be a different characteristic mouse transposon, it would be an

example of conserved (or analogous) function in the absence of conserved mechanism.

Evidence of this pattern of functional analogy has already been found in the introns

of humans and mice, where there exist characteristic overrepresented sequence mo-

tifs whose sequence is not conserved between the two species but whose pattern of

occurrence in genes with specific functions appears to be correlated [92].
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Finally, we note that neuronal genes tend to be longer overall than genes not asso-

ciated with neuron function. Our set of 33 dendritic associated genes are on average

twice the length of the average RefSeq-annotated gene, a phenomenon that is due in

large part to the length and number of introns appearing in these genes. We have

taken measures to prevent length confounds in our analysis, specifically with respect

to gene enrichment, since longer sequences will tend to accumulate a greater number

of transposon insertions. However, is it correct to assume that these long introns

have no biological significance? Neuronal function is vital to the fitness of higher

organisms, so we might expect a high degree of conservation among essential genes

encoding the various neuron components – e.g. ion channels or vesicular proteins.

And yet, the diversity of neuronal function is apparent among species as closely re-

lated as rats and mice, implying rapid rates of sequence change. But perhaps we

can reconcile these two seemingly conflicting evolutionary forces with a more holistic

view of functionally-significant sequence change that includes intronic sequence. The

fact that neuronal gene introns are long may reflect some sort of selection for accu-

mulating a reservoir of RNA elements that initially have a neutral effect, by virtue

of being in a non-translated region of the gene, but then can rapidly become func-

tional in a way that affects the expression pattern of the transcript rather than the

protein code. Such a differential in the conservation rates of coding versus intronic

sequences is in fact observed among presynaptic genes, whose exons are highly similar

but whose introns are highly divergent between eight vertebrate species [93]. In this

way, rather than rapid evolution of the “what” – i.e., amino acid sequence – there

is rapid evolution of the “how,” “where,” and “when,” as a way to effect phenotypic

change.
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4.5 Materials and methods

4.5.1 Wet procedures

Culturing conditions Primary cultures from E18.5 rat embryos are plated at

100,000 cells per ml of Neurobasal medium and B27 (Invitrogen). Neurons are grown

on 12mm round German Spiegelglas coverslips (Bellco) coated with poly-L lysine

(Peptide Institute). mRNA amplification and cDNA labeling: Probes were generated

from mRNA isolated from dendrites. Dendrites were harvested by mechanical isola-

tion from primary rat hippocampal neurons (harvested day E18, cultured for 13 days).

Approximately 150 dendrites were used as template material for aRNA amplification.

Following three rounds of aRNA, labeled single stranded cDNA was generated by in-

corporation of amino-allyl labeled dUTP and conjugation with Cy3. Labeled material

from dendrites was hybridized to our custom microarrays and screened for positives.

Microarray sample preparation Fragments were amplified using forty rounds

of PCR with an annealing temperature of 50◦C. The template used was rat genomic

DNA isolated from rat liver. 1µg of each of 96 PCR products were submitted to

the University of Pennsylvania Microarray Facility for printing on Corning UltraGap

slides. These samples were dried and resuspended in 10µl of Corning Spotting Buffer.

1nl of each sample was then denatured and printed in each spot on individual slides

and cross-linked using ultra-violet light for immobilization.

Microarray detection Slides were blocked (pre-hybridized) at 42◦C for 3 hours

in 1% bovine serum albumin (BSA), 1% sodium dodecyl sulphate (SDS), and 3X

saline-sodium citrate (SSC). Hybridization was carried out in Corning slide chambers

for sixteen hours at 42◦C in a 25% formamide, 0.1% SDS, 4X SSC buffer with human
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Cot-1 DNA, single stranded (SS) poly dA and poly dT DNA, yeast transfer RNA

(tRNA) and T7-oligo dT primer as blocking agents. Slides were washed two times

for five minutes at room temperature (RT) in 2X SSC, 0.1% SDS, two times for

five minutes at 42◦C in 0.2X SSC, 0.1% SDS, and two times for five minutes at

RT in 0.2X SSC. Slides were scanned using an Axon Instruments GenePix 4200 series

scanner provided by the University of Pennsylvania Microarray Facility, and analyzed

with GenePix 6.0 software.

Intronic sequence subcloning It should be noted that the ID PCR products

do not contain the sequence found in the microarray PCR product. ID sequences were

found up to 600kb from the upstream splice site making it problematic to represent

the entire intron or the regions of interest in a single PCR product (Figure 4.5b).

In situ hybridization and imaging Antisense digoxigenin or biotin-labeled probes

were produced as runoff transcripts from plasmid DNAs that were digested at a site

downstream of the region to be transcribed. Primary rat hippocampal neurons were

fixed for 15 minutes in 4% paraformaldehyde, washed in PBS and permeabolized

with 0.3% TritonX-100. Cells were prehybridized at 42◦C with 50% formamide, 1X

Denhardt’s solution, 4X SSC, 10mM DTT, 0.1% CHAPS, 0.1% Tween-20, 500µg/ml

yeast tRNA, 500µg/ml salmon sperm DNA. In situ hybridization was performed at

42◦C with 10ng/µl (for EGFP probes) or 20ng/µl (for intron probes) probe in prehy-

bridization buffer with additional 8% Dextran sulfate. Rabbit anti-MAP2 antibody

was added to cells after probe hybridization followed by goat anti-rabbit antibody

and streptavidin conjugated to Qdot molecules for imaging. The samples were vi-

sualized by confocal microscopy. The emission wavelengths for each fluorescent dye

were selectively collected by specific spectral ranges of dyes with either slit width

(Olympus fluoview 1000, 60x N.A.1.2 or 20x N.A.0.7) or meta detector (Zeiss 510
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meta, 40x N.A 1.0). The collected images were minimally processed in Metamorph

image analysis software and extracted information in regions of interest was trans-

ferred to Excel. The images were background subtracted and scaled 0 to 2000 in 12bit

bit depth unless indicated in text.

4.5.2 Computational procedures

Software and implementation All computation was performed using custom-

written Python and R code run on quad-core Linux machines with 16GB of mem-

ory. RNA structure prediction was performed using Vienna RNAFold 1.7 [68]). Rat

genome sequence (v 3.4 [30]), mouse genome sequence (Build 37), RefSeq gene an-

notations, and RepeatMasker annotations were obtained from the UCSC Genome

Browser [94]. GO enrichment analysis was performed using the NIH DAVID server

(http://david.abcc.ncifcrf.gov/).

BLAST sequence analysis For the initial intron comparisons, pairwise NCBI

BLAST [95] was run on each pair of intronic sequences represented on the microar-

ray using an e-value cutoff of 1e-10, and results were clustered (single-linkage) based

on overlapping gene coordinates. Individual clusters were annotated for presence

of repetitive elements, including the ID element, using RepeatMasker [67]. To con-

struct the ID element genome-wide catalog, BLAST was run querying the canonical

RepBase ID element sequence against the entire rat genome sequence. Gene annota-

tions are based on RefSeq gene annotations for gene feature boundaries and strand.

Overlapping genes were considered ambiguous and not included for the purposes of

annotating ID element strand and feature preference.

Alignment of Illumina sequencing reads to rat genes Specific read cov-

erage for our 33 genes of interest was performed using Bowtie [72] version 0.9.8 using
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the default parameters on the rat genome. Only reads uniquely aligning to the gene

loci were defined as retained, except in reads aligning Stx1a, where we corrected for

the fact that the gene has two genomic copies. Paired-end reads were used to define

high-confidence regions present in the transcriptome samples, while additional read

coverage from unpaired single reads was used to augment the transcriptome maps

to mitigate reduced sensitivity from the paired-end analysis on shorter features and

lower-complexity sequences [72].

Alignment of Illumina sequencing reads to intergenic regions To de-

termine whether read alignment was specific to the intronic regions, and not endemic

to general non-coding regions, we analyzed read coverage in intergenic regions up-

stream and downstream of the 33 genes of interest such that the amount of repeat-

masked sequence roughly corresponded to the amount of intronic sequence per gene.

For each sequencing run, we compared the ratio of the number of aligning reads to the

cumulative nucleotide length for the intergenic regions and the intronic regions using

an Exact Binomial Test. Significantly higher ratios in the intronic regions indicate

enrichment in read coverage compared to the presumed background level represented

by the intergenic regions.

IGOR calulations Quantification paths are manually drawn tracing 3 dendrites

of selected cells based on MAP2 immunostaining. Path origins were chosen at the

somal end of the dendritic process. Generated paths are 11 pixels wide (4.4µm). The

average signal intensity along the paths were computed for the in situ hybridization

channel. These average intensities were normalized to the maximum signal along the

path. The average of the normalized values was computed for each cell and then

plotted against the distance from the path origin, using Graphpad Prism.
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Chapter 5

Identifying functional building

blocks of RNA

5.1 Introduction

Visual inspection of RNA structures reveals that there exist repeating structural

motifs that occur repeatedly in different RNAs regardless of their evolutionary re-

lationship. As we saw in Chapter 3, several different classes of RNA adopt similar

hairpin shapes, perhaps by virtue of the enhanced stability that that degree of base

pairing confers [1]. Loops, bulges, and stems all occur commonly throughout various

RNAs, and it would seem that there is some sort of structural vocabulary – a common

set of RNA building blocks – from which all RNAs are constructed. To what extent

are we able to identify and characterize these fundamental units?

Structural components of RNA There are several possible levels of resolution

to use when assembling a collection of RNA building blocks, many of which we have

alluded to in previous chapters. Our focus up to this point has been on RNA modules

on a somewhat macro scale – all of our RNA species of interest have been on the
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length scale of functionally independent RNAs. As modular building blocks, they

are components of multimeric RNA species – e.g., one pre-miRNA among several

in a primary transcript, or one of many localization signals in an mRNA. Structure

catalogs exist for large numbers of these RNAs, ranging from the general – e.g., the

RFAM RNA family database [2] – to the specific – e.g., cis-regulatory motifs in mRNA

untranslated regions are cataloged in UTRsite [3], and microRNAs in miRBase [4].

To generalize away from the level of well-defined RNA families, we can zoom in

or zoom out. Zooming out yields an abstract shapes approach, in which RNAs are

categorized based on their general shape properties rather than their specific base

pairing pattern or sequence. In [5], RNA structures are represented as generalized

stems and loops, de-emphasizing specific aspects such as exact stem length, which are

hypothesized to be of less importance. Thus, RNA structures will map onto a smaller

space of generalized RNA shapes, which can facilitate the discovery of large-scale

patterns in natural RNA structures.

At the opposite end of the spectrum is the level of nucleotide sequence. In a strict

sense, individual nucleotides – A, C, G, and U – are the fundamental building blocks

of RNA structures, and there do exist statistical properties at the level of nucleotide

content that both unite and distinguish various classes of RNAs [6]. However, given

the compact size of the nucleotide alphabet, a single-nucleotide representation of RNA

building blocks will not have enough power to capture much functional significance, in

addition to failing to capture any structural information, which by definition involves

multiple nucleotides.

Identifying and cataloging groups of nucleotides as RNA structural building blocks

has mostly proceeded through a biophysical approach, relying on three-dimensional

models of small RNA structures derived from crystallography experiments (e.g., [7,

8, 9]). In this sense, the prototypical RNA building block is defined as a fully-
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specified structural element – i.e., a full three-dimensional description rather than

just the base-pairing configuration – that appears in natural RNAs at a high rate.

Examples of such elements include various tetraloop hairpin motifs such as the GNRA

or UNCG, distinguished by the tertiary interactions between bases in the loop; the

“kissing hairpin loop” formed by base pairing of two loop sequences [10]; and the U

turn, characterized by a sharp bend in the RNA backbone followed by a base stacking

interaction between two nucleotides [11].

Characterizing the full repertoire of RNA structural motifs at this level of resolu-

tion will be vital to understanding the ways in which larger RNAs are composed; such

a task will require additional physical data, perhaps aided by more accurate molecu-

lar simulations from increased computing power. In the meantime, heavy reliance on

primary and secondary structure as surrogates for full three-dimensional specification

is necessary. A large number of strategies exist for RNA motif identification that

consider only sequence and secondary structure (reviewed in [12]). The general pro-

cedure consists of assembling a set of RNA sequences, then searching for a previously

identified structural element or mining the sequences for de novo common structure

patterns.

Functional components of RNA An implicit assumption we make when we

identify a common structural motif in two RNAs is that there is a functional analogy

present that is due to the structural similarity. RNA function does follow directly

from structure [13], a fact that is often exploited for inferring the function of novel

RNAs that are sufficiently similar in structure to RNAs that have already been well

characterized. Structural motif finding proceeds under this assumption. Common

function is assumed either from the groups of sequences compared (e.g. [14]) or from

the motif specification used in the search (e.g., [15]), which can be an effective ap-
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proach to find novel instances of specific structural motifs when they are hypothesized

to exist.

In assembling a set of RNA structural building blocks, our goal is actually to

assemble a set of RNA functional building blocks, which possess structures specific

to their function. Thus, fully attaining this goal requires characterization of the

functional repertoire of RNAs and elucidating the mapping between these functions

and the structured components that carry them out. As we described in Chapter 2,

various combinations and flavors of four basic RNA functions – nucleotide recognition,

catalysis, scaffolding, and biomolecule binding – define the functional specificity of

an RNA.

To our knowledge, an adequate catalog of the diversity of RNA function does not

exist. Specific functional annotations do exist for individual RNA families such as

tRNAs or snoRNAs [2], but comparisons between distinct classes of RNAs is difficult

due to the lack of a unified vocabulary of RNA function. In response to this deficit,

the creation of an RNA ontology has been proposed [9], but as of September 2009,

its status is unclear.

Some attempts have been made to broadly classify RNA functionality. In [16],

the authors created an integrated RNA database called NONCODE that collated

RNA sequences from disparate sources to unify their nomenclature. They used a

semi-automatic process to extract research articles of interest containing examples of

known RNAs, then manually curated the results into 111 different RNA classes. Ad-

ditionally, they created a process-function classification (PfClass) scheme consisting

of 26 keywords such as “RNA editing” and “Protein transport” with which to anno-

tate the classes. However, since over half of the PfClass keywords annotate only one

or two classes, the PfClass terms are of limited use for finding common functionality

among multiple RNA families.
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Creating an RNA ontology manually would be a laborious and subjective process,

given the growing number and diversity of RNA families that have been characterized

thus far. An appealing strategy would be to construct the ontology automatically us-

ing the information and annotations that already exist for many RNA families in

databases such as RFAM. Information extraction from free-text sources has been ex-

ploited for biological ontology construction and augmentation, notably for the Gene

Ontology (GO) [17], a manually curated, hierarchical vocabulary specific to the func-

tion and components of protein-coding genes. In [18], the authors used the statistical

properties of words found in MEDLINE abstracts associated with specific genes to

assemble a set of relevant ontology terms with which to annotate those genes. Two

challenges exist for this sort of approach: an appropriate vocabulary must be gener-

ated that is general but at the same time induces different, meaningful partitions on

the set of annotated items (genes); and the ontology terms must be used to accurately

annotate a list of genes, such that each term is a function or characteristic belong-

ing to a gene in question. Ideally, an ontology is specific to a particular domain or

subdomain, such that using an ontology for a different purpose than it was intended

may not be an optimal solution.

Chapter overview In this chapter, we take a functionally-driven approach to

identifying fundamental RNA building blocks. In Section 5.2 we undertake the com-

pletely automated construction of an RNA ontology using information extraction

techniques on free-text RNA family descriptions from Wikipedia. We test this on-

tology in various ways to assess its applicability to RNA biology and show that it

can be used as a framework for identifying the functional components of RNAs. In

Section 5.3, we use the ontology for two pattern-discovery tasks to map the functions

encoded by the ontology to structured components. In a “forward” approach, we as-
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semble groups of RNAs from unrelated families that share ontology annotations and

show that the RNAs contain significantly unique structural motifs that distinguish

them from RNAs that are not similarly annotated. These motifs may represent the

structured components that confer the functionality in question. In a complementary

“reverse” approach, we use a low-level structural encoding to decompose individual

RNAs into sets of motifs, then show that specific motifs shared among unrelated

RNAs are significantly associated with RNA functions defined by the ontology. In

this way, we show that there does exist a repertoire of functional building blocks

common among different RNA families, which can be characterized in further detail

using wet-experimental approaches and further refinements on the methods presented

here.

5.2 Functional classification of RNA families using an

automatically generated ontology

Our strategy was to generate a set of semantically meaningful words, each of which

describes some aspect of RNA biology, and together span the diversity of RNA func-

tion and constitute an RNA ontology. For each RNA family, a subset of these words

will be relevant and will serve as a functional annotation the family. Closely related

families are expected to be annotated with many words in common, while more dis-

tant families with some common functional aspect may share one or a few words.

The goal was to create this ontology in a completely automated fashion – i.e., nei-

ther the ontology construction nor annotation of RNA families should require human

intervention.

Fortunately, a large number of RNA families are included RFAM, the database

of RNA families [2], which as of January 2009 contained 1372 families defined by
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structural covariance models. Each RNA family is associated with a description that

consists of unstructured free text written by experts specifically for that RNA family

or superfamily. Recently these descriptions were ported to the Web encyclopedia

Wikipedia [19] and thus became freely editable by the scientific community at large.

The Wikipedia entries provide a framework in which each RNA family in RFAM

is associated with a set of words relevant to that RNA, though since the words are

organized into human-readable descriptions, they do not constitute a workable ontol-

ogy in their raw state. Our task then was to extract relevant ontology terms from

the free-text descriptions, and then annotate RNA families based on whether those

ontology terms appear in their respective Wikipedia descriptions.

5.2.1 Constructing the RNA ontology

There are a total of 633 Wikipedia entries spanning the 1372 RFAM families; in

several instances, more than one family points to the same Wikipedia entry, which is

written broadly enough to encompass all of the RNAs it annotates.

We assembled the Wikipedia documents and scrubbed them of their html and

Wikipedia-control content, then normalized word usage using a pipeline that included

stemming (i.e., removal of orthographic suffixes such as “-s” and “-ing”) (see Materials

and Methods). A total of 3306 words appear across all of the Wikipedia documents,

with 1557 words appearing in at least two different documents. We used a bag-of-

words document model [20], treating each document as an arbitrarily ordered 1557-

dimensional vector of word counts.

Next, our goal was to identify a subset of words that are uniquely informative

about RNA documents. Of the starting set of 1557 words, we anticipated three broad

categories of words: 1) words such as “the,” “and,” and “is” that will appear very

frequently in these documents, but contain little to no semantic information; 2) words
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such as “polymerase”, “spliceosome,” and “riboswitch” that are exclusively found in

RNA documents; and 3) words such as “involve,” “recent,” and “recognize” that are

semantically rich but may not be informative about RNA documents specifically. We

sought to include only words belonging to the second category and a subset of words

in the third category in the final ontology.

To distinguish these word categories, we constructed a background corpus of

67,299 Wikipedia documents from [21] on topics unrelated to RNA biology, and com-

pared the document frequencies of each of the 1557 words in the RNA corpus to their

frequencies in the background corpus; document frequency is defined as the number

of different documents in which a word appears at least once – i.e. the number of

instances of a word in a single document is not considered. Words appearing more

frequently in the RNA corpus compared to the background corpus will tend to be

specific to RNA biology, while words appearing equally frequently in the RNA and

background corpora will tend to be uninformative.

We used several methods to identify the informative subset of the 1557 words

and took the union of each of these methods, with the goal of creating the most

comprehensive, if not compact, ontology. First, we used a stop list consisting of 424

domain-independent commonly found utility words [22] to serve as a gold standard

of exclusion – these will consist of words belonging to the first category described

above. Next, we included all words that appear in Gene Ontology [17] category titles

but not in the stop list (632 words total).

Finally, we constructed two decision boundaries – a chi-square boundary and an

odds-ratio boundary [23] – and retained words with greater RNA document occur-

rence than background occurrence by an amount defined by the less restrictive of the

two boundaries (which was the odds-ratio boundary in most cases). We defined each

boundary by calculating the respective value for the set of stop-list words and setting
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the boundary such that 95 percent of the stop words are excluded. Accordingly, each

boundary would allow 11 stop words among the RNA-specific word set; however, we

retained only the six stop words common to both boundaries, comprising 1 percent

of the total number of stop words. These words were “small,” “known,” “non,” “c,”,

“o,” and “d,” each of which having biological significance: “small” as in “small RNA,”

known in the sense of experimentally verified, “non” as in “non coding,” “c” and “d”

referring to the C box and D box sequence motifs respectively, and “o” referring to

oxygen. Figure 5.1 illustrates these decision boundaries and the words that were

ultimately retained.

The final ontology consisted of 991 words (see Appendix), which is 30 percent of

the total number of words appearing in any RNA document and 63 percent of those

words appearing more than once. Figure 5.2 shows the distribution of document fre-

quencies for each of the terms. The top 5 percent of the terms according to document

frequency each annotate from 25 percent (“element”) to 90 percent (“rna”) of the

633 Wikipedia RNA classes. The majority (843) of the terms annotate fewer than 5

percent of the RNA classes.

5.2.2 Verifying specificity of the ontology

We verified the specificity of the ontology through a series of classification tasks using

a 991-dimensional document vector representation for the RNA documents.

First, we performed hierarchical clustering on the RNA document vectors. Visual

inspection of the dendrograms revealed that easily identifiable large groups of RNA

families such as the miRNAs and snoRNAs tend to cluster together in word space

(Figure 5.3). Given the diversity of document content especially for the individual

miRNA families, the ontology captures sufficient essential information from the RNA

documents that is commonly shared among closely related RNAs.
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Figure 5.1: Document frequencies of candidate RNA ontology words showing deci-
sion boundaries used to determine relevance. Words are plotted according to their
document frequency in the set of background documents and the frequency in the
set of RNA documents (points are jittered for better visualization). Retained words
(including words retained because they are used in GO annotations) are colored blue,
discarded words are colored in orange, and stop words are colored in dark orange. The
two dashed lines indicate the decision boundaries defined by the chi-square statistic
(left-most dashed red line) and the odds ratio (dashed green line). The solid blue line
indicates equal background and RNA document frequency of occurrence.

Next, we constructed a series of support vector machine (SVM) classifiers to test

the efficacy of the ontology in distinguishing between RNA documents and non RNA

documents. First, we trained an SVM to distinguish the 633 RNA documents from a

randomly selected 1266-subset of background Wikipedia documents. Training accu-

racy was 100 percent for both the positive and negative training sets. To test accuracy

on independent documents, we generated four additional corpora: a disjoint subset
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Figure 5.2: Document frequencies of ontology terms. The 991 ontology terms are
ordered on the x axis by document frequency. Individual examples of terms with
document frequency in parentheses are shown.
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Figure 5.3: Cluster dendrogram of RNA documents showing co-clustering of related
RNA families. Documents are clustered using average linkage on the Euclidean dis-
tances of the feature vector, defined as presence/absence of ontology terms. High-
lighted RNA families are IRES RNAs (green), microRNAs (MIR, purple), snoRNAs
of the H/ACA (SNORA) and C/D (SNORD) box varieties (dark blue and light blue
respectively), scaRNAs (orange), and spliceosomal RNAs (U, red).

of 633 background Wikipedia documents, a set of general-topic biological abstracts

extracted from PubMed, a set of RNA-specific abstracts from PubMed, and a set of

Reuters news articles from the Reuters-21578, Distribution 1.0, corpus [24], which
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Table 5.1: Document classification accuracy using the RNA ontology

Percent documents correctly classified

Test set Doc. count Full ontology Low-frequencya Random averageb

RNA training set 633 1.00 0.90 1.00

Background training set 1266 1.00 1.00 0.96

Background test set 633 1.00 0.99 0.92

Pubmed general 633 0.83 0.66 0.58

Pubmed RNA 633 0.85 0.83 0.63

Reuters news articles 633 1.00 0.99 0.89

aSubset of full ontology containing the 85 percent least frequently used terms (n = 849). bAverage
of 10 randomly-generated 849-word subsets of the full vocabulary from which the RNA ontology
was extracted.

constitute a truer negative test set than the Wikipedia articles since they were not

consulted during ontology construction. Test accuracy was high for all four test sets,

with the Wikipedia and Reuters sets achieving 100 percent classification as non-RNA

related, the general-biology abstracts achieving 83 percent classification as non-RNA

related, and the RNA-specific abstracts achieving 85 percent classification as RNA

related (Table 5.1).

To assess the performance of the ontology terms less frequently appearing in the

RNA documents, we partitioned a subset of the 849 terms with the lowest RNA

document frequency (∼ 85 percent of the total ontology) that spanned 90 percent of

the RNA documents; the most common term in this subset, “spliceosome,” appears

in 33 different RNA documents, or ∼ 5 percent. We repeated the SVM classifier

tests using the subset (low-frequency subset), and again found favorable performance

(Table 5.1). Correct classification of general-topic biology abstracts did decrease to

66 percent, but considering that some of the ontology terms likely have applicability

to non-RNA-specific functionality, this result does not necessarily detract from the

efficacy of the ontology.

Finally, we randomly extracted 10 849-term subsets from the original candidate
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word list of 1557 words and compared performance of these random subsets to the

performance of the ontology low-frequency subset when used to train an SVM for

RNA document classification. These random subsets exclude the 207 terms occurring

in more than 33 different RNA documents, in order not to bias the subsets in favor

of highly identifiable RNA words such as “rna” or semantically generic words such

as “the.” The low-frequency subset outperformed all of the random subsets in all

test cases; given that training accuracy on the RNA documents actually decreased in

the low-frequency subset, we can conclude that the ontology terms generalize better

to unseen RNA-related documents than randomly selected words appearing in RNA

Wikipedia articles (Table 5.1).

5.3 Functionally related RNAs display characteristic

structural signatures

With characteristic descriptors in place for a large number of RNA families, we looked

for enrichment of sequence and structural motifs associated with functionally related

subsets of RNA families. We took two approaches. In one approach, we identified

groups of RNA families sharing similar characteristics and performed structural motif

finding to identify enriched structures shared between different families. In a second

approach, we encoded the RNAs using a low-level structural representation and looked

for enrichment in ontological terms associated with these low-level motifs.

5.3.1 Ontologically similar RNA families contain common motifs

Assuming accurate annotation of the RNA families in the Wikipedia documents, we

would expect that the groups of RNA families annotated with the same ontological

terms would share some sort of biological function or characteristic, which may be
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correlated with a set of structural features. To test this, we performed structural

motif finding on the sets of RNA families annotated by each of 689 of the ontology

terms. We excluded both frequently used terms (ones that annotate greater than

one-third of all of the RNA families) and infrequently used ones (annotating fewer

than three RNA families), with the goal of isolating biological functions with some

specificity.

We used the motif-finding pipeline implemented in RNApromo [25], which is tuned

to find common sequence/structure motifs in the size range of 15 to 70 nts; these

motifs each constitute well-formed structures – i.e., all base pairing occurs within the

motif and not to sequences outside of it. For each ontology term, we assembled a

balanced subset of RFAM RNA sequences belonging to the families associated with

the term, ensuring that no one family dominated the sequence set, which would bias

the motif finder toward structural elements specific to that RNA family (see Materials

and Methods). Where common motifs exist, up to 10 possibly overlapping structure

definitions are returned in the form of a set of covariance models.

Each structural motif induces a distribution of likelihood scores for each set of

input RNA sequences; if the motif is in fact characteristic of some shared struc-

ture/function unique to the specific RNA families, then these likelihood scores should

be significantly higher than those produced for a background set of unrelated RNA

sequences. Assembling an appropriate background set is a non-trivial task, as length,

nucleotide content, and other structural features has an impact on the structural rich-

ness of an RNA sequence [26]. Using nucleotide-shuffled same-length versions of the

input sequences does control for length, but much of the structural potential is lost

[27]. Thus, we constructed custom background sequence sets for each group of input

RNAs, drawing randomly from real RFAM RNA sequences belonging to families not

included in any of the input RNAs. These sequences are truncated or concatenated
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in order to match the length distribution of the input set.

Given the input and background RNA sets, we calculated likelihood scores for

each of the RNAs and performed a t-test, testing for the null hypothesis that the two

sets of RNAs are drawn from the same distribution of likelihood scores. We applied

a conservative Bonferonni correction for multiple hypothesis testing (number of tests

∼ 10,000) and found that 339 of the ontology terms annotated RNA families sharing

significantly similar structural components, using a p < 0.05 cutoff.

The 10 most significant motifs and their associated ontology terms are presented in

Figure 5.4. The terms “mi#” and “mipf#” are both gene symbol prefixes for miRNA

genes, and as expected their motif is a long stem-loop structure characteristic of a pre-

miRNA. Interestingly, there seem to be weak nucleotide preferences along the stem

and in the loop that may indicate Drosha- or Dicer-imposed constraints on substrate

specificity.

Two additional highly significant terms are “movement” and “attenu[ate],” both

of which annotate a group of RNA motifs that occur upstream of bacterial operons.

These RNAs, exemplified by the Tryptophan operon leader, are regulators of tran-

scription by a mechanism of negative feedback. During transcription of the trp operon,

the leader sequence is transcribed first and is immediately bound by a ribosome to

commence protein translation (a phenomenon that occurs only in prokaryotes, which

do not sequester transcription inside a nucleus). The leader encodes a short peptide

consisting of several consecutive tryptophans. Under high concentrations of trypto-

phan, this peptide is rapidly translated, which causes a conformational change in the

mRNA at the site of the leader RNA. The hairpin structure that forms blocks the

movement of RNA polymerase, leading to the attenuation of transcription [28, 29].

Other significant ontology terms shown include “nucleophil[e],” which annotates

23S rRNA, U2 spliceosomal RNA, Hammerhead ribozyme, and Group II intron, and
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mi# movement muscle attenuate mipf#

adenine nucleophile threonine coronavirus minus

p = 1.7e-59 p = 2.5e-49 p = 7.8e-47 p = 2.2e-46 p = 3.8e-41

p = 3.9e-41 p = 1.6e-39 p = 1.1e-38 p = 4.9e-38 p = 7.9e-38

Figure 5.4: Most significant common motifs occurring in RNAs annotated by ontology
terms. P-values are calculated as described in the text and are Bonferonni corrected.
Nucleotide color indicates the degree of similarity at that position in the RNAs where
the motif appears, ranging from red, indicating 100 percent shared, to green, 50
percent shared. Structure elements (free bases and base pairs) are similarly shaded
according to the degree of similarity among the RNAs, with black indicating 100
percent shared.
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thus refers to the nucleophilic attack reactions involving or catalyzed by these RNAs;

“coronavirus,” which annotates several separate RNAs specific to coronaviruses; and

“minus,” which annotates several viral RNAs involved the regulation of minus-strand

RNA synthesis.

In the case of the term “muscl[e],” the annotated RNAs appear all to be RNAs

that are expressed in muscle cells, consisting of three miRNAs and a snoRNA. Based

on the structure of the motif, a long hairpin with extensive nucleotide similarity, it is

likely that the motif in fact captures similarity in only the muscle-specific miRNAs.

To refine the search, we repeated the procedure using pairs of ontology terms –

i.e., Wikipedia documents annotated by both terms in a pair are purported to share

functionality defined by the two terms. Starting with each single ontology term, we

selected a second term that co-occurs with the first term in a subset of the Wikipedia

documents. This second term was selected to maximize informativeness as measured

by entropy – i.e., if a set S of Wikipedia documents is annotated by the first term, and

a subset T ⊆ S, where |T | (size of T ) is a fraction p of |S|, is additionally annotated

by some second term x, we calculated Ix = −p lg p − (1 − p) lg(1 − p) for each x and

chose x to maximize Ix. Intuitively, if the two terms annotate nearly all of the same

documents annotated by the first term alone, the second term adds little information;

conversely, if the two terms annotate a very small fraction of documents, the second

term is too specific. After grouping together term pairs annotating identical document

subsets, we obtained 316 groups of ontology terms that contain significantly similar

motifs.

The most significant motifs are annotated by ontology terms which themselves

already define highly significant structural motifs in isolation. In some cases the ad-

ditional terms serve to disambiguate the biological characteristic. For instance, the

term “movement” now unambiguously is associated with attenuation, since it appears
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Table 5.2: Most significant ontology term combinations

Ontology terms p-value of most significant motifa

small, mi# 1.08E-64

threeprim[e], extent 2.15E-62

imped[e], upstream, defici[ent], attenu[ate], movement 2.60E-51

small, muscl[e] 3.46E-47

nucleotid[e], purin[e] 1.03E-46

ribosom[e], excess 2.16E-46

nucleotid[e], coronavirus 6.81E-46

bacteri[a], antitermin[ate] 1.29E-44

known, bacillus 1.46E-44

ribosom[e], 23s 7.79E-44

aP-values are calculated as described in the text and are Bonferonni corrected.

along with “attenu[ate]” and other associated terms (Table 5.2). However, in other

cases, using multiple ontology terms to generate RNA subsets does narrow down the

functional aspect of interest. Figure 5.5 shows examples of these, including “pro-

teobacteria” + “upstream,” which annotate a set of riboswitches in Gram-positive

bacteria; and “mrna” + “transport,” which annotate transcripts that undergo sub-

cellular compartment localization.

It is worth noting that arbitrary combinations of ontology terms can also be used

to return a set of related RNA families that may contain common structural motifs, as

an alternative to manual curation of relevant RNA sequences to investigate a function

of interest.

5.3.2 Small RNA motifs are enriched in specific ontology terms

Characterizing structure-function relationships can also proceed in a reverse direction

– we can ask whether a specific structural motif appears in different RNAs from

families that share a biological function, as defined by the RNA ontology. In an

analogous process to performing Gene Ontology enrichment analysis [17], we sought
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threeprime

pathogen

proteobacteria

upstream

mrna

transport

bacteria

biosynthesis

destabilise

element

p = 7.6e-34 p = 8.0e-29 p = 3.2e-27 p = 1.5e-26 p = 1.8e-23

Figure 5.5: Significant common motifs occurring in RNAs annotated by pairs of
ontology terms. P-values are calculated as described in the text and are Bonferonni
corrected. Nucleotide color indicates the degree of similarity at that position in the
RNAs where the motif appears, ranging from red, indicating 100 percent shared, to
green, 50 percent shared. Structure elements (free bases and base pairs) are similarly
shaded according to the degree of similarity among the RNAs, with black indicating
100 percent shared.

to look for enrichment of specific RNA ontology terms in small structural motifs

spanning multiple RNA families.

In the previous section, we focused on small, well-formed motifs in the length

range of 15-70 nucleotides, which was a consequence of the motif finding algorithm

we used (RNApromo). The motifs returned were predominantly hairpin shapes (Fig-

ures 5.4 and 5.5) that corresponded to larger-scale characteristics – i.e., the miRNA

precursor hairpin. However, we were also interested in identifying smaller, less struc-

tured components that may have specific functionality – e.g., a catalytic domain or

a recognition motif. For example, C/D snoRNAs are defined by two small motifs,

a six-nucleotide C box (UGAUGA) and a four-nucleotide D box (CUGA) [30]. The
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BC1 RNA contains at least three localization motifs, one of which is a single U nu-

cleotide bulge in an otherwise uninterrupted stem region [31]. Although these motifs

generally require appropriate context in which to function – for example, the C and

D boxes must be positioned opposite each other in the secondary structure in order

to facilitate tertiary interactions – we hypothesized that it is possible to recognize

these signals in isolation, on the basis of the functional annotations of the RNAs that

contain them.

In designing an RNA structure database search protocol, Xue et al. defined a rep-

resentation scheme in which the linear sequence/structure of the RNA is partitioned

into a set of k-nucleotide segments [32]. Each segment encodes a motif that consists

of the structure of the k consecutive nucleotides (unpaired or paired) as well as some

amount of sequence information, depending on the degree of generality desired. In

this way, an RNA structure is scanned from 5′ to 3′ using a sliding k-nt window,

and can be represented as an unordered count of the number of times each motif

appears, or as a binary vector indicating presence/absence of a particular motif in

the RNA (Figure 5.6); thus, the presence of common motifs among different RNAs is

manifested in the similar vector components in the RNA representations.

For the RScan database scanning task, the authors used k=7-11 which led to a

highly specific representation for individual RNAs, thus an efficient database lookup.

Xue et al. also used their RNA representation in their work predicting miRNA genes,

and used k=3 to capture general properties of miRNA hairpins compared to hairpins

occurring in protein-coding regions [33]. Based on initial tests, we chose to use a

degree of specificity conferred by a motif size of k=4. Each nucleotide in an RNA

sequence can be in one of three structural states – base paired with a downstream

nucleotide, “(”; base paired with an upstream nucleotide, “)”; and unpaired, “.” –

and have one of four base identities – A, C, G, U – for a total of 3x4 = 12 different
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(...ACUU 1
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GCCACUUUGGGAUGGCGGGGCACUGGGGAUGCUC

((((........)))).(((((.......)))))
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))).GGCG 1

)).(GCGG 1

).((CGGG 1

.(((GGGG 1

.)))AUGC 1

.)))AUGG 1

((((GCCA 1

..))GAUG 2

...)GGAU 2

....CUGG 1

....CUUU 1

....GGGA 2

....GGGG 1

....UGGG 2

....UUGG 1

....UUUG 1

Figure 5.6: Example of structural motif encoding. Two different motifs are illustrated
on the RNA sequence. Numbers next to each motif indicate the number of times the
motif appears in the RNA.

characters per nucleotide. For k=4, there are 124 = 20,763 possible motifs, though

not all of these are biophysically feasible.

Using this representation, we scanned the RFAM sequence set, which consists of

154,875 sequences containing a total of 18,991 different 4-nt motifs. To determine

whether any of these motifs possessed putative functional significance, we associated

each motif with a set of ontology terms based on the RNAs that contain that motif:

given a motif m, we generated a list of the n individual RNAs that contain m; a single

RNA may contain multiple copies of m, in which case that RNA is counted twice.

Each of the RNAs in the list will belong to some RNA family that is annotated by a

set of ontology terms. Then, for each motif, we can assemble counts of the number

of times an ontology term is used to annotate an RNA in the list; these counts will

sum to n.

Enrichment of any one ontology term for a motif is determined by comparing the
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observed number of times the term annotates one of the n RNAs in the motif list

to the expected number of times that term should appear in a list of size n, given

population-wide frequencies. These expected frequencies are calculated by summing

the total number of RNA segments associated with an ontology term and dividing

by the total number of motif instances (22,901,664). To determine significance, we

calculate a Chi square goodness-of-fit statistic and apply a conservative Bonferonni

correction for multiple tests (2×104 motifs × 103 ontology words = ∼ 108 individual

tests, leading to a Chi square critical value of approximately 36 to achieve a corrected

p value < 0.01). We additionally filtered the ontology terms to exclude any term

that annotates fewer than five different RNA families containing the given motif, to

ensure that we were not selecting ontology terms that were overly specific.

In all, 6659 of the motifs showed significant ontology term enrichment. The

most significant of these are shown in Table 5.3. Motifs are represented as an eight-

character string, with the first four characters specifying the structure of the motif and

the second four characters the sequence. Based on the ontology terms returned, these

motifs appear to be characteristic structures in specific superfamilies of RNA that are

highly represented in RFAM. For example, two of the top motifs are annotated with

terms pertaining to H/ACA snoRNA function (“aca#,” “snora#,” “uridine”), and

are presumably highly conserved motifs among these RNAs. The motif enriched in

“revers[e],” “transcriptas[e],” and “step” are drawn from RNAs with cis 3′ regulatory

function that happen to include retrotransposon-associated structures such as the R2

RNA element and the eel UnaL2 LINE 3′ element.

Among the motifs with slightly less significant term enrichment are ones that have

previously been functionally characterized. Of note is the D box motif, which con-

sists of an unstructured CUGA region (“....CUGA”), and is highly enriched in terms

specific to C/D type snoRNAs including the easily identifiable “cuga” and “cslashd”
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Table 5.3: Top 5 motifs with most highly enriched ontology terms

Motif Term Observeda Expectedb Enrichment Chi-squarec N. familiesd

(...GUUC modifi 14032 2057.2 6.82 79214.2 28

remov 13898 2053.3 6.77 77631.3 5

arm 14531 2265.9 6.41 76505.6 37

enzym 13932 2117.6 6.58 75209.6 19

recognit 14024 2236.2 6.27 71464.1 28

((..GGUU modifi 14595 2490.4 5.86 66863.1 33

remov 14464 2485.6 5.82 65584.3 6

polypeptid 14937 2669.9 5.59 64689.8 6

arm 15090 2743.0 5.50 64045.6 41

enzym 14455 2563.4 5.64 62942.1 13

))..CUAC mbi 7049 796.2 8.85 53435.3 13

aca# 7183 985.8 7.29 43302.9 40

molecular 7156 1013.0 7.06 41530.9 32

uridin 7273 1174.9 6.19 35947.6 66

snora# 7261 1180.5 6.15 35593.3 59

....CAGU mbi 9794 1434.7 6.83 52995.7 19

aca# 10255 1776.4 5.77 44977.3 61

molecular 10131 1825.5 5.55 42127.4 42

uridin 10472 2117.2 4.95 37442.8 109

snora# 10467 2127.4 4.92 37153.9 99

.)))AAAA transcriptas 1264 32.8 38.59 46658.2 5

revers 1266 39.3 32.19 38639.6 6

determin 1816 350.3 5.18 6712.5 61

step 1897 424.6 4.47 5702.8 86

element 2064 627.9 3.29 3885.9 64

aNumber of motifs observed among all RNAs annotated by a term (154,875 total RNAs with 22,901,664 total

4-mers). bNumber of 4-mers expected to be annotated by a term, given the RFAM-wide frequency. cChi-square

statistic per term given observed and expected frequencies. All p-values are << 10−300. dTotal number of families

with RNAs containing the motif and annotated by the term.
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Table 5.4: Top 10 ontology terms enriched in RNAs containing the D box motif

Term Observeda Expectedb Enrichment Chi-squarec N. familiesd

cuga 1974 411.9 4.79 6119.8 270

cslashd 2245 521.8 4.30 5931.9 288

ugauga 1942 410.0 4.74 5912.7 268

snord# 1544 337.1 4.58 4437.5 189

snorna 2541 782.2 3.25 4210.9 332

biogenesi 1970 521.2 3.78 4197.9 277

box 2875 968.1 2.97 4062.5 323

ribos 1416 315.5 4.49 3935.4 184

modifiy 1095 276.9 3.95 2470.5 151

ncrna 1240 339.5 3.65 2453.0 176

aNumber of D box motifs (“....CUGA”) observed among all RNAs annotated by a term (154,875 total RNAs with

22,901,664 total 4-mers). bNumber of 4-mers expected to be annotated by a term, given the RFAM-wide frequency.
cChi-square statistic per term given observed and expected frequencies. All p-values are << 10−300. dTotal number

of families with RNAs containing the motif and annotated by the term.

annotations (Table 5.4). Similarly, the ACA box motif has significant enrichment of

terms relevant to H/ACA type snoRNAs. In snoRNAs, ACA boxes are normally 3′ of

an adjacent stem region, leading to a motif representation of “)...NACA” where the

first nucleotide is base paired, with arbitrary base identity. The “)...UACA” motif

in particular is strongly enriched in terms relating to mouse brain-specific snoRNAs

(“mbi,” “mouse,” “nucleolar”) and may represent a nucleotide preference for this

subset of snoRNAs (Table 5.5)

Finally, we sorted all of the significantly enriched ontology terms across all motifs

and extracted terms that appear rarely in the enrichment lists. Twenty-two terms

are enriched for only one motif, including “gc,” “stress,” and “pathogen” while an

additional 20 are enriched in only two motifs, including “shock,” “hydrolysi[s],” and

“fibrillarin.” Two examples are shown in Table 5.6: “gc” appears in a term enrichment

list along with “untransl[ate]” and “riboswitch”; and “antitermin[ate]” appears in

two lists along with “gram,” “posit[ive],” “bacteria,” and “leader.” Based on these

annotations, these motifs appear to be characteristic to RNAs involved in bacterial
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Table 5.5: Top 10 ontology terms enriched in RNAs containing the ACA box motif

Term Observeda Expectedb Enrichment Chi-squarec N. familiesd

mbi 5380 659.3 8.16 36778.5 14

aca# 5492 816.3 6.73 29766.1 39

molecular 5469 838.9 6.52 28491.0 31

snora# 5691 977.6 5.82 25827.0 71

uridin 5665 972.9 5.82 25699.3 77

hslashaca 5782 1089.4 5.31 23337.3 95

nucleolar 5789 1180.9 4.90 21031.8 111

class 6270 1640.7 3.82 16358.9 122

mous 5545 1344.1 4.13 15726.8 67

modif 5914 1685.7 3.51 13375.6 109

aNumber of ACA box motifs (“)...UACA”) observed among all RNAs annotated by a term (154,875 total RNAs

with 22,901,664 total 4-mers). bNumber of 4-mers expected to be annotated by a term, given the RFAM-wide

frequency. cChi-square statistic per term given observed and expected frequencies. All p-values are << 10−300.
dTotal number of families with RNAs containing the motif and annotated by the term.

attenuation.

5.4 Discussion and conclusions

In this chapter, we showed it is possible to identify functional building blocks common

to ostensibly unrelated RNAs. Using an automated information extraction approach

on a set of Wikipedia free-text RNA family descriptions, we constructed an ontology

of RNA-specific terms that encode functional aspects of RNA biology. We showed

that this ontology has a range of specificity in terms of the numbers of distinct families

each term annotates, and that together even the rarest of these terms can distinguish

RNA-related content. Under the hypothesis that the terms in the ontology constitute

a set of fundamental functions, we sought to associate these functions with structural

patterns across all RNA families. RNAs annotated by specific ontology terms were

found to contain significant characteristic structural motifs, and individual structural

motifs spanning multiple different families were found to be significantly associated
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Table 5.6: Motifs containing rare ontology terms

Motif Terma Observedb Expectedc Enrichment Chi-squared N. familiese

..((CAAC gc 25 2.1 11.83 248.1 5

untransl 76 25.2 3.02 104.4 5

low 28 6.5 4.32 71.8 8

riboswitch 107 50.0 2.14 67.0 11

modif 454 331.2 1.37 57.5 49

))))UCGU antitermin 325 46.7 6.96 1673.5 5

gram 410 82.9 4.95 1313.4 8

leader 565 177.5 3.18 878.1 21

posit 1437 713.6 2.01 860.6 67

bacteria 1737 1033.8 1.68 608.7 33

....CGUU antitermin 185 33.8 5.47 682.4 5

gram 216 60.0 3.60 413.0 11

box 535 263.1 2.03 303.9 101

bulg 373 171.9 2.17 247.6 36

element 855 539.4 1.59 218.4 91

aRare ontology terms are bolded. bNumber of motifs observed among all RNAs annotated by a term (154,875 total

RNAs with 22,901,664 total 4-mers). cNumber of 4-mers expected to be annotated by a term, given the RFAM-wide

frequency. dChi-square statistic per term given observed and expected frequencies. eTotal number of families with

RNAs containing the motif and annotated by the term.
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with specific ontology terms. Together these results reflect an underlying structure-

function relationship that can be encapsulated in the form of elemental building-block

units, which combine together to form a functional RNA species.

The fact that common structural motifs exist between related families is perhaps

not surprising; many of the families are defined in a way that facilitates natural

groupings, such as snoRNAs. However, the framework provided by an RNA ontol-

ogy allows longer-distance relationships and commonalities to be discovered. For

example, we found a motif annotated by the term “nucleophil[e]” that unites sev-

eral different ribozymes and reflects the presence of common catalytic domains that

perform the same biochemical function. Similarly, we found motifs associated with

general “mRNA” “transport,” a mechanism known to involve disparate RNA factors

in different settings, which may have previously unreported similarities reflected in

these motifs.

Our results are notable in that we used a relatively sparse corpus, consisting solely

of short Wikipedia descriptions, to construct the ontology. Previous attempts at on-

tology construction (e.g., [18]) relied on extracting statistical signals from several

documents per annotation, which would likely result in a more precise and focused

ontology. That we are able to construct a functionally rich ontology that can facili-

tate in identifying functionally relevant RNA structures is evidence that there exists

a strong association between structure and function beyond family-level functional

annotations, that can be elucidated using computational techniques.

Further refinements of the ontology will lead to stronger associations of function

with structure. Though the ontology in its current state seems to be semantically rich,

it is not sufficiently compact, as evidenced by the inclusion of terms with high degrees

of semantic similarity. Some of this is due to limited detection of morophological

forms, a situation that can be helped by replacing the Porter stemmer with a more
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complex morphology detection scheme. Whereas the Porter stemmer is a rule-based

method, a statistical-based approach may be appropriate here, in which stemming

behavior is based on the occurrences of words and roots as measured in a large

corpus [20]. The fact that a large amount of scientific jargon with irregular derivations

appears in biological text suggests that word usage should be taken into account in

this task.

A large part of the ontology redundancy is also due to synonymy, where many

words are different ways of expressing the same thing. Given a larger corpus, we

might be able to take advantage of machine-learning methods (e.g., as used in [34])

that detect word associations and can collapse synonyms (e.g., different gene names)

into single unified terms.

In applying the ontology to identify functionally related structural motifs, we used

the motif detection algorithm implemented in RNApromo, as well as a version of the

low-level motif representation used in RScan. However, the pipeline we present is

general, such that any of a large number of motif-finding methods may be used in

their place, depending on the nature of the task. For instance, a search for function-

ally relevant stem structures could proceed using a search algorithm well suited to

such structures (e.g., [35]). One particular area of interest is bistable RNAs such as

riboswitches [36], in which two or more energetically-similar conformations exist for

the same sequence [37]. In this case, a structural representation that simultaneously

considers both conformations could be used to detect similarities with other RNAs

that may not be found using a single static structure.

Our work represents the first large-scale attempt to encapsulate RNA functionality

in way that reveals aspects of the organizing principles that define RNA structures.

Thus, we present a model in which RNAs are composed of conceptual and physical

building-block components that can be individually characterized. A broad under-
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standing of these components will help in reconstructing the evolutionary histories of

the wide diversity of extant and ancestral RNAs and will facilitate the annotation of

novel RNAs.

5.5 Materials and methods

Software and implementation All computation was performed using custom-

written Python and R code run on quad-core Linux machines with 16GB of memory.

SVM construction and prediction was done using the R package e1071. RNA struc-

ture prediction was performed using Vienna RNAFold 1.7 [38]. RNA sequences were

obtained from RFAM 9.1 full sequence lists [2] and filtered to exclude highly similar

sequences using Cd-hit, which implements a greedy clustering algorithm [39]. Version

1.2 of the Gene Ontology was obtained from the Gene Ontology Website [40].

Corpus preparation The 633 Wikipedia documents were converted to clean

ASCII using the Linux tr command and stripped of all html tags and Wikipedia

special syntax, defined as any set of characters nested in angled or square brackets

(e.g., “<tag>” or “[1]”). All whitespace was converted to single spaces, and a set of

known abbreviations were converted to a standard nomenclature (see Table 5.7). We

performed sentence boundary detection to disambiguate abbreviations containing the

period (“.”) character and treat such abbreviations as single words. Subsequently, all

non-alphanumeric characters were replaced with spaces and all alphabetic characters

were converted to lower case.

Next, we extracted a dictionary of all alphanumeric strings (5143 words total)

appearing anywhere in the cleaned Wikipedia documents. Each word was stemmed

using a two-pass scheme starting with the standard Porter stemmer [41] implemented

in Snowball [42], which uses orthographic cues to detect common suffix structure (e.g.,
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Table 5.7: Known abbreviations converted prior to ontology creation

Abbreviation Converted form

3’ threeprime

5’ fiveprime

2’0 twoprime o

2’ twoprime

H/ACA HslashACA

B/C BslashC

C/D CslashD

P10/11 P10slash11

J2/3 J2slash3

C’/D CprimeslashD

G/C GC

A’ Aprime

C’ Cprime

D’ Dprime

5.8S fivepointeightS

5.8 S fivepointeightS

i.e. i.e

et al. et.al

vs. vs

C. elegans C.elegans

B. subtilis B.subtilis

E. coli E.coli

C. difficile C.difficile

S. typhimurium S.typhimurium

D. melanogaster D.melanogaster

H. influenzae H.influenzae

S. coelicolor S.coelicolor

A. thaliana A.thaliana

S. aureus S.aureus

Y. pestis Y.pestis

V. cholerae V.cholerae
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plurals, verb tense), followed by a custom protocol to handle suffixes of biological

words: 1) any word greater than two letters long that ends with “s” has the “s”

removed if the resulting root also appears in the dictionary (e.g., “miRNAs” becomes

“miRNA”); and 2) gene names of the form [a-z]+[0-9]+ – i.e., one or more letters

followed by one or more numbers – are truncated to include only the alphabetic

portion plus a generic number marker (e.g., “mrpl20” becomes “mrpl#”). All of the

original words in the Wikipedia documents were translated to corresponding words

in the reduced dictionary, which consisted of 3306 words.

A background corpus of 67,299 non-RNA-related Wikipedia documents was col-

lected from the Wikimedia XML Corpus [21] main English collection; documents in

the subject categories “Agriculture,” “Chemistry,” and “Physics” were excluded due

to possible similarity to biology-related documents. The two PubMed journal abstract

corpora were constructed from March 2009 downloads of abstracts using the NCBI

Web interface [43]. RNA-specific abstracts were obtained by searching using the

keyword “RNA.” The Reuters corpus consisted of a random subset from the Reuters-

21578 Distribution 1.0 Corpus [24]. All corpora were processed identically to the

procedure used for the RNA Wikipedia documents and filtered to exclude documents

containing fewer than 17 alphabetic words, corresponding to the minimum-length

RNA Wikipedia document.

De novo motif finding using RNAPromo RNAPromo was run using default

settings on positive-example input sequence sets selected from the RFAM families

annotated by each ontology term or pairs of ontology terms. If significant structural

motifs are present, up to 10 are returned in the form of individual covariance models

and consensus structure diagrams (e.g., as presented in Figure 5.4). To avoid overrep-

resentation of any single RNA family in each input sequence set, sets were required
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to contain at least three different RNA families in balanced proportions such that no

one family constituted more than one-third of the total number of sequences. For

computational tractability, sequence set sizes were limited to 100 sequences.

Background sequence sets for significance testing were selected individually for

each input set to control for possibly confounding length effects. For each sequence

in an input set, a background sequence is selected from a pool of RNA sequences not

containing family members represented in the input set; the pool of candidate back-

ground sequences was filtered to exclude sequences more than 70 percent similar using

Cd-hit. If the background sequence is at least the length L of the input sequence,

a random subsequence of length L is extracted from the background sequence and

retained. Otherwise, a second background sequence is selected and concatenated to

the first sequence, then an L-length subsequence is extracted and retained; this pro-

cess continues as necessary. The resulting background set thus contains an identical

length distribution to the input set.
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5.6 Appendix: The RNA Ontology

13q14 align attenu bound

15a alloster au box

18s alpha autoregulatori bp

23s alter axial brain

25s altern bacillus branchpoint

28s alu bacteri brucei

2c am# bacteria bslashc

43s amino bacteriophag bsubtili

45s aminoacyl bacterium bulg

50s amp bakin bushi

5s amphibian bam bypass

7s anneal barley c

a# anterior barr c#

absenc anti bart# cajal

abund antibodi base canon

ac anticodon bcl cap

aca antisens bear capsid

aca# antitermin beet carboxyl

acceptor apc belong cardiovascular

access apic bend cascad

accumul apoptosi beta catalys

acid apoptot bhrf# catalysi

acquisit appar bind catalyst

act aptam biochem catalyt

action arabadopsi biofilm catalyz

activ arabidopsi biogenesi celegan

addit archaea bioinformat cell

adenin archaeal biolog cellular

adenosin arm biosensor central

adenosyl array biosynthesi cercopithicin

adenosylmethionin assay biosynthet cerevisia

adult assembl block chain

aeruginosa associ blot chang

affect atp blue channel

agrobacterium attach bodi chaperon

alfalfa attack bond characteris
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characterist condit cystein dna

charg conduct cytoplasm domain

chemic confirm cytosin donor

chloramphenicol conform d doubl

chloroplast connect dalgarno doublet

chromosom connexin darzacq downstream

chronic conserv dbpa dprime

ciliat construct death drosha

circl contact decarboxylas drosophila

cis contain decay dsra

class content decreas dsrna

classic control defici duplex

cleav convers degrad dyskerin

cleavag coordin delet e#

cll copi delta ear

clone core densiti ecoli

cloverleaf coronavirus depend edit

cluster coupl deriv effector

cm# coval destabilis effici

co covari detect eif#

coaxial cprime determin eif4f

code cre develop electron

codon cress development electrostat

coenzym crick di element

cofactor crinkl dicer elev

coli cross differenti elimin

coloni crystal dimeris elong

common crystallographi direct embryo

complement cslashd diseas embryogenesi

complementar csra disrupt embryon

complementari csrb distal encapsid

complet cuga distanc encod

complex cyanobacteria distinct endonucleas

compon cycl distribut endoribonucleas

compris cyclic dival endotheli

concentr cyclin divis energi
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enhanc famili genbank hgcg

enter fast gene hinfluenza

enterobacteri ferric genera hing

enterovirus ferritin generat histidin

entri fgf genet histon

envelop fibrillarin genom hiv

environ fibroblast global holoenzym

environment fino glutamin homeostasi

enzym finop glycin homolog

enzymat finp glycogen homologu

epsilon fivepointeight gm# host

epstein fiveprim gram hox

equin flavivirus green hslashaca

escherichia flexneri growth hsp#

essenti flj# gtp human

establish fluorescen guanin hydrogen

ester fold guanosin hydrolysi

eukarya follow guid hydroxyl

eukaryot form hairpin hyperthermophil

evolutionari format half hypertroph

evolutionarili fraction hammerhead hypothes

evolv fragment hbi hypothesi

excess frameshift hbii ictvdb

excis free hbv ident

exclus fruitfli hcv identifi

exogen function heal ii

exon g# heart iii

experiment gac heat immunodefici

exponenti gaca hela immunoprecipi

export gag helic immunoprecipit

express gamma helix imped

extens gar# hepat imprint

extent gar1p herpesvirus inactiv

f# gas# heterolog incomplet

facilit gate hfq increas

factor gc hgca independ
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indirect known lytic microrna

individu kv# m# minor

induc l# machineri minus

infect l13a macrophag mipf#

infecti l23a magnesium mir

inflammatori laevi main mirna

inhibit late major mitochondri

inhibitor latent mammal mitochondria

initi lead mammalian mobil

inosin leader map model

insert length mass modif

interact leukaemia matern modifi

interfer leukemia matur modifiy

interferon level mbi modul

intergen life mbii moieti

intermedi ligand me# molecul

intern ligat mechan molecular

intra limit mediat monocytogen

intracellular line melanogast mosaic

intron lineag membran motif

involv link messeng motil

ion linkag metabol mottl

ionic linker metabolit mous

ire listeria metal movement

iron live metazoan mrna

is# local methanococcus mrp

isomer localis methionin ms3d

isomeris locat methyl multifunct

iv loop methyltransferas multipl

j# low mg muscl

join lower mgc# mutagenesi

junction ltr mi# mutant

kilobas lung mice mutat

kinas lymphocyt micf myc

kinet lymphoma microarray nascent

klug lysin microbi natur
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ncrna organ pocket promot

near organell pol protect

negat origin poli protein

nematod ornithin polyadenyl proteobacteria

nervous orthologu polyamin proton

neural oryza polymeras proxim

neuron outer polypeptid pseudogen

nmr overexpress polyprotein pseudoknot

nol5a overlap pomb pseudomona

nomenclatur oxi porin pseudouridin

non oxygen portion pseudouridyl

noncod p# posit psi

nop10p packag post psi#

ns5b pair potassium purifi

nt paralogu potenti purin

nuclear particl prader putat

nucleic patern pre pws

nucleolar pathogen precursor py

nucleolin pathway predict pyrimidin

nucleolus pattern pregenom q#

nucleophil pcr prematur queuosin

nucleoplasm peptid preq quorum

nucleosid peptidyl preq# r#

nucleotid pf# presum radiat

nucleus pfam pri rarer

o phase primari rat

occlud phosphat primer rate

ofengand phosphatas prior ratio

oh phosphodiest probe ray

oligonucleotid phosphoryl process reaction

ompf phylogenet produc readthrough

oncogen physiolog product rearrang

onto picornavirus program receptor

oocyt plant project recognit

operon plasmid prokaryot reconstitut

opportunist plus prolifer recruit
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recycl ribosom scaffold snora#

red ribosos scarna snord#

reduc riboswitch scarna# snorna

reduct ribozym schizosaccharomyc snornp

refer rice screen snoz#

region rich secondari snr#

regul rightward secret snrna

regulatori rna segment snrnp

relat rnai select sodb

releas rnaii self spacer

remov rnaiii sens speci

repeat rnaprim sensor specif

replic rnase separ spectrometr

replicas rnp sequenc splice

replicon rodent sequest spliceosom

repress roll serotonin spread

repressor rpl# shape srac

requir rpos shigella srna

residu rpra shock srp

resist rps# short srp#

resolut rrna shown srpdb

respons rsma sigma ssu

restrict rsmb signal stabil

result rsmz silenc stabilis

retain rybb silent stack

retent ryea simian stage

retrovir ryeb similar start

retrovirus ryhb singl stationari

revers rz# singlet stem

rf# s# site step

rfam saccharomyc size stimul

rhinovirus salmonella sl stop

rho sam sl# storag

ribonucleas sarcoma sm strand

ribonucleoprotein satellit small stress

ribos sativa snor# stretch
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stripe terminus turnov virolog

structur tertiari twoprim virul

styphimurium thaliana tymovirus virus

subgenom therapeut type vitamin

substitut thermodynam typhimurium vitro

substrat thiamin u# vivo

subtili third u45a voltag

subtyp threeprim u45b wasserman

subunit threonin u4atac weak

support tight u6atac wide

suppressor time u83a wound

surfac tissu u83b xenopus

surround tomato ubiquit ydan

surviv tombus ugauga yeast

switch tombusvirida uhg ykkc

symmetri tombusvirus um# yxkd

syndrom traj unpair z#

synthas tran untransl zebrafish

synthes transcrib upregul zinc

synthesi transcript upsk

synthetas transcriptas upstream

system transduct uptak

tag transesterif uridin

tail transfer usual

tandem transferas utr

target transform valin

tbr# translat variabl

tcl# transloc variat

tcv transport verifi

telomer transposit vertebr

telomeras trigger via

temperatur trna viabil

templat trypanosoma vibrio

term tumefacien vii

termin tumour viral

termini turnip viroid
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Chapter 6

Conclusions

Over the last several chapters, we presented examples of the organizing principles

underlying RNA biology and revealed a common theme of modularity, in which the

mechanisms and structures of RNAs can be understood by decomposing them into

building-block units of function.

We first showed that certain classes of natural RNA structures, particularly pre-

cursor microRNAs, possess an intrinsic robustness that allows them to maintain a

specific shape regardless of their sequence context. This form of structural modu-

larity reflects the requirements of specific biogenerative processes as well as a mode

of neo-functionalization in which copies of highly modular RNAs can retain shape

specificity in new contexts.

Next, we illustrated modular functionalization in the context of rat dendritic tran-

script localization by characterizing the role of the ID element, a retrotransposon that

can be co-opted to serve as a localization motif when associated with regulated intron

sequence retention. We also showed that a similar role may be associated with Alu el-

ements, which have high similarity to the previously-characterized Camk2a dendritic

localization element. Together these observations show the potential for ubiquitously

occurring transposable sequence to become functional RNA modules in a novel con-

233



text for regulatory modules, retained introns.

Finally, we undertook a low-level functional characterization of all RNA families

using automated techniques and revealed the existence of common units of RNA

function that link together diverse RNA families. We associated a large number

of these basic functions with small structural motifs, and in this way highlighted

the fundamental RNA structure-function relationship at a higher resolution than

commonly considered. We hypothesize that these structure-function units represent

a subset of the elemental building blocks that can combine in different ways to form

the diversity of RNA species.

One of the hallmarks of modular evolution reflected in these findings is the accel-

erated rate at which innovation can appear. ID elements exist in high copy number

only in the rat genome, and we found no instances of conserved ID elements between

orthologous dendritic rat and mouse genes. If ID elements now play a role in den-

dritic localization, then this represents either novel functionality in the rat lineage

or replacement of more ancestral functionality with a new mechanism. Similarly, the

miRNA complement of closely related species varies [1], due to expansions in specific

lineages, many times resulting from gene duplications that preserve the mature se-

quence [2]. Although a large number of these duplications seem to have arisen from

ancestral large-scale genome duplications [3], there is evidence that localized and

evolutionarily recent duplications can occur [4]. In both of these examples, modular

properties allow rapid functionalization, bypassing the need to evolve RNA features

de novo.

Our results also highlight the existence of organizing centers for modular RNAs.

Polycistronic primary miRNA genes presumably exist to facilitate coordinated expres-

sion; however, it is not the case that all miRNAs in a cluster are always expressed at

the same level [5], suggesting that the pri-miRNA gene provides avenues for individ-
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ual regulation, perhaps via the miRNA loop sequence [6]. It is still poorly understood

why miRNA clusters contain the miRNAs that they do, and why many other miRNAs

are not clustered. If there is in fact selection for particular miRNA gene architectures,

suggesting that the primary transcript constitutes a hierarchical functional module,

then the downstream effects may also reflect a modular regulatory program. Detailed

comparisons of expression data for both miRNA genes and target transcripts, as well

as the pattern of miRNA binding sites in the targets, could uncover some of this

underlying structure.

In the case of introns, an appealing hypothesis emerges in which regulatory mod-

ules can exist in non-exonic regions of protein-coding transcripts, affecting not the

protein message but rather the manner in which it is produced. The key to this

phenomenon is the retention of intronic sequence, which determines whether these

regulatory modules are present when the transcript is exported from the nucleus.

Functionalization, then, would seem to require at least two discrete, though not nec-

essarily coincidental evolutionary steps. We propose that intron retention serves as

an on/off switch for the proto-regulatory mechanisms contained in intronic sequence,

and is thus the second of the two steps. Meanwhile, introns can accumulate sequence,

through the action of transposable elements, some of which will have the potential to

serve in functional roles. As long as an intron is spliced out, the elements contained

within it will have little or no effect on phenotype; but when random change causes

intron retention, the proto-elements can become “activated” and potentially affect

the fitness of the individual. As such, introns may serve as sandboxes for evolution-

ary innovation, and it remains to be seen whether it is possible to identify additional

evidence in favor of this hypothesis. One approach to address this question would

be the creation of a comprehensive catalog of the transposable elements that appear

in the introns of related species, such as rat and mouse, and an enumeration of the
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instances where the repeat content differs. There might turn out to be one or several

ID element-analogs in the mouse genome that may have a role in dendritic targeting,

or some other regulatory mechanism.

In Chapter 5 we framed our analysis in terms of characterizing abstract func-

tional modules, an approach that shifts the emphasis away from a priori assumptions

about the physical form of a module. In formulating the self-containment property,

we defined structural robustness to be robust maintenance of a static shape, but it is

possible that other physical manifestations of functional modularity are relevant. For

example, the salient feature of riboswitches is their ability to adopt alternate con-

formations after binding a metabolite [7], suggesting that some degree of structural

plasticity is consistent with the definition of a riboswitch module. In fact, riboswitches

do exhibit bistable conformations [8], so a reformulation of self containment to handle

characteristic conformation changes and interactions with context might be able to

detect modules of this form. Similarly, extraction of low-level structure representa-

tions, used in Chapter 5 and RScan [9], may benefit from enumerating the motifs of

multiple stable structures that a sequence can adopt. In general, the concept of a

single minimum-free energy secondary structure, while convenient, is not always an

accurate characterization of an RNA in vivo. Richer models, in the form of proba-

bilistic representations of the ensemble of possible structures, may lead to a broader

understanding of the ways in which functional modularity can be attained in RNA

structures.

To abstract even further from specific forms, we might look for higher-order struc-

tural tendencies associated with modular RNA structures. Graph-theoretic defini-

tions of modularity (e.g., Bonner’s gene net [10]) describe a high degree of connectivity

between units within a module compared to a low number of extra-modular connec-

tions. Translated into RNA structure, this implies that the number of base-pairing
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relationships within a highly-self contained RNA should exceed the potential number

involving nucleotides outside the sequence. From an energetic standpoint, this must

be true to some extent, yet base-pairing proportion is not strongly correlated with

self containment (Table 3.6). Perhaps there is a subtler pattern of nucleotide compo-

sition and sequence associated with modularity, which we might be able to discover

given a large number of examples of highly self-contained sequences, which could

be artificially generated. The existence of geometric properties such as regularities

or symmetries in RNA structures could manifest themselves more generally in other

modular architecture.

These various lines of investigation all funnel into a general “RNomics” research

plan [11]. As we come to recognize the prevalence of modularities in RNA biology, we

can begin to construct RNA discovery pipelines in which putative novel RNA species

are evaluated in an evolutionary context beyond nucleotide or shape conservation.

We have already shown the efficacy of using self containment to distinguish RNAs

with modular characteristics, and in fact, the self-containment index has already been

used for de novo miRNA discovery [12]. However, what additional information can

we leverage from genomic context, repeat structure, or geometry? To what extent is

it possible to define the language of RNA structures in terms of intermediate-level el-

emental units that are above the level of the functionally-ambiguous structure motif,

but more general than an RNA family-specific domain? A heightened understanding

of the common evolutionary histories of RNAs – marked by insertions, duplications,

shuffling, recombination, modification – may bring us closer to the goal of identifica-

tion and characterization off the cellular RNA repertoire.

In achieving this goal, we will need to continue to refine and develop techniques for

the accurate representation and quantification of RNAs – the analysis of short-read

sequencing data, particularly with respect to read alignment to high-copy number
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genomic loci; the full realization of a comprehensive functional annotation of RNAs;

the formulation of functionally-motivated metrics for RNA structure distance.

RNA is organized. The nuances of how or why remain unclear, but in light of

the last fifty years of fruitful RNA research, it seems likely that we can come to

understand the big picture, one building block at a time.
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