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Previous studies have demonstrated disruption in structural and functional connectivity

occurring in the Alzheimer’s Disease (AD). However, it is not known how these disruptions

alter brain network reorganization. With the modular analysis method of graph theory, and

datasets acquired by the resting-state functional connectivity MRI (R-fMRI) method, we

investigated and compared the brain organization patterns between the AD group and

the cognitively normal control (CN) group. Our main finding is that the largest homotopic

module (defined as the insula module) in the CN group was broken down to the pieces in

the AD group. Specifically, it was discovered that the eight pairs of the bilateral regions (the

opercular part of inferior frontal gyrus, area triangularis, insula, putamen, globus pallidus,

transverse temporal gyri, superior temporal gyrus, and superior temporal pole) of the insula

module had lost symmetric functional connection properties, and the corresponding gray

matter concentration (GMC) was significant lower in AD group. We further quantified the

functional connectivity changes with an index (index A) and structural changes with the
GMC index in the insula module to demonstrate their great potential as AD biomarkers.

We further validated these results with six additional independent datasets (271 subjects

in six groups). Our results demonstrated specific underlying structural and functional

reorganization from young to old, and for diseased subjects. Further, it is suggested that

by combining the structural GMC analysis and functional modular analysis in the insula

module, a new biomarker can be developed at the single-subject level.

Keywords: Alzheimer’s disease, MCI, validation, module analysis, resting-state functional connectivity, brain

network, gray matter concentration, graph theory

INTRODUCTION
Alzheimer’s disease (AD) is considered a disconnection syndrome
(Geschwind, 1965; Delbeuck et al., 2003). Recent studies demon-
strated that the underlying neural mechanisms responsible for
the disconnection syndrome are involved in the functional dis-
ruption in the brain of AD patients (Horwitz et al., 1987; Wada
et al., 1998). An increasing number of studies have focused
on imaging the default mode network (DMN) in aging and
dementia by using intrinsic blood oxygenation level-dependent
(iBOLD) signals, acquired by the resting-state functional MRI
(R-fMRI) method (Lustig et al., 2003; Greicius et al., 2004; Sorg
et al., 2009; Khalili-Mahani et al., 2012). The measurement of
functional disruption in the DMN could become a potential clin-
ical diagnostic biomarker for AD because convergent evidence
demonstrated that brain atrophy, Aβ-amyloid plaque deposition
and metabolic deficits co-occurred in the DMN (Buckner et al.,
2009). Several other studies demonstrated that functional disrup-
tion also occurred in other areas besides the DMN, such as the
hippocampus and the insular networks (Li et al., 2002; Bonthius
et al., 2005; Royall, 2008; Xie et al., 2012). However, despite these
scientific advancements, efforts to cross-validate the functional
disruption trait as a biomarker have been of limited success.

Specifically, several studies provided the diagnostic power of
the DMN for AD (Li et al., 2002; Greicius et al., 2004; Fleisher
et al., 2009; Koch et al., 2010, 2012), but follow-up studies by
other research groups are either lacking (Li et al., 2002; Greicius
et al., 2004; Fleisher et al., 2009; Koch et al., 2010, 2012), contro-
versial (Zhang et al., 2009; Yu et al., 2011), or failed to confirm a
solid diagnostic value (Prvulovic et al., 2011). As a result, despite
the efforts during the past decade, there is no robust biomarker
based on R-fMRI technology, which has substantially limited its
potential utility value in AD research and treatment. There are
several factors that may contribute to the current stagnant status.
First, in typical seed-based R-fMRI studies, the group-level t-tests
often statistically identified the connectivity maps that highlight
voxels where functional connectivity is disrupted. Such a statisti-
cal approach often overestimates the diagnostic power, even if the
leave-one-out approach or seven-fold cross-validation method is
employed (Chen et al., 2011a; Westman et al., 2012a,b). Second,
because of compensatory mechanisms or increased activation,
brain connectivity may be reorganized along the continuum of
disease progression (He et al., 2008; Sanz-Arigita et al., 2010). Not
only did the functional connectivity decrease in certain regions,
but it also increased in other regions (Zhang et al., 2010). As a
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result, the summation of the overall connectivity strength may not
change significantly. Third, the disconnection syndrome in AD
may be the result of the functional and structural disruptions in
the large-scale networks; therefore, the seed-based network alone,
such as the DMN, may have no sufficient power as a biomarker. As
a result, when applying trained classifiers to independent datasets,
the specificity and sensitivity were low.

To overcome these shortcomings and to move the research
field forward, the present study is focusing on three new
approaches. First, we extend the seed-based analysis to the mod-
ular analysis method (He et al., 2009; Meunier et al., 2009a,b,
2010) to examine the patterns of brain network reorganization
at the large-scale network level to test the hypothesis that the
AD network organization is a reconfiguration from CN net-
works where some subnetworks that are related to cognitive
processing may change and others are preserved. A previous
study (Faria et al., 2012) addressed the factor that network
(or called Atlas)-based analysis can enhance SNR and repro-
ducibility of resting-state functional connectivity. In addition,
in using network-based functional connectivity, the number of
false positive cross-correlations can be significantly reduced due
to the reduced number of the total pairs of correlations. To our
knowledge, the applicability of the modular analysis to exam-
ine the resting-state functional network reorganization pattern in
mild cognitive impairment (MCI) and AD brains has not been
demonstrated. Second, based on specific changes in brain reor-
ganization patterns at the module level, an exploratory analysis
was performed to evaluate if the changes can be employed as a
biomarker for AD. Third, we employed an additional six inde-
pendent R-fMRI datasets from human subjects to independently
cross-validate the module-based biomarker at the single-subject
level.

MATERIALS AND METHODS

HUMAN SUBJECTS

A total of 331 subjects in eight groups were employed for this
study. Two R-fMRI datasets obtained from the cognitively nor-
mal (CN) group (N = 30) and the mild AD group (N = 30)
from the Medical College of Wisconsin (MCW) site (referred
to herein as MCW datasets) (Table 1) were employed as the
testing datasets to identify changes in the modular reorgani-
zation patterns occurring in AD brains as a biomarker. We
then employed six additional independent R-fMRI datasets to
cross-validate the biomarker. Among the six sets of datasets,
one was obtained from amnestic mild cognitive impairment
(aMCI) subjects (N = 23) from the MCW site, three datasets
were obtained from a group of 56 elderly subjects from Southeast
University, Nanjing, China, comprised of elderly CN subjects
(N = 20), aMCI subjects (N = 22), and AD subjects (N = 14)
(referred to herein as Nanjing datasets) (Table 1) (Zhang et al.,
2010). The other two independent R-fMRI datasets are com-
prised of 192 young subjects; these were downloaded from the
1000 Functional Connectomes Project database (www.nitrc.org/
projects/fcon_1000/) from Beijing Zang’s datasets (http://www.
nitrc.org/frs/shownotes.php?release_id=819) (referred to herein
as Beijing datasets) (Table 1) (Biswal et al., 2010). All of these
subjects were obtained from databanks. For detailed subject

information, please refers to originally published papers (Biswal
et al., 2010; Zhang et al., 2010; Chen et al., 2011a).

IMAGING ACQUISITION OF MCW DATASETS

Imaging was performed using a whole-body 3T Signa GE scan-
ner with a standard quadrature transmit receive head coil. During
the resting-state acquisitions, no specific cognitive tasks were
performed, and the study participants were instructed to close
their eyes and relax inside the scanner. Sagittal resting-state func-
tional MRI (fMRI) datasets of the whole brain were obtained in
6 minutes with a single-shot gradient echo-planar imaging (EPI)
pulse sequence. The fMRI imaging parameters were: TE of 25 ms,
TR of 2 s, flip angle of 90◦; 36 slices were obtained without gap;
slice thickness was 4 mm with a matrix size of 64 × 64 and field
of view of 24 × 24 cm. High-resolution SPGR 3D axial images
were acquired for anatomical reference. The parameters were:
TE/TR/TI of 4/10/450 ms, flip angle of 12◦, number of slices of
144, slice thickness of 1 mm, matrix size of 256 × 192. To make
sure that cardiac and respiratory frequencies did not account
for any significant artifacts in the low-frequency spectrum, a
pulse oximeter and respiratory belt were employed to measure
these physiological noise sources. Further processing ensured a
minimizing of the potential aliasing effects.

IMAGING ACQUISITION OF BEIJING DATASETS

The data was acquired at 3T Siemens Scanner. We used 192 sub-
jects out of a total of 198 young subjects from Beijing Zang’s
datasets. Six subjects were discarded during the preprocessing
procedures for a variety reasons. The imaging acquisition param-
eters can be found on the website (http://www.nitrc.org).

IMAGING ACQUISITION OF NANJING DATASETS

The data was acquired at 1.5T Philips Scanner. Subjects wore
headphones and were instructed to lie in a supine position in a
standard head coil of a 1.5-T MR imaging unit (Eclipse; Philips,
Best, The Netherlands). Structural images were obtained. Resting-
state functional images were acquired by using a gradient-echo
EPI sequence (TR/TE, 3000/40 ms; flip angle, 90◦, slice thick-
ness, 6 mm; slice gap, 0 mm; field of view, 240 mm; and matrix
size, 64 × 64; 18 axial slices and 128 time points). For detailed
parameters and demographic information, please refer to previ-
ous study (Zhang et al., 2010). All of these studies were conducted
with Institutional Review Board approval and were in compli-
ance with Health Insurance Portability and Accountability Act
(HIPAA) regulations or similar polices in China.

DATA PREPROCESSING

We used Analysis of Functional NeuroImages (AFNI) software
(http://afni.nimh.nih.gov/afni/) and MATLAB (Mathworks) in
this study for data processing. The first five volumes of each
raw resting-state functional imaging dataset were discarded
to allow for T1 equilibration. Interleaved slice acquisition-
dependent time shifts were corrected (AFNI command,
to3d -time:zt nz nt TR tpattern). Spikes in time series data were
removed (AFNI command, 3dDespike). Data were then motion
corrected (Six motion parameters, including roll, pitch, in
the superior, left and posterior direction displacement were
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estimated by volume registration of the R-fMRI data, and then,
were regressed out by using Afni command 3dDeconvolve to
control possible micromovement effects). There was no group
difference for movement parameters. Detrend processing pro-
cedure using AFNI commands (3dvolreg and 3dDetrend) was
performed. The reference template in Talairach space, which
contained 116 anatomically defined regions of interest (ROIs)
(Tzourio-Mazoyer et al., 2002), was transformed and aligned
to the SPGR images and EPI resting-state functional images for
each subject (AFNI command, 3dfractionize). This resulted in
116 mapped ROIs. The average time course within each ROI
was extracted from the resting-state functional imaging datasets.
Averaged white matter signal and cerebrospinal fluid (CSF) signal
were extracted using white matter mask (http://afni.nimh.nih.

gov/pub/dist/data/TTwm+tlrc) and CSF (http://afni.nimh.nih.

gov/pub/dist/data/ TT_csf+tlrc) mask in Talairach space. These
two masks were transformed and aligned to the SPGR and echo
planar images for each subject (AFNI command, 3dfractionize).
Then, the average time courses within the CSF or the eroded
white matter mask, together with global mean signals, were
removed as nuisance regressors from the 116 regional time
courses with linear regression using Matlab (Mathworks).

POSTPROCESSING

Brain functional network

We constructed a region-wise whole-brain resting-state func-
tional network for each subject. A network size is N (N is the
number of Nodes or ROIs, in this study, N = 116), there are N ×

(N – 1)/2 possible edges in a fully connected network expressed in
a matrix. The weighted strength of each edge between nodes i and
j was defined as CCij (cross-correlation coefficient (CC) between
two time series of ROI(i) and ROI(j)). The weighted distance
of each edge between a pair of directly connected nodes ROI(i)

and ROI(j) was defined as dij = 1 − CCij. The adjacent matrix
of CCij represents graph G, such that G = {V, S, D}, consisting
of a set of vertices(Nodes) V = {V1, V2, . . . , VN}, a set of edges
S = {CCij|i, j = 1, 2, . . . , N} and a set of associating weighted
edge distances D = {1 − CC_i, j|i, j = 1, 2, . . . ,N} between brain
regions ROI(i) and ROI(j).

Group network

A group functional network matrix (A) is constructed by the ratio
of mean to the standard deviation of all individuals’ matrices in

this group. Each element value of A is calculated as follows:

aij =

1
n

∑n
k = 1 CCk,i,j

√

1
n

∑

n
k = 1(CCk,i,j − µij)

2
(1)

This matrix can reduce the intersubject variation of the functional
connectivity especially those connections with large intersubject
variation. k is the subject number, n is the number of subjects, i

and j are two ROIs of ROI(i) and ROI(j). In this study, we only use
the positive CC value in group network as previously described
(Chen et al., 2011b) for further modular analysis.

Modularity

Module is defined as a community, the inside of which has denser
connections than the rest of the network (Newman and Girvan,
2004). Several algorithms have been developed to detect those
modules (Clauset et al., 2004; Duch and Arenas, 2005). The basic
approach is to measure the maximum modularity value, Q, which
is defined as:

Q =
1

2m

∑

i, j

[

aij −
kikj

2m

]

δ(ci, cj). (2)

aij is the adjacent weighted matrix which represents the network,
m is the number of connections in the network, and ki is the
degree of node i (Ahnert et al., 2007) and ci is the module i.

In order to find the communities in the brain functional
network, we use the spectral algorithm of Newman (Newman,
2006; Leicht and Newman, 2008), which is implemented in
the Brain Connectivity Tool Box (https://sites.google.com/a/
brain-connectivity-toolbox.net/bct/Home). This program can
find the network organization pattern with the best modularity
value (Q).

Quantitative measurement of modular reorganization in AD

Based on our hypothesis that AD may reorganize modular pat-
terns compared to CN, the reorganization pattern may exhibit
the disruption properties of the whole-brain function network.
In order to quantify the changes in the modular patterns in the
subnetworks, we created two functional indices (index A and
index B) to measure the inter- and intra-hemisphere connections.
Index A measures an average of functional connectivity strength

Table 1 | Summary of demographic information for test and validation groups of subjects.

Groups Number Age Male/Female MMSE Education (year)

CN_3T 30 75.9 ± 6.42 16/14 29.4 ± 1.03 NA Test group

AD_3T 30 76.7 ± 5.28 17/13 24.8 ± 2.97 NA

MCI_3T 23 76.1 ± 6.84 11/12 27.83 ± 1.67 NA Validation group

CN_1.5T 20 68.9 ± 6.44 7/13 28.6 ± 1.05 10 ± 3.71 Validation group

MCI_1.5T 22 71.6 ± 4.95 10/12 27.2 ± 1.4 10.7 ± 3.50 Validation group

AD_1.5T 14 71.3 ± 5.09 5/9 22.2 ± 2.91 9.6 ± 4.96 Validation group

Young 18–22 3T 150 20.4 ± 1.13 59/91 NA NA Validation group

Young 23–26 3T 42 23.9 ± 1.02 27/15 NA NA Validation group
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in homotopic pairs (ROI_L(i), ROI_R(i))

indexA =
1

n

n
∑

i = 1

CC (ROI_L(i), ROI_R(i)) (3)

Where ROI_L(i) and ROI_R(i) are two corresponding bilateral
homotopic regions, and CC(ROI_L(i), ROI_R(i)) is the two time
courses CC value of ROI_L(i) and ROI_R(i). The n is the number
of pairs of homotopic regions to calculate index A. Index B is used
to measure an average of functional connectivity strength within
selected unilateral ROIs.

indexB =
1

n

⎛

⎝

n
∑

i = 1

n
∑

j = 1

CC
(

ROI_L(i), ROI_L(j)
)

+

n
∑

i = 1

n
∑

j = 1

CC
(

ROI_R(i), ROI_R(j)
)

⎞

⎠ (4)

There are n ROIs from the right hemisphere (ROI_R) and n cor-
responding homotopic ROIs from the left hemisphere (ROI_L).

Gray matter concentration (GMC)

Besides the functional connectivity, we also calculated the GMC
on the AAL template within the regions that showed functional
disruption. The gray matter of each subject is segmented by using
SPM 8 software (www.fil.ion.ucl.ac.uk/spm/software/spm8/) and
then normalized into Talairach space to extract each part of the
regions using AFNI and 116 AAL templates. GMC value of each
region is the average overall voxel values within those regions
involved in modular reorganization.

RESULTS

MAXIMUM MODULARITY VALUE (Q)

The Q is determined with the modular algorithm, which mea-
sures how a network can be separated into different subnetworks.
With the MCW dataset, Figure 1 shows the averaged maximum
modularity values of individual subjects in each group as a func-
tion of number of edges (NE). All subjects in groups CN and AD

FIGURE 1 | Individual modularity values (Q) distribution of a network

as the function of the number of edges and its corresponding random

network. Error bar shows the standard deviation. All groups’ networks

have a significantly larger Q-value than the corresponding random

networks. Larger Q shows the ability of a network to form modules.

have larger averaged Q values than their corresponding random
networks, indicating that their complex functional networks have
a strong ability to form modules, and the module analysis method
can be applied to disease populations, such as MCI and AD. There
is no group difference in Q value at all different thresholds of NE
after the familywise error correction.

MODULE STRUCTURES IN THE AD GROUP WERE REORGANIZED,

UNLIKE THE CN GROUP

Although the complex functional network of the AD group has
the ability to form the modular structures, similar to the CN
group, the modular patterns and membership are quite different
between the CN and AD groups, and demonstrated network reor-
ganization patterns. The modular structures are expressed into
two forms of presentations: the graphic presentation and map-
ping presentation, as illustrated in Figures 2A,B for CN and AD
groups, respectively. For the CN group, the brains were orga-
nized into seven modules. For the AD group, the brain modules
were reorganized into eight modules. The module-reorganization
patterns between CN and AD are graphically illustrated in
Figures 2C,D. The largest module in the CN group (CN-1) was
broken down into two separated modules in the AD group (AD-
1 and AD-2). The module CN-2 is disrupted into three modules
(AD-3, AD-4, and AD-8) and module CN-6 is disrupted into four
modules (AD-4, AD-6, AD-7, AD-8).

FIGURE 2 | Module of the non-threshold positive group networks of

CN and AD at 3T. Color represents the individual community. First row of

(A) and (B) is the network view, the second row of (A) and (B) shows the

brain module organization overlaid in the brain template and the last row

(C and D) is the module reorganization pattern between CN and AD. The

label module numbers in the brain views of (A) and (B) are matched with

the module numbers in (C) and (D), respectively. Two matrices, (C) and (D),

show the grouped CC matrix of CN and AD. In (C) and (D), numbers along

each matrix labeled the module number for each group. Red arrow and red

connection lines show the reorganization pattern from CN to AD. The

thickness of each line represents the number of members.
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To compare the module membership composition between
CN and AD groups and identify specific brain regions that dis-
rupted away from the original module, the module CN-1 was
cited as an example. As listed in Table 2, the module CN-1 con-
tained eight pairs of homotopic brain regions, which are defined
as geometrically symmetric across interhemispheric regions. This
well-organized module is highly symmetric across hemispheres
in the control network (Figure 2A). We called this module the
“insula module,” because its members are involved in saliency,
switching, attention and control functions of the insula network
(Menon and Uddin, 2010). Noticeably, eight out of 16 homotopic
regions were broken in the AD group. The eight regions on the
right hemisphere formed a new module in the AD group (AD-2)
(labeled in Red bold in Table 2). These eight regions are the right
opercular part of inferior frontal gyrus, right area triangularis,
right insula, right putamen, right globus pallidus, right transverse
temporal gyri, right superior temporal gyrus, and right superior
temporal pole. The formation of the new module AD-2 not only
indicated that the insula module is broken down, but also indi-
cated there is severe disruption between left and right hemisphere
communication in the AD brains.

QUANTIFICATION AND VALIDATION OF THE INSULA MODULE IN

HEALTHY YOUNG, CN, MCI, AND AD GROUPS

To quantify the insula module disruption between hemispheres,
two functional indices were obtained [index A calculated from
Equation (3) and index B calculated from Equation (4)]. As illus-
trated in Figures 3A,B, functional connections of the eight pairs
of homotopic (contralateral) regions of the insula module were

Table 2 | Regions in the insula module (blue module).

Blue module (insula community)

Left Right

Left precentral gyrus Right precentral gyrus

Left opercular part of inferior

frontal gyrus

Right opercular part of inferior frontal

gyrus

Left area triangularis Right area triangularis

Left rolandic operculum Right rolandic operculum

Left insula Right insula

Left middle cingulate Right middle cingulate

Left postcentral gyrus Right postcentral gyrus

Left superior parietal lobule Right superior parietal lobule

Left inferior parietal lobule Right inferior parietal lobule

Left supramarginal gyrus Right supramarginal gyrus

Left paracentral lobule Right paracentral lobule

Left putamen Right putamen

Left globus pallidus Right globus pallidus

Left transverse temporal gyri Right transverse temporal gyri

Left superior temporal gyrus Right superior temporal gyrus

Left superior temporal pole Right superior temporal pole

Right supplementary motor area

Right amygdala

The eight right brain regions (in red bold) are no longer the members of the blue

module in the AD brains.

disconnected in the AD group. As shown in Figure 3C, index
A is significantly (p < 0.018) decreased in the AD group com-
pared to the CN group. Index B shows no significant difference
related to the AD and CN groups but has increasing trends
(p < 0.12). To cross-validate the results with indices A and B, we
employed six additional independent datasets in order to avoid
an overly optimistic estimate of the error rate by the resubstitution

method or the leave-one-out method. First, we employed the MCW
dataset containing 23 aMCI subjects. As shown in Figure 3D,
index A, individually calculated from each aMCI subject in the
aMCI group, was significantly lower than that in the CN group
and index B showed no difference. Second, we employed the
Beijing datasets containing the young groups of subjects (group
age between 18 and 22 years old, and group age between 23 and
26 years old, total 192 subjects). As shown in Figure 3D, index A
of young subjects has stronger homotopic connectivity strength
than that of the elderly CN subjects and no differences for index B.
Third, we further demonstrated that datasets acquired on the 1.5T
scanner can be employed to validate our results. With the Nanjing
datasets acquired from 1.5T scanner, index A of the MCI and
AD groups is significantly reduced compared to the CN group,
as shown in Figure 3E. These validated results demonstrated that
index A as a biomarker can be quantitatively employed for mon-
itoring AD progression in the continuum of disease processes:
higher index A in young, decrease in elderly CN groups, and more
significantly decreased in the MCI and AD groups.

Decreased gray matter concentration (GMC) of these eight
pairs of homotopic regions in MCI and AD groups. The dis-
rupted functional connectivity occurred in the eight pairs of
homotopic regions in the insula module. In addition, the aver-
age gray matter concentration (GMC) of those regions showed
significant decrease in the MCI and AD groups in compari-
son to the CN groups. The GMC decrease in the MCI and
AD group was observed, as shown in Figure 3F. To deter-
mine if the GMC changes affect the calculation of index A,
the variance of the GMC factor was controlled out. As shown
in Figure 3G, index A is still valid in distinguishing between
CN from MCI or AD status. These results also indicated that
although structural density and functional connectivity decrease
may be related, their changes are not necessary proportional
(Palop et al., 2006). With this trait, we have combined index
A and GMC to examine their diagnostic potential, as described
below.

Diagnostic power of index A and GMC as biomarkers to clas-
sify CN, MCI, and AD statuses. Through the measurement of
index A and GMC on each single subject, we have explored their
potential as biomarkers to classify CN, MCI, and AD statuses. As
shown in Figure 4, the result from testing groups (CN vs. AD)
provided 94% of area under the curve (AUC) of the receiver oper-
ation characteristic (ROC) curve. The validation results provided
78 and 71% of AUC to classify between CN and AD, and between
MCI and AD, respectively. With Nanjing datasets acquired on the
1.5T Siemens scanner, these validation results become 85% (AD
vs. CN) and 80% (MCI vs. CN), and 70% (MCI vs. AD). For the
young subject groups as the healthiest population, there is a per-
fect 100% specificity and sensitivity (AUC 100%) in comparison
to the AD group.
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FIGURE 3 | (A) and (B) Show the changes of insula module between CN

(A) and AD (B); each dot is the center of an AAL-based brain region;

regions with same color are in the same module, solid line means higher

connection, while the dash line represents the weaker connection.

(C) Two indices (index A and index B) of CN_3T and AD_3T (test groups).

(D) Two indices of two young subject groups, CN_3T and MCI_3T

(validation groups). (E) Two indices of CN_1.5T, MCI_1.5T, and AD_1.5T

(validation groups). (F) The average of GMC of each group. (G) The two

indices after removal of the GMC effect of each group; where (∗)

represents the significance (p < 0.05) in comparison to CN_1.5T and (∗∗)

represents the significance (p < 0.05) in comparison to the MCI group.

Error bar indicates the standard deviation. (++) represents both young

groups have significant larger index A value than the old CN_3T and

MCI_3T groups.

DISCUSSION
Several studies have employed the modular analysis method to
demonstrate that the brain has modular organization (Hilgetag
et al., 2000; Chen et al., 2008; Hagmann et al., 2008). In com-
parison to small-world metrics, modular analysis can provide
detailed network organization patterns as to how the nodes are
connected to form subnetworks or communities in a complex
network (Hilgetag et al., 2000; Chen et al., 2008; Hagmann et al.,
2008). Using this advantage, modular analysis methods have
been applied to diseased resting-state brain networks, such as
in chronic back pain (Balenzuela et al., 2010) and schizophrenia
(Alexander-Bloch et al., 2010; Yu et al., 2011). Using magnetoen-
cephalography (MEG), it was also found that the module strength

and the number of modules significantly changed in AD patients
(de Haan et al., 2012). Our results are consistent with these find-
ings and demonstrated the applicability of R-fMRI datasets for
modular analysis to AD.

In the control network, as expected, module patterns are well
organized with symmetric distribution. Each pair of the inter-
hemispheric homotopic regions, for the most part, is in the same
communities. Many literature references substantiate that the
brain functional network forms an interhemispheric symmetric
pattern with highly consistent functional connectivity between
homotopic regions (Zuo et al., 2010). A high degree of symmetry
in the motor cortex of resting-state functional connectivity has
been reported (Biswal et al., 1995; Van den Heuvel and Hulshoff
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FIGURE 4 | Classification power (ROC curve) when both biomarkers of GMC and index A are combined.

Pol, 2010). The well-known DMN (Raichle et al., 2001; Greicius
et al., 2004) has a symmetric, well-organized pattern. Similar to
the module method, Mezer (Mezer et al., 2009) used the clus-
tering method and discovered a symmetric pattern of clusters
between the two hemispheres. This was true not only in the
human brain, but also in the rat brain. The highest values of
functional connectivity exist between interhemispheric homo-
topic regions (Pawela et al., 2008, 2010). However, not all the
interhemispheric homotopic regions are symmetric, only some
regions and their homotopic regions belong to different commu-
nities. This may be due to the dynamic changes of the functional
connectivity (Chang and Glover, 2010).

As expected in mild AD group, some of the communities
lost symmetric properties. There are more single regions whose
homotopic regions are in different communities. For example,
module 1 (blue module in Figure 2A) in the control group is
very symmetric, while it is separated into two modules in the AD
group (blue and brown modules in Figure 2B). Decreased sym-
metric properties or functional connectivity between interhemi-
spheric homotopic regions have been found in many diseased
functional networks. In behavioral research, Yamina (Lakmache
et al., 1998) found that AD subjects performed normally when
using intrahemispheric processing, but did poorly when inter-
hemispheric communication was required. For instance, in imag-
ing research, EEG studies (Locatelli et al., 1998; Babiloni et al.,
2004) of AD found decreased coordination between interhemi-
spheric networks. In the cocaine-dependent group, Kelly (Kelly
et al., 2011) investigated the interhemispheric homotopic connec-
tions using the Voxel-Mirrored Homotopic Connectivity method,
and found the striking cocaine-dependence-related reduction
in interhemispheric resting-state functional connectivity among
nodes of the dorsal attention network. Also, decreased inter-
hemispheric functional connectivity in subjects with impaired
awareness were found (Ovadia-Caro et al., 2012). Therefore,
this phenomenon of losing symmetric properties may reflect the

cognitive decline and unbalanced state in the functional network
of the diseased brain.

The most significant finding of this module study is the inter-
rupted integration of insula module in AD group. Anatomically,
the insula is a crucial hub in the human brain network; it is widely
connected to the cortical, limbic, and paralimbic structures.
Functionally, it is involved in high-order cognition, emotion,
autonomic, and sensory process (Naqvi et al., 2007; Allen et al.,
2008). The previous study has shown that the insula was affected
in AD and its atrophy was significantly decreased from the normal
population (Fan et al., 2008). The seed-based functional con-
nectivity of the insular regions was discovered to be significantly
decreased in the regions that functionally connected with insula.
This disruption was associated with episodic-memory deficits in
aMCI patients (Xie et al., 2012). Our results are not only con-
sistent with these previous findings, they indicate a disruption
between the insula and other brain regions. Also, we detected
the breakdown of the insula module in the AD group, which is
a possible neural underpinning of AD dementia.

Our findings demonstrated that the specific reorganized mod-
ular patterns can be quantified with index A in the CN, MCI,
and AD groups. Unlike biomarkers with inverse U-shape patterns,
such as the fMRI method due to the compensatory mechanisms
(Dickerson and Sperling, 2009), index A is a monofunction with
the disease progression of AD. Index A of aMCI and AD subjects
is significantly lower than that of CN and young subjects. Because
the biggest risk factor of AD is aging, the congruency between the
changes in the index A value, and changes in age, demonstrated
the potential of index A to serve as a biomarker. This character-
istic of the monofunction of index A with age is very important
for diagnostic accuracy by decreasing false positive and negative
errors.

We showed the potential of using structural changes (GMC)
and functional disruption in the insula module (index A) as
a biomarker for AD. Recent revision of the NINCDS-ADRDA
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(National Institute of Neurological and Communicative
Disorders and Stroke and the AD and Related Disorders
Association [now known as the Alzheimer’s Association]) cri-
terion for the diagnosis of AD suggested adding abnormal
biomarkers, such as MRI, positron emission tomography (PET),
CSF, and brain atrophy to strengthen their roles (Kohannim et al.,
2010; Nettiksimmons et al., 2010; Walhovd et al., 2010; McKhann
et al., 2011; Zhang et al., 2011; Dai et al., 2012; Ewers et al.,
2012; Westman et al., 2012b). The effective combination of these
biomarkers can clinically provide more diagnostic power than
using a single biomarker. In this study, we found that the combi-
nation of MRI atrophy biomarker and the R-fMRI biomarker of
insula module could enhance the classification of AD and mon-
itor the progression along the continuum of AD development
both in the test and validation group. Our results demonstrated
the great feasibility of combining both MRI-based biomarkers of
the insula module in AD diagnosis.

In summary, with the modular analysis, we demonstrated the
ability of index A and GMC of the insula module in distin-
guishing MCI and AD from old and young, healthy CN subjects,
and its power of cross-validation with six independent datasets.

The combination of the MRI-based structural biomarker and
functional biomarker will significantly enhance the diagnostic
power. Further studies will be needed to characterize the relation-
ships between different biomarkers for AD (Sperling et al., 2009;
Kohannim et al., 2010; Nettiksimmons et al., 2010; Sheline et al.,
2010a,b; Walhovd et al., 2010; Zhang et al., 2011; Ewers et al.,
2012; Johnson et al., 2012).
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