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Abstract

The paper presents a modular superposition calculus for the combination of first-
order theories involving both total and partial functions. The modularity of the
calculus is a consequence of the fact that all the inferences are pure – only involving
clauses over the alphabet of either one, but not both, of the theories – when refuting
goals represented by sets of pure formulae. The calculus is shown to be complete
provided that functions that are not in the intersection of the component signatures
are declared as partial. This result also means that if the unsatisfiability of a goal
modulo the combined theory does not depend on the totality of the functions in
the extensions, the inconsistency will be effectively found. Moreover, we consider a
constraint superposition calculus for the case of hierarchical theories and show that
it has a related modularity property. Finally we identify cases where the partial
models can always be made total so that modular superposition is also complete
with respect to the standard (total function) semantics of the theories.

1 Introduction

This paper aims at providing new modularity results for refutational theorem
proving in first-order logic with equality. In Nelson-Oppen-style combinations
of two first-order theories T1 and T2 over signatures Σ1 and Σ2, inferences
are pure in that all premises of an inference are clauses over only one of the
signatures Σi where i depends on the inference. Therefore, no mixed formulae
are ever generated when refuting goals represented by sets of pure formulae.
What needs to be passed between the two theory modules are only universal
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formulae 1 over the intersection Σ1 ∩ Σ2 of the two signatures. For stably
infinite theories where, in addition, Σ1 ∩ Σ2 consists of constants only, pure
inference systems exist. This is one of the main consequences of Nelson and
Oppen’s results [23] (also see, e. g., Tinelli and Harandi [27] for additional
clarification). The results have recently been extended to some situations when
the theories T1 and T2 share also non-constant function symbols. Ghilardi [14]
extended the completeness results for modular inference systems to a more
general case of “compatibility” between the component theories Ti. Future
work might aim at weakening these compatibility requirements even further.
In [26], Tinelli shows that similar modularity results are achieved if the theories
share all their function symbols.

In this paper we take a different point of departure. We will consider ar-
bitrary theory modules T1 and T2 and investigate what one loses in terms
of completeness when superposition inferences are restricted to be pure. Su-
perposition is refutationally complete for equational first-order logic, and by
choosing term orderings appropriately (terms over Σ1∩Σ2 should be minimal
in the term ordering), many, but not all, cases of impure inferences can be
avoided. Impure inferences arise when one of the extensions Σ1 \Σ2 or Σ2 \Σ1

has additional non-constant function symbols. It is known that in such cases in-
terpolants of implications of the form φ1 ⊃ φ2, with φi a Σi-formula, normally
contain existential quantification. That means, that refutationally complete
clausal theorem provers where existential quantifiers are skolemized need to
pass clauses from T1 to T2 [from T2 to T1] containing function symbols not in
Σ2 [Σ1]. In other words, inference systems are necessarily either incomplete or
impure.

One of the main results of the paper is that if the extensions only introduce
additional relations and partial functions, 2 a particular calculus of superposi-
tion for partial functions to be developed in this paper becomes a complete and
modular proof system where inferences are pure. This result can be applied to
problems where partial functions arise naturally. Alternatively we may think
of this result as indicating what we lose if superposition is restricted to pure
inferences. If a proof cannot be found in the pure system, a partial algebra
model exists for the goal to be refuted. Conversely, if the inconsistency of a
goal does not depend on the totality of the functions in the extensions, we
will be able to find the inconsistency with the modular partial superposition
calculus. There are interesting cases of problem classes where partial models

1 For Nelson-Oppen-style combination of theories, one even restricts the informa-
tion exchange between theories to ground clauses over the intersection signature.
2 A non-equational literal p(t1, . . . , tn) or ¬ p(t1, . . . , tn), where p is a rela-
tion symbol, can be encoded as an equational literal fp(t1, . . . , tn) ≈ truep or
¬ fp(t1, . . . , tn) ≈ truep, where fp is a function and truep a total constant. Thus
we will in the sequel not mention relations anymore.
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can always be totalized and where the modular system is therefore in fact
complete (cf. Sect. 5).

1.1 Related work

The approach we present in this paper is based on two ideas: (i) consider
extensions of a base theory with partial functions, (ii) show that in this case
modular and hierarchical proof systems exist. We now explain how these ideas
relate to previous work.

1.1.1 Evans Validity

We consider extensions of a base theory with partial functions. The semantics
for partial functions we consider is known as “Evans validity”. It was intro-
duced, in the equational case, by Evans [9,10], while identifying situations
when the uniform word problem in classes of algebras axiomatized by a set E
of identities is decidable in PTIME.

We briefly present Evans’ method and his motivation for giving this semantics
for partial functions. Given a signature Σ, a presentation for Σ is a pair Π =
(G, R), where G is a set of generators and R is a set of relations (formulated
in the signature Σ) between generators. The uniform word problem for a class
of algebras axiomatized by a set E of identities is concerned with determining,
for any presentation Π, which ground equations u ≈ v follow from E and R,
i. e. when E ∪ R |= u ≈ v holds. Evans’ idea was to construct a “canonical”
partial algebra P which satisfies E as well as all equations in R, and check if
u ≈ v holds in P . For this, he started with the set P (G, R) of all subterms
occurring in R∪{u ≈ v}. This can be seen as a partial algebra, with operations
defined in the natural way except for the fact that if f ∈ Σ and t1, . . . , tn ∈
P (G, R) then f(t1, . . . , tn) is undefined in P (G, R) if the term f(t1, . . . , tn)
is not in P (G, R). Evans then identified subterms equal modulo E ∪ R using
ground completion 3 of R together with certain ground instances of the theory
clauses E dynamically derived from subterms in P (G, R). The goal of the
construction is to ensure that, in as much as the axioms in E are defined, they
are satisfied in P . In addition, the functions in Σ must be defined in P in such
a way that it is not possible, by the use of the axioms in E, to assign a value
to some f(p1, . . . , pm) which is not already defined in P . This last condition
can be expressed as follows:

If s ≈ f(s1, . . . , sn) is an axiom in E, and if for some substitution of elements
in P the term s is defined in P and evaluates to p, and if s1, . . . , sn are

3 Before the concept was introduced by Knuth and Bendix in 1970.
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defined in P and evaluate to p1, . . . , pn, then f(p1, . . . , pn) must be defined
in P and equal to p.

Thus, if a term t is undefined because some of its proper subterms are un-
defined, then t is “irrelevant” and can be excluded from further considera-
tions. This reflects the way in which terms are replaced by equal terms in the
ground completion process proposed by Evans. This link between rewriting,
completion, and Evans equality was one of the reasons why in this paper we
consider Evans equality for partial functions. What we propose is an exten-
sion of the completion algorithm to first-order clauses. Another reason is that
embeddability conditions for partial algebras satisfying (in Evans’ sense) sets
of identities or Horn clauses were used [9,10,7] to obtain results on PTIME
decidability of (uniform) word problems. We use similar embeddability results
in Sect. 5 to establish a link between extensions with partial and extensions
with total functions. This allows to obtain more restricted superposition cal-
culi for a large class of theory extensions: we show that by allowing only total
substitutions as unifiers (i.e. substitutions which do not introduce extension
symbols) the completeness of the calculus is preserved at the small price of
introducing one additional rule.

1.1.2 Modular reasoning in combinations of theories

The second main issue of this paper is modularity in automated theorem
proving. This is a very important matter, as most of the reasoning problems
which occur in computer science – especially in problems related to the veri-
fication of complex systems – can be reduced to reasoning in extensions and
combinations of theories. One possibility is to integrate the knowledge about
the individual components, taking into account the interaction between them.
For this, “modularity” can be achieved by limiting interaction between the
modules as much as possible, and using existing provers for the components
as “black-boxes”. In general interaction between modules cannot be ignored
without losing completeness.

Let T1, T2 be two first-order theories in signatures Σ1, Σ2. Let Γ1, Γ2 be sets
of clauses in the signatures Σ1 and Σ2, respectively. Assume that we want to
show that T1 ∪Γ1 ∪T2 ∪Γ2 is satisfiable. In general it is not sufficient to check
whether T1∪Γ1 and T2∪Γ2 are satisfiable: we need some information exchange
between provers dealing with T1 ∪ Γ1 and T2 ∪ Γ2, respectively. By Craig’s
interpolation theorem for first-order logic we know that if T1∪Γ1∪T2∪Γ2 |=⊥
then there exists a formula φ containing only common symbols of T1 ∪Γ1 and
T2 ∪ Γ2 such that T1 ∪ Γ1 |= φ and T2 ∪ Γ2 ∪ {φ} |=⊥. However, φ can be
an arbitrarily quantified first-order formula. It was proved that interpolants
are always (ground) clauses if restrictions are imposed on the extensions to be
taken into account, or on the shared theory:
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– If the theories have disjoint signature, it can be proved that the interpolants
are disjunctions of equalities between shared constants.

– In [26], Tinelli proved that if the theories T1, T2 share all function symbols
then the interpolants are always clauses (ground if Γ1, Γ2 are ground).

– Ghilardi [14] showed that a similar result holds if the theories are extensions
of a shared theory and certain (model theoretic) compatibility conditions of
these extensions with the shared theory are satisfied.

This is used in many methods for checking satisfiability of conjunctions of
literals in combinations of theories. The Nelson-Oppen combination procedure
[23] for instance, can be applied for combining decision procedures of stably
infinite theories over disjoint signatures. As a preprocessing step, one purifies
the problem by separating the theory symbols, thus obtaining a problem Γ1∪Γ2

consisting only of clauses with symbols in one, but not both, of the component
theories. In a non-deterministic version of the procedure one then guesses (if
possible) a combination of values for the shared variables which satisfies both
Γ1 and Γ2. Arguments about stable infinity of the component theories are
then used to infer that under these conditions the initial set of clauses is
also satisfiable. Alternatively, in a “refutational” variant of the Nelson-Oppen
procedure, one can analyze all inferences from the set Γ1∪Γ2 of purified clauses.
This line of reasearch was pursued e. g. by Hillenbrand [17], who reestablished
the correctness of the Nelson-Oppen combination procedure as a consequence
of the superposition calculus [3]. Conditions when pure inferences are sufficient
for checking unsatisfiability of purified goals in more general combinations of
theories were identified by Tinelli and by Ghilardi [26,14].

The present paper changes the perspective compared with the approaches
mentioned above. As in [26], we first consider extensions with relations and
partial functions. However, in our paper the emphasis is on giving an efficient
and modular superposition calculus for reasoning about partial functions. We
then identify conditions under which the extension functions can be made
total. Thus we identify situations where, even when reasoning about totally
defined extension functions, we do not need to use the full superposition calcu-
lus for total functions, but only the partial superposition calculus. This allows
us to obtain complete modular or hierarchic calculi also for some extensions
with total functions. Thus we relax some of the strong conditions imposed in
[26] and [14] for obtaining similar results.

1.2 Structure of the Paper

In Sect. 2 we will describe the logic of partial functions we are working with.
The logic is that of weak equality in the sense of Evans [10]. This logic allows
one to specify undefinedness, but not definedness, of a function. (However we
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may specify a kind of relative definedness as explained below.) Then, in Sect. 3,
we state and prove sound and refutationally complete a superposition calculus
for clauses over signatures where functions can be declared as either total or
partial. The calculus might be of independent interest for problem domains
where partial functions arise in a natural manner. (That aspect, however, will
not be explored any further in this paper as we are mainly interested in mod-
ularity.) We show that the calculus only admits pure inferences in cases of
theory combinations where all functions that are not in the intersection of the
signatures are declared as partial. In Sect. 4 we consider a variant of the calcu-
lus, called constraint partial superposition, suitable for hierarchical extensions
T1 of a base theory T0. It differs from the previous calculus in that unifica-
tion is replaced by generating equality constraints over the base theory. This
system is modular in that no inferences involving base clauses (over Σ0) need
to be made. Rather, we may integrate any refutationally complete prover for
T0 accepting the base clauses generated from non-base inferences and return-
ing falsum whenever the accumulated set of base clauses is inconsistent with
T0. In Sect. 5 we consider both shallow and local extensions of base theories,
showing that for those classes of extensions constraint partial superposition
is complete also with respect to the total algebra semantics of theories and
goals. Finally Sect. 6 discusses related work.

This paper is an extended version of [13]. The considerations about the many-
sorted case which were only mentioned in the short version of the paper are
now fully presented.

2 Partial Functions with Evans Equality

Definition 1. A many-sorted signature Σ = (S, ΩT, ΩP) is a triple consisting
of a non-empty set S of sorts, a set ΩT of total function symbols, and a set
ΩP of partial function symbols.

Terms are built over Σ and a set V of variables. Each function symbol f ∈
ΩT ∪ ΩP comes with a unique declaration f : ξ1 . . . ξn → ξ0 with n ≥ 0 and
ξi ∈ S; the sort ξ0 is called the codomain of f . 4 Similarly, every variable
x ∈ V comes with a unique declaration x : ξ for some ξ ∈ S.

Definition 2. The set TΣ(V )ξ of terms of sort ξ is inductively defined by
x ∈ TΣ(V )ξ if x : ξ ∈ V and f(t1, . . . , tn) ∈ TΣ(V )ξ if f : ξ1 . . . ξn → ξ and
ti ∈ TΣ(V )ξi

; the union
⋃

ξ∈S TΣ(V )ξ is denoted by TΣ(V ).

4 If S = {ξ} is a singleton, we use the shorthand notation f/n for an n-ary function
symbol f : ξ . . . ξ → ξ.

6



We assume that for every ξ ∈ S the set TΣ(∅)ξ contains at least one term
consisting only of ΩT-symbols. A substitution maps every variable x ∈ V to a
term with the same sort as x. An equation is a pair of terms, written as s ≈ t,
where s and t have the same sort. 5 We use s 6≈ t as a shorthand for ¬ s ≈ t;
in inference rules, the symbol

.
≈ denotes either ≈ or 6≈.

Definition 3. A (partial) Σ-algebra A consists of a non-empty set ξA for
every ξ ∈ S, a total function fA : ξ1,A × · · · × ξn,A → ξA for every f :
ξ1 . . . ξn → ξ ∈ ΩT and a partial function gA : ξ1,A × · · · × ξn,A → ξA for
every g : ξ1 . . . ξn → ξ ∈ ΩP. 6

A Σ-algebra A is called total if gA is a total function for every g ∈ ΩP.

An assignment β into A is a function that maps every variable x : ξ ∈ V to
an element of ξA.

Definition 4. Given an algebra A and an assignment β into A, the value
(A, β)(t) of a term t ∈ TΣ(V )ξ is either an element of ξA or one of the two
special values ⊥u (“undefined”) or ⊥i (“irrelevant”). It is defined as follows:

(A, β)(x) = β(x)
if x is a variable.

(A, β)(f(t1, . . . , tn)) = fA(a1, . . . , an)
if (A, β)(ti) = ai ∈ ξi,A for all i ∈ {1, . . . , n}
and fA(a1, . . . , an) is defined.

(A, β)(f(t1, . . . , tn)) = ⊥u

if (A, β)(ti) = ai ∈ ξi,A for all i ∈ {1, . . . , n}
and fA(a1, . . . , an) is undefined.

(A, β)(f(t1, . . . , tn)) = ⊥i

if (A, β)(ti) ∈ {⊥u,⊥i} for some i ∈ {1, . . . , n}.

By induction, this means that a term t is irrelevant if one of its proper subterms
t/o (o 6= ε) is undefined.

To evaluate the truth of a formula, we use a three-valued logic with the values
1 (true), 1

2
(undefined), and 0 (false). The truth values 1 and 1

2
are called

positive.

Definition 5. Given an algebra A and an assignment β into A, the truth value
of a formula F w. r. t. A and β is denoted by (A, β)(F ). If F is an equation

5 For simplicity, we restrict to equality as the only predicate symbol. The extension
to additional predicate symbols is obvious.
6 We use ξi,A as a shorthand for (ξi)A.
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s ≈ t, then (A, β)(F ) = 1 if (A, β)(s) = (A, β)(t) ∈ ξA; (A, β)(F ) = 1

2
if

(A, β)(s) = (A, β)(t) = ⊥u or (A, β)(s) = ⊥i or (A, β)(t) = ⊥i; and otherwise
(A, β)(F ) = 0.

For complex formulae, we have

(A, β)(⊥) = 0,

(A, β)(>) = 1,

(A, β)(F ∧G) = min {(A, β)(F ), (A, β)(G)},

(A, β)(F ∨G) = max {(A, β)(F ), (A, β)(G)},

(A, β)(¬F ) = 1− (A, β)(F ),

(A, β)(∀x.F ) = min { (A, β[x 7→ a])(F ) | x : ξ, a ∈ ξA },

(A, β)(∃x.F ) = max { (A, β[x 7→ a])(F ) | x : ξ, a ∈ ξA }.

Definition 6. An algebra A is a (partial) model of a formula F if (A, β)(F ) ≥
1

2
for every β, or in other words, if F is positive (i. e., true or undefined)

w. r. t. A and β; it is a model of a set N of formulae if it is a model of every
formula in N . A model is called total if it is a total algebra.

If A is a model of F , we say that F holds in A. A formula F follows from
a set N of formulae (denoted by N |= F ) if every model of N is a model of
F . A set N of formulae is satisfiable if it has a model. Otherwise, it is called
unsatisfiable or inconsistent ; this is also denoted by N |= ⊥.

Note that an algebra A is a model of a ground equation s ≈ t if both s and t
are defined and equal in A, or if both are undefined, or if at least one of them
is irrelevant; A is a model of s 6≈ t unless both s and t are defined and equal
in A. It is easy to check that every ground clause C holds in an algebra A
as soon as one term occurring in C is irrelevant in A. Intuitively, the ground
instances of a clause that contain irrelevant terms are those instances that we
choose to ignore.

Example 7. Let ΩT = {nil/0, cons/2}, ΩP = {car/1, cdr/1}, and let A be
the algebra of finite lists with the usual interpretation of these symbols.

Then A is a model of ∀x.cons(car(x), cdr(x)) ≈ x: Suppose that x : ξ is
mapped to some a ∈ ξA. Then either one of carA(a) and cdrA(a) is un-
defined, hence the value of cons(car(x), cdr(x)) is irrelevant, and the equa-
tion has the truth value 1

2
. Or carA(a) and cdrA(a) are defined; in this case

consA(carA(a), cdrA(a)) = a, so the equation has the truth value 1. The truth
value of the universally quantified formula is min { 1

2
, 1} = 1

2
, therefore A is a

model of the formula.
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Since carA(nilA) and cdrA(nilA) are undefined, A is a model of both the formula
car(nil) ≈ cdr(nil) and its negation car(nil) 6≈ cdr(nil). It is not a model of
car(nil) ≈ nil (the left-hand side is undefined, the right-hand side is defined),
it is, however, a model of car(car(nil)) ≈ nil (the left-hand side is irrelevant).

Note that explicit [un-]definedness predicates are not present in this logic.
To express that a term t is not defined, one can simply state that t 6≈ t.
Expressing that t (not containing partial function symbols below the top) is
defined is only possible if Σ contains appropriate total function symbols or
can be extended by new symbols. For example, for an algebra B to be a model
of ∀x, y.car(cons(x, y)) ≈ x, carB has to be defined for every b in the codomain
of consB. Equations of this form implicitly express definedness requirements
for partial functions.

Definition 8. A Σ-algebra is called total-term-generated if for every a ∈ ξA

there exists a ground term t ∈ TΣ(∅)ξ consisting only of ΩT-symbols such
that (A, β)(t) = a. We write N |=TG F if every total-term-generated model of
N is a model of F .

Obviously, N |= F implies N |=TG F . For refutational theorem proving, |=
and |=TG are equivalent:

Proposition 9. Let N be a set of universally quantified clauses. Then N |= ⊥
if and only if N |=TG ⊥.

Proof. The “only if” part is trivial. For the “if” part assume that the Σ-
algebra A is a model of N . Define a Σ-algebra B as follows: For ξ ∈ S let ξB

be the set of all elements a ∈ ξA for which there is a ground term t ∈ TΣ(∅)ξ

consisting only of ΩT-symbols such that (A, β)(t) = a. For f : ξ1 . . . ξn → ξ ∈
ΩT∪ΩP and bi ∈ ξi,B ⊆ ξi,A let fB(b1, . . . , bn) = fA(b1, . . . , bn) if fA(b1, . . . , bn)
is defined and contained in ξB; let fB(b1, . . . , bn) be undefined otherwise. (Note
that f ∈ ΩT and bi ∈ ξi,B implies that fA(b1, . . . , bn) is defined and contained
in ξB.)

It is now straightforward to verify that, for every assignment β into B and
every literal s

.
≈ t occurring in a clause in N , (A, β)(s

.
≈ t) ≥ 1

2
implies

(B, β)(s
.
≈ t) ≥ 1

2
. Consequently, every clause that has positive truth value

w. r. t. A must have positive truth value w. r. t. B.

Definition 10. We say that a substitution is total if no variable is mapped
to a term containing a partial function symbol. If Q is a term or formula and
σ is a total substitution, then Qσ is a total instance of Q.

Definition 11. For a clause C, tgi(C) denotes the set of all total ground
instances of C; for a set N of clauses, tgi(N) = {C ′ | C ∈ N, C ′ ∈ tgi(C) }.
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Let A be a total-term-generated algebra and let V be a finite set of variables.
Then for every assignment β : V → A there exists a total substitution σ :
V → TΣ(∅) such that (A, β)(t) = (A, γ)(tσ) for all terms t ∈ TΣ(V ) and
assignments γ : V → A. Conversely, for every total substitution σ : V →
TΣ(∅) there exists an assignment β : V → A such that (A, β)(t) = (A, γ)(tσ)
for all terms t ∈ TΣ(V ) and assignments γ : V → A. The following lemma is
an immediate consequence of this fact:

Lemma 12. Let N be a set of universally quantified clauses and let A be a
total-term-generated algebra. Then A is a model of N if and only if A is a
model of tgi(N).

Convention 13. From now on, we will consider only the clausal fragment of
this logic. As usual, all variables in a clause are implicitly universally quanti-
fied.

The theorem proving calculus described below will check whether a set N of
clauses is inconsistent, that is, whether N |= ⊥, where ⊥ is the empty clause.
The entailment problem “does a clause F follow from N” can be reduced
to this refutation problem, but the reduction is a bit more complicated than
in usual two-valued logic. The following example demonstrates the principal
ideas of the reduction:

Example 14. Suppose that ΩT ⊇ {c/0, d/0} and ΩP ⊇ {f/1, g/1}. We want
to check whether N |= f(c) ≈ g(d) for some set N of clauses. One might think
that this is equivalent to N ∪ {f(c) 6≈ g(d)} |= ⊥, but this is not true: If
N = {f(c) ≈ g(d)}, then N |= f(c) ≈ g(d), but still the set N ∪ {f(c) 6≈ g(d)}
has a model, namely one in which f(c) and g(d) are undefined. The statement
N |= f(c) ≈ g(d) holds if in each model of N either f(c) and g(d) are defined
and equal, or both are undefined. Conversely, it does not hold if there is a
model of N in which f(c) is defined and g(d) is undefined or defined and
different from f(c), or vice versa. To translate the entailment problem into a
set of refutation problems, we need therefore a new total function symbol e/0:
N |= f(c) ≈ g(d) holds if and only if both N ∪ {f(c) ≈ e, g(d) 6≈ e} |= ⊥ and
N ∪ {f(c) 6≈ e, g(d) ≈ e} |= ⊥.

3 Superposition for Partial Functions

The superposition calculus (Bachmair and Ganzinger [3]) is a saturation-based
calculus for equational clauses that is refutationally complete and combines
essentially the ideas of ordered resolution and unfailing Knuth-Bendix comple-
tion. The calculus is parameterized by a reduction ordering on terms (which
is lifted to an ordering on literals and clauses). This ordering is used in two
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ways to reduce the search space of the calculus: Locally, inference rules are
equipped with ordering restrictions so that inferences have to be performed
only if they involve maximal terms 7 of maximal literals of clauses. Globally,
the ordering is used to define a redundancy criterion that allows us to delete
or to simplify clauses.

In order to be sound for our logic of partial functions, the inference rules of
the traditional superposition calculus must be modified in several ways. For
instance, a literal s 6≈ s may hold in an algebra – namely if s is undefined
or irrelevant – so the equality resolution rule may be applied only if s is
guaranteed to be defined. Similarly, replacement of equals by equals may be
unsound: Assume that g is a partial function, f(g(c)) is irrelevant in some
algebra A, and d is defined, then f(g(c)) ≈ d and f(g(c)) 6≈ d hold in A, but
d 6≈ d does not. Consequently, a term that is replaced using some inference
rule may contain a partial function symbol at the top, but not below the top
(so that it is guaranteed to be either defined or undefined, but not irrelevant).
For the same reason, substitutions that introduce partial function symbols
must be ruled out, so only total unifiers are permitted.

Inference System 15. The inference system of the partial superposition cal-
culus consists of the inference rules equality resolution, superposition, partial
top-superposition, merging paramodulation, and factoring. 8 Let us start the
presentation of the inference rules with a few general conventions.

The partial superposition calculus is parameterized by a reduction ordering �
on terms that is total on ground terms and that has the property that every
ground term over ΩT is smaller than every ground term containing a symbol
from ΩP (for instance, a lexicographic path ordering where all symbols from
ΩP have higher precedence than symbols from ΩT). 9

To a positive literal s ≈ t, we assign the multiset {s, t}, to a negative literal
¬s ≈ t the multiset {s, s, t, t}. The literal ordering�L compares these multisets
using the multiset extension of �. The clause ordering �C compares clauses
by comparing their multisets of literals using the multiset extension of �L.

A literal that is involved in an inference must be maximal in the respective
clause (except for the literal s0 ≈ s′0 in merging paramodulation and the literals
ti ≈ t′i (i > 1) in partial top-superposition). A positive literal that is involved in
a superposition, partial top-superposition, or merging paramodulation inference

7 Except for the merging paramodulation rule.
8 The merging paramodulation rule could be replaced by the equality factoring
rule [3]; the factoring rule is not subsumed by equality factoring, however, and
would still be necessary for refutational completeness.
9 Since we are interested in total ground instances only, this implies that a variable
may be considered as smaller than every term containing a symbol from ΩP.
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must be strictly maximal in the respective clause (with the exceptions above).
In inferences with two premises, the left premise is not greater than or equal
to the right premise.

Equality Resolution
C ′ ∨ s 6≈ s′

C ′σ

if s does not contain partial function symbols
and σ is a total most general unifier of s and s′.

Superposition
D′ ∨ t ≈ t′ C ′ ∨ s[u]

.
≈ s′

(D′ ∨ C ′ ∨ s[t′]
.
≈ s′)σ

if u is not a variable, t does not contain partial
function symbols below the top, σ is a total most
general unifier of t and u, tσ 6� t′σ, sσ 6≺ s′σ, and,
if s

.
≈ s′ occurs positively or s is an ΩT-term, then

sσ 6� s′σ.

Partial Top-Superposition
D′ ∨ t1 ≈ t′1 ∨ . . . ∨ tn ≈ t′n C ′ ∨ s ≈ s′

(D′ ∨ C ′ ∨ s′ ≈ t′1 ∨ . . . ∨ s′ ≈ t′n)σ

if n ≥ 2, s contains a partial function symbol at
the top and no partial function symbols below the
top, each t′i contains a partial function symbol,
σ is a total most general unifier of s and all ti,
tiσ 6� t′iσ, sσ 6� s′σ, and s′σ 6� t′iσ. 10

Merging Paramodulation
D′ ∨ t ≈ t′ C ′ ∨ s0 ≈ s′0 ∨ s ≈ s′[u]

(D′ ∨ C ′ ∨ s0 ≈ s′0 ∨ s ≈ s′[t′])σ

if u is not a variable, t does not contain partial
function symbols below the top, σ is a total most
general simultaneous unifier of t and u and of
s0 and s, tσ 6� t′σ, sσ 6� s′σ, sσ 6� s′0σ, and
s′σ 6� s′0σ,

Factoring
C ′ ∨ s ≈ s′ ∨ t ≈ t′

(C ′ ∨ s ≈ s′)σ

if σ is a total most general simultaneous unifier
of s and t and of s′ and t′.

Theorem 16. The inference rules of the partial superposition calculus are

10 Partial top-superposition corresponds to iterated superposition into the right
premise, except that the intermediate conclusions may not be eliminated if they
are redundant as defined below; in fact, it can be implemented that way. The par-
tial top-superposition rule is needed in our proof of Lemma 26; the question whether
the calculus is complete even without this rule is open, though.
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sound w. r. t. |= (and therefore also sound w. r. t. |=TG).

Proof. We have to show that, whenever the premises of an inference hold in
some algebra A, then the conclusion holds in A.

Let us consider first the equality resolution rule. Suppose that A is a model
of the clause C = C ′ ∨ s 6≈ s′, where s is an ΩT-term; let σ be a to-
tal unifier of s and s′ and let β be an arbitrary assignment. Since σ is to-
tal, xσ is an ΩT-term and (A, β)(xσ) ∈ ξA for every variable x : ξ. Define
the assignment γ by γ(x) = (A, β)(xσ). By assumption, 1

2
≤ (A, γ)(C) =

(A, β)(Cσ) = (A, β)(C ′σ ∨ sσ 6≈ s′σ). Now note that sσ = s′σ is an ΩT-term,
hence (A, β)(sσ) and (A, β)(s′σ) are defined and equal, therefore (A, β)(sσ 6≈
s′σ) = 0. Consequently, (A, β)(C ′σ) ≥ 1

2
. Since β could be chosen arbitrarily,

A is a model of C ′σ.

For the superposition rule assume that A is a model of the clauses D =
D′ ∨ t ≈ t′ and C = C ′ ∨ s[u]

.
≈ s′, where t does not contain ΩP-symbols

below the top. Without loss of generality, C and D have no common vari-
ables. Let σ be a total unifier of t and u and let β be an arbitrary as-
signment. Since σ is total, xσ is an ΩT-term and (A, β)(xσ) ∈ ξA for ev-
ery variable x : ξ. Define the assignment γ by γ(x) = (A, β)(xσ). By as-
sumption, 1

2
≤ (A, γ)(C) = (A, β)(Cσ) = (A, β)(C ′σ ∨ sσ[uσ]

.
≈ s′σ) and

1

2
≤ (A, γ)(D) = (A, β)(Dσ) = (A, β)(D′σ ∨ tσ ≈ t′σ). If (A, β)(C ′σ) ≥ 1

2

or (A, β)(D′σ) ≥ 1

2
, it is obvious that the conclusion is positive w. r. t. A

and β. Otherwise (A, β)(sσ[uσ]
.
≈ s′σ) ≥ 1

2
and (A, β)(tσ ≈ t′σ) ≥ 1

2
. Let t

have sort ξ′. Since t does not contain ΩP-symbols below the top, (A, β)(tσ) ∈
ξ′A ∪ {⊥u}. This leaves two possible reasons why (A, β)(tσ ≈ t′σ) is positive:
If (A, β)(tσ) = (A, β)(t′σ) ∈ ξ′A ∪ {⊥u}, then clearly (A, β)(sσ[t′σ]

.
≈ s′σ) =

(A, β)(sσ[tσ]
.
≈ s′σ) = (A, β)(sσ[uσ]

.
≈ s′σ) ≥ 1

2
. Otherwise (A, β)(t′σ) = ⊥i,

then (A, β)(sσ[t′σ]) = ⊥i, hence (A, β)(sσ[t′σ]
.
≈ s′σ) = 1

2
.

The soundness of the partial top-superposition and merging paramodulation
rules is proved analogously.

Finally we consider the factoring rule. Let A be a model of the clause C =
C ′ ∨ s ≈ s′ ∨ t ≈ t′; let σ be a total simultaneous unifier of s and t and
of s′ and t′, and let β be an arbitrary assignment. Define the assignment
γ by γ(x) = (A, β)(xσ). By assumption, 1

2
≤ (A, γ)(C) = (A, β)(Cσ) =

(A, β)(C ′σ ∨ sσ ≈ s′σ ∨ tσ ≈ t′σ). Clearly, (A, β)(sσ ≈ s′σ) = (A, β)(tσ ≈
t′σ), hence (A, β)(C ′σ ∨ sσ ≈ s′σ) = (A, β)(Cσ) ≥ 1

2
. Since β could be chosen

arbitrarily, A is a model of the conclusion.

To keep the search space as small as possible, saturation-based inference sys-
tems are equipped with a global concept of redundancy that allows us to
weaken the notion of saturation and to discard useless formulae. Let Red C be
a mapping from sets of formulae to sets of formulae and Red I be a mapping
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from sets of formulae to sets of inferences. The sets Red C(N) and Red I(N)
specify formulae and inferences considered unnecessary in the context of a
given set N . Formulae in Red C(N) may be removed from N during a theorem
proving derivation, while inferences in Red I(N) may be ignored. We empha-
size that Red C(N) need not be a subset of N and that Red I(N) will usually
also contain inferences whose premises are not in N .

Definition 17. The pair Red = (Red I,Red C) is called a redundancy criterion
(with respect to an inference system Inf and a consequence relation |=) if the
following conditions are satisfied for all sets of formulae N and N ′:

(i) N \Red C(N) |= Red C(N).
(ii) If N ⊆ N ′, then Red C(N) ⊆ Red C(N ′) and Red I(N) ⊆ Red I(N ′).
(iii) If N ′ ⊆ Red C(N), then Red C(N) ⊆ Red C(N \ N ′) and Red I(N) ⊆

Red I(N \N ′).
(iv) If the conclusion of an Inf -inference ι is contained in N , then ι ∈

Red I(N).

Inferences in Red I(N) and formulae in Red C(N) are called redundant with
respect to N .

Condition (i) requires that redundant formulae logically follow from the non-
redundant ones. Conditions (ii) and (iii) indicate that redundant formulae
and inferences must remain redundant if formulae are added or if redundant
formulae are deleted. Finally, condition (iv) states that an inference is redun-
dant with respect to N if its conclusion is already present in N (regardless of
whether or not the premises are in N).

Definition 18. A ground clause C is called redundant w. r. t. a set N of
ground clauses if it follows from a finite set of clauses in N that are smaller
than C. A ground inference of the partial superposition calculus is called
redundant w. r. t. a set N of ground clauses if one of its premises is redundant
w. r. t. N or if its conclusion follows from a finite set of clauses in N that are
smaller than the largest premise. The sets of redundant ground clauses and
redundant ground inferences (of the partial superposition calculus) w. r. t. a
set N of clauses are denoted by Red C

PSG(N) and Red I

PSG(N).

Lemma 19. The pair (Red I
PSG,Red C

PSG) is a redundancy criterion for ground
clauses and ground inferences of the partial superposition calculus w. r. t. the
consequence relation |=.

Proof. Condition (ii) of Def. 17 is obvious. Conditions (i) and (iii) follow
from the well-foundedness of the reduction ordering � (and König’s Lemma).
For condition (iv) observe that the conclusion of every ground inference of the
partial superposition calculus is smaller than its largest premise.
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For general clauses and inferences, redundancy is defined by lifting:

Definition 20. Let ι be an inference with premises C1, . . . , Cn and conclusion
C; let ι′ be an inference with ground premises C ′

1, . . . , C
′
n and conclusion C ′.

We say that ι′ is a total ground instance of ι if σ is a total substitution,
Ciσ = C ′

i, and Cσ = C ′. The set of all total ground instances of ι is denoted
by tgi(ι).

Definition 21. A clause C is redundant w. r. t. a set N of clauses if tgi(C) ⊆
Red C

PSG(tgi(N)); in inference ι is redundant w. r. t. a set N of clauses if tgi(ι) ⊆
Red I

PSG(tgi(N)). The sets of redundant clauses and redundant inferences (of
the partial superposition calculus) w. r. t. a set N of clauses are denoted by
Red C

PS(N) and Red I

PS(N).

As M ⊆ M ′ implies Red I

PSG(M) ⊆ Red I

PSG(M ′), we obtain Red C

PSG(tgi(N) \
tgi(N ′)) ⊆ Red C

PSG(tgi(N \ N ′)). Furthermore, it is fairly easy to see that
tgi(N)\Red C

PSG(tgi(N)) ⊆ tgi(N \Red C
PS(N)). Using these two results we can

prove the following lemma:

Lemma 22. The pair (Red I

PS,Red C

PS) is a redundancy criterion with respect to
the inference system of the partial superposition calculus and the consequence
relation |=TG.

Proof. For condition (i) of Def. 17 we have to show that N \Red C
PS(N) |=TG

Red C
PS(N). By Def. 8 and Lemma 12, it is sufficient to show that tgi(N \

Red C

PS(N)) |= tgi(Red C

PS(N)). Let D be an arbitrary ground clause from
tgi(Red C

PS(N)). Since D ∈ Red C
PSG(tgi(N)), we have tgi(N)\Red C

PSG(tgi(N)) |=
D and consequently tgi(N \ Red C

PS(N)) |= D. Therefore N \ Red C

PS(N) |=TG

Red C

PS(N).

The proof of property (ii) is trivial. For condition (iii) note that N ′ ⊆ Red C

PS(N)
implies tgi(N ′) ⊆ Red C

PSG(tgi(N)). Now let D ∈ Red C
PS(N), then tgi(D) ⊆

Red C

PSG(tgi(N)) ⊆ Red C

PSG(tgi(N) \ tgi(N ′)) ⊆ Red C

PSG(tgi(N \N ′)) and thus
Red C

PS(N) ⊆ Red C
PS(N \N ′). The proof for inferences works analogously.

For condition (iv) let ι be an inference whose conclusion is contained in N .
Then the conclusions of all inferences in tgi(ι) are contained in tgi(N). As
tgi(ι) ⊆ Red I

PSG(tgi(N)), the inference ι is contained in Red I

PS(N). This proves
condition (iv).

Definition 23. A set N of clauses is called saturated up to redundancy if all
inferences between clauses in N are redundant w. r. t. N .

A saturated set can be obtained as the limit of a fair theorem proving deriva-
tion (see Bachmair, Ganzinger, and Waldmann [5] for the details).
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We will show that the partial superposition calculus is refutationally complete,
that is, that a saturated set of clauses has a model if and only if it does
not contain the empty clause. The “only if” part of this proposition is of
course trivial. For the “if” part, we have to construct a model of a saturated
set N . This model is represented by a convergent term rewrite system or,
equivalently, by an equational theory. For every sort ξ ∈ S, the set ξA consists
of all ground normal forms of the rewrite system that are ΩT-terms of sort
ξ (or, equivalently, of the congruence classes of all ground ΩT-terms of sort
ξ). Given such a model, a ground term is defined if its normal form is an ΩT-
term; it is undefined if all its immediate subterms have normal forms that are
ΩT-terms, but the term itself does not; it is irrelevant if some of its subterms
do not have normal forms that are ΩT-terms.

The rewrite system is constructed from the set N of total ground instances
of clauses in N . Starting with an empty interpretation all such instances are
inspected in ascending order w. r. t. the clause ordering. If a clause is false
and irreducible in the interpretation constructed so far and if it has a strictly
maximal literal s ≈ s′ with s � s′, then s ≈ s′ is turned into a rewrite rule
and added to the interpretation (Bachmair and Ganzinger [3]).

Let N be a set of clauses not containing ⊥. Using induction on the clause
ordering we define sets of rewrite rules EC and RC for all C ∈ N as follows:

Assume that ED has already been defined for all D ∈ N with D ≺C C. Then
RC =

⋃

D≺CC ED. The set EC contains the rewrite rule s→ s′ if

(a) C = C ′ ∨ s ≈ s′.
(b) s ≈ s′ is strictly maximal in C.
(c) s � s′.
(d) C is false in RC .
(e) C ′ is false in RC ∪ {s→ s′}.
(f) s is irreducible w. r. t. RC and contains no ΩP-symbols below the top.
(g) the RC-normal form of s′ contains no ΩP-symbols.
(h) no clause D ∈ N with D ≺C C is false in RC ∪ {s→ s′}.

In this case, C is called productive. Otherwise EC = ∅. Finally, R∞ =
⋃

D∈N ED.

The sequence of interpretations generated in this way has two monotonicity
properties:

Lemma 24. If a clause C has positive truth value in RC , then it has positive
truth value in R∞ and RD for every D �C C.

Proof. By condition (h) of the model construction.
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Lemma 25. If a clause C = C ′ ∨ s ≈ s′ is productive then C is true and C ′

is false in R∞ and RD for every D �C C.

Proof. If t → t′ is a rule in R∞ \ (RC ∪ EC), then t must be larger than s.
Since s is maximal in C, no rule in R∞ \ (RC ∪ EC) can be used to rewrite a
term in C ′.

It is clear from these two monotonicity properties that every clause in N has
positive truth value in the limit interpretation R∞ if either it has positive
truth value at the time where it is inspected or if it is productive. It remains
to show that every ground instance in N falls into one of these two classes if
N is saturated up to redundancy and does not contain the empty clause.

Lemma 26. Let N be a set of clauses that is saturated up to redundancy
and does not contain the empty clause. Then we have for every total ground
instance Cθ ∈ N :

(i) ECθ = ∅ if and only if Cθ has positive truth value in RCθ.
(ii) Cθ has positive truth value in R∞ and in RD for every D �C Cθ.
(iii) If Cθ is redundant w. r. t. N , then ECθ = ∅.

Proof. We prove the three properties (i)–(iii) simultaneously by well-founded
induction on the clause ordering �C. Let Cθ be a total ground instance in N .
By the induction hypothesis, we assume that (i)–(iii) are satisfied for all clauses
in N that are smaller than Cθ. Note that the “if” part of (i) is obvious from
the model construction and that condition (ii) follows from (i) by Lemma 24
and Lemma 25. So it remains to show that Cθ satisfies (iii) and the “only if”
part of (i). To this end, we test first whether Cθ is redundant w. r. t. N or
whether xθ is reducible by RCθ for some variable x in C. The remainder of the
proof is a case analysis over the syntactical structure of Cθ (with most cases
corresponding to inference rules of the partial superposition calculus).

Case 1: Cθ is redundant w. r. t. N .

If Cθ is redundant w. r. t. N , then it follows from clauses in N that are smaller
than Cθ. By part (ii) of the the induction hypothesis, these clauses have pos-
itive truth value in RCθ. So Cθ has positive truth value in RCθ, consequently
ECθ = ∅, and (i)–(iii) are satisfied.

In the remaining cases, it suffices to show that Cθ satisfies the “only if” part
of (i).

Case 2: xθ is reducible by RCθ.

Suppose that Cθ does not fall into Case 1 and that there is a variable x
occurring in C such that xθ is reducible by RCθ, say xθ →RCθ

w. Let the total
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substitution θ′ be defined by xθ′ = w and yθ′ = yθ for every variable y 6= x.
The clause Cθ′ is smaller than Cθ. By part (ii) of the induction hypothesis,
it has positive truth value in RCθ. As every literal of Cθ has the same truth
value RCθ as the corresponding literal of Cθ′, Cθ has positive truth value in
RCθ.

Case 3: Cθ contains a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 or 2 and that Cθ = C ′θ ∨ sθ 6≈ s′θ,
where sθ 6≈ s′θ is maximal in Cθ. If sθ ≈ s′θ is false or undefined in RCθ, then
Cθ is true or undefined in RCθ and we are done. So assume that sθ ≈ s′θ is
true in RCθ, that is, sθ and s′θ have the same ΩT-term as RCθ-normal form.
Without loss of generality, sθ � s′θ.

Case 3.1: sθ = s′θ and s is an ΩT-term.

If sθ = s′θ and s is an ΩT-term, then there is an equality resolution inference

C ′θ ∨ sθ 6≈ s′θ

C ′θ
.

This is an instance of an equality resolution inference from C. By saturation
up to redundancy, it is redundant, hence its conclusion follows from clauses in
N that are smaller than Cθ. By the induction hypothesis, these clauses have
positive truth value in RCθ. Thus C ′θ and Cθ have positive truth value in
RCθ.

Case 3.2: sθ � s′θ or s contains an ΩP-symbol.

If sθ and s′θ can be rewritten to the same ΩT-term u, and sθ � s′θ or s contains
an ΩP-symbol then sθ must be reducible by some rule in some EDθ ⊆ RCθ.
(Without loss of generality we assume that C and D are variable disjoint; so
we can use the same substitution θ.) Let Dθ = D′θ ∨ tθ ≈ t′θ with EDθ =
{tθ → t′θ}. By part (iii) of the induction hypothesis, Dθ is not redundant,
and by Lemma 25, D′θ is false in RCθ.

Note that tθ cannot occur in sθ at or below a variable position of s, say xθ =
w[tθ], since otherwise Cθ would be subject to Case 2 above. Consequently, the
superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] 6≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ

is a ground instance of a superposition inference from D and C. By saturation
up to redundancy, its conclusion follows from clauses in N that are smaller
than Cθ. By the induction hypothesis, these clauses have positive truth value
in RCθ, thus D′θ ∨ C ′θ ∨ sθ[t′θ] 6≈ s′θ has positive truth value in RCθ. Since
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D′θ and sθ[t′θ] 6≈ s′θ are false in RCθ, both C ′θ and Cθ must have positive
truth value.

Case 4: Cθ does not contain a maximal negative literal.

Suppose that Cθ does not fall into Cases 1 to 3. Then Cθ can be written as
C ′θ ∨ sθ ≈ s′θ, where sθ ≈ s′θ is a maximal literal of Cθ. If ECθ = {sθ → s′θ}
or C ′θ has positive truth value in RCθ or sθ = s′θ, then there is nothing to
show, so assume that ECθ = ∅ and that C ′θ is false in RCθ. Without loss of
generality, sθ � s′θ.

Case 4.1: sθ ≈ s′θ is maximal in Cθ, but not strictly maximal.

If sθ ≈ s′θ is maximal in Cθ, but not strictly maximal, then Cθ can be written
as C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ, where tθ = sθ and t′θ = s′θ. In this case, there
is a factoring inference

C ′′θ ∨ tθ ≈ t′θ ∨ sθ ≈ s′θ

C ′′θ ∨ sθ ≈ s′θ

This inference is a ground instance of an inference from C. By saturation, its
conclusion has positive truth value in RCθ, so Cθ must also have positive truth
value in RCθ.

Case 4.2: sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ and sθ is reducible by some
rule in EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}. Since
Dθ is productive, it is not redundant and D′θ is false in RCθ. We can now
proceed in essentially the same way as in Case 3.2: If tθ occurred in sθ at or
below a variable position of s, say xθ = w[tθ], then Cθ would be subject to
Case 2 above. Otherwise, the superposition inference

D′θ ∨ tθ ≈ t′θ C ′θ ∨ sθ[tθ] ≈ s′θ

D′θ ∨ C ′θ ∨ sθ[t′θ] ≈ s′θ

is a ground instance of a superposition inference from D and C. By saturation
up to redundancy, its conclusion has positive truth value in RCθ. Since D′θ
and C ′θ are false in RCθ, sθ[t′θ] ≈ s′θ must have positive truth value in RCθ.
On the other hand, tθ ≈ t′θ is true in RCθ, so sθ[tθ] ≈ s′θ and hence Cθ have
positive truth value in RCθ.

Case 4.3: sθ contains an ΩP-symbol below the top.

Suppose that sθ contains an ΩP-symbol below the top. If the subterm at that
position is reducible, then Cθ is subject to Case 4.2 above. Otherwise sθ is
irrelevant, hence sθ ≈ s′θ and Cθ are undefined in RCθ.
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Case 4.4: The RCθ-normal form of s′θ contains an ΩP-symbol.

Assume that the RCθ-normal form of s′θ contains an ΩP-symbol. Then sθ and
s′θ must also contain ΩP-symbols. If sθ is reducible, then Cθ is subject to
Case 4.2 above. Otherwise, both sθ and s′θ are undefined or irrelevant in RCθ,
hence sθ ≈ s′θ and Cθ are undefined in RCθ.

Case 4.5: Otherwise.

Suppose that sθ ≈ s′θ is strictly maximal in Cθ, sθ is irreducible by RCθ

and contains no ΩP-symbols below the top, and the RCθ-normal form of s′θ
contains no ΩP-symbols. If ECθ = {sθ → s′θ} or if Cθ has positive truth
value in RCθ, there is nothing to show. So there are only two possibilities
left: Condition (e) or condition (h) of the model contruction must be violated.
In other words, C ′θ has positive truth value in RCθ ∪ {sθ → s′θ}, or some
Dθ ≺C Cθ in N is false in RCθ ∪ {sθ → s′θ}.

Case 4.5.1: C ′θ has positive truth value in RCθ ∪ {sθ → s′θ}.

Let us assume that Cθ is false in RCθ and C ′θ is true or undefined in RCθ ∪
{sθ → s′θ}. It is impossible that the truth value of a positive literal in C ′θ
changes from false to undefined by adding the rewrite rule sθ → s′θ, and it is
also impossible that the truth value of a negative literal in C ′θ changes from
false to true or undefined. We can conclude that C ′θ = C ′′θ ∨ s0θ ≈ s′0θ,
where the literal s0θ ≈ s′0θ is true in RCθ ∪ {sθ → s′θ} and false in RCθ. In
other words, s0θ ↓RCθ∪{sθ→s′θ} s′0θ, but not s0θ ↓RCθ

s′0θ. Consequently, there
is a rewrite proof of s0θ →

∗ u ←∗ s′0θ by RCθ ∪ {sθ → s′θ} in which the
rule sθ → s′θ is used at least once. Without loss of generality we assume that
s0θ � s′0θ. Since sθ ≈ s′θ �L s0θ ≈ s′0θ and sθ � s′θ we can conclude that
sθ � s0θ � s′0θ. But then there is only one possibility how the rule sθ → s′θ
can be used in the rewrite proof: We must have sθ = s0θ and the rewrite
proof must have the form s0θ → s′θ →+ u ←∗ s′0θ, where the first step uses
sθ → s′θ and all other steps use rules from RCθ. Consequently, s′θ is reducible
by some rule in EDθ ⊆ RCθ. Let Dθ = D′θ ∨ tθ ≈ t′θ and EDθ = {tθ → t′θ}.
We can now proceed in essentially the same way as in Case 3.2: If tθ occurred
in sθ at or below a variable position of s, say xθ = w[tθ], then Cθ would be
subject to Case 2 above. Otherwise, the merging paramodulation inference

D′θ ∨ tθ ≈ t′θ C ′′θ ∨ s0θ ≈ s′0θ ∨ sθ ≈ s′θ[uθ]

D′θ ∨ C ′′θ ∨ s0θ ≈ s′0θ ∨ sθ ≈ s′θ[t′θ]

is a ground instance of a merging paramodulation inference from D and C. By
saturation up to redundancy, its conclusion has positive truth value in RCθ.
Since D′θ and C ′θ are false in RCθ, sθ ≈ s′θ[t′θ] must have positive truth value
in RCθ. On the other hand, tθ ≈ t′θ is true in RCθ, so sθ ≈ s′θ[uθ] and hence
Cθ have positive truth value in RCθ, contradicting our assumption.
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Case 4.5.2: Some Dθ ≺C Cθ is false in RCθ ∪ {sθ → s′θ}.

If there are clauses in N that are smaller than Cθ and false in RCθ ∪ {sθ →
s′θ}, let Dθ be the smallest such clause. By the induction hypothesis, Dθ
has positive truth value in RCθ. If Dθ becomes false by adding sθ → s′θ
to RCθ, Dθ must contain at least one literal whose left-hand side equals sθ
and whose right-hand side is undefined in RCθ (and contains therefore ΩP-
symbols); moreover no term in Dθ can be irrelevant in RCθ. Let t1θ ≈ t′1θ be
a maximal literal of Dθ. We observe three things: First, t1θ must equal sθ.
Second, t1θ ≈ t′1θ must be strictly maximal. Otherwise there is a factoring
inference from Dθ, and by redundancy of this inference Dθ cannot be the
smallest clause that becomes false by adding sθ → s′θ to RCθ. Third, t′1θ must
be undefined in RCθ. Otherwise, there would be another literal t0θ ≈ t′0θ in
Dθ with t0θ = sθ and t′0θ undefined in RCθ, and since t′1θ would be reducible
by RCθ, there would be a merging paramodulation inference with Dθ as the
second premise, whose redundancy contradicts again the minimality of Dθ.

Let Dθ = D′θ ∨ t1θ ≈ t′1θ ∨ . . . ∨ tnθ ≈ t′nθ, where all tiθ equal sθ and where
all t′iθ are undefined in RCθ. The superposition inference (if n = 1) or partial
top-superposition inference (if n ≥ 2)

D′θ ∨ t1θ ≈ t′1θ ∨ . . . ∨ tnθ ≈ t′nθ C ′θ ∨ sθ ≈ s′θ

D′θ ∨ C ′θ ∨ s′θ ≈ t′1θ ∨ . . . ∨ s′θ ≈ t′nθ

is a ground instance of a superposition or partial top-superposition inference
from D and C. By saturation up to redundancy, its conclusion has positive
truth value in RCθ. Since D′θ and C ′θ are false in RCθ, one of the literals
s′θ ≈ t′iθ must have positive truth value in RCθ. Since s′θ is defined, however,
this implies that t′iθ is defined, contradicting our assumption. This concludes
the proof of the lemma.

Theorem 27. The partial superposition calculus is refutationally complete.

Proof. We have to show that a saturated set N of clauses has a model if and
only if does not contain the empty clause.

If N contains the empty clause, then obviously it does not have a model.
Otherwise, the rewrite system R∞ constructed above gives us a Σ-algebra A:
For ξ ∈ S, the set ξA consists of all ground normal forms of R∞ that are
ΩT-terms of sort ξ (or, equivalently, of the congruence classes of all ground
ΩT-terms of sort ξ). A function fA : ξ1,A × · · · × ξn,A → ξA maps the terms
t1, . . . , tn to the R∞-normal form of f(t1, . . . , tn) if this is an ΩT-term, it is
undefined otherwise. By part (ii) of Lemma 26, A is a model of all total ground
instances of clauses in N , hence by Lemma 12, it is a model of N .

There are alternative ways of dealing with partial functions in automated the-
orem proving, notably by encoding a partial function f/n as an (n + 1)-ary
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relation r together with a clause ¬r(x1, . . . , xn, y)∨ ¬r(x1, . . . , xn, y′) ∨ y ≈ y′.
One may ask whether partial superposition has any advantages over such an
encoding. First, it is clear that the flattening of terms resulting from the
relational encoding will generally make it more difficult to detect simplifica-
tion opportunities. Second, the strengthened ordering restrictions of partial
superposition reduce the number of possible inferences. The following trivial
example illustrates this:

Example 28. Let ΩT = {c/0, d/0, e/0}, let ΩP = {f/1}, and suppose that
N contains the clauses

f(c) ≈ d

f(c) ≈ e

d 6≈ e

where c � d � e. Partial superposition derives d ≈ e from the first two clauses,
then e 6≈ e, and then the empty clause. This whole process is completely deter-
ministic: no other inferences are possible. Besides, the superposition between
the second and the first clause is a simplification of the second premise, so
that f(c) ≈ d can be deleted from the set of clauses.

If we use relational encoding of partial functions, then N is turned into

r(c, d)

r(c, e)

¬ r(x, y) ∨ ¬ r(x, y′) ∨ y ≈ y′

d 6≈ e

In contrast to partial superposition, where we had exactly one way to derive
d ≈ e, there are now two different hyperresolution inferences that produce this
clause, plus two further hyperresolution inferences that produce the tautologies
d ≈ d and e ≈ e. Moreover, we need now one further computation step to see
that d ≈ e and r(c, e) make r(c, d) redundant.

We now show that the partial superposition calculus is modular for combi-
nations of theories where all total functions are in the intersection of their
signatures. Assume that we have two signatures Σ1 and Σ2. Call an inference
pure if its premises are either all clauses over Σ1 or they are all clauses over Σ2.
Note that a pure inference of the partial superposition calculus, in particular,
derives a pure Σ1-clause or a pure Σ2-clause.

Theorem 29. Suppose that Σ1 and Σ2 are two signatures that share the set
of total function symbols and have disjoint sets of partial function symbols. Let
N be a set of clauses, such that every clause in N is either a pure Σ1-clause
or a pure Σ2-clause. Then all inferences of the partial superposition calculus
with premises in N are pure.
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Proof. For the inference rules with only one premise, the result is trivial,
since the clauses in N are pure. For the binary inference rules there are two
possibilities: Either the term t (or t1) in the first premise contains a partial
symbol; then this symbol must also occur in the second premise so that both
premises are pure clauses over the same Σi. Or t is an ΩT-term. Since an ΩT-
term is smaller than every term containing a symbol from ΩP, this implies
that the first premise contains only total symbols, hence is both a Σ1- and a
Σ2-clause. Again, the inference is pure.

A generalization of this result is possible if the sorts of Σ1 and Σ2 are taken
into account: We can permit non-shared total function symbols (i. e., symbols
not in ΩT

1 ∩ΩT
2 ), provided that all these symbols have non-shared codomains

(i. e., sorts not in S1 ∩ S2).

Theorem 30. Let Σ1 = (S1, Ω
T
1 , ΩP

1 ) and Σ2 = (S2, Ω
T
2 , ΩP

2 ) be two signa-
tures such that ΩP

1 ∩ΩP
2 = ∅ and every function symbol in ΩT

1 \Ω
T
2 (or ΩT

2 \Ω
T
1 )

has a codomain in S1 \ S2 (or S2 \ S1). Let N be a set of clauses, such that
every clause in N is either a pure Σ1-clause or a pure Σ2-clause. Let � be a
reduction ordering that is total on ground terms and that has the property that
every ground term over ΩT

1 ∩ΩT
2 is smaller than every ground term containing

a symbol from (ΩT
1 \Ω

T
2 )∪ (ΩT

2 \Ω
T
1 ), and every ground term over ΩT

1 ∪ΩT
2 is

smaller than every ground term containing a symbol from ΩP
1 ∪ ΩP

2 . 11 Then
all inferences of the partial superposition calculus with premises in N are pure.

Proof. From the conditions on the codomains of non-shared total function
symbols we can conclude that, if f : ξ1 . . . ξn → ξ0 ∈ ΩT

1 ∪ΩT
2 and ξ0 ∈ S1∩S2,

then f ∈ ΩT
1 ∩ΩT

2 and ξi ∈ S1 ∩S2 for 1 ≤ i ≤ n. Consequently, every ground
term that has a sort from S1∩S2 and does not contain partial function symbols
can only consist of function symbols in ΩT

1 ∩ ΩT
2 . It is therefore smaller than

every ground term containing a non-shared function symbol. Since we are
interested in total ground instances only, this implies that a variable x : ξ with
ξ ∈ S1 ∩ S2 may be considered as smaller than every term containing a non-
shared function symbol and every variable y : ξ ′ with ξ′ ∈ (S1 \S2)∪ (S2 \S1).

With these considerations in mind, we can now proceed as in the proof of the
previous theorem: Inferences with only one premise are trivially pure. For a
binary inference, there are three possibilities: First, the term t or t1 in the first
premise can contain a partial symbol. Then this symbol must also occur in the
second premise, so both premises are pure clauses over the same Σi. Second, t
may contain a total symbol from (ΩT

1 \Ω
T
2 )∪(ΩT

2 \Ω
T
1 ) or a variable with a sort

in (S1 \S2)∪ (S2 \S1). Then such a symbol or such a variable must also occur
in the term in the second premise that is unified with t. Again, both premises

11 For instance, a lexicographic path ordering where symbols from ΩT
1 ∩ ΩT

2 have
lowest precedence, followed by the symbols from (ΩT

1 \ ΩT
2 ) ∪ (ΩT

2 \ ΩT
1 ), followed

by the symbols from ΩP
1 ∪ΩP

2 .
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are pure clauses over the same Σi. Third, t is a term that consists exclusively
of function symbols in ΩT

1 ∩ΩT
2 and variables of sorts in S1 ∩ S2. Then by the

properties of the ordering the first premise contains only total symbols, hence
is both a Σ1- and a Σ2-clause, and the inference is again pure.

Example 31. Let Σ0 = (S0, Ω
T
0 , ∅) be the signature of a data type, where

S0 = {data} and ΩT
0 = {b :→ data; c :→ data; f : data → data}. We extend

Σ0 in two directions: to lists over data and to labelled trees over data: Let
S1 = S0 ∪ {list}, ΩT

1 = ΩT
0 ∪ {cons : data, list → list; nil :→ list}, ΩP

1 = {car :
list → data; cdr : list → list}. Let S2 = S0 ∪ {tree}, Ω

T
2 = ΩT

0 ∪ {treecons :
tree, data, tree → tree; empty :→ tree; d :→ tree}, ΩP

2 = {label : tree →
data; left : tree→ tree; right : tree→ tree}. 12

Since there are no shared partial symbols in ΩP
1 and ΩP

2 and since all non-
shared total symbols in ΩT

1 and ΩT
2 have non-shared codomains, the sort

conditions of Thm. 30 are satisfied. If we choose an appropriate term ordering,
then all inferences of the partial superposition calculus starting with a set of
pure Σ1- and pure Σ2-clauses are pure. For instance, given the set of clauses

f(f(x)) ≈ f(x) (1)

car(cons(x, l)) ≈ x (2)

cdr(cons(x, l)) ≈ l (3)

cons(car(l), cdr(l)) ≈ l (4)

left(treecons(t1, x, t2)) ≈ t1 (5)

label(treecons(t1, x, t2)) ≈ x (6)

right(treecons(t1, x, t2)) ≈ t2 (7)

treecons(left(t), label(t), right(t)) ≈ t (8)

cons(f(x), cons(x, nil)) 6≈ cons(b, cons(b, nil)) (9)

f(label(d)) ≈ b (10)

treecons(empty, c, empty) ≈ d (11)

(with implicitly universally quantified variables x, y, l, t, t1, t2 of appropriate
sorts) there is no inference between the Σ2-clause (10) and the Σ1-clause (9)
(in contrast to the traditional superposition calculus).

The refutation proceeds as follows: Superposition of (11) and (6) yields

label(d) ≈ c (12)

12 The signatures contain also operators resulting from skolemization of the problem
formulas, such as the constants b, c, d.
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Superposition of (12) and (10) yields

f(c) ≈ b (13)

Superposition of (13) and (1) yields

f(c) ≈ f(b) (14)

Superposition of (13) and (14) yields

f(b) ≈ b (15)

Superposition of (15) and (9) yields

cons(b, cons(b, nil)) 6≈ cons(b, cons(b, nil)) (16)

from which equality resolution derives the empty clause.

Note that both the Σ1- and the Σ2-“module” of the prover have to perform
inferences with Σ0-clauses (and possibly even inferences that involve only Σ0-
clauses). This is a significant difference to the calculus for hierarchic structures
described in the next chapter, where reasoning with formulas over the common
vocabulary is completely left to one of the two deduction modules.

4 Hierarchic Extensions

The inference system of the partial superposition calculus (and its complete-
ness proof) can be turned – with slight modifications – into a calculus for
hierarchic structures.

Definition 32. A signature Σ1 = (S1, Ω
T
1 , ΩP

1 ) is called an extension of a
signature Σ0 = (S0, Ω

T
0 , ΩP

0 ) if S1 ⊇ S0, ΩT
1 ⊇ ΩT

0 and ΩP
1 ⊇ ΩP

0 .

Definition 33. Let Σ1 = (S1, Ω
T
1 , ΩP

1 ) be an extension of Σ0 = (S0, Ω
T
0 , ΩP

0 );
let A be a Σ1-algebra. The Σ0-reduct of A, denoted by A|Σ0

, is the Σ0-algebra
that is obtained from A by removing all sets ξA for ξ ∈ S1\S0 and all functions
fA, gA for f ∈ (ΩT

1 \ΩT
0 ), g ∈ (ΩP

1 \ΩP
0 ).

Convention 34. In the rest of this paper, we will only consider signature
extensions where ΩP

0 = ∅ and all symbols in ΩT
1 \ ΩT

0 have a codomain in
S1 \ S0.

13

13 If relation symbols are encoded as functions as described in footnote 2, one can
choose a new sort for every relation symbol. Hence extensions by new relation
symbols are not restricted.
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Definition 35. A universal Σ-theory T is a set of universally quantified Σ-
formulae.

Definition 36. Let Σ1 = (S1, Ω
T
1 , ΩP

1 ) be an extension of Σ0 = (S0, Ω
T
0 , ∅);

let T0 be a universal Σ0-theory. A Σ1-formula F follows from a set N of Σ1-
formulae relative to T0 (denoted by N |=T0

F ) if every model of N whose
reduct to Σ0 is a model of T0 is also a model of F . 14

We assume the following scenario: Let Σ0 = (S0, Ω
T
0 , ∅) be a (total) signature,

and let T0 be some universal Σ0-theory for which we have a refutationally
complete prover (or even a decision procedure) that is able to check the un-
satisfiability of sets of Σ0-clauses w. r. t. T0. Let Σ1 = (S1, Ω

T
1 , ΩP

1 ) be an
extension of Σ0 such that all symbols in ΩT

1 \ΩT
0 have a codomain in S1 \ S0.

Let N be a set of Σ1-clauses. The task is to check whether N is unsatisfiable
relative to T0, that is, whether N |=T0

⊥, using the prover for T0 as a black-
box. To this end, we will modify the rules of the partial superposition calculus
as follows:

– The inference rules are applied to clauses where non-variable Σ0-terms have
been “abstracted out” (see below). 15

– A new inference rule is introduced that allows us to derive a contradiction
from any finite set of Σ0-clauses that is inconsistent with T0.

– Since the Σ0-part is left to the T0-prover, none of the old inference rules are
applied if inferences involve only Σ0-terms.

From an operational point of view, it is usually advisable to use an incremental
T0-prover (or, at a pinch, several instances of a non-incremental T0-prover) that
runs in parallel with the main prover and receives all base clauses that are
generated by the the main prover. Classes of clause sets for which saturation
under the old rules is known to terminate are an exception – here the T0-prover
can be called when the main prover has terminated.

We write N |=TG
T0

F if every total-term-generated model of N whose Σ0-reduct
is a model of T0 is also a model of F . For refutational theorem proving, |=T0

can be replaced by |=TG
T0

:

Proposition 37. Let N be a set of universally quantified clauses. Then

14 The results of this section hold also if one considers an arbitrary compact set
C of term-generated Σ0-algebras (closed under isomorphism) instead of a universal
Σ0-theory T0. In this case, F follows from N relative to C if every model of N whose
Σ0-reduct is contained in C is also a model of F .
15 Instead of abstracting out non-variable Σ0-terms eagerly, one can also treat non-
variable Σ0-subterms in the unification algorithm in a similar way as in Morris’s
equi-unification [22], i. e., by turning an appropriate disagreement set into a list of
negative literals. We have done this in a previous version [13] of this paper.
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N |=T0
⊥ if and only if N |=TG

T0
⊥.

Proof. Analogously to the proof of Lemma 9.

We call sorts from S0 base sorts and sorts from S1 \S0 extension sorts; analo-
gously, a function symbol from ΩT

0 is called base symbol and a function symbol
from ΩP

1 ∪ ΩT
1 \ ΩT

0 is called extension symbol. A term is called a base term
if it consists only of base symbols and variables of base sorts; it is called an
extension term if it contains at least one extension symbol or variable of an
extension sort.

From the conditions on the codomains of total extension symbols we can
conclude that, if f : ξ1 . . . ξn → ξ0 ∈ ΩT

1 and ξ0 ∈ S0, then f ∈ ΩT
0 and ξi ∈ S0

for 1 ≤ i ≤ n. Consequently, every ground term that has a base sort and does
not contain partial function symbols must be a base term.

An extension term is called abstracted if it has no non-variable base subterms.
A literal t

.
≈ t′ is called a base literal if both t and t′ are base terms; it is

called an abstracted extension literal if one of the two terms is an abstracted
extension term and the other one is an abstracted extension term or a variable.

A clause is called abstracted if all its literals are either base literals or ab-
stracted extension literals. Every clause C can be transformed into an equiv-
alent abstracted clause in the following way: whenever a non-variable base
term t occurs immediately below an extension symbol, then it is replaced by
a new variable x (or “abstracted out”) and the literal x 6≈ t is added to C.
This transformation is repeated until all non-variable base terms below exten-
sion symbols have been eliminated, then the abstraction operation is applied
to non-variable base terms occurring in equations with extension terms. The
resulting clause is denoted by abs(C). 16

Lemma 38. Let C be a clause, let A be an algebra. Then A |= C if and only
if A |= abs(C).

Proof. If is sufficient to show that, for every A and β, (A, β)(C[t]) ≥ 1

2
if and

only if (A, β)(∀x.(x 6≈ t ∨ C[x])) ≥ 1

2
, where t is a base term and x does not

occur in C. For the “if” part, assume that 1

2
≤ (A, β)(∀x.(x 6≈ t∨C[x])), then

1

2
≤ min { (A, β[x 7→ a])(x 6≈ t ∨ C[x]) | a ∈ ξA } ≤ (A, β[x 7→ (A, β)(t)])(x 6≈

t∨C[x]) = (A, β)(C[t]). For the “only if” part, assume that 1

2
≤ (A, β)(C[t]).

If (A, β)(t) = a, then clearly (A, β[x 7→ a])(x 6≈ t ∨ C[x]) = (A, β[x 7→
a])(C[x]) = (A, β)(C[t]) ≥ 1

2
. Otherwise, (A, β[x 7→ a])(x 6≈ t ∨ C[x]) ≥

(A, β[x 7→ a])(x 6≈ t) = 1.

16 Note that we abstract out only base terms. Abstracting out terms that contain
partial function symbols would not yield an equivalent clause. For instance, if g is
a partial function symbol, then g(c) ≈ c does not follow from x 6≈ g(c) ∨ x ≈ c.
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We assume that all input clauses are transformed into equivalent abstracted
clauses before we start the saturation process. Most of the inference rules
of the partial superposition calculus preserve abstraction. Superposition and
merging paramodulation are the exceptions: for these rules we have to perform
abstraction on the conclusion explicitly.

Inference System 39. The inference system of the constraint partial su-
perposition calculus (CPS, for short) consists of the inference rules equality
resolution, superposition, partial top-superposition, merging paramodulation,
factoring, and constraint refutation.

The CPS calculus is parameterized by a reduction ordering � on terms that is
total on ground terms and that has the property that every ground term over
ΩT

0 is smaller than every ground term containing a symbol from ΩP
1 ∪ΩT

1 \Ω
T
0

and every ground term over ΩT
1 is smaller than every ground term containing

a symbol from ΩP
1 (for instance, a lexicographic path ordering where symbols

from ΩT
0 have lowest precedence, followed by the symbols from ΩT

1 , followed
by the symbols from ΩP

1 ). 17 The extension to a literal and clause ordering is
defined as before.

A literal that is involved in an inference must be maximal in the respective
clause (except for the literal s0 ≈ s′0 in merging paramodulation and the literals
ti ≈ t′i (i > 1) in partial top-superposition). A positive literal that is involved
in a superposition, partial top-superposition, or merging paramodulation infer-
ence must be strictly maximal in the respective clause (with the exceptions
above). Except for the constraint refutation rule, a literal that is involved in
an inference must be an abstracted extension literal. In inferences with two
premises, the left premise is not greater than or equal to the right premise.

Equality Resolution
C ′ ∨ s 6≈ s′

C ′σ

if s does not contain partial function symbols
and σ is a total most general unifier of s and s′. 18

Superposition
D′ ∨ t ≈ t′ C ′ ∨ s[u]

.
≈ s′

abs
(

(D′ ∨ C ′ ∨ s[t′]
.
≈ s′)σ

)

if u is not a variable, t does not contain partial
function symbols below the top, σ is a total most

17 Since we are interested in total ground instances only, this implies that a variable
of base sort may be considered as smaller than every term containing an extension
symbol or variable of an extension sort.
18 By the global requirement that s 6≈ s′ is an abstracted extension literal and the
sort condition of Conv. 34, this implies that both s and s′ have an extension sort
and consist only of variables and total extension symbols.
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general unifier of t and u, tσ 6� t′σ, sσ 6≺ s′σ,
and, if s

.
≈ s′ occurs positively or s contains no

partial function symbols, then sσ 6� s′σ.

Partial Top-Superposition
D′ ∨ t1 ≈ t′1 ∨ . . . ∨ tn ≈ t′n C ′ ∨ s ≈ s′

(D′ ∨ C ′ ∨ s′ ≈ t′1 ∨ . . . ∨ s′ ≈ t′n)σ

if n ≥ 2, s contains a partial function symbol at
the top and no partial function symbols below the
top, each t′i contains a partial function symbol,
σ is a total most general unifier of s and all ti,
tiσ 6� t′iσ, sσ 6� s′σ, and s′σ 6� t′iσ.

Merging Paramodulation
D′ ∨ t ≈ t′ C ′ ∨ s0 ≈ s′0 ∨ s ≈ s′[u]

abs
(

(D′ ∨ C ′ ∨ s0 ≈ s′0 ∨ s ≈ s′[t′])σ
)

if u is not a variable, t does not contain partial
function symbols below the top, σ is a total most
general simultaneous unifier of t and u and of
s0 and s, tσ 6� t′σ, sσ 6� s′σ, sσ 6� s′0σ, and
s′σ 6� s′0σ,

Factoring
C ′ ∨ s ≈ s′ ∨ t ≈ t′

(C ′ ∨ s ≈ s′)σ

if σ is a total most general simultaneous unifier
of s and t and of s′ and t′.

Constraint Refutation
M

⊥
if M is a finite set of Σ0-clauses that is incon-

sistent with the base theory T0, that is, M |=T0
⊥.

Theorem 40. The inference rules of the constraint partial superposition cal-
culus are sound w. r. t. |=T0

(and therefore also sound w. r. t. |=TG
T0

).

Proof. Analogously to the proof of Thm. 16.

To define a redundancy criterion for the CPS calculus and to show its refu-
tational completeness, we use the concept of approximation introduced by
Bachmair, Ganzinger, and Waldmann [5].

The following definition relates inferences of the constraint partial superposi-
tion calculus to ground inferences of the partial superposition calculus. Note
that the explicit abstraction in the superposition and merging paramodula-
tion rules of the constraint partial superposition calculus produces additional
negative base literals and that we have to cater to them.
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Definition 41. Let ι be an inference of the CPS calculus with abstracted
premises C1, . . . , Cn and conclusion C. Let ι′ be an inference of the partial
superposition calculus with ground premises C ′

1, . . . , C
′
n and conclusion C ′.

We say that ι′ is a total ground instance of ι if σ is a total substitution,
Ciσ = C ′

i, and Cσ = C ′ ∨ C ′′, where all literals in C ′′ have the form t 6≈ t for
a base term t. The set of all total ground instances of ι is denoted by tgi(ι).

Definition 42. Let N be a set of abstracted clauses. We define Red C

CPS(N)
as the set of all abstracted clauses C such that tgi(C) ⊆ Red C

PSG(tgi(N)). We
define Red I

CPS(N) as the set of all inferences ι of the CPS calculus such that
either ι is a constraint refutation inference and ⊥ ∈ N , or ι is not a constraint
refutation inference and tgi(ι) ⊆ Red I

PSG(tgi(N)).

Lemma 43. The pair (Red I

CPS,Red C

CPS) is a redundancy criterion with respect
to |=TG

T0
.

Proof. Analogously to the proof of Lemma 22.

Let A be a term-generated Σ0-model of T0. For every ground base term t let
m(t) be the smallest ground base term of the congruence class of t in A. We
define a rewrite system Eq′

A by Eq′
A = { t → m(t) | t ∈ TΣ0

(∅), t 6= m(t) }.
Obviously, Eq′

A is terminating, right-reduced, and confluent. Now let EqA be
the set of all rules l → r in Eq′

A such that l is not reducible by Eq′
A\{l→ r}. It

is fairly easy to prove that Eq′
A and EqA define the same set of normal forms,

and from this we can conclude that EqA and Eq′
A induce the same equality

relation on TΣ0
(∅). We identify EqA with the set of clauses { t ≈ t′ | t→ t′ ∈

EqA }. Let DeqA be the set of all clauses t 6≈ t′, such that t and t′ are distinct
ground base terms in normal form with respect to EqA.

Lemma 44. Let A be a term-generated Σ0-model of T0 and let C be a ground
Σ0-clause. Then C is true in A if and only if there exist clauses C1, . . . , Cn in
EqA ∪ DeqA such that C1, . . . , Cn |= C and C �C Ci for 1 ≤ i ≤ n.

Proof. The “if” part follows from the fact that all clauses in EqA ∪DeqA are
true in A. For the “only if” part observe that a ground Σ0-clause C is true
in A if and only if one of its literals is true in A. If this is a positive literal
s ≈ s′, take those clauses in EqA that are used to rewrite s and s′ to the same
normal form; if it is a negative literal s 6≈ s′, take those clauses in EqA that
are used to rewrite s and s′ to their normal forms t and t′ plus the clause
t 6≈ t′ ∈ DeqA.

Let N be a set of abstracted Σ1-clauses and A a term-generated Σ0-model of
T0, then NA denotes the set EqA ∪DeqA ∪ {Cσ | C ∈ N , σ total and reduced
with respect to EqA, Cσ ground }.
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Lemma 45. If N is a set of abstracted clauses, then we have Red I

PSG(tgi(N)) ⊆
Red I

PSG(NA).

Proof. Obviously Red I
PSG(tgi(N)) ⊆ Red I

PSG(EqA ∪ DeqA ∪ tgi(N)). Let C
be a clause in EqA ∪ DeqA ∪ tgi(N) and not in NA. As C = C ′σ for some
C ′ ∈ N , it follows from C ′ρ and EqA ∪DeqA, where ρ is the substitution that
maps every variable x to the EqA-normal form of xσ. Since C follows from
smaller clauses in EqA∪DeqA∪ tgi(N), it is in Red C

PSG(EqA∪DeqA∪ tgi(N)).
Hence Red I

PSG(EqA ∪ DeqA ∪ tgi(N)) ⊆ Red I
PSG(NA).

Proposition 46. Let A be a term-generated Σ0-model of T0 and let N be a
set of abstracted clauses. If A satisfies all Σ0-clauses in N and N is saturated
w. r. t. the CPS calculus and (Red I

CPS,Red C
CPS), then NA is saturated w. r. t. the

partial superposition calculus and (Red I

PSG,Red C

PSG).

Proof. We have to show that every inference from clauses of NA is redundant
with respect to NA, i. e., that it is contained in Red I

PSG(NA). We demonstrate
this in detail for the equality resolution and the superposition rule. The analysis
of the other rules is similar. Note that by Lemma 44 every base clause that is
true in A and is not contained in EqA ∪ DeqA follows from smaller clauses in
EqA ∪DeqA, thus it is in Red C

PSG(NA); every inference involving such a clause
is in Red I

PSG(NA).

The equality resolution rule is obviously not applicable to clauses from EqA ∪
DeqA. Suppose that ι is an equality resolution inference with a premise Cσ,
where C ∈ N and σ is a total substitution and reduced with respect to EqA.
If C is a base clause, then ι is in Red I

PSG(NA). If C is not a base clause, then ι
is a total ground instance of an inference ι′ from C. Since ι′ is in Red I

CPS(N),
ι is in Red I

PSG(tgi(N)), again this implies ι ∈ Red I

PSG(NA).

Obviously a clause from DeqA cannot be the first premise of a superposition
inference. Suppose that the first premise is a clause from EqA. The second
premise cannot be a non-base clause, since all ground terms in the substitu-
tion part of a clause Cσ are reduced; as it is a base clause, the inference is
redundant. Now suppose that ι is a superposition inference with a first premise
Cσ, where C ∈ N and σ is a total substitution and reduced with respect to
EqA. If C is a base clause, then ι is in Red I

PSG(NA). Otherwise, we can con-
clude that the second premise can be written as C ′σ, where C ′ ∈ N is not a
base clause (without loss of generality, C and C ′ do not have common vari-
ables). We have to distinguish between two cases: If the overlap takes place
below a variable occurrence, the conclusion of the inference follows from Cσ
and some instance C ′ρ, which are both smaller than C ′σ. Otherwise, ι is a
total ground instance of an inference ι′ from C. In both cases, ι is contained
in Red I

PSG(NA).
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Theorem 47. Let N be a set of clauses that is saturated w. r. t. the CPS
calculus. Then N has a model whose Σ0-reduct is a model of the base theory
T0 if and only if N does not contain the empty clause.

Proof. If N contains the empty clause, then obviously it does not have a
model.

If ⊥ /∈ N , then we can first show that there is a Σ0-algebra that is a Σ0-model
of all Σ0-clauses in N and of the base theory T0: Assume otherwise. Then,
by compactness of first-order logic, some finite subset of the Σ0-clauses in N
must be inconsistent with T0, hence the constraint refutation rule is applicable
to this subset. By saturation, this inference must be redundant. But that is
only possible if ⊥ ∈ N , contradicting our assumption.

Now let A be some Σ0-model of the Σ0-clauses in N and of T0. Since both
N and T0 consist only of universally quantified formulae, we may assume
without loss of generality that A is term-generated. By Prop. 46, the set NA

is saturated w. r. t. the partial superposition calculus and (Red I
PSG,Red C

PSG).
Clearly, ⊥ /∈ NA, so NA has a total-term-generated model A′. Since NA |=
tgi(N), A′ is also a model of tgi(N) and therefore a model of N . Furthermore,
since A′ is a model of EqA ∪DeqA and total-term-generated, the Σ0-reduct of
A′ is isomorphic to A and therefore a model of T0.

Example 48. Let Σ0 = (S0, Ω
T
0 , ∅) be the signature of a data type, where

S0 = {data} and ΩT
0 = {b :→ data; c :→ data; f : data → data}; let T0 be

the theory {∀x.f(f(x)) ≈ f(x)}.

We extend Σ0 to lists over data: Let S1 = S0 ∪ {list}, ΩT
1 = ΩT

0 ∪ {cons :
data, list → list; nil :→ list; d :→ list}, ΩP

1 = {car : list → data; cdr : list →
list}. 19

Consider the following set of clauses:

car(cons(x, l)) ≈ x (1)

cdr(cons(x, l)) ≈ l (2)

cons(car(l), cdr(l)) ≈ l (3)

f(c) ≈ b (4)

f(f(b)) 6≈ car(cdr(cons(f(b), cons(b, d)))) (5)

(with implicitly universally quantified variables x, l of appropriate sorts). We
will show that this set is unsatisfiable relative to T0 using the CPS calculus:

19 The signatures contain also operators resulting from skolemization of the problem
formulas, such as the constants b, c, d.
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We replace (5) by its abstracted version

x 6≈ f(f(b)) ∨ y 6≈ f(b) ∨ z 6≈ b ∨ x 6≈ car(cdr(cons(y, cons(z, d)))) (6)

Superposition of (2) and (6) yields

x 6≈ f(f(b)) ∨ y 6≈ f(b) ∨ z 6≈ b ∨ x 6≈ car(cons(z, d)) (7)

Superposition of (1) and (7) yields

x 6≈ f(f(b)) ∨ y 6≈ f(b) ∨ z 6≈ b ∨ x 6≈ z (8)

The base clauses (4) and (8) (the latter is actually equivalent to the ground
clause f(f(b)) 6≈ b) are inconsistent with T0, so constraint refutation yields the
empty clause.

5 Shallow and Local Extensions of a Base Theory

As shown in Sect. 4, constraint partial superposition is complete whenever ev-
ery function in the extension whose codomain is a base sort is declared as par-
tial, whereas a function whose codomain is an extension sort can be declared
as either total or partial. From our point of view, an important application of
this result is to approximate refutational theorem proving in extensions of base
theories for which refutationally complete black box theorem provers exist. If
constraint partial superposition finds a contradiction for a set of clauses in the
extended signature, the set is unsatisfiable in particular also with respect to
total algebras. In that sense constraint partial superposition is a sound and
modular approximation of refutational theorem proving for hierarchical first-
order theories. In this section we discuss cases when this approximation is, in
fact, complete. A particularly simple case is that of a shallow extension. Local
extensions of theories are another case.

Let Σ0 = (S0, Ω
T
0 , ∅) be a (total) signature, and let T0 be a first-order theory

over Σ0. We will consider extensions Σ1 = (S1, Ω
T
1 , ΩP

1 ) of Σ0, such that all
symbols in ΩT

1 \ΩT
0 have a codomain in S1 \ S0, and first-order theories over

such signature extensions. We say that a first-order theory T1 over Σ1 is an
extension of the theory T0 if T1 = T0∪F , where F is a set of first-order formulae
over Σ1. In what follows we will consider only extensions T0 ⊆ T1 = T0 ∪ F
where F is a set of (universally quantified) clauses.

In the rest of this paper, we will talk both about the partial algebra semantics
and the total algebra semantics of a theory. The partial algebra semantics refers
to the notions of (partial) models, satisfiability, entailment, etc., as described
in Sect. 2. Note that a Σ1-algebra A is a (partial) model of the extension T1 of
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T0 if it is a model of F and if its Σ0-reduct A|Σ0
is a total model of T0. The total

algebra semantics is defined analogously; here we consider only total algebras,
i. e., algebras where all function symbols are interpreted by total functions.
For instance, a set of formulas is unsatisfiable in the total algebra semantics
if it has no total model.

5.1 Shallow extensions of a theory

We consider a special class of extensions of a base theory, namely shallow
extensions. These are extensions by clauses in which partial function symbols
occur only in positive literals and only at the root of terms. We show that
in this case every partial model can be extended to a total model and, there-
fore, constraint partial superposition is complete also with the total algebra
semantics.

Definition 49. Suppose T0 ⊆ T1 is a theory extension in which all functions
in the extension Σ1 \ Σ0 having a codomain in the set S0 of (base) sorts in
Σ0 are declared as partial. A Σ1-clause C is called shallow if partial function
symbols occur in C only positively and only at the root of terms. The theory
extension T0 ⊆ T1 is shallow if T1 \ T0 consists only of shallow clauses.

The definition of shallow terms given above is a generalization of the corre-
sponding notion used e. g. by Comon, Haberstrau, and Jouannaud [8], Nieuwen-
huis [24], or Jacquemard, Meyer and Weidenbach [18]. The difference is that
we consider terms which are shallow w. r. t. a subset of the function symbols,
whose elements are declared to be partial. When defining shallow clauses we
require that terms containing partial function symbols only occur positively
because without this requirement any set of clauses could be made shallow by
using variable abstraction.

Example 50. Suppose we have the natural numbers (of sort nat) as base
theory. Consider as an extension the two clauses

read(write(ar , i, x), i) ≈ x

i ≈ j ∨ read(write(ar , i, x), j) ≈ read(ar , j)

where array is a new sort, write : array, nat, nat → array is a total and read :
array, nat → nat a partial function symbol, and ar , i, j, x are variables of
suitable sort. Under these assumptions the two clauses are shallow.

This definition of read is tail-recursive, and in general tail-recursive definitions
of a partial function will be shallow. Other kinds of recursive definitions will
normally not be shallow, as exemplified by the case of length over lists (with
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the natural numbers as base theory):

length(cons(x, l)) ≈ succ(length(l))

where the base function succ : nat → nat and the extension function cons :
nat, list→ list are total, whereas length : list→ nat must be partial due to the
sort condition of Conv. 34.

Shallow extensions enjoy the property that any partial model can be extended
to a total model.

Theorem 51. Suppose that T0 ⊆ T1 is a theory extension in which all func-
tions in Σ1 \ Σ0 with a codomain in S0 are declared as partial. If all clauses
in T1 \ T0 are shallow, then T1 has a partial model if and only if T1 has a total
model.

Proof. Suppose A is a partial Σ1-algebra that is a model of T1. Pick, for each
sort ξ, an element aξ from the carrier ξA associated with the sort ξ in A. Let
B be the extension of A into a total algebra obtained by making fB return
aξ, wherever fA is undefined in A, for every partial f of codomain ξ. It is easy
to see that B is also a model of T1: Since all function symbols in Σ0 are total,
B|Σ0

coincides with A|Σ0
so that B is a model of T0. Suppose T1 \ T0 contains,

say, an equation f(~s) ≈ g(~t) where f is partial and has the codomain ξ. Since
the equation is shallow, neither ~s nor ~t contain any partial function symbol.
Thus, for each assignment of the variables, the values ~a and ~b for ~s and ~t,
respectively, are defined. Therefore, in order for the equation to be satisfied in
A, fA is defined on ~a if and only if gA is defined on ~b. If fA(~a) is defined, so is

gA(~b), and fB(~a) = fA(~a) = gA(~b) = gB(~b). If fA(~a) is undefined, so is gA(~b),

thus fB(~a) = aξ = gB(~b). For the case of general clauses also note that partial
functions do not occur negatively in shallow clauses.

Note that any set of ground clauses can be turned into a set of shallow ground
clauses by introducing new constants for subterms that start with a partial
function:

Definition 52. Suppose that T0 ⊆ T1 is a theory extension. Let G be a set
of ground clauses in the signature Σ1. Then GF is the set of clauses that we
obtain from G if we replace in a bottom-up manner every term g(t1, . . . , tn)
with g ∈ ΩP

1 by a new (total) constant c and add the definition g(t1, . . . , tn) ≈ c
to the set of clauses. The set of new constants introduced during this process
is denoted by Ωc.

This flattening transformation preserves [un-]satisfiability with respect to total
algebra semantics. It does not preserve satisfiability with respect to the partial
algebra semantics, though, as shown by the following example:
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Example 53. Let ΩT = {nil/0, cons/2}, ΩP = {car/1, cdr/1}, and let A be
the algebra of finite lists with the usual interpretation of these symbols. In
particular, we assume that car(nil) is undefined in A. Let G consist of the unit
ground clause:

car(nil) 6≈ car(nil).

Let GF be obtained from G by the flattening transformation above, i. e. by
replacing the two occurrences of car(nil) by new total constants and adding
the definitions to the set of clauses. GF consists of the following clauses:

car(nil) ≈ c

car(nil) ≈ d

c 6≈ d.

Clearly, G is satisfiable, as A |= car(nil) 6≈ car(nil) since both sides are unde-
fined in A. However, GF is unsatisfiable, as in any model of the two clauses
in GF car(nil) must be defined and equal to both c and d, and hence the third
clause cannot be true.

In what follows, if not otherwise specified, we will always assume that T0 is
a universal theory. Then the CPS calculus with respect to T ′

0 is sound and
refutationally complete for every T ′

0 that is obtained by adding free constants
to T0.

20

Theorem 54. Let T0 ⊆ T1 = T0 ∪ N be a shallow theory extension with a
set N of shallow clauses. Let G be a set of ground Σ1-clauses, and let GF

be the flattened form of G. Then T1 ∪ G is unsatisfiable (in the total algebra
semantics) if and only if the empty clause can be derived from abs(N ∪GF ) by
constraint partial superposition with respect to T ′

0 , where T ′
0 is obtained from

T0 by adding the new total constants Ωc to the base signature.

Proof. Assume first that the empty clause can be derived from abs(N ∪GF )
by constraint partial superposition with respect to T ′

0 . Then, by Thm. 47,
abs(N ∪GF ) has no partial model which is a model of T ′

0 , so abs(N ∪GF ) has
no total model which is a model of T ′

0 . As abstraction and flattening preserve
[un-]satisfiability with respect to the total algebra semantics, it follows that
T1∪GF is unsatisfiable with respect to total Σ ′

1-algebras (where Σ ′
1 is obtained

by adding the constants in Ωc to Σ1), hence T1∪G is unsatisfiable with respect
to total Σ ′

1-algebras.

Assume now that the empty clause cannot be derived from abs(N ∪ GF )
by constraint partial superposition with respect to T ′

0 (as T0 is a universal

20 The results can be extended to more general base theories, but, for the sake of
simplicity these extensions are not discussed here.
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first-order theory, T ′
0 is also a universal first-order theory) 21 . By Thm. 47,

abs(N ∪ GF ) has a partial model A, such that A|Σ′

0
is a total model of T ′

0 .
As abstraction preserves [un-]satisfiability with respect to partial algebras, A
is also a partial model of N ∪ GF . Let B be the extension of A to a total
Σ ′

1-algebra obtained as explained in Thm. 51. By Thm. 51, B is a total model
of T ′

1 (where T ′
1 is obtained by adding the constants in Ωc to T1). Note that,

due to the form of the clauses in GF , every clause that contains a partial
function symbol f is a ground unit clause of the form f(t1, . . . , tn) ≈ t, where
the terms t1, . . . , tn, t are totally defined in A. As A is a partial model of GF ,
it follows that f(t1, . . . , tn) is defined in A, so B is also a model of the unit
clause f(t1, . . . , tn) ≈ t. All the other clauses have all terms defined in A, thus
hold also in B. Thus, B is a model of GF , hence T1 ∪GF (and, therefore, also
T1 ∪G) is satisfiable.

Theorem 55. Suppose that T0 ⊆ T1 is a shallow theory extension. Let N be the
set of (shallow) clauses in T1 \ T0 and let C be a Σ1-clause with free variables
x1, . . . , xn. Then T1 |= ∀x1 . . . ∀xn C if and only if the empty clause can be
derived from abs(N∪GF ) by constraint partial superposition with respect to T ′

0

(that is, T0 plus the new constants in GF ), where GF is the set of ground unit
clauses obtained from ∃x1 . . .∃xn ¬C by skolemization followed by flattening.

Proof. With the notation above it is obvious that the following statements
are equivalent:

(a) T1 |= ∀x1 . . .∀xn C (in the total algebra semantics)
(b) T1 ∪ ∃x1 . . .∃xn ¬C is unsatisfiable (in the total algebra semantics)
(c) T0 ∪N ∪GF has no total model.

By Thm. 54, T0 ∪N ∪GF has no total model if and only if the empty clause
can be derived from abs(N ∪GF ) by constraint partial superposition.

Extensions of a base theory T0 with free function symbols are shallow exten-
sions of T0. Therefore, a simple application of Thm. 54 is to the case where
we want to prove unsatisfiability of sets of ground clauses over an extension
of a theory with free function symbols: flattening the clauses followed by ap-
plying constraint partial superposition is a sound and refutationally complete
(w. r. t. total algebra semantics) and modular method for this problem.

Corollary 56. Let T1 be an extension of T0 by a set ΩF of free function
symbols. Then flattening and abstraction of the clauses followed by applying
the CPS calculus (in which all functions in ΩF are considered as partial) is a

21 A similar argument can be used for compact non-first-order base theories T0,
under the additional assumption that T ′

0 is compact as well, and constraint partial
superposition with respect to T ′

0 is complete.
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sound and refutationally complete method for testing the satisfiability in T1 of
sets of ground clauses.

Cor. 56 allows us to give a decision procedure for the universal fragment of
an extension of a first-order theory T0 with free function symbols, under the
assumption that the universal fragment of T0 is decidable.

Theorem 57. Assume that T0 has a decidable universal (clause) theory. Then
the universal theory of any extension T1 of T0 by a set ΩF of free function
symbols is also decidable.

Proof. Let C be a clause with free variables x1, . . . , xn in the signature
Σ1 = (S0, Ω

T
0 , ΩF ). Let GF be the set of (ground unit) clauses obtained from

skolemization followed by flattening from ∃x1 . . .∃xn ¬C. For i = 0, 1 let T ′
i

be the theory Ti plus the newly introduced constants from Ωc occurring in GF

(where the signature Σ ′
i is obtained by adding the constants from Ωc to Σi).

By Thm. 54 (and Cor. 56), T1 |= ∀x1 . . .∀xn C if and only if the saturation
of abs(GF ) under constraint partial superposition with respect to T ′

0 does not
contain the empty clause. (Note again that the functions in ΩF are declared
as partial.)

One can see that GF is the union of two sets G0 and G1 where G0 con-
sists only of (ground unit) Σ ′

0-clauses, and G1 only of Σ ′
1-clauses of the form

f(t1, . . . , tn) ≈ t, where f ∈ ΩF and t1, . . . , tn, t are ground terms consisting
only of total symbols. We analyze all possible constraint partial superposition
inferences between clauses in abs(GF ).

Since all clauses which contain function symbols in ΩF are ground flat pos-
itive unit clauses in GF , the clauses in abs(G1) are all Horn. Therefore, no
inferences by partial top-superposition, merging paramodulation, and factoring
between clauses in abs(G1) are possible. Thus, the only inferences in the CPS
calculus involving clauses which contain function symbols in ΩF are superpo-
sition inferences between two clauses in abs(G1). These can only be of the
form:

x 6≈ s ∨
n
∨

i=1

xi 6≈ si ∨ f(x1, . . . , xn)≈ x y 6≈ t ∨
n
∨

i=1

yi 6≈ ti ∨ f(y1, . . . , yn)≈ y

x 6≈ s ∨
n
∨

i=1

xi 6≈ si ∨ y 6≈ t ∨
n
∨

i=1

xi 6≈ ti ∨ x≈ y

The resulting clause is always a Σ ′
0 clause. Therefore, testing the satisfiability

of T0 ∪GF can be done in the following steps:

(1) Saturate G1 under superposition (this can be done in quadratic time
in |G1|; a set N1 of Σ ′

0-clauses is generated, where N1 contains, up to
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renaming of variables, at most |G1|
2 Σ ′

0-clauses).
(2) If ⊥ is not generated during step (1), test the satisfiability of T ′

0 ∪G0∪N1

by constraint refutation.

Note that every clause in N1 is of the form

x 6≈ s ∨
n
∨

i=1

xi 6≈ si ∨ y 6≈ t ∨
n
∨

i=1

xi 6≈ ti ∨ x ≈ y

and therefore is equivalent to the ground clause
∨n

i=1 si 6≈ ti ∨ s ≈ t. Thus,
N1 is equivalent with a set N g

1 of ground Σ ′
0-clauses which contains at most

|G1|
2 clauses, each of length at most n + 1, where n is the maximal arity of

the function symbols in ΩF .

Since we assumed that the universal theory of T0 is decidable, the universal
theory of T ′

0 is also decidable and has the same complexity. Indeed, it is easy
to see that the following statements are equivalent:

(a) T ′
0 |= ∀y1 . . .∀yk D(c1, . . . , cm, y1, . . . , yk);

(b) T ′
0 ∪∃y1 . . .∃yk ¬D(c1, . . . , cm, y1, . . . , yk) is unsatisfiable (with respect to

Σ0 ∪Ωc-algebras);
(c) T ′

0 ∪¬D(c1, . . . , cm, d1, . . . , dk) is unsatisfiable (with respect to Σ0 ∪Ωc ∪
Ωsk-algebras), where Ωsk = {d1, . . . , dk} is a new set of Skolem constants
which replace the existentially quantified variables {y1, . . . , yk};

(d) T0∪∃x1 . . . ∃xn ∃y1 . . .∃yk ¬D(x1, . . . , xm, y1, . . . , yk) is unsatisfiable (with
respect to Σ0-algebras);

(e) T0 |= ∀x1 . . .∀xn ∀y1 . . .∀yk D(x1, . . . , xm, y1, . . . , yk).

Therefore, testing satisfiability of ground clauses w. r. t. T ′
0 is also decidable.

Assume that there exists a function g such that for every input set G of ground
unit clauses satisfiability of T0∪G can be checked in time at most g(n), where
n is the size of G, i. e., the total number of symbols in G. Then for every set G
of ground unit clauses of size n satisfiability of T ′

0 ∪G can be checked in time
at most g(n). Since the size of the input for the decision procedure for T ′

0 is
quadratic in the size of the input for the original problem, the complexity of
deciding the clause validity in T1 has as upper bound g(k · n2), where n is the
size of the input, and k is a constant natural number.

This provides an alternative proof of a result established (for arbitrary theo-
ries) also in (Ganzinger [12], 22 Tinelli and Zarba [28]).

22 The result as such is not explicitly stated in [12], but is an immediate consequence
of the results presented there.
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5.2 Local extensions of a base theory

A more general, but related, case is that of local extensions of a base theory
(Sofronie-Stokkermans [25]). The definitions we present here are somewhat
more restricted than those in [25], as they refer only to extensions with flat
sets of clauses and flat goals.

Definition 58. A term is called variable-flat if all its proper subterms are
variables. A variable-flat theory extension is an extension T0 ⊆ T1 by means
of a set N of clauses, i. e., T1 = T0 ∪N where N consists of clauses for which
all subterms starting with a partial function are variable-flat.

Let N be a set of clauses, and let G be a set of ground clauses. We denote
by N [G] the set of the most general instances of clauses in N in which each
subterm starting with a partial function is a ground subterm occurring in G or
in N 23 . If N and G are finite, then the set N [G] is finite and can be effectively
computed from G.

Definition 59. Suppose T0 ⊆ T1 is a flat theory extension by means of a flat
set N of clauses, i. e., T1 = T0 ∪N . We say that the extension T0 ⊆ T1 is local
if, for every set Ωc of constants and for every set G of flat ground Σ ′

1-clauses
(where Σ ′

1 equals Σ1 plus the constants in Ωc), the following are equivalent:

(i) T1 ∪G is unsatisfiable in the total algebra semantics
(ii) T0 ∪ N [G] ∪ G is unsatisfiable in the partial algebra semantics, where

function symbols in Σ1 \Σ0 are declared as partial, and all constants in
Ωc are declared as total.

This definition is related to the notion of local equational theory introduced
in [11] and of locality in general [15,21].

Example 60 (Sofronie-Stokkermans [25]). The following theory exten-
sions are local:

(1) Extensions with free functions: Any extension of a theory T0 with a
set of free function symbols is local.

(2) Extensions with selector functions: Let T0 be a theory with signature
Σ0 = (ΩT

0 , ∅), let c ∈ ΩT
0 with arity n, and let Σ1 = (ΩT

1 , ΩP
2 ), where

ΩT
1 = ΩT

0 and ΩP
1 = {s1, . . . , sn} consists of n unary function symbols.

Let T1 = T0 ∪ Sel (a theory with signature Σ1) be the extension of T0

with the set Sel of clauses below. If T0 satisfies the (universally quantified)

23 Formally, N [G] = {Cσ | C ∈ N, and if the term f(t1, . . . , tn) in C starts with a
partial function f then f(t1, . . . , tn)σ is a ground term in N or G and all variables
not occurring below partial functions are unchanged by σ }.
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formula Inj(c) (i. e. c is injective in T0) then the extension T0 ⊆ T1 is local.

(Sel) s1(c(x1, . . . , xn)) ≈ x1

· · ·
sn(c(x1, . . . , xn)) ≈ xn

(Inj(c)) c(x1, . . . , xn) ≈ c(y1, . . . , yn)→ (
n
∧

i=1

xi ≈ yi)

(3) Extensions with monotone functions: Let T0 be one of the follow-
ing theories: (1) P (posets), (2) T (totally ordered sets), (3) DO (dense
totally ordered sets), (4) S (semilattices), (5) L (lattices), (6) DL (dis-
tributive lattices), (7) B (Boolean algebras), (8) R (theory of reals), where
we regard the predicate symbol ≤ as a total binary function with output
sort bool. Let Monf be the monotonicity axiom:

(Monf )
n
∧

i=1

xi ≤ yi → f(x1, . . . , xn) ≤ f(y1, . . . , yn).

The extension T0 ⊆ T0 ∪Monf is local.

Shallow extensions satisfy a weaker notion of locality (namely stable locality)
which is discussed in (Sofronie-Stokkermans [25]).

We now show that for a variable-flat local theory extension T0 ⊆ T1 = T0 ∪N
abstraction followed by constraint superposition is a refutationally complete
method (w. r. t. total semantics) when applied to T0 ∪ N [GF ] ∪ GF , and also
to T1 ∪GF , where G is a ground goal and GF the flattened form of G. Thus,
we have the choice between computing the instances in N [GF ] or avoiding to
do so – as this may be too expensive in many cases.

Theorem 61. Let T0 be a universal first-order Σ0-theory, and let T1 = T0∪N
be a variable-flat local extension of T0. Let G be a set of ground clauses, and
GF be the set of flat ground clauses obtained from flattening G. Then the
following are equivalent:

(1) T1 ∪G is unsatisfiable.
(2) The empty clause can be obtained from abs(T0∪N [GF ]∪GF ) by constraint

superposition (in which all functions in Σ1\Σ0 are supposed to be partial)
w. r. t. T ′

0 (i. e. the base theory T0 plus the newly introduced constants).
(3) The empty clause can be obtained from abs(T1 ∪ GF ) by constraint su-

perposition (in which all functions in Σ1 \Σ0 are supposed to be partial)
w. r. t. T ′

0 .

Proof. Consider the following statements:

(a) T1 ∪G has a total algebra model;
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(b) T1 ∪GF = T0 ∪N ∪GF has a total algebra model;
(c) T0 ∪N [GF ] ∪GF has a partial algebra model;
(d) T0 ∪N ∪GF has a partial algebra model.

As flattening preserves [un-]satisfiability w. r. t. the total algebra semantics, (a)
and (b) are equivalent. Clearly, (b) implies (c): a total model of T0 ∪N ∪GF

satisfies all instances of N , hence in particular N [GF ]. As T1 is a local extension
of T0, (c) implies (b). As every total model is a partial model, (b) implies (d).
We prove that (d) implies (c).

Let A be a partial model of T0 ∪N ∪GF . We show that A is also a model for
N [GF ]. Let D ∈ N [GF ]. Then there exists a clause D ∈ N and a substitution
σ : X → TΣ1

(X) with Dσ = D and every term in Dσ which starts with a
partial function symbol is a ground term in GF . As GF is flat, all clauses in
GF which contain a partial function symbol are unit ground clauses of the
form f(c1, . . . , cn) ≈ c. As N is variable-flat, partial functions in N have as
arguments only variables. 24

As A is a partial model of N ∪ GF it follows that all ground subterms of N
or GF which start with a partial function symbol are totally defined in A.
Thus, for every assignment β into A, all subterms of D are defined in (A, β).
Let β be an arbitrary assignment into A, and let γ : X → A defined by
γ(x) := (A, β)(σ(x)). Then (A, β)(σ(t)) (and hence also γ(t)) is defined in A
for every subterm t of D. As A is also a model for N , and all subterms of D
are defined, (A, β)(Dσ) = (A, γ)(D) = 1. Thus, A is a model of D. Hence, if
A is a model of N then A is a model of N [GF ].

This shows that (a) and (d) are equivalent. By Thm. 47, T0 ∪N [GF ]∪GF has
a partial algebra model if and only if the empty clause cannot be obtained
from abs(N [GF ] ∪ GF ) by constraint superposition with respect to T ′

0 , and
T0∪N ∪GF has a partial algebra model if and only if the empty clause cannot
be obtained from abs(N ∪GF ) by constraint superposition with respect to T ′

0 .
This completes the proof of the theorem.

Corollary 62. Let T0 be a universal first-order Σ0-theory, and let T1 = T0∪N
be a local extension of T0. Abstracting and then applying the CPS calculus (in
which all functions in Σ1 \Σ0 are supposed to be partial) is a sound and com-
plete method for testing the validity of universally quantified formulae in T1.

Proof. Let C be a clause with free variables x1, . . . , xn in the signature Σ1.
T1 |= ∀x1 . . .∀xn C if and only if T1 ∪ ∃x1 . . .∃xn ¬C |=⊥. Let G be the set
of (unit, ground) clauses obtained from Skolemization (possibly followed by

24 Therefore σ must assign constants to all variables occurring below a partial func-
tion symbol and should leave unchanged all variables which do not occur below a
partial function.
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flattening) from ∃x1 . . .∃xn ¬C. By Thm. 61, T1∪G is unsatisfiable if and only
if the empty clause can be obtained from abs(N [G]∪G) (or, equivalently, from
abs(N ∪ G)) by constraint superposition with respect to T ′

0 (the base theory
T0 plus the newly introduced constants).

The results in this section show that for shallow and local extensions of a base
theory flattening and abstraction of the clauses followed by applying the CPS
calculus (in which all functions in ΩF are supposed to be partial) is not only
a sound, but also a refutationally complete method for testing satisfiability in
T1 of sets of ground clauses and for testing the validity of the universal theory.

6 Related Work

In this section related work is summarized and compared with the results
presented in the paper.

Validity of identities in partial algebras.

Evans validity is often related to properties of embeddability of partial algebras
into total algebras [10,7,16]. This connection allows us to replace equational
reasoning for total functions with reasoning about partial functions, or with
relational reasoning. Evans validity was also used in (Ganzinger [11]) for es-
tablishing relationships between semantic and proof-theoretic approaches to
polynomial time decidability for uniform word problems for quasi-varieties,
in particular connections between embeddability and locality of equational
theories.

Besides Evans validity [10,7,16] there are many other possibilities for defining
validity of identities in partial algebras, from which we mention only a few
(for further details we refer to Burmeister [6]):

– existential validity: (A, β) |= t
e
≈ t′ if and only if (A, β)(t) and (A, β)(t′) are

both defined and equal;

– strong validity: (A, β) |= t
s
≈ t′ if and only if either both (A, β)(t) and

(A, β)(t′) are defined and equal, or neither is defined;

– weak validity: (A, β) |= t
w
≈ t′ if and only if either (A, β)(t) and (A, β)(t′)

are both defined and equal, or at least one of them is not defined.

Note that only the notion of Evans validity distinguishes between two ways in
which a term can be “not defined” (in Sect. 2 we do this by using two special
values: “undefined” and “irrelevant”).
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Both existential and strong validity are in some sense less constructive than
Evans validity: If b is a total constant and f and g are partial functions, then

both f(g(b))
e
≈ b and f(g(b))

s
≈ b imply that f(g(b)) is defined. Under the

assumption that functions are strict, this implies that g(b) is defined, but there
is no way to “compute” g(b), i. e., to express it in terms of total functions. 25

It is therefore not clear how one could modify our calculi in order to make
them usable for existential or strong validity.

Using our results for weak validity is unproblematic due to the following encod-
ing trick: Let id be a (total or partial) function satisfying the axiom id(x) ≈ x.

Then t is not defined if and only if id(t) is irrelevant. Hence, (A, β) |= t
w
≈ t′ if

and only if (A, β) |= id(t) ≈ id(t′) in Evans validity. To use weak validity in-
stead of Evans validity, even on a per clause or per literal basis, it is therefore
sufficient to replace positive literals t ≈ t′ by id(t) ≈ id(t′). Negative literals
are not changed.

Resolution calculi for partial functions and partial congruences.

An alternative way to dealing with undefinedness, which goes back to Kleene
[20], is to use many-valued logic, with an additional truth value for “unde-
fined”. Kleene’s logic has been used by various authors for giving logical
systems for partial functions and for reasoning about partial functions in a
many-valued framework. A resolution calculus for partial functions, where
undefinedness is formalized using Kleene’s strong three valued logic, was pro-
posed by Kerber and Kohlhase in [19]. Although we also use a three-valued
logic for modeling undefinedness, where the negation is similar to Kleene’s
strong negation, the notion of validity used in [19] is different from the one
we use, as no distinction is made between undefinedness and irrelevance of a
term. 26 The calculus presented in this paper is different from the one in [19]
on the one hand because of the different notion of validity mentioned and on
the other hand because refinements of resolution such as paramodulation or
superposition are not considered in [19].

Bachmair and Ganzinger [4] give a version of ordered chaining for partial
equivalence and congruence axioms. This calculus is devised for strong or
existential validity ; consequently, equality resolution is replaced with a rule
which encodes partial reflexivity. In particular, in [4] one can make statements

25 Extending the signature with additional total function symbols to give explicit
definitions for all defined subterms fixes this problem. In the modular or hierarchic
case, adding total functions with the required codomain may be impossible, though.
26 In [19], an atomic formula P (t1, . . . , tn) has truth value “undefined” if at least
one of t1, . . . , tn is undefined. This is in fact a notion of weak validity (which, as
pointed out before, can be modelled in our framework by using an additional unary
function symbol).
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about definedness of certain terms (more precisely, a term is defined if t ≈ t
is derivable in the calculus). In contrast, Evans’ validity does not allow one
to define totality of a partial function or of a term. Therefore, the calculus we
describe in this paper is different from the one in [4].

Superposition-based reasoning

The CPS calculus resembles a calculus presented by Bachmair, Ganzinger,
and Waldmann [5], where a base theory is extended by total functions, but
where sufficient completeness of the extension is necessary for the refutational
completeness of the calculus. 27 Due to the different logics used, the calculi
are not fully comparable, though. In particular, the CPS calculus does not
subsume the hierarchic superposition calculus of [5] for sufficiently complete
extensions. 28

In (Armando, Rusinowitch, and Ranise [2]) and (Armando, Bonacina, Ranise,
and Schulz [1]) superposition is applied to specific theories (such as lists, ar-
rays and records with or without extensionality, but also integer offsets and
integer offsets modulo) and proved to yield decision procedures with optimal
complexity. However, usually it is necessary to consider more complex theories,
e. g., extensions of a base theory of elements with new sorts and additional
functions for describing data structures (such as lists or arrays) over the the-
ory of elements and operations on these data structures. One possibility for
dealing with this situation, is to use the combination method of Nelson and
Oppen. Superposition was also used for reasoning in combinations of theories
over signatures with no shared function symbols, or sharing only constants,
and often turned out to provide modularity results similar in nature with the
Nelson-Oppen combination method. In [17], Hillenbrand proposed a superpo-
sition view of Nelson and Oppen’s method. In (Armando, Rusinowitch, and
Ranise [2]) the authors show that superposition-based modular reasoning is
possible in a special case of combinations of theories (lists and arrays), and
amounts to propagating equalities between constants as in the Nelson-Oppen
combination method. More general results are given in (Armando, Bonacina,
Ranise, and Schulz [1]) where a modularity theorem (based also on rewriting)
for combinations of theories with no shared function symbols is proved.

Our approach is different. We show that if the extensions only introduce addi-
tional partial functions, a superposition calculus for partial functions becomes

27 A set N of clauses is called sufficiently complete with respect to total instances,
if for every model A of tgi(N) and every ground non-base term t′ of a base sort ξ
there exists a ground base term t of sort ξ such that t′ ≈ t is true in A.
28 The main obstacle is the fact that sufficient completeness w. r. t. total instances
(using partial semantics) is not equivalent to its counterpart sufficient completeness
w. r. t. simple instances as defined in [5] (using total semantics).
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a complete and modular proof system where inferences are pure. We also an-
alyze situations in which similar modularity results can be obtained for com-
bining extensions with total instead of partial functions. In this framework,
stable infiniteness of the theories is not needed for refutational completeness.

Modular theorem proving in combinations of theories.

In Nelson-Oppen-style combinations of stably infinite theories T1 and T2 over
signatures Σ1 and Σ2 which are disjoint or share only constants, inferences
are always pure. Ghilardi [14] has recently extended the completeness results
for modular inference systems for combinations of theories over non-disjoint
signatures. Thm. 29, one of the main results of our paper, also provides a
modular way of combining extensions T1 and T2 of a base theory T0. The main
difference between Ghilardi’s approach and our work is that in (Ghilardi [14])
the component theories need to satisfy a rather strong compatibility condi-
tion with respect to the shared theory. On the other hand, our calculi are only
complete with respect to the partial function semantics. We have shown, how-
ever, that for shallow or local extensions of base theories partial models can
always be made total. Ghilardi’s compatibility conditions ensure, in addition,
that the Craig interpolants consist of positive ground clauses whereas in the
modular partial superposition calculus described in this paper clauses with
variables need to be exchanged between the theory modules.

For Thm. 29 to be applicable, the theories T1 and T2 (regarded as theories
with partial functions in Σ1, Σ2) most have the same total function symbols.
A similar situation was analyzed by Tinelli [26], who gives a method for co-
operation of background reasoners for universal theories which have the same
function symbols. However, we have shown that there are interesting prob-
lem classes where partial models can always be totalized. Therefore, in these
cases the condition that the theories T1 and T2 have the same total function
symbols can be relaxed. The superposition calculus for partial functions devel-
oped in this paper also allows us to efficiently compute the (universal) Craig
interpolant even in this more general case.

7 Conclusions

In this paper we have presented a partial superposition calculus for the com-
bination of first-order theories involving both total and partial (many-sorted)
functions. We have shown that the calculus is modular provided that functions
that are not in the intersection of the component signatures are declared as
partial.
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We have also considered a constraint superposition calculus for hierarchical
theories and proved that it has a related modularity property. We have shown
that constraint partial superposition is complete whenever every function in
the extension whose codomain is a base sort is declared as partial; a function
whose codomain is an extension sort can either be declared as total or partial.

An important application of this result is to approximate refutational theorem
proving in extensions of base theories for which refutationally complete black
box theorem provers exist. If constraint partial superposition finds a contra-
diction for a set of clauses in the extended signature, the set is unsatisfiable
in particular also with respect to total algebras. Therefore, in this way we ob-
tain a sound approximation of refutational theorem proving in extensions of
first-order theories. We have shown that if every partial algebra can be “com-
pleted” to a total algebra then this approximation is complete. This is the
case for shallow extensions of a base theory, e. g., extensions of a base theory
with functions defined by tail-recursion. Another case (and a generalization)
are local extensions of a base theory.

We expect to be able to use the calculi developed in this paper for obtaining
efficient algorithms for modular reasoning in combinations of many-sorted
complex theories. Dealing efficiently with partial functions can be a goal in
itself, but the results on local theory extensions which we consider indicate
that that the range of expected results is wider.
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