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Abstract

The preprocessing pipelines typically used in both task and resting-state functional magnetic

resonance imaging (rs-fMRI) analysis are modular in nature: They are composed of a number

of separate filtering/regression steps, including removal of head motion covariates and

band-pass filtering, performed sequentially and in a flexible order. In this article, we illustrate

the shortcomings of this approach, as we show how later preprocessing steps can reintro-

duce artifacts previously removed from the data in prior preprocessing steps. We show that

each regression step is a geometric projection of data onto a subspace, and that performing

a sequence of projections can move the data into subspaces no longer orthogonal to those

previously removed, reintroducing signal related to nuisance covariates. Thus, linear filtering

operations are not commutative, and the order in which the preprocessing steps are

performed is critical. These issues can arise in practice when any combination of standard

preprocessing steps including motion regression, scrubbing, component-based correction,

physiological correction, global signal regression, and temporal filtering are performed

sequentially. In this work, we focus primarily on rs-fMRI. We illustrate the problem both

theoretically and empirically through application to a test–retest rs-fMRI data set, and sug-

gest remedies. These include (a) combining all steps into a single linear filter, or (b) sequential

orthogonalization of covariates/linear filters performed in series.
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1 | INTRODUCTION

In the past decade, resting-state functional magnetic resonance imag-

ing (rs-fMRI) data have been increasingly used to study intrinsic

functional connectivity in the human brain (Biswal, Zerrin Yetkin,

Haughton, & Hyde, 1995). Using rs-fMRI, it has been shown that fluc-

tuations in the blood oxygen level dependent (BOLD) signal in spa-

tially distant regions of the brain are strongly correlated (Beckmann,

DeLuca, Devlin, & Smith, 2005; De Luca, Beckmann, De Stefano,

Matthews, & Smith, 2006; Yeo et al., 2011). While the exact mech-

anisms driving these correlations remain unclear, it has been hypoth-

esized that it may be due to fluctuations in spontaneous neural

activity. Neuroscientists have become increasingly interested in

studying the correlation between spontaneous BOLD signals from

different brain regions in order to learn more about human brain

function (Van Den Heuvel & Pol, 2010).

The analysis is complicated by the fact that the measured BOLD

signal consists of both changes induced by neuronal activation, as well

as nonneuronal fluctuations. Here, the former is the signal of interest,

while the latter is considered nuisance signal. Examples of such non-

neuronal fluctuations include drift, spiking artifacts, motion-related

artifacts, and fluctuations due to physiological sources such as heart

rate and respiration. Failure to properly control for these types of

noise can have significant impact on subsequent analysis. For exam-

ple, head motion has been shown to have systematic effects on

resting-state functional connectivity measures (Power et al., 2014;

Van Dijk, Sabuncu, & Buckner, 2012), and comparisons between

groups of subjects with different levels of head motion have yielded

difference maps that could be mistaken for interesting neuronal

effects (Van Dijk et al., 2012). Furthermore, it has been shown there

are significant correlation between changes in cardiac and respiratory

rates and the BOLD signal (Birn, Diamond, Smith, & Bandettini, 2006;
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Shmueli et al., 2007; Wise, Ide, Poulin, & Tracey, 2004). These nuisance

fluctuations risk artificially inflating functional connectivity measures, or

even creating spurious findings (Murphy, Birn, & Bandettini, 2013).

In general, the relative influence of these different nonneuronal

fluctuations depends on a number of factors (Caballero-Gaudes &

Reynolds, 2017). However, it is clear that if not treated properly, these

sources of variation can induce spurious functional connectivity

between different brain regions. Thus, it is of great interest to reduce

their effects on the analysis of rs-fMRI data.

For these reasons, rs-fMRI data are subjected to a series of prepro-

cessing steps (Caballero-Gaudes & Reynolds, 2017; Weissenbacher

et al., 2009; Yan & Zang, 2010) prior to analysis. Typically, each step

consists of a separate algorithm often a linear regression of data on

nuisance covariates, with residuals used in subsequent analysis, or a

linear filtering operation designed to remove a specific type or class of

artifacts. These steps can include motion regression (Fox, Zhang,

Snyder, & Raichle, 2009; Weissenbacher et al., 2009), scrubbing (Power

et al., 2014; Power, Barnes, Snyder, Schlaggar, & Petersen, 2012) or

spike regression (Lemieux, Salek-Haddadi, Lund, Laufs, & Carmichael,

2007; Satterthwaite et al., 2013), nuisance regression (e.g., the removal

of signal from white matter (WM) and ventricular cerebrospinal fluid

(CSF) tissues; Behzadi, Restom, Liau, & Liu 2007; Muschelli et al., 2014),

nonseed-based physiological regression methods (e.g., retrospective

image correction [RETROICOR]/respiration variation and heart rate

correction [RVHRCOR]; Glover, Li, & Ress 2000; Chang, Cunningham, &

Glover 2009), data-derived nuisance component removal using ICA

(e.g., ICA-based automatic removal of motion artifacts [ICA-AROMA];

Pruim et al. (2015)), the removal of global signal (Fox et al., 2005), and

temporal filtering including low- and high-pass filters (Biswal et al.,

1995; Cordes et al., 2001). The most popular versions of all of these

can be expressed as linear filtering operations.

There are a large variety of rs-fMRI preprocessing pipelines

(i.e., combinations of such modular preprocessing steps) that vary in

the specific operations they perform on the data, as well as the order

in which they are performed. In fact, a paper by Carp (2012) showed

that there are nearly as many unique analysis pipelines in the literature

as there were studies.1 While most of the preprocessing steps that

are performed are essential, there is relatively little understanding of

the effects they have on both the spatial and temporal correlation

structure of the resulting data. Importantly, there is a general lack of

knowledge regarding potential interactions among the individual

preprocessing steps, and how the order in which they are performed

impacts the resulting analysis. To date, there is no consensus standard

of what steps should be included in a pipeline, or in which order they

should be performed. Indeed, investigations into the impact of the

order of preprocessing steps have been largely absent from the

literature (notable exceptions include Jones, Bandettini, & Birn

2008 and Hallquist, Hwang, & Luna 2013), though a number of

groups have suggested that any preprocessing approach should be

adapted on a data-dependent basis (Churchill, Spring, Afshin-Pour,

Dong, & Strother, 2015; Kay, Rokem, Winawer, Dougherty, & Wandell,

2013; Salimi-Khorshidi et al., 2014).

Whatever the procedures performed, most popular pipelines have

gravitated toward removing nuisance covariates in a series of sequen-

tial steps, which simplifies the analysis, without considering the order

in which they are performed. However, we show here that these lin-

ear filtering operations are not commutative, and furthermore, that

performing them in series can reintroduce nuisance signal removed in

previous steps.

1.1 | A geometric approach

When working with linear models, it is often fruitful to take a geomet-

ric approach toward understanding their behavior by viewing them as

linear projections. Here, the fitted value in the regression is seen as

the orthogonal projection of the data onto the subspace spanned by

the columns of the design matrix. Similarly, the residuals are the

projection onto the subspace that is orthogonal to the columns of the

design matrix, and are thus uncorrelated with the nuisance compo-

nents that make up these columns. This is illustrated graphically in

Figure 1, where the data (represented as an n-dimensional point) are

projected onto the p-dimensional subspace spanned by the columns

of the design matrix (shown in light blue).

In this article, we take a geometric approach toward analyzing

modular rs-fMRI preprocessing pipelines. We express commonly used

processing steps, such as motion regression, spike regression, nuisance

regression, and temporal filtering, as projections onto a subspace of the

full n-dimensional space (where n represents the number of time points)

in which the data resides. This allows us to evaluate how different

processing steps interact with one another, and how they in many

settings actually counteract one another. In particular, it allows us to

illustrate that both the order and the manner in which preprocessing

steps are performed is critically important for being able to properly

interpret subsequent analysis. Using our geometrical approach, we

illustrate how, if not performed carefully, certain preprocessing tech-

niques have the effect of reintroducing previously removed artifacts

back into the signal.

FIGURE 1 An illustration of the geometry of linear projections. The

n-dimensional data are projected onto the p-dimensional subspace

spanned by the columns of the design matrix (shown in light blue).

The projection (shown in yellow) corresponds to the fitted value. The

residuals (i.e., the data minus the fitted value) lie in a subspace that is

orthogonal to the columns of the design matrix [Color figure can be

viewed at wileyonlinelibrary.com]

1Note this survey also included task-based fMRI studies.
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We illustrate this issue primarily in the context of motion regres-

sion and temporal filtering, both theoretically and using test–retest

rs-fMRI data. We show how performing high-pass filtering after motion

regression reintroduces motion artifacts into the data. Similarly,

performing motion regression after high-pass filtering reintroduces

unwanted frequency components into the signal. The latter issue has

been discussed in a number of papers, including work by Hallquist et al.

(2013). Here, we take their results and place it into a broader geometri-

cal framework. While the problems outlined in this article apply for any

choice of temporal filter, we use a high-pass filter rather than the more

commonly used band-pass filter throughout. The motivation for this

choice comes from recent work by Shirer, Jiang, Price, Ng, and Greicius

(2015) showing that using a broader filter improves signal-noise separa-

tion, test–retest reliability, and group discriminability for rs-fMRI data,

both in the context of region-of-interest functional connectivity analy-

sis and dual regression.

Although we focus on a few specific cases, these issues arise any-

time multiple preprocessing steps are used that act as projections

onto a subspace of the original data-space. In addition, though we

focus on rs-fMRI data in this article, we stress that these issues can

potentially arise in task fMRI as well if modular preprocessing is

performed. To avoid these issues, we recommend that researchers

either perform a simultaneous regression on all nuisance covariates,

or alternatively orthogonalize later covariates with respect to the ones

removed in earlier stages of the pipeline. This latter point implies one

must orthogonalize both the data, and all subsequent projections, in

order to maintain data orthogonality with the current projection.

Interestingly, these approaches have become standard practice in the

preprocessing of task-fMRI data.

We believe our framework has the potential to simplify the criti-

cal evaluation of preprocessing pipelines, and identify areas where

problems can occur. In this article, we illustrate that the issues dis-

cussed in this work can have significant effect on subsequent analysis,

and we therefore urge that special care be taken when performing

preprocessing on rs-fMRI data. We further highlight the need to criti-

cally revisit previous work on rs-fMRI data work that may not have

adequately controlled for these types of effects.

2 | THEORETICAL BACKGROUND

In this section, we show theoretically how the use of modular prepro-

cessing steps can reintroduce artifacts that were removed in a previ-

ous step. We also provide recommendations for circumventing these

issues.

2.1 | A geometric approach for evaluating pipelines

The issue we discuss in this article can potentially arise anytime one

uses a preprocessing step that projects the data onto a subspace of

the n-dimensional space in which it resides. This includes any tech-

nique that utilizes a linear model framework to remove artifacts from

the signal. To illustrate the problem, let us consider the case of

performing motion regression and temporal filtering sequentially.

Hallquist et al. (2013) previously showed that in this setting

nuisance-related variation can be reintroduced into frequencies that

were previously suppressed by the filter. Here, we generalize their

findings to incorporate a wider array of preprocessing steps, and

place it into a general mathematical framework.

Let y be an n-dimensional vector containing the rs-fMRI signal

from a specific voxel in the brain. Furthermore, let X be an n × p

design matrix containing the nuisance regressors we seek to remove

from y. In our illustration, let us assume that p = 24, corresponding to

(a) the six motion regressors obtained after rigid body transformation;

(b) the regressors squared; (c) their first-order difference; and (d) the

first-order difference squared.

To remove the effects of these nuisance components, the next

step is to regress them out of y. To do so, we fit a linear model on

the form:

y = Xβ + ϵ ð1Þ

It is well known that the least-squares estimate of β is given by

β̂ = X0Xð Þ
−1
X

0

y, ð2Þ

and the fitted value can be expressed as:

ŷ = Xβ̂ = X X0Xð Þ
−1
X

0

y: ð3Þ

Here, the term ŷ represents the estimated motion in the voxel

and corresponds to the nuisance signal that we seek to remove

from y.

Here, it is useful to take a projection approach toward performing

linear regression. To do so, we define

H = X X0Xð Þ
−1
X

0

ð4Þ

and thus we can write ŷ = Hy. In this setting, H is referred to as a pro-

jection matrix and its application has the effect of projecting the data

onto the space spanned by the columns of the design matrix X. Impor-

tantly, projection matrices are both idempotent (H = H2) and symmet-

ric (H = H
0

).

To remove the effects of motion, we subtract ŷ from the data and

obtain the residual e = y− ŷ. In terms of the projection matrix, we can

write this as e = (I − H)y, where I represents the n × n identity matrix.

This term is now our signal of interest. It is important to note that

P1 = I − H is also a projection matrix (here, the subscript is simply an

identifier to discriminate between the various projection matrices we

will define), and it projects the data onto a subspace that is orthogonal

to the columns of the design matrix X. Thus, e resides in a subspace

orthogonal to X. Hence,

cov ŷ, eð Þ = I−P1ð Þy, P1yh i

= y
0

I−P1ð ÞP1y

= 0

ð5Þ

and the data are uncorrelated with the motion, as required. The last equal-

ity holds as P1 = P2
1. (Here, h.,.i represents the Euclidean inner product.)

At this point, we have, to the extent possible by linear projections,

successfully removed the effects of the nuisance components that

make up the columns of X from the data. However, it is important

to realize that researchers at this stage typically perform additional

modular preprocessing steps that act as projections of the data into

new subspaces. For example, this would occur if we were to continue
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by next performing a preprocessing step such as spike regression,

component-based correction (CompCor), RETROICOR, RVHRCOR,

ICA-AROMA, global signal regression, or temporal filtering. This can

have the unfortunate side effect of projecting the data back into the

space spanned by the motion regressors in X, and thus reintroducing

the effects of components that had previously been removed. This

will happen if the two subspaces are not orthogonal to each other.

To illustrate, suppose we perform high-pass filtering on the motion-

regressed data. Filtering can be expressed in a linear model using a series

of sine and cosine functions as regressors. Fitting this model projects the

data onto a space orthogonal to the frequency components one seeks to

remove. We can express this operation as ef = P2e, where P2 represents

a second projection matrix that differs from P1. Unfortunately, this oper-

ation projects the data into a subspace that is no longer constrained to

be orthogonal to the space spanned by X. This has the effect of partially

reintroducing a correlation between the motion and the signal being

studied. This can be noted by observing that

cov ŷ, efð Þ = I−P1ð Þy, P2P1yh i

= y
0

I−P1ð ÞP2P1y
ð6Þ

is no longer guaranteed to be zero, and indeed in most situations will

in fact be nonzero. This illustrates the problem from a theoretical

point of view.

Empirically, we illustrate the problem on real resting-state data in

Section 3. Figure 2d–f summarizes some of the results. Panel d shows

the rs-fMRI time course and the estimated motion from a specific voxel

of interest. The two time courses show a large positive correlation

(r = 0.7622). After motion regression, the processed data and the esti-

mated motion are now uncorrelated (r = 0), as would be expected from

Equation 5. Finally, after high-pass filtering, the data and the estimated

motion are now negatively correlated (r = − 0.3458). Clearly, high-pass

filtering has partially reintroduced a correlation between the data and

motion.

Equation 6 highlights that a requirement for the data and motion

to be uncorrelated is that (I − P1)P2P1 = 0. Apart from trivial cases

(e.g., P1 = 0, P2 = 0, P1P2 = 0, or P2 = AP1 for some A), this holds

if P1 = P2P1, or equivalently that P1(I − P2) = 0. This implies that the

filter projects the data onto the space orthogonal to that spanned by

X. This will almost certainly not hold unless the filter is explicitly

designed for this purpose, for example, if the regressors forming P2

are orthogonalized with respect to those forming P1.

Empirically, this issue is illustrated in Figure 2. Panels a–c show

examples of the matrices I − P1, I − P2, and (I − P2)P1, respectively,

corresponding to motion regression, high-pass filtering, and their prod-

uct. Clearly, the last term is not 0, and hence the covariance between ef

and ŷ will not be equal to 0, as shown empirically in Panel f.

Note a related problem arises if temporal filtering is first applied,

followed by motion regression. Here, the later step reintroduces signal

into frequency bands which had previously been removed. The reason

is similar to that described above as the space orthogonal to X need

not be orthogonal to the space spanned by terms corresponding to the

retained frequency components. This issue was discussed in detail in

Hallquist et al. (2013).

The issue is further illustrated in Figure 3. Here, we show graphically

what happens when a point in n-dimensional space, represented by the

black vector, is repeatedly projected onto different subspaces. Suppose

the point is first projected onto the light-blue subspace. Note that

though shown in two dimensions, this subspace is actually (n − p1)-

dimensional, where p1 is the number of columns in the design matrix

used to create the first projection matrix. The projection is shown in yel-

low. Further suppose, this point is subsequently projected onto the gray

subspace. This subspace is (n − p2)-dimensional, where p2 is the number

of columns in the design matrix used to create the second projection

matrix. The new location is now shown in green. Here, we note that in

the plot to the left, where the two subspaces are orthogonal to one

another, the point simultaneously lies in both subspaces. In the plot to

the right, where the subspaces are not orthogonal, the point is not

located in the light-blue subspace.

To tie this example to the preprocessing setting, let us consider the

light-blue subspace to be the space orthogonal to the motion regressors

that one seeks to remove, and the gray subspace to be the space

orthogonal to the frequency components one seeks to remove. The first

projection moves the data into the space orthogonal to the motion com-

ponents. Thus, the influence of motion has been effectively removed

and the data, represented by the yellow point, are uncorrelated with

motion. The second projection moves the data into the space orthogo-

nal to the frequency components one seek to remove, thereby remov-

ing the effects of these components. The data, represented by the

green point, are in the frequency band of interest. If the spaces are

orthogonal, as in the left plot, the data continue to be uncorrelated with

motion and in the frequency band of interest, regardless of which order

the projections are performed. However, if these two subspaces are not

orthogonal to one another, the second projection actually moves the

data back into the space spanned by the motion regressors. This has the

unfortunate effect of reintroducing their effects into the data. Doing

the projections in the reverse order would leave a point uncorrelated

with the motion regressors, but not in the frequency band of interest.

2.2 | Preprocessing steps as projections

While we have illustrated the problem in the context of motion

regression and temporal filtering, we stress that it is not limited to

these particular cases. The problem potentially arises in any setting

when multiple preprocessing steps that act as linear projections are

used sequentially. Preprocessing steps that fit this description include

the removal of WM and CSF, CompCor, RETROICOR, RVHRCOR,

ICA-AROMA, global signal regression, and spike regression.

In each of these steps, one can define a design matrix Xi consist-

ing of the nuisance components one seeks to remove from the BOLD

signal. These design matrices are then implicitly used to create a

projection matrix

Pi = I−Xi Xi
0Xið Þ

−1
Xi

0

ð7Þ

such as the ones described above. The matrix is then used to project

the data onto a subspace that is orthogonal to the space spanned by

the nuisance components, thus removing their effect.

For example, filtering can be performed within a linear framework

by including sine and cosine functions of the appropriate frequencies

into the design matrix. Spike regression can be performed by including

delta functions corresponding to each time point one seeks to remove

LINDQUIST ET AL. 2361



into the design matrix. Nuisance regression and CompCor can be per-

formed in a similar manner as outlined for motion regression.

2.3 | Interaction among preprocessing steps

Each projection matrix Pi, as defined in the previous section, projects

the data onto a subspace that is orthogonal to the space spanned by

the nuisance components included in the design matrix Xi. As illus-

trated in Section 2.1, if a series of projections are applied sequentially

there is a risk that the data are projected back into a subspace that

one seeks to avoid.

Suppose we seek to perform m different modular preprocessing

steps. The potential interaction between preprocessing steps can be

explored by computing the product of the projection matrices

P1P2� � �Pm and evaluating whether or not it lies in the subspaces

spanned by the columns of Xi. Here, in order to not reintroduce nui-

sance signal contained in Xi, we require

P1P2� � �PmXi = 0 ð8Þ

for all i = 1, … m.

If this condition does not hold, nuisance components will be reintro-

duced into the signal. Here, the order in which the preprocessing steps

are performed becomes important. Consider the following two

preprocessing pipelines: (a) motion regression followed by temporal fil-

tering; and (b) temporal filtering followed by motion regression. In the

first case, motion is reintroduced by temporal filtering, while in the sec-

ond case, the filtered frequency components are reintroduced by motion

regression. Which of these is more detrimental to the subsequent analy-

sis can be debated, but regardless the reintroduction of unwanted nui-

sance components will ultimately change the interpretation of the

findings.

As a general rule-of-thumb, the nuisance components related to

the last preprocessing step performed should be adequately removed

from the signal. This can be seen by noting that PmXm = 0 is always

true, and thus Equation 8 holds. However, components corresponding

to earlier steps are potentially reintroduced if not handled properly.

2.4 | Recommendations

The problem of reintroducing nuisance regressors can be avoided in

two ways. First, one can define an omnibus projection matrix consist-

ing of all nuisance variables one seeks to remove from the data. This

entails performing motion regression, CompCor, temporal filtering,

and so on in a common joint model. This is simple to do in a linear

model framework by concatenating the m design matrices into a large

omnibus design matrix:

FIGURE 2 Examples of (a) a projection matrix I − P1, removing empirically computed motion artifacts, (b) a temporal filtering projection matrix

I − P2, and (c) the product of both projection matrices (I − P2)P1, which is clearly nonzero. (d) The resting-state functional magnetic resonance

imaging time course (blue) and the estimated motion (red) from a voxel of interest. The two time courses are positively correlated (r = 0.7622).

(e) The time course after motion regression (blue) together with the estimated motion (red). The two time courses are uncorrelated (r = 0). (f) The

time course after sequential motion regression and high-pass filtering (blue) together with the estimated motion (red). The two time courses are

negatively correlated (r = − 0.3458). Hence, high-pass filtering has reintroduced a correlation between the data and motion [Color figure can be

viewed at wileyonlinelibrary.com]
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X = X1 X2 … Xm½ �: ð9Þ

Using this design matrix ensures that the data are projected into a

subspace that is orthogonal to all nuisance components contained in X.

Another approach is to create the design matrices in such a man-

ner that they project the data onto a series of orthogonal subspaces.

For example, spike regression projects the data onto a subspace

orthogonal to the removed time points. If motion regression is subse-

quently performed then it is necessary to remove the same time

points as in the spike regression from the motion design matrix. If not,

the contribution of these time points is reintroduced into the signal.

Another example is the application of temporal filtering before motion

regression. Here, both the data and the motion regressors must be

filtered to avoid reintroducing the filtered bands back into the data

after motion regression. This general point can be summarized as: one

must orthogonalize a linear filter or set of nuisance covariates with

respect to all previously removed sets of covariates to avoid reintro-

ducing nuisance signals removed in previous steps.

3 | METHODS

While in Section 2 we focused on showing theoretically how the use

of sequential modular preprocessing steps can reintroduce previously

removed nuisance signal, in this section we focus on showing this

empirically. We show this primarily in the context of motion regres-

sion and high-pass filtering applied to test–retest rs-fMRI data. We

explore how the use of modular preprocessing pipelines reintroduces

artifacts that have been previously removed. We also seek to show

that using a joint (nonmodular) pipeline circumvents these issues.

3.1 | Data collection

We used the Multi-Modal MRI Reproducibility Resource (Kirby) from

the F.M. Kirby Research Center2; see Landman et al. (2011) for a

detailed explanation of the acquisition protocol. Briefly, it consists of

data from 21 healthy adults scanned on a 3T Philips Achieva Scanner.

Each participant completed two scanning sessions on the same day.

Between sessions the participants briefly exited the scan room and a

full repositioning of the participant, coils, blankets, and pads occurred

prior to the second session. A T1-weighted MPRAGE structural

run was acquired during both sessions (acquisition time = 6 min,

TR/TE/TI = 6.7/3.1/842 ms, resolution = 1 × 1 × 1.2 mm3, SENSE

factor = 2, flip angle = 8
�

). A multislice sensitivity encoded echo pla-

nar imaging (SENSE-EPI) pulse sequence (Pruessmann, Weiger, Schei-

degger, Boesiger, et al., 1999; Stehling, Turner, & Mansfield, 1991)

was used to acquire one rs-fMRI run during each session, where each

run consisted of 210 volumes sampled every 2 s at 3 mm isotropic

spatial resolution (acquisition time: 7 min, TE = 30 ms, SENSE accel-

eration factor = 2, flip angle = 75
�

, 37 axial slices collected sequen-

tially with a 1 mm gap). Participants were instructed to rest

comfortably while remaining as still as possible, and no other instruc-

tion was provided. We will refer to the first rs-fMRI run collected as

Session 1 and the second as Session 2. One participant was excluded

from data analyses due to excessive motion.

3.2 | Initial preprocessing

Statistical Parametric Mapping (SPM) 12 (Wellcome Trust Centre for

Neuroimaging, London, UK) and custom MATLAB (The MathWorks,

Inc., Natick, MA) scripts were used to preprocess the Kirby data. To

allow for the stabilization of magnetization, four volumes were dis-

carded at acquisition, and an additional volume was discarded prior to

preprocessing. Slice timing correction was performed using the slice

acquired at the middle of the TR as reference, and rigid body realign-

ment parameters were estimated to adjust for head motion. Structural

runs were registered to the first functional frame and spatially normal-

ized to Montreal Neurological Institute (MNI) space using SPMs uni-

fied segmentation–normalization algorithm (Ashburner & Friston,

2005). The estimated rigid body and nonlinear spatial transformations

were applied to the rs-fMRI data.

3.3 | Creation of motion images

Before proceeding with further preprocessing steps, we estimated the

motion at each voxel of the brain. To do so we used a design matrix X

FIGURE 3 Illustration of the effect of multiple projections. Consider a point in n-dimensional space represented by the black vector. The point is

first projected onto the light-blue subspace; see yellow point. The first projection is subsequently projected onto the gray subspace; see green

point. In the plot to the left the two subspaces are orthogonal to one another and thus the second projection simultaneously lies in both

subspaces. In the plot to the right, the green point is no longer located in the light blue subspace and thus not orthogonal to the confounds

defining that subspace [Color figure can be viewed at wileyonlinelibrary.com]

2Publicly available at http://www.nitrc.org/projects/multimodal.
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consisting of 24 regressors. These included the six motion regressors

obtained after rigid-body transformation, the regressors squared, their

first-order difference, and the first-order difference squared. After

estimating the parameters βv corresponding to these regressors at

each voxel v, we proceeded to create “motion images.” This was done

by computing the fitted values Xβv at each voxel. Thus, we were able

to create 4D images of the estimated contribution of motion to the

signal at each voxel in the brain. Ultimately, the goal of preprocessing

is to remove the effects of motion. However, at this stage, we do not

remove this component, but simply compute it to use as a baseline

to evaluate the motion-related components left in the signal after

performing specific preprocessing steps.

3.4 | Secondary preprocessing pipelines

In the next stage of preprocessing, we constructed three different

preprocessing pipelines. In the first pipeline, we first perform motion

regression (as described above) and remove the estimated motion

from the data. Thereafter, we apply a high-pass filter using a cutoff

frequency of 0.01 Hz. We used the high-pass filter implemented in

SPM, which uses a set of discrete cosine transformation basis func-

tions (Frackowiak, 2004). We refer to this pipeline as “motion regres-

sion followed by high-pass filtering (MCHP).” In the second pipeline,

we begin by applying the high-pass filter, and thereafter perform

motion regression to remove the estimated motion from the data. We

refer to this pipeline as “high-pass filtering followed by motion regres-

sion (HPMC).” Finally, in the third pipeline, we perform motion regres-

sion and high-pass filtering jointly using a combined design matrix.

We refer to this pipeline as “Joint.”

While we will primarily study pipelines consisting of two preproces-

sing steps, high-pass filtering, and motion regression, we note that errors

can propagate further when including additional steps. We illustrate

using two different three-step pipelines: (a) high-pass filtering, followed

by motion regression, followed by nuisance regression (denoted

“HPMCNR”); and (b) motion regression, followed by nuisance regres-

sion, followed by high-pass filtering (denoted “MCNRHP”). Here, nui-

sance regression involves removal of the average WM and CSF

signal obtained from each subject using eroded masks. These images

are based on the SPM8 a priori tissue probability maps that have

been cleaned up and eroded to ensure that the WM and CSF com-

partments are unlikely to contain significant gray matter.

3.5 | Evaluation of pipelines

Next, we sought to evaluate the interaction between motion regres-

sion and high-pass filtering in each pipeline. For each pipeline, and

after each modular step, we computed the correlation between the

preprocessed data and the motion images at each voxel. This was

done to evaluate the residual contribution of motion after performing

each preprocessing step.

We also parcellated the data at each stage into 268 regions using

the Shen atlas (Shen, Tokoglu, Papademetris, & Constable, 2013), and

computed the correlation matrices across regions as commonly done

in rs-fMRI studies on whole brain functional connectivity. This was

repeated for both sessions for each of the 20 subjects. For each

session and pipeline, we computed the average correlation matrices at

the group level. We also performed t tests to determine whether the

Fisher-transformed correlation between the motion time courses and

the data after MCHP was significantly different from 0.

In addition, for each pipeline, after each step, we estimated the

spectral density for every voxel time course in order to evaluate the

relative contribution of different frequencies components. In particular,

we focused on the contribution of frequencies lower than 0.01 Hz, as

these are the ones we sought to remove from the signal. We will quan-

tify this contribution by computing the proportion of the power that

lies in the frequency band below 0.01 Hz in each voxel. This is a

measure that is similar in spirit to fractional amplitude of low frequency

fluctuations (Zou et al., 2008). To evaluate whether the reintroduced

signal is related to motion, we computed the spectral coherence

between the estimated motion time courses and the data at each voxel

after performing each of the different preprocessing pipelines. The

coherence takes values between 0 and 1, and measures the relationship

between two signals at each frequency. Here, values close to 1 indicate

strong coherence, while values around 0 indicate low coherence.

4 | RESULTS

To properly understand the effects of modular preprocessing pipe-

lines, we illustrate its effects on a single voxel, a single subject, and

group analysis.

4.1 | Illustration of voxel-level effects

Figure 4 illustrates the problem at a single voxel of the brain. It shows

an example fMRI time course and the estimated motion time course,

which are highly correlated with one another (r = 0.7622); see Panels

a and b. Here, Panel a shows plots of the two time courses, while

Panel b shows the relationship using a scatterplot. After motion

regression, the resulting times series (Panel c) is uncorrelated with the

motion (Panel d), which is to be expected. However, high-pass filtering

has the effect of reintroducing the correlation between the data and

the motion, which is now r = − 0.3458 (Panels e and f). This illus-

trates how the two preprocessing steps interact with one another.

The high-pass filter has the effect of projecting the data back into the

space spanned by the motion regressors, thus reintroducing a correla-

tion between the signal and the motion.

Note that if high-pass filtering is performed before motion regres-

sion (i.e., the HPMC pipeline), the resulting time course is uncorrelated

with the motion (Panels g and h). However, this leads to the reintro-

duction of frequency components that had previously been removed.

This can clearly be seen studying the periodograms shown in Figure 5.

Prior to the secondary preprocessing steps, there is clear signal in the

range below 0.01 Hz (see Panel a), which has strong coherence with

the motion time series at these frequencies (Panel b). If motion regres-

sion is performed followed by high-pass filtering (MCHP), then the

contribution of frequencies in this range disappears as seen in Panel

c. However, if the order of these preprocessing steps is reversed it is

clear from Panel e that signal is reintroduced into these frequencies.

That the reintroduced signal is related to motion can be seen in Panel f,
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which shows the coherence between the motion time series and

the signal after high-pass filtering and motion regression. Clearly, it

is increased compared to the results seen in Panel d.

One approach toward handling this problem is to perform both

operations within a joint model. As can be seen from Figures 4i,j and

5g,h, performing joint motion regression/temporal filtering provides a

FIGURE 4 Results from an example voxel. (a) The resting-state functional magnetic resonance imaging time course before secondary

preprocessing (blue) and the estimated motion (red) from the voxel of interest. (b) A scatterplot of these two time courses show a positive

correlation (r = 0.7622). (c) The data after motion regression. (d) A scatterplot of this time course and the estimated motion show no correlation

(r = 0). (e) The data after motion regression followed by high-pass filtering (MCHP). (f) A scatterplot of this time course and the estimated motion

show a negative correlation (r = − 0.3458). (g) The data after high-pass filtering followed by motion regression (HPMC). (h) A scatterplot of this

time course and the estimated motion show no correlation (r = 0). (i) The data after joint high-pass filtering and motion regression (Joint). (j) A

scatterplot of this time course and the estimated motion show no correlation (r = 0) [Color figure can be viewed at wileyonlinelibrary.com]
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time course that is uncorrelated with motion, while only containing

information in the frequencies of interest. Thus, in this approach, the

effects of both motion regression and temporal filtering are retained

in the processed signal as intended.

4.2 | Illustration of whole-brain effects

The point illustrated above is reinforced by looking at each voxel from

a randomly chosen subject. First, we focus on studying the reintroduc-

tion of motion; see Figure 6. Panel a shows the correlation between

the motion regressed data and the motion at each voxel of the brain.

Clearly, the correlation is negligible (<2 × 10−6) across all voxels.

However, after high-pass filtering, the correlation is reintroduced; see

Panel b. Interestingly, the correlation between the data and motion is

now mostly negative. Panel c shows these correlations superimposed

onto the brain. Clearly, there are patterns consistent with motion arti-

facts, including a ring-like shape at the edge of the brain. There are

also apparent patterns in the frontal cortex.

To further illustrate the impact of the reintroduction of motion,

we study the correlation matrices across the 268 regions of the Shen

atlas (Shen et al., 2013) both when (a) performing MCHP; and

(b) performing HPMC. In the first case, the motion is reintroduced by

FIGURE 5 Results from an example voxel. (a,b) The periodogram and coherence, respectively, in the range [0 0.03] Hz of the resting-state

functional magnetic resonance imaging time course before secondary preprocessing. (c,d) The periodogram and coherence, respectively, of the

data after motion regression and high-pass filtering (MCHP). (e,f) The periodogram and coherence, respectively, after high-pass filtering and

motion regression (HPMC). Note these two plots show that signal has been reintroduced into frequencies below 0.01 Hz, and that this signal is

related to the motion time course. (g,h) The periodogram and coherence, respectively, after joint HMPC (Joint). In each panel, the red dotted line

reflects the frequency cutoff of the high-pass filter [Color figure can be viewed at wileyonlinelibrary.com]
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temporal filtering, while in the second case, it should be removed.

Note that in the second case, filtered frequency components are

instead reintroduced (see Section 2.3). Panels d and e show the

results, and f shows the difference between the two correlation matri-

ces. Clearly, the differences are substantial as it ranges between

values of ±0.3. Interestingly, the patterns seen in the difference (Panel

f) show similarities to the correlation between the motion time

courses over the same regions (Panel g). For interpretation purposes,

the 268 regions are further separated into eight different networks

(Finn et al., 2015), as illustrated by the color bars shown below the

plots in Panels d–g. These include: medial frontal (dark blue), fronto-

parietal (blue), default mode (light blue), subcortical-cerebellum (cyan),

motor (green), visual I (orange), visual II (red), and visual association

(brown). The largest differences between pipelines lie in the motor

and visual networks, and in the subcortical-cerebellum network.

Note that if high-pass filtering is performed before motion

regression, we deal with a different problem as illustrated in

Figure 7. Panel a shows the proportion of the power that lies in the

frequency band below 0.01 Hz in each voxel after MCHP. Here, we

can note that as expected there is a negligible contribution as all

values are <3 × 10−3. However, Panel b shows the same plot for

data where motion regression is performed after high-pass filtering.

The plot shows there has been a significant reintroduction of infor-

mation from frequencies that had previously been removed. In cer-

tain voxels up to 12% of the power lies in frequencies that should

ideally be 0. The spatial position of these voxels is shown in Panel d,

where the results are superimposed onto the brain. The results are

presented using an arbitrary threshold of 2% to better be able to

identify voxels with a high proportion of power in the low frequency

band. Finally, Panel c shows the same plot for data preprocessed

jointly. Much like in Panel a there a negligible contribution of signal

in frequencies below 0.01 Hz.

To further explore whether the reintroduced signal is related to

motion, we computed the coherence between the estimated motion

times courses and the time series obtained using each pipeline at each

voxel. The results are shown in Figure 8. Panel a shows the average

FIGURE 6 Results from an example subject. (a) The correlation between the motion regressed data and the motion at each voxel of the brain is

negligible (<2 × 10−6). (b) The correlation is reintroduced after high-pass filtering (MCHP). (c) Correlations from (b) superimposed onto their brain

locations. They are thresholded at an arbitrary value of ±0.05 for visualization purposes. (d) The correlation matrix between the 268 regions of

the Shen atlas computed on data where motion regression is performed followed by high-pass filtering (MCHP). (e) The same correlation matrix

on data where high-pass filtering is performed followed by motion regression (HPMC). (f) the difference between the correlation matrices in e

and f. (g) The correlation matrix between the motion time courses over the same regions. Note regions are further split into eight different

networks: Medial frontal (dark blue), frontoparietal (blue), default mode (light blue), subcortical-cerebellum (cyan), motor (green), visual I (orange),

visual II (red), and visual association (brown) [Color figure can be viewed at wileyonlinelibrary.com]
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coherence between the signal and motion time series in the frequency

band below 0.01 Hz for each voxel after MCHP, while Panels b and c

show the same plots for data where motion regression is performed

after high-pass filtering (HPMC) and processed jointly (Joint), respec-

tively. Note the coherence for the signal obtained through the HPMC

pipeline is heightened compared to the other preprocessing pipelines,

illustrating that the signal present in the low-frequency band is more

highly related to motion. Panel g shows the results of the HPMC pipe-

line superimposed onto the brain. The results are presented using an

arbitrary threshold of 0.3 for visualization purposes. Panels d–f show

similar results corresponding to the average coherence in the frequency

band above 0.01 Hz. Note the average coherence for the signal

obtained through the MCHP pipeline (Panel e) is slightly larger than the

other preprocessing pipelines. Panel h shows the results from this pipe-

line superimposed onto the brain.

While we have illustrated the issues using pipelines consisting of

two preprocessing steps, high-pass filtering, and motion regression,

we note that errors can propagate further when including more steps.

We illustrate this using two different three-step pipelines: (a) high-

pass filtering, followed by motion regression, followed by nuisance

regression (HPMCNR); and (b) motion regression, followed by

nuisance regression, followed by high-pass filtering (MCNRHP).

Figure S1 (Supporting Information) shows a scatterplot of the esti-

mated correlation between the MCHP data and the motion at each

voxel plotted against similar values for the MCHRHP pipeline. The

plot illustrates that the negative correlation between signal and

motion induced in the MCHP pipeline is strengthened by including

nuisance regression to the pipeline. Panel b shows the voxel-wise dif-

ference between the correlations from the two pipelines superim-

posed onto the brain. Clearly, there are heightened correlations

around the ventricles, as might be expected, as well as also other parts

of the brain.

Panel a of Figure S2 (Supporting Information) shows the propor-

tion of the power that lies in the frequency band below 0.01 Hz in

each voxel using the HPMC plotted against the same values for the

HPMCNR pipeline. Clearly, HPMCNR provides higher values, indicat-

ing that the pipeline introduces additional signal into this frequency

band compared to the HPMC pipeline. Panel c shows the average

coherence between the signal and motion time series in the frequency

band below 0.01 Hz in each voxel using the HPMC pipeline plotted

against the same values using the HPMCNR pipeline, illustrating that

the coherence between the signal and motion is higher when using

the more complex pipeline. Panels b and d show similar results com-

paring MCHP and MCNRHP. As expected here the difference is not

large, as high-pass filtering is the last operation performed in each

pipeline. However, the coherence between the signal and motion is

again higher when using the more complex pipeline.

Finally, Panel a of Figure S3 (Supporting Information) shows

the difference between the proportion of the power that lies in the

frequency band below 0.01 Hz in each voxel for the HPMCNR and

HPMC pipelines. Panel b shows the difference between the average

coherence between the signal and motion time series in the frequency

band below 0.01 Hz in each voxel for the HPMCNR and HPMC pipe-

lines. Finally, Panel c shows the same results showing the difference

between the MCNRHP and MCHP pipelines. Together, Figures S1–S3

(Supporting Information) illustrate that as the number of sequential

preprocessing steps increase, the issues related to the reintroduction

of signal increases as well.

4.3 | Illustration of group-level effects

Finally, we turn our attention to group-level analysis. Here, we analyze

the two sessions of the Kirby data set separately for comparison pur-

poses. Figure 9 shows t maps for both sessions that test whether the

FIGURE 7 Results from an example subject. (a) The proportion of the power that lies in the frequency band below 0.01 Hz in each voxel after

motion regression followed by high-pass filtering (MCHP). Note there is a negligible contribution. (b) Same plot for data where motion regression

is performed after high-pass filtering (HPMC). In certain voxels up to 12% of the power lies in frequencies that should ideally be 0. (c) Same plot

for data processed jointly (Joint). Much like in (a) there a negligible contribution. (d) the HPMC results shown in (b) superimposed onto the brain.

Note the results are presented using an arbitrary threshold of 2% for visualization purposes [Color figure can be viewed at wileyonlinelibrary.com]
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Fisher-transformed correlation between the motion time courses and

the data after MCHP is significantly different from 0. Results are thre-

sholded at p < 0.001. Clearly, the results are very similar across the

two sessions, and there is clear correlation in frontal areas of the

brain.

Panels (a) and (b) of Figures 10 and 11 show the average correla-

tion matrix for data obtained from the MCHP and HPMC pipelines,

for the two sessions. Panel (c) shows the difference between these

two correlation matrices. In both sessions, the differences range

between values of ±0.08. This illustrates that while averaging across

subjects has removed some of the differences between preprocessing

streams apparent at the single-subject level (see Figure 6); there

remain substantial differences that are consistent in sign across partic-

ipants, introducing systematic bias in group-level results. Panels (d–f)

show the SD of the correlation matrices (MCHP, HPMC, HPMC–

MCHP, respectively) across subjects. The visual networks show the

largest between subject variation for both the MCHP and HPMC

pipelines, while the medial frontal, frontoparietal, default mode net-

works show the largest variation in the difference between pipelines.

Figures S4 and S5 (Supporting Information) show the difference

FIGURE 8 Results from an example subject. (a) The average coherence between the signal and motion time series in the frequency band below

0.01 Hz in each voxel after motion regression followed by high-pass filtering (MCHP). (b) Same plot for data where motion regression is

performed after high-pass filtering (HPMC). (c) Same plot for data processed jointly (Joint). Note the coherence for the signal obtained using the

HPMC pipeline is heightened compared to the other preprocessing pipelines. (d–f) Similar results showing the average coherence in the

frequency band above 0.01 Hz. Note the average coherence for the signal obtained through the MCHP pipeline (d) is slightly larger than the

other preprocessing pipelines. (g) The HPMC results shown in (b) superimposed onto the brain. (h) The MCHP results shown in (d) superimposed

onto the brain. Note for both (g) and (h), the results are presented using an arbitrary threshold of 0.3 for visualization purposes [Color figure can

be viewed at wileyonlinelibrary.com]
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between correlation matrices for each of the 20 subjects. Clearly, there

are substantial differences across subjects in the locations where the

largest differences between pipelines occur, which may ultimately

counteract large biases from appearing in the group-level results.

It is interesting to see in Figure S6 (Supporting Information) how

these differences are enhanced when incorporating an additional

preprocessing step. Panels (a) and (b) show the average correlation matrix

when using the MCNRHP and HPMCNR pipelines, respectively, for the

20 subjects in Session 1. Panel (c) shows the difference between these

two correlation matrices. Comparing these results to the equivalent

results in Figures 10 and 11 indicate a larger difference between the two

preprocessing pipelines. Panels (d–f) show the SD of the correlation

matrices across subjects.

Panels (a–c) of Figure 12 show the group average proportion of

power that lie in the frequency band below 0.01 Hz at each voxel

for both sessions using the three two-step pipelines (MCHP, HPMC,

and Joint) and data from Session 1. Note that for MCHP and Joint,

there is a negligible contribution in that frequency band. For the

HCMP pipeline in certain voxels up to 4% of the power lies in fre-

quencies that should ideally be 0. Panels (d–f) show the same results

FIGURE 9 Results from the group-level analysis. (a) Group-level t maps for data from Session 1 testing whether the Fisher-transformed

correlation between the motion time courses and the data after motion regression followed by high-pass filtering (MCHP) is significantly different

from 0. Results are thresholded at p < 0.001. (B) Same results for data from Session 2 [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 10 Results from the group-level analysis. (a) The average correlation matrix when performing motion regression followed by high-pass

filtering (MCHP) for the 20 subjects in Session 1. (b) The average correlation matrix when performing high-pass filtering followed by motion

regression (HPMC) for the 20 subjects in Session 1. (c) The difference between the two correlation matrices shown in (a) and (b). (d–f) The SD of

the correlation matrices (MCHP, HPMC, HPMC-MCHP, respectively) across subjects [Color figure can be viewed at wileyonlinelibrary.com]
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for Session 2. The results show clear similarities between the two ses-

sions. Panels (g–f) show the HPMC results from the two sessions

superimposed onto the brain. Note the results are presented using an

arbitrary threshold of 0.02 for visualization purposes. As seen in previ-

ous figures, there are patterns consistent with motion artifacts, includ-

ing a ring-like shape at the edge of the brain. There are also apparent

patterns in the frontal cortex.

Panels (a–c) of Figure 13 show the group-level average coher-

ence between the signal and motion time series in the frequency

band below 0.01 Hz at each voxel using the three pipelines and

data from Session 1. Note the coherence for the signal obtained

through the HPMC pipeline is higher than the other preprocessing

pipelines, illustrating that the reintroduced signal is related to

motion. Panels (d–f ) show the same results for data from Session

2. Panels (g) and (h) show the HPMC results superimposed onto

the brain.

Finally, Figure 14 shows similar results related to the group-level

average coherence between the signal and motion time series in the

frequency band above 0.01 Hz at each voxel using the three pipe-

lines for data from Session 1. Here, the differences between pipelines

are more subtle with the MCHP pipeline showing slightly higher

values than the other two pipelines. Panels (d–f) show the same

results for data from Session 2. Panels (g) and (h) shows the MCHP

results superimposed onto the brain.

Together, these results illustrate two important points. First, both

the reintroduction of motion and unwanted frequency components

are not necessarily canceled out across subjects and can propagate to

the group level. Second, the effects are replicable across test–retest

data. This shows that improper preprocessing can introduce a system-

atic error that can bias results in a manner that are replicable, and

thereby potentially confused as real effects.

5 | DISCUSSION

It is common practice in the field of rs-fMRI for researchers to piece

together modular preprocessing pipelines consisting of a number of

separately developed algorithms; each designed to remove a specific

type or class of artifacts. These artifacts can be related to scanner

drift, signal spikes, motion, and signal fluctuations due to heart rate

and respiration. In this article we offer a critic of this modular prepro-

cessing approach, and argue that using such a pipeline can potentially

have adverse effects on subsequent statistical analysis (e.g., resting-

state functional connectivity).

While all preprocessing steps performed on fMRI data are

important, we argue there needs to be a clear understanding about

the effects they have on both the spatial and temporal correlation

structure. More generally, it is critical to study the interactions

among the individual preprocessing steps. In this work, we have

proposed a geometrical framework that provides a way to better

understand these interactions. The framework can be used to

evaluate any preprocessing step that can be expressed within a

linear model framework; examples of such include motion regression,

scrubbing, removal of WM and CSF signal, RETROICOR, RVHRCOR,

FIGURE 11 Results from the group-level analysis. (a) The average correlation matrix when performing motion regression followed by high-pass

filtering (MCHP) for the 20 subjects in Session 1. (b) The average correlation matrix when performing high-pass filtering followed by motion

regression (HPMC) for the 20 subjects in Session 2. (c) The difference between the two correlation matrices shown in (a) and (b). (d–f) The SD of

the correlation matrices (MCHP, HPMC, HPMC-MCHP, respectively) across subjects [Color figure can be viewed at wileyonlinelibrary.com]
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ICA-AROMA global signal removal, and temporal filtering. Together

these account for a large segment of the set of possible preprocessing

steps applied to rs-fMRI data.

Using our approach, we were able to illustrate how preprocessing

steps performed at a later stage of the pipeline can potentially reintro-

duce artifacts that had previously been removed from the data in an

earlier step. Potential interactions between preprocessing steps are

explored by computing the product of their respective projection

matrices and evaluating whether or not when applied together they

project the data into a subspace spanned by the various nuisance

components. If this is the case, these nuisance components will be

effectively reintroduced into the signal in a manner consistent with

the order in which they were performed. Hence, the order in which

the steps are organized in the preprocessing pipeline is critical. As a

rule-of-thumb, the nuisance components corresponding to the last

preprocessing step performed should be adequately removed from

the signal, with components corresponding to earlier steps potentially

reintroduced if they are not orthogonal to components removed in

subsequent steps. We illustrate these issues both theoretically and

using test–retest fMRI data. Empirically, we find that the reintroduced

artifacts are consistent across sessions, and can potentially influence

findings at both the single subject and group level.

FIGURE 12 Results from the group-level analysis. (a) The group-level average proportion of the power that lies in the frequency band below

0.01 Hz at each voxel after motion regression followed by high-pass filtering (MCHP) using data from Session 1. Note there is a negligible

contribution. (b) Same plot for data where motion regression is performed after high-pass filtering (HPMC). In certain voxels up to 4% of the

power lies in frequencies that should ideally be 0. (c) Same plot for data processed jointly (Joint). Much like in (a) there a negligible contribution.

(d–f) Same results for data from Session 2. (g) The HPMC results shown in (b) superimposed onto the brain. (h) The HPMC results shown in

(e) superimposed onto the brain. Note for both (g) and (h), the results are presented using an arbitrary threshold of 0.02 for visualization purposes

[Color figure can be viewed at wileyonlinelibrary.com]
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We note that the issues discussed in this article can be circum-

vented in two ways. The first approach would be to abandon the

modular approach to preprocessing the data, and instead use a joint

approach that simultaneously performs the different preprocessing

steps within an omnibus framework. For example, it is relatively

straightforward to formulate a single linear model that simultaneously

performs motion regression, nuisance regression, and temporal filter-

ing. This is an approach advocated by Caballero-Gaudes and Reynolds

(2017), and implemented in Analysis of Functional NeuroImages

(AFNI) (Cox, 1996) 3dTproject. In general, we believe that the

development of models that incorporate multiple preprocessing steps

promises to play an important role in the future (Lindquist et al.,

2008). The second approach is to formulate the design matrices used

in each preprocessing step in such a manner that when applied

sequentially they are constrained to project onto orthogonal sub-

spaces. For example, if motion regression is performed after temporal

filtering, the columns of the design matrix used in the motion regres-

sion should also be temporally filtered in a similar manner to ensure

the data are projected onto an orthogonal subspace. Similarly, if tem-

poral filtering is performed after motion correction, then each column

FIGURE 13 Results from the group-level analysis. (a) The group-level average coherence between the signal and motion time series in the

frequency band below 0.01 Hz at each voxel after motion regression followed by high-pass filtering (MCHP) for data from Session 1. (b) Same

plot for data where motion regression is performed after high-pass filtering (HPMC). (c) Same plot for data processed jointly (Joint). Note the

coherence for the signal obtained through the HPMC pipeline (a) is heightened compared to the other preprocessing pipelines (b) and (c). (d–f)

Same results for data from Session 2. (g) The HPMC results shown in (b) superimposed onto the brain. (h) The HPMC results shown in

(e) superimposed onto the brain. Note for both (g) and (h), the results are presented using an arbitrary threshold of 0.15 for visualization purposes

[Color figure can be viewed at wileyonlinelibrary.com]
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of the filter needs to be motion corrected. The general rule-of-thumb

is that one must orthogonalize both the data, and all subsequent pro-

jections to maintain data orthogonality with the current projection.

Practically, it makes sense to carefully identify all regressors that one

seeks to remove a priori to ensure that they are handled in an appro-

priate manner.

In the context of temporal filtering we note that though the inclu-

sion of sine and cosine basis elements in the design matrix (as described

in this article) is elegant for its simultaneity, it may be suboptimal in vari-

ous ways related to ringing artifacts and covariance stationarity

(Christiano & Fitzgerald, 2003). While this does not undermine the points

we seek to make about the value of sequential orthogonalization, we

urge caution in encouraging readers to value a tidy design matrix over a

filter that may be better suited for fMRI data.

While temporal filtering and nuisance regression are typically per-

formed after other standard preprocessing steps, thereby making it

straightforward to implement a joint filter on the data that includes

both, other nuisance variables are often handled at other points in the

pipeline. For example, this is true for measured physiological signals

(e.g., using the RETROICOR method) and data-derived nuisance com-

ponents (e.g., using ICA-AROMA). For measured physiological signal,

removal is often performed in the early stages of the pipeline. For

FIGURE 14 Results from the group-level analysis. (a) The group-level average coherence between the signal and motion time series in the

frequency band above 0.01 Hz at each voxel after motion regression followed by high-pass filtering (MPHC) for data from Session 1. (b) Same

plot for data where motion regression is performed after high-pass filtering (HPMC). (c) Same plot for data processed jointly (Joint). (d–f) Same

results for data from Session 2. (g) The MCHP results shown in (a) superimposed onto the brain. (h) The MCHP results shown in (d) superimposed

onto the brain. Note for both (g) and (h), the results are presented using an arbitrary threshold of 0.15 for visualization purposes [Color figure can

be viewed at wileyonlinelibrary.com]
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example, Jones et al. (2008) suggest performing RETROICOR between

the motion correction and slice-time correction steps. For ICA-

AROMA, these components are derived after spatial smoothing, and

removed using a partial regression approach in which voxels are

regressed on both putative signal and noise components to avoid

removal of parts of nuisance components that correlate with signal.

This is generally performed prior to nuisance regression, which

includes WM, CSF, and linear trend removal, as well as high-pass

filtering (Pruim et al., 2015). In both these cases, latter preprocessing

steps have the effect of potentially reintroducing the removed signal

components. It is therefore critical that the effects of these compo-

nents are removed from all subsequently performed preprocessing

steps. To the best of our knowledge, this is currently not done.

Interestingly, the proposed approaches for circumventing the

issues outlined in this article are often utilized when analyzing task

fMRI using the general linear model (GLM). Here, it is common to per-

form motion regression and temporal filtering simultaneously by

including both terms in the design matrix. If these steps are instead

performed modularly (i.e., with low-pass filtering performed prior to

fitting the GLM), the same issues described in this article will impact

the results unless the design matrix used in the GLM has also been

temporally filtered. Taking this step ensures that the frequencies

removed in the low-pass filtering are not reintroduced when fitting

the GLM. This is actually the default in most common fMRI software

packages (e.g., SPM and FMRIB Software Library (FSL)). Hence, it is

not clear if the issues raised in this article are problematic for most

task fMRI studies, and therefore we focus on rs-fMRI, though we urge

researchers to be cautious when performing modular analysis to

ensure that artifacts are not reintroduced.

It should be noted that our framework provides a mechanism for

investigating various preprocessing choices made in the literature. For

example, Bright et al. (2017) recommend using prewhitening when

performing motion regression. Prewhitening is equivalent to comput-

ing the generalized least squares solution

β̂ = X0V −1X
� �

−1

X
0

V −1y:

Thus, to compute the motion corrected residuals, one would use

the projection matrix

P = I−X X0V −1X
� �

−1

XV −1
:

Importantly, the residuals in this setting reside on the subspace

orthogonal to the space spanned by V−1X. Therefore, they will not

necessarily be orthogonal to the space spanned by X (i.e., the space

spanned by the motion parameters). Thus, the residuals will potentially

still be correlated with motion if it is removed in this manner. This

example illustrates the power of the geometrical framework to criti-

cally evaluate preprocessing choices made it the literature.

The complete preprocessing of rs-fMRI data can conveniently be

separated into spatial and temporal preprocessing pipelines (Smith

et al., 2013). The goal of spatial preprocessing is to remove spatial arti-

facts from the data. Here, the relevant steps include correction for

spatial distortions caused by gradient nonlinearity, rigid-body correc-

tion for motion, correction for B0 distortion, co-registration of struc-

tural and functional data, and normalization to a standard template

(i.e., MNI space). These steps are performed prior to temporal prepro-

cessing, which includes motion regression, scrubbing, removal of WM

and CSF signal, global signal removal, and temporal filtering. In this

work, we have focused entirely on potential problems with temporal

preprocessing, and our geometrical framework is not explicitly

designed for evaluating spatial preprocessing pipelines. Future work

involves extending the framework, or alternatively developing a com-

panion framework, for working in this setting.

It appears to be a trend for large data consortium (e.g., the Human

Connectome Project) to make minimally preprocessed data available

(Glasser et al., 2013). These data have only undergone spatial prepro-

cessing, and should thus not be effected by the problems outlined in

this article. However, we note that once researchers take these data

sets and perform temporal preprocessing, they are susceptible to the

problems outlined herein.

It is difficult to provide an exact estimate of the number of rs-

fMRI papers that suffer from the issues raised in this work. This is in

large part due to the wide variability in the reporting of preprocessing

methods used in rs-fMRI studies (Waheed et al., 2016). In general,

methods sections are often extremely terse when discussing prepro-

cessing, and neither specify the order or the manner in which the dif-

ferent steps are performed. In addition, even if the order is specified it

is not always clear whether proper orthogonalization has been per-

formed. That said we suspect that the problems outlined in this article

negatively impact a large number of papers published every year.
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