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Abstract. In a concurrent setting, the usage protocol of standard sep-
aration logic specifications are not refinable by clients, because standard
specifications abstract all information about potential interleavings. This
breaks modularity, as libraries cannot be verified in isolation, since the
appropriate specification depends on how clients intend to use the library.

In this paper we propose a new logic and a new style of specifica-
tion for thread-safe concurrent data structures. Our specifications allow
clients to refine usage protocols and associate ownership of additional
resources with instances of these data structures.

1 Introduction

Why? One of the challenges of specifying the abstract behavior of a library is
that the appropriate specification depends on the context in which the library
is going to be used. Consider a simple bag library with operations to push and
pop elements from the bag. In a sequential setting the standard separation logic
specification is:

{bag, (x, X)} x.Push(y) {bag.(x, X U{y})}
{bag.(x,X)} x.Pop() {ret. (X =0 A ret = null A bag,(x, X)) V
(3Y. X =Y U {ret} A bag,.(x,Y))}

bag, (x, X) * bag.(x,Y) = L

Here bag, is an abstract predicate, i.e., implicitly existentially quantified, so
that clients cannot depend on its definition [2], x is a reference to a bag object,
and X and Y range over multisets of elements. The implication in the third line
expresses that the bag, predicate cannot be duplicated. Hence this specification
enforces that clients follow a strict usage protocol, with a single exclusive owner
of the bag object. On the other hand, this specification allows the owner of the
bag to track the exact contents of the bag. In other words, bag,(x, X) asserts
full ownership of the bag and that the bag contains exactly the objects in the
multiset X.

Now consider a client of the bag library and suppose this client wants to
implement a bag of independent tasks scheduled for execution. This client might
not care about the exact contents of the bag, only that each task in the bag
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owns the resources necessary to perform its task. In addition, this client might
wish to share the bag to allow multiple users to schedule tasks for execution.
Thus this client might prefer the following specification for shared bags:

{bag,(x, P) * P(y)} x.Push(y) {bag, (x, P)}
{bag,(x,P)} x.Pop() {ret. bag,(x,P) x (ret = null VvV P(ret))}

bag,(x, P) = bag,(x, P) x bag,(x, P)

This specification allows more sharing, but it does not track the exact contents
of the bag. Instead, it allows clients to associate additional resources with each
element of the bag using the P predicate, and to freely share the bag as expressed
by the implication in the third line. Clients thus transfer P(y) to the bag when
pushing y, and receive P(ret) from the bag, when pop returns a non-null element.

In a sequential first-order setting without reentrancy, the standard separation
logic specification suffices. Using techniques from fictional separation logic [11],
clients can refine the standard specification to allow the additional sharing of
the shared bag specification. However, in a concurrent setting, it is easy to come
up with a non-thread-safe implementation (without synchronization), that sat-
isfies the standard specification (as it enforces a single exclusive owner), but not
the shared bag specification. Hence, in a higher-order concurrent setting with
reentrancy, this type of refinement is unsound!

What? The key challenge is to provide a logic that enables clients to refine
the specifications to their requirements in a concurrent setting. In this paper
we propose such a logic, called Higher-Order Concurrent Abstract Predicates
(HOCAP), and a new style of specification for thread-safe concurrent data struc-
tures.® This style of specification allows clients to refine the usage protocol and
associate ownership of additional resources with instances of the data structure,
in a concurrent higher-order setting.

How? Observe first that while it is not sound to refine specifications to al-
low more sharing in a concurrent setting, it is sound to refine specifications to
permit less sharing. Thus we will start with a weak specification that allows
unrestricted sharing of instances of the data structure, and then let clients refine
this specification as needed.

To reason about sharing we partition the state into regions, with protocols
governing how the state in each region is allowed to evolve, following earlier work
on concurrent abstract predicates [5]. Our new program logic, HOCAP, also uses
phantom fields — a logical construct akin to auxiliary variables, that only occur
in the logic.

To support abstract refinement of library specifications, we propose to verify
the implementation using a region to share the concrete state of the implementa-
tion, with a fixed protocol that relates the concrete state of the implementation

3 We consider a concurrent data structure thread-safe if each of its methods has one
or more synchronization points, where the abstract effects of the method appear to
take affect. See Related Work for a discussion of the relation to linearizability.
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with an abstract description of the state of the data structure. To refine this spec-
ification, clients define a region of their own, with a protocol on the abstract state
of the data structure. For soundness, these two regions must evolve in lock-step
and synchronize when the abstract state changes (in synchronization points).
We do so by giving each region a half permission to a shared phantom field;
synchronization can then be enforced since updating a phantom field requires
full permission. Half permissions have previously been used to synchronize local
and shared state [14]; here we are using it to synchronize two shared regions.
For the bag example, we introduce a phantom field cont that contains the
abstract state of the bag: a multiset of references to the elements in the bag.
The bag constructor also returns a half permission to the phantom field cont:

{emp}new Bag(){ret. bag(ret) * retcont AN 0}

Here reteont r£> () asserts partial ownership of the phantom cont field. Since the
client obtains half the cont permission upon calling the constructor, the library
cannot update the cont field on its own.

The protocol governing the bag x thus relates the concrete state of the bag
with its abstract state (the value of the cont field):

(3. xeom 25 X % listo X))~ (3K xeom 25X % list(x, X))

This protocol permits any atomic update to the region containing the internal
state of bag x from a state satisfying the left side of ~ to a state satisfying the
right side.

To allow the library to update cont in synchronization points, we therefore
transfer the library’s half-permission to the client and require the client to update
the phantom field with the abstract effects of the method, and then transfer a
half-permission back to the library. When the client updates the phantom field,
the client is forced to prove that the abstract effects of the method is permitted
by whatever protocols the client may have imposed on the abstract state.

We express the update to the phantom cont field using a view-shift [4]. Con-
ceptually, a view-shift corresponds to a step in the instrumented semantics that
does not change the concrete machine state. View-shifts, written P C Q, thus
generalize assertion implication by allowing updates to phantom fields (given
sufficient permission) and ownership transfer between the local state and shared
regions.

The bag push method thus requires the client to provide a view-shift, to
update the abstract state from X to X U {y} in the synchronization point:

VX. Xcontlﬁx*P L Xcont »K)XU{}/}*Q
{bag(x) * P}x.Push(y){bag(x) * Q}

Here, P and Q are universally quantified and thus picked by the client. Hence,
the client can use P and Q to perform further updates of the instrumented state
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in the synchronization point and relate the new abstract state with its local
state. We thus refer to P and Q as synchronization pre- and postconditions.

Likewise, the bag pop operation requires two view-shifts; one, in case the bag
is empty in the synchronization point, and another, in case the bag is non-empty
in the synchronization point:

Xcont 'ﬁ @ * P E Xcont *ﬁ) @ * Q(null)
VX vy Xcont 'ﬁ X U {Y} * P E Xcont ’ﬂ X * Q(y)
{bag(x) * P}x.Pop(){bag(x) * Q(ret)}

Finally, the bag predicate is freely duplicable:

bag(x) = bag(x) * bag(x)

Note that since P and Q are universally quantified — our logic is higher or-
der — the client could potentially pick instantiations referring to the library’s
region, thus introducing self-referential region assertions. We can illustrate this
problem by instantiating P with an assertion that itself refers to the bag in the
specification of Push. Since bag(x) asserts that there exists a shared region that
owns half the xcon: field, it follows that bag(x) * Xcont — - = false. Hence, by

instantiating P with bag(x) * Xcont |£> _, we can derive the postcondition false
from the specification of Push.

To prevent this, we introduce a notion of region type and a notion of support,
as an over-approximation of the types of regions a given assertion refers to. Our
formal bag specification (presented in Section 3) thus imposes support restric-
tions on P and Q to ensure the client does not introduce self-referential region
assertions.

Another key challenge we address is higher-order protocols. Higher-order pro-
tocols are crucial to allow clients to associate ownership of additional resources
with shared data structures. For example, to derive the shared bag specifica-
tion from the generic specification, we use a second region with a protocol that
requires clients to transfer ownership of P(x), when pushing x into the bag:

(HX Xcont 'ﬁ X * ®yEXP(Y)) ~ (HX Xcont 'ﬁ X ®yEXP(y))

Again, P is a predicate variable and could be instantiated to refer to the state
and protocol of this and other regions — making the above protocol a higher-order
protocol. We also use region types to break a circularity introduced by higher-
order protocols. In particular, instead of assigning protocols to individual regions,
we assign parameterized protocols to region types. This allows us to reason about
higher-order protocols that refer to the region types — and thus, implicitly, the
protocol — of other regions. We show that this well-behaved subset of higher-order
protocols, called state-independent protocols, suffices for sophisticated libraries,
such as the Joins library [16].

To summarize, our new logic and specification methodology allows clients to
refine the usage protocol of the bag. It also allows clients to transfer ownership
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of resources to the bag, by transferring them to a client region synchronized with
the abstract state of the bag.

More details and examples can be found in the extended version of this article,
which is available at http://www.itu.dk/people/kasv/hocap-ext.pdf.

Related work. Jacobs and Piessens introduced the idea of parameterizing the
specification of concurrent methods with ghost code, to be executed in synchro-
nization points [10]. Here we build on their idea, using a much stronger logic
based on CAP [5], to address the main problem with their approach.

Instead of regions with protocols, Jacobs and Piessens use ghost objects —
data structures built from ghost variables — with handles that represent partial
information about the data structure and permissions to modify it. While these
handles provide support for reasoning about the state of shared ghost objects,
they lack the ability to associate ownership of additional state with ghost objects.
Instead, Jacobs and Piessens use the lock invariant of the lock protecting the
concurrent data structure to associate ownership of additional state.

However, this approach is problematic without proper storable locks. In par-
ticular, Jacobs and Piessens logic and model of storable locks only supports lock
labels parameterized over simple types (i.e., not assertions). This forces the client
to create the synchronization primitive, so that the client can pick a lock invari-
ant containing both the state of the concurrent data structure and any additional
resources the client may wish to associated with the data structure. This breaks
abstraction, by exposing internal implementation details to the client (the syn-
chronization primitive used) and it requires the client to reprove the shared bag
specification every time it is needed. Hence, Jacobs and Piessens cannot derive
the shared bag specification. We solve this problem using higher-order protocols.

CAP was designed to verify concurrent data structures [5]. However, the orig-
inal specifications and proofs are non-modular in the sense that implementations
have been verified against unrefinable specifications with fixed usage protocols.

Recently, Dodds et. al. introduced a higher-order variant of CAP to give a
generic specification for a library for deterministic parallelism [6]. While their
proofs make explicit use of nested region assertions and higher-order protocols,
the authors failed to recognize the semantic difficulties these features introduce.
Consequently, their reasoning is unsound. In particular, their higher-order rep-
resentation predicates are not stable.

Another approach for achieving modular reasoning is to prove concurrent
implementations to be contextual refinements of coarse-grained counterparts —
thus taking the coarse-grained counterparts as specifications. Previous efforts
for proving such contextual refinements have mostly focused on indirect proofs
through a linearizability property on traces of concurrent libraries [9, 7]. So far,
this approach lacks support for transfer of ownership of resources between client
and library. More recently, there has been work on proving such contextual re-
finements directly, using logical relations [20]. Unless combined with a program
logic, both of these approaches restrict all reasoning to statements about contex-
tual refinement or contextual equivalence. As our approach demonstrates, if a
Hoare-style specification is what we are ultimately interested in, then contextual
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refinement is unnecessary; what we really want is a generic specification that is
refinable by clients.

Conceptually, linearizability aims to provide a fiction of atomicity to clients
of concurrent libraries. Our approach does not. Instead, we aim to allow clients
to reason about changes of the abstract state in synchronization points inside
concurrent libraries. To illustrate the distinction, consider an extension of the
bag library with a Push2(x, y) method that takes two elements and pushes
them one at a time (i.e., with the implementation Push(x); Push(y)). This
method is not linearizable, as it has two synchronization points. However, it still
has a natural specification expressed in terms of two view-shifts, one for each
synchronization point:

VX Xeont =25 X P xeomt 25 XU {y} * Q
VX Xeont ~15 X Q T xeomt -2 XU {2} # R
{bag(x) * P}x.Push2(y,z){bag(x) = R}

From this specification, a client can derive a natural shared bag specification:
{bag,(x, P) x P(y) = P(z) }x.Push2(y, z){bag,(x, P)}

Contributions. We propose a new style of specification for thread-safe concur-
rent data structures. Using protocol synchronization, this style of specification
allows clients to refine the usage protocol of concurrent data structures. More-
over, using nested region assertions and state-independent higher-order proto-
cols, our specification style allows clients to associate additional resources with
the data structure.

Technically, we realize the ideas by developing HOCAP, a higher-order sep-
aration logic for a subset of Cf featuring named delegates and fork concurrency.
The logic allows two or more protocols to be synchronized and evolve in lock-step.
In addition, we support nested region assertions, state-independent higher-order
protocols, and guarded recursive assertions. We present a step-indexed model
of the logic and use it to prove the logic sound. We emphasize that unlike ear-
lier versions of CAP, our logic includes sufficient proof rules for carrying out all
proofs (including stability proofs) of examples in the logic, i.e., without passing
to the semantics.

Lastly, in the extended version we demonstrate the power and utility of the
logic by verifying a library for executing tasks in parallel, based on Doug Lea’s
Fork/Join framework [12]. We have also used the logic to specify and verify the
Joins library [16] and clients thereof, which will be described in a separate paper.

2 The logic
Our logic is a general program logic for a subset of C!, featuring delegates re-
ferring to named methods* and an atomic compare-and-swap statement. New

4 Anonymous delegates in C* may capture the I-values of free variables and hence the
semantics and logic for anonymous methods is non-trivial, see our earlier paper [18].
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threads are allocated via a fork statement that forks a delegate. Each thread has
a private stack, but all threads share a common heap. We use an interleaving
semantics.

The specification logic is an intuitionistic higher-order logic over a simply
typed term language, and the assertion logic an intutionistic higher-order sepa-
ration logic over the same simply typed term language. Types are closed under
the usual type constructors, —, x, and +. Basic types include the type of asser-
tions, Prop, the type of specifications, Spec, the type of C¥ values, Val, and the
type of fractional permissions, Perm.

2.1 Concurrent Abstract Predicates

Recall that the basic idea behind CAP is to provide an abstraction of possible
interference from concurrently executing threads, by partitioning the state into
regions, with protocols governing how the state in each region is allowed to
evolve. Requiring all assertions to be stable — i.e., closed under protocols — and
proving all specifications with respect to arbitrary stable frames, then achieves
thread-local reasoning about shared mutable state.

Following earlier work on CAP [5], we use a shared region assertion, written

Er,t,a7 which asserts that r is a region and that the resources in region r satisfy
the assertion P. Unlike earlier versions, the region assertion is also annotated
with a region type t and a protocol argument a, since we assign parameter-
ized protocols to region types instead of regions, as mentioned above. Region
assertions are freely duplicable and thus satisfy,

E]r,t,a o @r,t,a * E]r,t,a (1)

Protocols consist of named actions and updates to a shared region require own-
ership of a named action justifying the update. Protocols are specified using
protocol assertions, written protocol(t, ). Here t is a region type and | is a para-
metric protocol. We use the following notation for a parametric protocol | with
parameter a and named actions aq, ..., ay:

I(a) = (051 : (Al) Py~ Ql; cr Qg (An) Py ~ Qn)

Here A; is a context of logical variables relating the action precondition P;
with the action postcondition Q;. The action «; thus allows updates from states
satisfying P; to states satisfying Q;. We use I(a)[c;] to refer to the definition of the
a; action in protocol | applied to argument a. Hence, I(a)[a;] = (4;). P; ~ Q;.

rt,a r,t,a
We use EI as shorthand for E * protocol(t, ).
We can distinguish different client roles in protocols through ownership of
named actions. An action assertion [«]" asserts fractional ownership of the

named action « on region r with fraction 7. Fractions are used to allow multiple

Those semantic issues are orthogonal to what we discuss in the present paper and
hence we omit anonymous delegates here.
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clients to use the same action. We can split or reassemble action assertions using
the following property,

[dprq & lolp

* [alg (2)
where p,q,p + q are terms of type Perm — permissions in (0, 1].

An assertion p is stable if it is closed under interference from the environment.
In the absence of self-referential region assertions and higher-order protocols, the

r.t,a
region assertion, EI is stable if P is closed under all I(a) actions:®

vy. valid(P A P;(y) = L) v valid(Q;(§) = P)

for all 4, where 1(a)[a;] = (X). P;(X) ~» Q;(X).

Example. To illustrate reasoning about sharing, consider a counter with read
and increment methods. Since the count can only be increased, this counter
satisfies the specification of a monotonic counter [15]:

{counter(x,n)} x.Increment() {counter(x,n + 1)}
{counter(x,n)} x.Read() {ret. counter(x,ret) x n < ret}

counter(x, n) = counter(x, n) * counter(x, n)

Here counter(x,n) asserts that n is a lower-bound on the current count. Hence
we expect that this predicate can be freely duplicated, as expressed by the third
line above.

To verify a counter implementation against this specification, we place the
current count in a shared region, with a protocol that allows the current count
to be increased. Assertions about lower bounds are thus invariant under the
protocol. If the counter implementation maintains the current count in field
count, then we can specify the counter protocol as follows:

def r r,Counter,x
counter(x,n) = Jr, 7. [INCR]; *‘ Im. n < m*x.count — m |

where | is a parametric protocol with parameter x and a single action INCR, that
allows the count field of x to be increased:

I(x) = (INCR : (m, k : N). x.count — m # m < k ~» x.count > k)

Here we have used a fixed region type Counter for the counter region r. Since
fractional permissions can always be split (2), and region assertions always dupli-
cated (1), it follows that counter(x,n) = counter(x, n) * counter(x, n), as required
by the specification. Since the shared region assertion in counter(x,n) contains
no self-referential region assertions or higher-order protocols, to prove it stable,
it suffices to show that,

Vm, k. valid((3m : N. n < m % x.count — m) A (x.count —» m+m < k) = 1) Vv

valid(x.count — k => (3m : N. n < m x x.count — m))

5 This is a formula in the specification logic; P and Q are assertions and for an assertion
P, valid(P) is the specification that expresses that P is valid in the assertion logic.
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This follows easily by case analysis on n < k.Lastly, to verify the implementation
of Increment and Read, we have to prove they satisfy the protocol, namely that
they do not decrease the current count. This is easy.

2.2 Higher-order Concurrent Abstract Predicates

As the above example illustrates, we can use CAP to reason about a shared
counter by imposing a protocol on the shared count field. Since this is a protocol
on a primitive resource (the count field), first-order CAP suffices. To reason
about examples, such as the shared bag, which associates ownership of general
resources — through the P predicate — with a shared bag, we need Higher-Order
CAP. In particular, to define the bag, predicate requires region and protocol
assertions containing the predicate variable P.

To support modular reasoning about region and protocol assertions contain-
ing predicate and assertion variables, ideally, we want to treat predicate and
assertion variables as black boxes. For instance, consider the assertion,

def rt,

Q= ~ x protocol(t, ) (3)

where | is the parametric protocol I(—) = (7 : P ~» P) expressed in terms of the
assertion variable P. Treating P as a black box, Q is clearly stable if P is stable,
as Q asserts that P holds of the resources in region r, which is clearly closed
under the protocol |I. However, in general P could itself be instantiated with
region and protocol assertions, introducing the possibility of self-referential re-
gion assertions and turning | into a higher-order protocol. This makes reasoning
significantly more challenging. In particular, some self-referential region asser-
tions do not admit modular stability proofs: it is possible to instantiate P with
stable assertions for which Q is not stable. Furthermore, higher-order protocols
introduce a circularity in the definition of the model.

Self-referential region assertions. To see how self-referential region asser-
tions can break the modularity of stability proofs, consider assertion P below:

P xis 0% r A protocol(t’, J),

where J is the protocol with a single a action that allows the y variable to be
changed from 0 to 1, provided region r owns variable x and x is zero:

(=)= (a: xHOr’t’_*y»—)Owr’t’_*yHI)

Then P is stable, because P asserts full ownership of the x variable, ensuring
that the environment cannot perform the « action, as x cannot also be owned
by region r. However, the region assertion Q defined above is not stable when

instantiated with this P, as Eht’ asserts that region r does own x, thus allowing
the environment to perform the « action. As this example illustrates, some self-
referential region assertions thus do not admit modular stability proofs. A similar
problem occurs when reasoning about atomic updates to shared regions.
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Support. To ensure modular reasoning about stability and atomic updates
to shared regions, we require clients to explicitly prove that their instantia-
tions of predicate variables do not introduce self-referential region assertions. To
facilitate these proofs, we introduce a notion of support, which gives an over-
approximation of the types of regions a given assertion refers to.

An assertion P is supported by a set of region types A, if P is invariant under
arbitrary changes to the state and protocol of any region of a region type not
in A. To support modular reasoning about hierarchies of concurrent libraries,
instead of reasoning directly in terms of sets of regions, we introduce a partial
order on region types and reason in terms of upwards-closed sets of region types.
More formally, we introduce a new type, RType, of region types with a partial
order < : RType x RType — Spec, with a bottom element 1 : RType and
finite meets. We say that an assertion P is dependent on region type t if it is
supported by the set of region types greater than or equal to t. We introduce two
new specification assertions, dep, indep : RType x Prop — Spec for asserting that
an assertion is dependent and independent of a given region type, respectively.
The inference rules for dep and indep are fairly natural. For instance, if P is

r,to,a
dependent on region type t;, then E s dependent on the greatest lower
bound, of t; and t,.

r,t,a . .
Whenever we reason about region assertions, E we thus require that P is
independent of the region type t. This excludes self-referential region assertions

through protocols (such as in (3)), and through nested region assertions (such
r,t,a

r.t,a
as E ).

Stability. General higher-order protocols would introduce a circularity in the
definition of the model. We break this circularity by exploiting the indirection
of region types — i.e., that we assign protocols to region types instead of indi-
vidual regions. This allows us to support protocols with assertions about the
region types of regions, but without assertions about the protocols assigned to
those region types. Technically, we enforce this restriction by ignoring protocol
assertions in action pre- and postconditions when interpreting protocols. The
parameterized higher-order protocol I,

I(x) = (x — 0 * protocol(t,J) ~» x — 1 * protocol(t, J))

is thus interpreted as I(x) = (x = 0 ~» x + 1). The interpretation simply ignores
the protocol(t, J) assertion (See definition of act in the technical report [19]).

rta |
In the absence of self-referential region assertions, a region assertion @I is

stable under the « action, if P is closed under the action pre- and postcondition
of the « action of I(a) and | is a first-order protocol. If | is a higher-order protocol,

t,a
then the assertion E: is stable under the « action, if P is closed under the
action pre- and postcondition of the « action of I(a) and P is also protocol-pure.
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We thus have the following proof rule for stability:

1(a)[a] = (X).1p(X) ~ 14(X) vx. valid(P A l,(x) = L) Vv valid(l4(X) = P)
indep, (P) indep,(Q) stable(P * Q) pureprotocol(P) pure,.(Q)

stablel, (@:’t’a * Q)

Here pure, oocol and pureg,,. are propositions in the specification logic; pure,oiocoi (P)
expresses that P is invariant under any changes to protocols and pureg,..(P) ex-
presses that P is invariant under any change to the local or shared state. The SA
proof rule thus allows us to prove stability of region assertions, by first “pulling
out” any protocol assertions, Q, from the region assertion. We say that an as-
sertion is expressible using state-independent protocols if the protocol assertions
can be “pulled out” in this sense. Formally,

SA

sip = AP : Prop. 3Q, R : Prop. valid(P < Q  R) A pure, orocoi(Q) A pureg e (R)

rt, rt,
In particular, if P < Q * R and pureg,..(R), then @I ‘o @l *¥R. Thus, if

sip(P), then Ert’a can be rewritten to a form that satisfies the pure, oo Premise
of the SA rule. Expressibility using state-independent protocols is closed under
conjunction and separating conjunction, but in general not under disjunction
or existential quantification. To achieve closure under existential quantification,
Ix : X. P(x), we have to impose a stronger restriction on the predicate family P.
Namely, P has to be uniformly expressible using state-independent protocols:

usipy = AP : X — Prop. 3R : Prop. 3Q : X — Prop. pure,,,.(R) A
Vx € X. (P(X) Aag Q(X) * R) A pureprotocol(Q(x))

Then we have that usipy(P) = sip(3x € X. P(x)).

2.3 View-shifts.

Phantom state. Proofs in Hoare logic often employ auxiliary variables [13],
as an abstraction of the history of execution and state. To support this style
of reasoning, without changing the formal operational semantics, we instrument
our abstract semantics with phantom fields.

We thus extend our logic with a phantom points-to assertion, written x¢ By v,
which asserts partial ownership, with fraction p, of the phantom field f on object
x, and that the current value of the phantom field is v.

Phantom fields live in the instrumented state and are thus updated through

view-shifts. Updating a phantom field requires full ownership of the field (x¢ N

vi T xf LN v2).5 A fractional phantom field permission can be split and re-
assembled arbitrarily. As a partial fraction only confers read-only ownership, two
partial fractional assertions must agree on the current value of a given phantom

5 The view-shift is annotated with the L region type; we explain the reason for such
annotations on view-shifts in the following.



12 Kasper Svendsen, Lars Birkedal, and Matthew Parkinson

field (x¢ N V1 ok Xg 23 Vo = V1 = v3). To create a phantom field f we require that
the field does not already exist, so that we can take full ownership of the field.
We thus require all phantom fields of an object o to be created simultaneously
when o is first constructed (in the proof rule for constructors, see the technical
report [19]).

Simultaneous updates. To support synchronization of two regions by split-
ting ownership of a common phantom field, we need to update the value of the
phantom field in both regions simultaneously. Previous versions of CAP have
only supported sequences of independent updates to single regions. To support
synchronization of protocols we thus extend CAP with support for simultaneous
updates of multiple regions.

We have chosen a semantics that requires that updates of regions have the
same action granularity (you cannot have one simultaneous update of two re-
gions, where the update of one region is justified by one action, and the update of
the other region is justified by two actions). This is a choice; it simplifies stabil-
ity proofs, but it means that we must explicitly track the regions that may have
been updated by a view-shift. We thus index the view-shift relation with a region
type t. The indexed view-shift relation, C;, thus describes a single update that,
in addition to updating the local state, may update multiple shared regions with
region types not greater than or equal to t, where each update must be justified
by a single action. The indexed view-shift relation is thus not transitive.

Figure 1 contains a selection of proof rules for view-shifts. The two main
rules, VSNOPEN and VSOPEN, are used to open a region, to allow access to the
resources in that shared region. Both rules allow us to open a region and perform
a nested view-shift on the contents of that region. This is how we reason about
simultaneous updates to multiple regions in the logic. Rule VSNOPEN allows
the nested view-shift to modify further regions, while VSOPEN does not (note
the use of region type L on the nested view shift in VSOPEN). Both rules require
a proof the update is possible —

P1x Po Ciint, Q1 * Qo and PixPa T Qp *Qq,

respectively — and a proof that the update is allowed by the protocol, denoted

r,t1,a rts r,t1,a
Pof TP QT Qe

and explained below.

Since actions owned by shared regions cannot be used to perform updates
to shared regions, the VSNOPEN rule further requires that P; does not assert
ownership of any local action permissions (pure,e,(P1)). This ensures that no
local action permissions from P; were used to justify any actions performed in
the nested view-shift. Since VSOPEN does not allow the nested view-shift to
update any regions, this restriction is unnecessary for the VSOPEN rule.

Update allowed. The update allowed relation, P ~"' Q, asserts that the
update described by P and Q to region r is justified by an action owned by P.
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pureperm(Pl) indept1 Mto (P17 P27 Ql: Q2) t2 ﬁ t

rti,a rto rti,a
| * Py~ | * Qg P1 %P2 Ciime, Q1 * Qo

VSNOPEN
rty,a rt1,a
| "k Py Lty | " Q,
indeptlmt; (P1,P2,Q1,Q2) to L1
r,ti,a v r,t1,a
1 # Py "0 Q ' * Qg Pi1*xP2C1 Q; * Qo
I rti,a : rty,a VSOPEN
| * Py Etz I * Q2
PC stable(R PLC t <t
=Q ® VSFRAME C, Q 1= U QWEAKEN
P*REtQ*R PEtQQ

Fig. 1. Selected view-shift proof rules

Thus the basic proof rule for the update allowed relation is:

indep,, (P(¥),Q®) t: %zt I(@)a] = (). P(X) ~ Q&)
P@) [ xlaln = [Q@) [ ¢ ol

UAAcT

Since the update allowed relation simply asserts that any update described by
P and Q is allowed, it satisfies a slightly non-standard rule of consequence, that
allows strengthening of both the pre- and postcondition. From this non-standard
rule-of-consequence, it follows that the update allowed relation satisfies a frame
rule that allows arbitrary changes to the context:

P— p’ P’/ it Q/ Q= Q/ P St Q

= UACONSEQ o UAF
P~""Q P %Ry ~>" Q*R2

3 Concurrent Bag

We now return to the concurrent bag from the introduction, and show how
to formalize the informal specification from the introduction. Next, we show
how to derive the two bag specifications from the introduction, using protocol
synchronization, nested region assertions, and higher-order protocols.

Specification. In the introduction we proposed a refineable bag specification
with phantom variables to force protocol synchronization and with view-shifts
to synchronize client and library in synchronization points. In the formal speci-
fication we restrict the synchronization pre- and postconditions, P and Q, using
region types, to ensure that the client’s instantiation does not introduce self-
referential region assertions. Upon creation of new bag instances, the client picks
a region type t for that bag instance and the client is then required to prove that
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all its synchronization pre- and postconditions are independent of region type t.
The formal refinable bag specification is:

{emp}new Bag(){ret. bag(t, ret) * retcont 2 0}

stable(P) stable(Q) indep, (P) indep, (Q)
VX. Xcont '£> 0 % P(x) Ct Xcont ’£> 0 % Q(x, null)

VX. VX, Y. Xcont 20X U {y} * P(x) C¢ Xcont 22X Q(x,y)
{bag(t, x) * P(x) }x.Pop(){ret. bag(t,x) * Q(x, ret) }
stable(P) stable(Q) indep, (P) indep,(Q)

VX, VX, Y. Xcont 22X P(x,y) Ct Xcont 5 XU {y} * Q(x,y)
{bag(t, x) * P(x,y) }x.Push(y){bag(t, x) * Q(x,y)}

bag(t, x) < bag(t, x) * bag(t, x) dep,(bag(t,x))

The indep, assumptions on the synchronization pre- and postconditions ensure
that P and Q do not introduce self-referential region assertions. Furthermore,
the index on the view-shifts, C;, ensures that the granularity of actions match

between the library and any client protocols.

Exclusive owner. We now show how to derive the standard specification with
a single exclusive owner. This specification is very simple to derive; we simply
let the exclusive owner of the bag keep the /2 permission of the phantom field
containing the abstract state of the bag: bag,(t,x, X) = bag(t, x) * Xcont =25 X,

Shared bag. The derivation of the shared bag specification is more interesting,
as it uses both protocol synchronization and higher-order protocols. We begin
by formalizing the shared bag specification in our logic:

dep,(P) stable(P) indep, (P) usipy,, (P)
dep,,(bag,(t,x, P)) {emp}new Bag(){ret. bag(t,ret,P)}

{bag,(t,x, P) * P(y) }x.Push(y){bag,(t,x, P)}

{bag,(t,x, P) }x.Pop(){ret. bag,(t,x, P) * (ret = null VvV P(ret))}

bag, (t, x, P) < bag,(t,x, P) * bag,(t,x, P)

This corresponds to the specification from the introduction, except with restric-
tions on predicate P to ensure it is expressible using state-independent protocols
and does not introduce self-referential protocol or region assertions.

With these restrictions on P we can now derive the shared bag specification
from our generic specification. The idea is to introduce a new region containing
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the state associated with each element currently in the bag:

bag,(t, x, P) ' 3r: RId. 3 : Perm. 3t1,t2 : RType.
t<tiAt<ta Aty Lta Ata £ t1 Aindep,(P) A usip(P) A

r,to,x v
bag(t1,x) *| q(x, P) ® * [UPD|
def

a(x, P) & 3X 1 Py (Val). Xeont ~2 X 5 ByexP(y)
I(P)(x) = (UPD : a(x, P) ~ a(x,P))
The parametric protocol I(P) allows the bag to be changed arbitrarily, provided
the region still contains the state associated with each element currently in the
bag. From the assumption that each P(x) is stable and that usipy,;(P) it follows
that q(x, P) is stable and sip(q(x, P)). Hence, there exists R,S : Prop such that
q(x,P) < R xS, pure,oioc0i(S) and pureg,.(R). Thus, bag(t,x,P) is equivalent
to the following assertion:
r7t27X

Tr,motte t <ty At <ty Aty Lo Aty £t Abag(ty,x) *I(P)

* R % [UpD|}.

rtz,x

Hence, to prove bag,(t,x, P) stable, it suffices to prove stability of | ) * R.

Applying rule SA, it thus suffices to prove,
valid(q(x,P) AS = L) Vvalid(q(x,P) = S)

and the right disjunct follows easily from the assumption that q(x, P) < R % S.
To derive the shared bag specification for push, we thus have to transfer the

resources associated with the element being pushed, P(y), to the client region

containing the element resources. We thus instantiate P and Q in the generic

r,to,x r,to,x
bag specification with P(y) * ml(:) * [UpD]. and |(:) * [UPD|",

respectively.
We thus have to provide a view-shift to synchronize the abstract state of the
library protocol with our client protocol r:

) 1/2 rto,x v
VX : P (Val). Xeont == X * P(y) * | q(x, P) * « [UpPD], Ty,
1/2 rit2,% r
Xeont —> (XU {y}) *| a(x, P) o [UPD]%

Since Xcont 22X P(y) = [UpPD]", and q(x, P) are all independent of region type
t, by rule VSOPEN it suffices to prove that the change to region r is allowed and
possible. The update is easily shown to be allowed by the UPD action, using the
UAACT rule and update action frame rule (UAF). To show the possibility of
the view shift it suffices to prove that:

Xeont ~235 X 5 P(y) % 3Z : P (Val). xeont L Z % ®,c2P(2) * [UPD], C.
Xeont ~22 (XU {y}) % 3Z = Prn (Val). xeont ~L5 Z % ®,2P(2) % [UPD],
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which follows easily, as Xcont r£> X * Xcont i) Z=X=171

Note that to provide a view-shift to synchronize the abstract state of the
library protocol with the client protocol, we were essentially forced to update
the phantom field cont in the client region, which in turn forced us to transfer
ownership of P(y) to the client region.

4 Semantics

In this section we sketch the model and the interpretation of our logic. Due to lack
of space, we focus on parts presented in Section 2. The full model, interpretation
and accompanying soundness proof can be found in the technical report [19].

The presentation of the model is strongly inspired by the Views framework
presentation [4]. The model is an instance of the Views framework extended
with step-indexing to model guarded recursion, and thread local state to model
dynamic allocation of threads.

The basic structure of the model is defined below. Assertions are modeled as
step-indexed predicates on instrumented states (M). Instrumented states con-
sist of three components, a local state, a shared state and an action model. The
local state specifies the current local resources. The shared state is further par-
titioned into regions and each region consists of a local state, a region type and
a protocol parameter. The action model maps region types to parameterized
protocols, which are functions from a tuple containing a protocol argument, a
region identifier and an action identifier to an action. Lastly, actions are modeled
as certain step-indexed relations on shared states. In particular, actions are not
relations on shared states and action models, and thus do not support general
higher-order protocols. Actions do however support state-independent protocols,
through the region type indirection.

def

LState % Heap x PHeap x Cap SState = RId — (LState x RType x Val)

def

M ¥ LState x SState x AMod ~ AMod & RType — ((Val x RId x Ald) — Act)

def

Cap % {f € RId x AId — [0,1] | 3R Cin RId. Vr € RId \ R. Va € AId. f(r,a) = 0}

Act £ {R € P(N x SState x SState) |
V(i, s1,52) € R. ¥j <i. Vr € RId\ dom(s2). Vn € RType. VI,I' € LState.
51 < s2 A (4,51,82) €ERA(],51,82[r— (I',n)]) € R A
(4, s1[r + (I, n)], s2[r = (I',n)]) € R}
Prop & {U € P(N x M) | V(i,m1) € U. Vj < i. Vma € M.
(m1 =; ma2Vmi < mz) = (j,’ITLz) € U}
Spec £ {U e P(N) |Vie U.Vj<i. jeU}

The semantics of both the assertion logic and specification logic is step-indexed.
The specification logic is step-indexed to allow reasoning about mutual recur-
sion. The assertion logic is step-indexed to support nested triples (which embed
specifications in the assertion logic) [17] and guarded recursive predicates [1, 3].
Specifications are thus modeled as downwards closed subsets of numbers, and
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assertions are modeled as step-indexed predicates on instrumented states, that
are downwards closed in the step-index and upwards closed in M. The upwards
closure in M ensures that assertions are closed under allocation of new regions
and protocols (the ordering < on M is defined as expected). To define guarded
recursive functions and predicates, the types of our logic are modeled as sets
with a step-indexed equivalence relation, =;, and terms and predicates are mod-
eled as non-expansive functions. However, as this part of the model is mostly
orthogonal to CAP, we will elide the details, which can be found in the technical
report [19].

Comparison with previous models of CAP. The original model of (first-
order) CAP [5] employed a syntactic treatment of actions to break a circularity
in the definition of worlds. Our model follows the previous model of higher-
order CAP (without higher-order protocols) [6] in treating actions semantically.
However, to support higher-order protocols we introduce a new indirection, in the
form of region types. Actions are thus relations on shared states, which include
the region types of allocated regions. Actions can thus implicitly refer to the
protocol on regions through the region type indirection. While previous work has
only considered CAP for a first-order programming language, our HOCAP is for
a higher-order programming language. We thus step-index both the specification
and assertion logic, instead of just the specification logic.

Model operations. Separating conjunction is interpreted as the lifting of the
partial commutative e o4 function to Prop (point-wise in the step-index). The e\,
function expresses how to compose two instrumented states. Two instrumented
states are combinable if they agree on the shared state and action model, by
combining their local states, using ersiate. Local states are combined using the
standard combination function, ey, on disjoint partial functions, on the heap
and phantom heap component, and by point-wise summing up the action per-
missions.

While assertions are modeled as step-indexed predicates on instrumented
states, which include phantom fields, protocols, and regions, the operational
semantics operates on concrete states, which are simply heaps. The main sound-
ness theorem (Theorem 1) expresses that any step in the concrete semantics
has a corresponding step in the instrumented semantics. This is expressed in
terms of an erasure function, |—] € M — Heap, that erases the instrumenta-
tion from an instrumented state. The erasure of an instrumented state is simply
the combination of the local state and all shared regions.

[(1,5)] = 1 eLstate H s(r).d

redom(s)
h if (h,ph,c) =[(l,s)] and w1 (dom(ph)) C objs(h)
undef otherwise

[(s,9)] = {

Interference. The interference relation RZ»A C M x M describes possible in-
terference from the environment. It is defined as the reflexive, transitive closure
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of the single-action interference relation, Rf‘ (defined below), that describes pos-
sible environment interference using at most one action on each region. Defining
R# as the reflexive, transitive closure of I%f forces a common action granularity
on updates to multiple regions with protocols referring to each other. In addition
to the step-index 7 € N, the single-action interference relation is also indexed by
a set A € P(RType) of region types of those regions that are allowed to change
and that actions justifying those changes are allowed to depend on.

(l1,51,§1) R? (12752,@) iff l1=0LbAs1<saA¢g <GA [(11,81)] defined A
(Vr € dom(s1). s1(r) = s2(r) V (Fa. s1(r).t € A A
([l s1)].0)(r, @) < 1A (i, 51]a,82]a) € ci(s1(r).t)(s1(r).a, 7, a)))

sla % 2 € RId. {s(r) if r e d.om(s) and s(r).t € A
undef otherwise

In particular, the I:BZA relation expresses that the environment is not allowed
to change the local state (I3 = l3), but it is allowed to allocate new regions
and protocols (s1 < s9 and ¢; < ¢). Furthermore, the environment is allowed
to update the resources of any region r with a region type in A (s1(r).t € A),
provided the update is justified by an action « that is partially owned by the
environment ([(l1,s1)](r, a) < 1).

An assertion is stable if it is closed under interference to all region types:

Stable(p) = {Z eN | v.] <. v(mlamQ) € R?Type' (.jaml) €Ep= (]a m2) € p}

Previous models of CAP have only permitted multiple independent updates,
whereas our model supports multiple dependent updates. Previous models thus
lack the A-index that we use to enforce a common action granularity on updates
to multiple dependent regions.

View-shifts. View-shifts describe a step in the instrumented semantics that
correspond to a no-op in the concrete semantics. To perform a view-shift from p
to ¢ we thus have to prove that for every concrete state c in the erasure of some
instrumented state m € p there exists an instrumented state m’ € ¢ such that ¢
is in the erasure of m/.

PCiqE {ieN|VmeM.VjeN.0<j<i =

lp* {(,m)}s € la* {(G,m') | m BEVED iy )

To allow framing on view-shifts (rule VSFRAME in Section 2.3) we bake in
framing under certain stable frames. The frames in question depend on the
region index ¢ € RType. In particular, C; permits a single simultaneous update
of multiple regions with region types not greater than or equal to ¢, each justified
by a single action. Hence, we require that C; is closed under arbitrary frames
that are stable under a single simultaneous update of multiple regions with

region types not greater than or equal to ¢, each justified by a single action, i.e.,
RI{tIt£}
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Support. In Section 2.2 we introduced specification logic assertions indep and
dep, to internalize a notion of region type support in the logic, to allow explicit
proofs of the absence of self-referential region assertions. Their meaning is defined
in terms of the following supp assertion, which asserts that p is supported by the
set of region types A € P(RType). Formally, supp4(p) asserts that p is closed
under arbitrary shared states that agree on all regions of type A (s|4 = s'|4)
and arbitrary action models that are A equivalent (¢ =4 ¢').

supp(p) = {i € N | Vj <i. V(j,(I,5,6)) € p. Vs'. V<.
8|A - S/|A /\g EA gl = (]a (Z,S/7§/)) ep}

Intuitively, two action models are considered A-equivalent if they agree on the
regions of types in A (but they are allowed to differ on regions of types not in
A). An assertion p is then dependent on region type ¢t € RType if p is supported
by the set of region types greater than or equal to ¢, and independent if it is
supported by the set of region types not greater than or equal to ¢:

dep, (p) = suppy/ji<p} (P) indep, (p) = suppyyj; 21y (D)

Purity. To reason about state-independent protocols and nested view-shifts we
have introduced several types of purity; namely, state, protocol and permission
purity. Since our assertion logic is intuitionistic, we interpret purity as closure
under arbitrary changes to the state, protocols, and permissions, respectively. For
instance, pureprot(p) £ {i e N|Vj<i. V(1 s,5)) €p. Y (4,(,s,¢)) €p}.
Soundness. The main soundness theorem expresses that for any derivable
Hoare triple, {p}c{q}, if € is executed with a local stack s as thread t, with a
global heap h that is in the erasure of some instrumented state in p(s), then, if
t (and any threads ¢ may have forked) terminates, then the terminal heap b’ is
in the erasure of some instrumented state in g(s’), where s’ is the terminal stack
of t.

Theorem 1. If I' F (A) {P}e{Q} then for all & € [I'], thread identifiers t €
TId, stacks s € [A4], and heaps h € |[I'; AF P: Prop](?9,s)], if

(h,{(t,s,©)}) — (W', {(t, s, skip)} W T")

and T" is irreducible then h' € |[I"; A+ Q: Prop] (9, s)].

5 Conclusion and Future Work

We have proposed a new style of specification for thread-safe data structures
that allows the client to refine the specification with a usage protocol, in a
concurrent setting. We have shown how to apply it to the bag and concurrent
runner example. To realize this style of specification we have presented a new
higher-order separation logic with Concurrent Abstract Predicates, that sup-
ports state-independent higher-order protocols and synchronization of multiple
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regions. We have also used the logic to specify and verify Joins, a sophisticated
library implemented using higher-order code and shared mutable state.

We have demonstrated that our logic and style of specification scales to
implementations of fine-grained concurrent data structures without helping [8].
Future work includes investigating concurrent data structures that use helping.

References

1. A. Appel, P.-A. Mellies, C. Richards, and J. Vouillon. A very modal model of a
modern, major, general type system. In Proc. of POPL, 2007.

2. B. Biering, L. Birkedal, and N. Torp-Smith. BI-Hyperdoctrines, Higher-order Sep-
aration Logic, and Abstraction. ACM TOPLAS, 2007.

3. L. Birkedal, R. Mggelberg, J. Schwinghammer, and K. Stgvring. First Steps in
Synthetic Guarded Domain Theory: Step-Indexing in the Topos of Trees. In Proc.
of LICS, 2011.

4. T. Dinsdale-Young, L. Birkedal, P. Gardner, M. Parkinson, and H. Yang. Views:
Compositional Reasoning for Concurrent Programs. In Proceedings of POPL, 2013.

5. T. Dinsdale-Young, M. Dodds, P. Gardner, M. J. Parkinson, and V. Vafeiadis.
Concurrent Abstract Predicates. In Proceedings of ECOOP, 2010.

6. M. Dodds, S. Jagannathan, and M. J. Parkinson. Modular reasoning for determin-
istic parallelism. In Proceedings of POPL, pages 259-270, 2011.

7. L. Filipovi¢, P. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent
objects. In Proceedings of ESOP 2009, pages 252—-266, 2009.

8. M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan
Kaufmann, 2008.

9. M. P. Herlihy and J. M. Wing. Linearizability: a correctness condition for concur-
rent objects. ACM TOPLAS, 12:463-492, 1990.

10. B. Jacobs and F. Piessens. Expressive modular fine-grained concurrency specifica-
tion. In Proceedings of POPL, pages 271-282, 2011.

11. J. B. Jensen and L. Birkedal. Fictional Separation Logic. In Proceedings of ESOP,
pages 377-396, 2012.

12. D. Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference
on Java Grande, JAVA ’00, pages 36-43. ACM, 2000.

13. S. S. Owicki. Aziomatic Proof Techniques for Parallel Programs. PhD thesis,
Cornell, 1975.

14. M. Parkinson, R. Bornat, and P. O’Hearn. Modular verification of a non-blocking
stack. SIGPLAN Not., 42(1), 2007.

15. A. Pilkiewicz and F. Pottier. The essence of monotonic state. In Proceedings of
TLDI, pages 73-86, 2011.

16. C. V. Russo. The Joins Concurrency Library. In Proceedings of PADL, pages
260274, 2007.

17. J. Schwinghammer, L. Birkedal, B. Reus, and H. Yang. Nested Hoare Triples and
Frame Rules for Higher-Order Store. LMCS, 7(3:21), 2011.

18. K. Svendsen, L. Birkedal, and M. Parkinson. Verifying Generics and Delegates. In
Proceedings of ECOOP, pages 175-199, 2010.

19. K. Svendsen, L. Birkedal, and M. Parkinson. Higher-order Concurrent Abstract
Predicates. Technical report, IT University of Copenhagen, 2012. Available at
http://www.itu.dk/people/kasv/hocap-tr.pdf.

20. A. Turon, J. Thamsborg, A. Ahmed, L. Birkedal, and D. Dreyer. Logical Relations
for Fine-Grained Concurrency. In Proceedings of POPL, 2013.



