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1 Introduction

Understanding the origin of the flavour structure of quarks and leptons continues to be

a highly challenging problem. Adding to this problem is the pattern of two large and

one small mixing angles in the lepton sector, revealed by the data obtained in neutrino

oscillation experiments (see, e.g., [1]). The results of the recent global analyses of these

data show also that a neutrino mass spectrum with normal ordering (NO) is favoured over

the spectrum with inverted ordering (IO), as well as a preference for a value of the Dirac

CP violation (CPV) phase δ close to 3π/2 (see, e.g., [2]).
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The observed 3-neutrino mixing pattern can naturally be explained by extending the

Standard Model (SM) with a flavour symmetry corresponding to a non-Abelian discrete

(finite) group Gf (see, e.g., [3–6]). This symmetry is supposed to exist at some high-energy

scale and to be broken at lower energies to residual symmetries of the charged lepton and

neutrino sectors. Extensive studies of the non-Abelian discrete flavour symmetry approach

to the (lepton) flavour problem have revealed that, typically, the breaking of the flavour

symmetry requires the introduction of a large number of scalar fields (flavons). These fields

have to develop a set of particularly aligned vacuum expectation values (VEVs). Arranging

for such an alignment requires in turn the construction of rather elaborate scalar potentials.

A new and very interesting approach to the lepton flavour problem, based on invariance

under the modular group, has been proposed in ref. [7] where also models based on the

finite modular group Γ3 ≃ A4 have been constructed. Although the models found in ref. [7]

were not realistic and made use of a minimal set of flavon fields, this work inspired further

studies of the modular invariance approach to the lepton flavour problem. In ref. [8] a

realistic model with modular Γ2 ≃ S3 symmetry was built with the help of a minimal set of

flavon fields. In the most economical versions of the models with modular symmetry, the

VEV of the modulus τ can be, in principle, the only source of symmetry breaking without

the need of flavon fields. A realistic model of the charged lepton and neutrino masses and

of neutrino mixing without flavons, in which the modular Γ4 ≃ S4 symmetry was used, was

constructed in [9]. Subsequently, lepton flavour models with and without flavons based on

the modular symmetry Γ3 ≃ A4 have been proposed in refs. [10, 11].

In the present article, building on the results obtained in ref. [9], we construct in a

systematic way flavour models based on the finite modular group Γ4 ≃ S4 and study in

detail their phenomenology. We focus on the case when the light neutrino masses are

generated via the type I seesaw mechanism and where no flavons are introduced.

The article is organised as follows. In section 2, we briefly describe the modular

symmetry approach to lepton masses and mixing proposed in ref. [7]. In section 3, we

construct minimal modular-invariant seesaw models. In section 4, we perform a thorough

numerical analysis, identify viable models and study their phenomenology. In section 5,

we discuss the implications of preserving residual symmetries of the modular group, while

in section 6 we discuss potential sources of corrections. Finally, in section 7 we summarise

our conclusions.

2 The framework

2.1 Modular group and modular forms

The modular group Γ is the group of linear fractional transformations γ acting on the

complex variable τ belonging to the upper-half complex plane as follows:

γτ =
aτ + b

cτ + d
, where a, b, c, d ∈ Z and ad− bc = 1 , Imτ > 0 . (2.1)

Since changing the sign of a, b, c, d simultaneously does not change eq. (2.1), the group

Γ is isomorphic to the projective special linear group PSL(2,Z) = SL(2,Z)/Z2, where
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SL(2,Z) is the group of 2 × 2 matrices with integer elements and unit determinant, and

Z2 = {I,−I} is its centre (I being the identity element). The modular group is generated

by two transformations S and T satisfying

S2 = (ST )3 = I . (2.2)

Representing these transformations as

S =

(

0 1

−1 0

)

, T =

(

1 1

0 1

)

, (2.3)

we obtain

τ
S−→ −1

τ
, τ

T−→ τ + 1 . (2.4)

Consider now the series of infinite normal subgroups Γ(N), N = 2, 3, 4, . . . , of SL(2,Z)

given by

Γ(N) =

{(

a b

c d

)

∈ SL(2,Z) ,

(

a b

c d

)

=

(

1 0

0 1

)

(mod N)

}

. (2.5)

For N = 2 we define Γ(2) ≡ Γ(2)/{I,−I}, while for N > 2, since the element −I does

not belong to Γ(N), we have Γ(N) ≡ Γ(N). The elements of Γ(N) are in a one-to-one

correspondence with the associated linear fractional transformations. The groups Γ(N) are

referred to as principal congruence subgroups of the modular group. Taking the quotient

ΓN ≡ Γ/Γ(N), one obtains a finite modular group. Remarkably, for N ≤ 5 the finite

modular groups are isomorphic to permutation groups widely used in lepton flavour model

building (see, e.g., [12]). Namely, Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5.

Modular forms of weight k and level N are holomorphic functions f(τ) transforming

under the action of Γ(N) in the following way:

f (γτ) = (cτ + d)k f(τ) , γ ∈ Γ(N) . (2.6)

Here k is even and non-negative, and N is natural (note that Γ(1) ≃ SL(2,Z) and Γ(1) ≡ Γ).

Modular forms of weight k and level N form a linear space of finite dimension. It is possible

to choose a basis in this space such that a transformation of a set of modular forms fi(τ)

is described by a unitary representation ρ of the finite modular group ΓN :

fi (γτ) = (cτ + d)k ρ (γ)ij fj(τ) , γ ∈ Γ . (2.7)

This result is the foundation stone of the approach to lepton masses and mixing proposed

in ref. [7].

In the case of N = 2, the modular forms of lowest non-trivial weight 2 form a two-

dimensional linear space. One can find a basis in which the two generating modular forms

are transformed according to the 2-dimensional irreducible representation (irrep) of S3 [8].

In the case of N = 3, the corresponding space has dimension 3, and the generating modular

forms have been shown to form the triplet of A4 [7]. For N = 4, there are 5 linearly

independent modular forms of weight 2. They are organised in a doublet and a triplet (3′)
of S4 [9]. Modular forms of higher weights (k > 2) can be constructed from homogeneous

polynomials in the generating modular forms of weight 2.
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2.2 Modular-invariant supersymmetric action

In the case of N = 1 rigid supersymmetry, the matter action S reads

S =

∫

d4x d2θ d2θ K(τ, τ , χ, χ) +

∫

d4x d2θ W (τ, χ) +

∫

d4x d2θ W (τ , χ) , (2.8)

where K is the Kähler potential, W is the superpotential and χ denotes a set of chiral

supermultiplets contained in the theory in addition to the modulus τ . The integration goes

over both space-time coordinates x and Graßmann variables θ and θ. The supermultiplets χ

are divided into several sectors χI . Each sector in general contains several supermultiplets.

The modular group Γ acts on τ and χI in a specific way [13, 14]. Assuming that the

supermultiplets χI transform also in a certain representation ρI of a finite modular group

ΓN , we have










τ → aτ + b

cτ + d
,

χI → (cτ + d)−kI ρI(γ)χI .

(2.9)

The transformation law for the supermultiplets χI is similar to that in eq. (2.7). However,

χI are not modular forms, and thus, the weight (−kI) is not restricted to be an even non-

negative number. The invariance of S under the transformations given in eq. (2.9) requires

the invariance of the superpotential W , while the Kähler potential K is allowed to change

by a Kähler transformation, i.e.,






W (τ, χ) → W (τ, χ) ,

K(τ, τ , χ, χ) → K(τ, τ , χ, χ) + fK(τ, χ) + fK(τ , χ) .
(2.10)

An example of Kähler potential which satisfies this requirement is given by

K(τ, τ , χ, χ) = −Λ2
0 log(−iτ + iτ) +

∑

I

|χI |2
(−iτ + iτ)kI

, (2.11)

where Λ0 is a parameter with mass dimension one.1 Expanding the superpotential in

powers of χI , we have

W (τ, χ) =
∑

n

∑

{I1,...,In}
(YI1 ... In(τ)χI1 . . . χIn)1 , (2.12)

where 1 stands for an invariant singlet of ΓN . From eq. (2.9) it is clear that the invariance

of W requires the YI1 ... In(τ) to transform in the following way:

YI1 ... In(τ) → (cτ + d)kY ρY (γ)YI1 ... In(τ) , (2.13)

where ρY is a representation of ΓN , and kY and ρY are such that

kY = kI1 + · · ·+ kIn , (2.14)

ρY ⊗ ρI1 ⊗ . . .⊗ ρIn ⊃ 1 . (2.15)

Thus, YI1 ... In(τ) are modular forms of weight kY and level N furnishing the representation

ρY of the finite modular group ΓN (cf. eq. (2.7)).

1Note that we consider τ to be a dimensionless chiral supermultiplet, as it is done in ref. [7].
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2.3 Modular forms of level 4

The dimension of the linear space formed by the modular forms of weight 2 and level 4

is equal to 5 (see, e.g., [7]), i.e., there are five linearly independent modular forms of the

lowest non-trivial weight. In ref. [9] these forms have been explicitly constructed in terms

of the Dedekind eta function

η(τ) ≡ q1/24
∞
∏

n=1

(1− qn) , q = e2πiτ . (2.16)

Namely, defining

Y (a1, . . . ,a6|τ)≡
d

dτ

[

a1 logη

(

τ+
1

2

)

+a2 logη (4τ)+a3 logη
(τ

4

)

+a4 logη

(

τ+1

4

)

+a5 logη

(

τ+2

4

)

+a6 logη

(

τ+3

4

)]

, (2.17)

with a1 + · · ·+ a6 = 0, the basis of the modular forms of weight 2 reads

Y1(τ) ≡ Y (1, 1, ω, ω2, ω, ω2|τ) , (2.18)

Y2(τ) ≡ Y (1, 1, ω2, ω, ω2, ω|τ) , (2.19)

Y3(τ) ≡ Y (1,−1,−1,−1, 1, 1|τ) , (2.20)

Y4(τ) ≡ Y (1,−1,−ω2,−ω, ω2, ω|τ) , (2.21)

Y5(τ) ≡ Y (1,−1,−ω,−ω2, ω, ω2|τ) , (2.22)

with ω ≡ e2πi/3. Furthermore, as shown in [9], the Y1(τ) and Y2(τ) form a doublet trans-

forming in the 2 of S4, while the three remaining modular forms make up a triplet trans-

forming in 3′ of S4. In what follows, we denote the doublet and the triplet as

Y2(τ) ≡
(

Y1(τ)

Y2(τ)

)

, Y3′(τ) ≡







Y3(τ)

Y4(τ)

Y5(τ)






. (2.23)

The modular forms of higher weights k = 4, 6, . . . , can be built from the Yi(τ), i =

1, . . . , 5. Thus, the Yi(τ) generate the ring of all modular forms of level 4

M(Γ(4)) =
∞
⊕

k=0

Mk(Γ(4)) . (2.24)

The dimension of the linear space Mk(Γ(4)) of modular forms of weight k is 2k + 1.

The modular forms of higher weight transform according to certain irreps of S4. For

example, at weight 4 we have 9 independent modular forms, which arrange themselves in

an invariant singlet, a doublet and two triplets transforming in the 1, 2, 3 and 3′ irreps of
S4, respectively [9]:

Y
(4)
1

= Y1Y2 , Y
(4)
2

=

(

Y 2
2

Y 2
1

)

,

Y
(4)
3

=







Y1Y4 − Y2Y5
Y1Y5 − Y2Y3
Y1Y3 − Y2Y4






, Y

(4)
3′ =







Y1Y4 + Y2Y5
Y1Y5 + Y2Y3
Y1Y3 + Y2Y4






.

(2.25)
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Some higher weight multiplets are given in appendix B. In the next section we use the

modular forms of level 4 to build a modular-invariant superpotential, as in eq. (2.12).

3 Seesaw models without flavons

We assume that neutrino masses originate from the (supersymmetric) type I seesaw mech-

anism. In this case, the superpotential in the lepton sector reads

W = α (Ec LHd fE (Y ))
1
+ g (N c LHu fN (Y ))

1
+ Λ(N cN c fM (Y ))

1
, (3.1)

where a sum over all independent invariant singlets with the coefficients α = (α, α′, . . . ),
g = (g, g′, . . . ) and Λ = (Λ,Λ′, . . . ) is implied. Here, fE,N,M (Y ) denote the modular form

multiplets required to ensure modular invariance.

For the sake of simplicity, we will make the following assumptions:

• Higgs doublets Hu and Hd transform trivially under Γ4, ρu= ρd∼1, and ku= kd=0;

• lepton SU(2) doublets L1, L2, L3 furnish a 3-dimensional irrep of Γ4, i.e., ρL ∼ 3

or 3′;

• neutral lepton gauge singlets N c
1 , N

c
2 , N

c
3 transform as a triplet of Γ4, ρN ∼ 3 or 3′;

• charged lepton SU(2) singlets Ec
1, E

c
2, E

c
3 transform as singlets of Γ4, ρ1,2,3 ∼ 1, 1′.

With these assumptions, we can rewrite the superpotential as

W =

3
∑

i=1

αi (E
c
i LfEi

(Y ))
1
Hd + g (N c LfN (Y ))

1
Hu + Λ(N cN c fM (Y ))

1
, (3.2)

where the sum over all independent singlet contributions is understood as specified ear-

lier. Assigning weights (−ki), (−kL), (−kN ) to Ec
i , L, N

c, and weights kαi
, kg, kΛ to the

multiplets of modular forms fEi
(Y ), fN (Y ), fM (Y ), modular invariance of the superpo-

tential requires















kαi
= ki + kL

kg = kN + kL

kΛ = 2 kN

⇔















ki = kαi
− kg + kΛ/2

kL = kg − kΛ/2

kN = kΛ/2

. (3.3)

Thus, by specifying the weights of the modular forms one obtains the weights of the mat-

ter superfields.

After modular symmetry breaking, the matrices of charged lepton and neutrino Yukawa

couplings, λ and Y, as well as the Majorana mass matrix M for heavy neutrinos, are gen-

erated:

W = λij E
c
i Lj Hd + Yij N

c
i Lj Hu +

1

2
Mij N

c
i N

c
j , (3.4)
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where a sum over i, j = 1, 2, 3 is assumed. Eventually, after integrating out N c and after

electroweak symmetry breaking, the charged lepton mass matrix Me and the light neutrino

Majorana mass matrix Mν are generated:2

Me = vd λ
† , (3.5)

Mν = −v2u YTM−1Y , (3.6)

with vd ≡ 〈H0
d〉 and vu ≡ 〈H0

u〉. In what follows we will systematically consider low weights

kαi
, kg, kΛ and identify the corresponding seesaw models.

3.1 The Majorana mass term for heavy neutrinos

We start with the analysis of the Majorana mass term for heavy neutrinos. If kΛ = 0, i.e.,

no non-trivial modular forms are present in the last term of eq. (3.2), kN = 0, and for both

choices ρN ∼ 3 or ρN ∼ 3′ we have

(N cN c)
1
= N c

1 N
c
1 +N c

2 N
c
3 +N c

3 N
c
2 , (3.7)

which leads to the following mass matrix for heavy neutrinos:

M = 2Λ







1 0 0

0 0 1

0 1 0






, for kΛ = 0 . (3.8)

Thus, in this case, the spectrum of heavy neutrino masses is degenerate, and the only free

parameter is the overall scale Λ, which can be rendered real. The Majorana mass term

with the mass matrix in eq. (3.8) conserves a “non-standard” lepton charge and two of the

three heavy Majorana neutrinos with definite mass form a Dirac pair [15].

Allowing for modular forms of weight kΛ = 2 in the Majorana mass term, we have

instead the following structure in the superpotential:

Λ (N cN c Y2)1 + Λ′ (N cN c Y3′)
1
. (3.9)

The second term vanishes because the 3′ from the decomposition of 3⊗3 (3′⊗3′) needed to

form an invariant singlet is antisymmetric (see appendix A.2). Applying the decomposition

rules to the first term, we obtain

M = 2Λ







0 Y1 Y2
Y1 Y2 0

Y2 0 Y1






, for kΛ = 2 , (3.10)

where Y1,2 depend on the complex VEV of τ . Therefore, there are 3 free real parameters

in the matrix M .

Increasing kΛ to 4 leads to a bigger number of free parameters, since more than one

invariant singlet can be formed. There are nine independent modular forms of weight 4

2We work in the left-right convention for the charged lepton mass term and the right-left convention for

the light and heavy neutrino Majorana mass terms.
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and level 4. As shown in [9], they are organised in an invariant singlet, a doublet and two

triplets, one transforming in the 3 and the other in the 3′ of Γ4, cf. eq. (2.25). Hence, the

relevant part of W reads

Λ
(

N cN c Y
(4)
1

)

1

+ Λ′
(

N cN c Y
(4)
2

)

1

+ Λ′′
(

N cN c Y
(4)
3

)

1

+ Λ′′′
(

N cN c Y
(4)
3′

)

1

. (3.11)

The last term vanishes, as before, due to antisymmetry. The remaining three terms lead to

M = 2Λ






Y1Y2







1 0 0

0 0 1

0 1 0






+

Λ′

Λ







0 Y 2
2 Y 2

1

Y 2
2 Y 2

1 0

Y 2
1 0 Y 2

2







+
Λ′′

Λ







2 (Y1Y4 − Y2Y5) Y2Y4 − Y1Y3 Y2Y3 − Y1Y5
Y2Y4 − Y1Y3 2 (Y1Y5 − Y2Y3) Y2Y5 − Y1Y4
Y2Y3 − Y1Y5 Y2Y5 − Y1Y4 2 (Y1Y3 − Y2Y4)












, for kΛ = 4 . (3.12)

Thus, apart from 〈τ〉, there are one real (Λ) and two complex (Λ′/Λ, Λ′′/Λ) free parameters

in M , that is, 5 real parameters apart from 〈τ〉. Weight 6 and higher weight modular forms

(see appendix B) will lead to more free parameters and thus to a decrease in predictivity.

3.2 The neutrino Yukawa couplings

Next we analyse the neutrino Yukawa interaction term in the superpotential of eq. (3.2).

If kg = 0, the irreps in which N c and L transform should be the same to construct an

invariant singlet, i.e., ρN = ρL ∼ 3 or 3′. The structure of the singlet is the same of

eq. (3.7), and the neutrino Yukawa matrix reads

Y = g







1 0 0

0 0 1

0 1 0






, for kg = 0 . (3.13)

The lowest non-trivial weight, kg = 2, leads to

g (N c LY2)1Hu + g′ (N c LY3′)
1
Hu . (3.14)

There are 4 possible assignments of ρN and ρL we consider. Two of them, namely ρN =

ρL ∼ 3 and ρN = ρL ∼ 3′ give the following form of Y:

Y = g













0 Y1 Y2
Y1 Y2 0

Y2 0 Y1






+

g′

g







0 Y5 −Y4
−Y5 0 Y3
Y4 −Y3 0












, for kg = 2 and ρN = ρL . (3.15)

The two remaining combinations, (ρN , ρL) ∼ (3,3′) and (3′,3), lead to:

Y = g













0 −Y1 Y2
−Y1 Y2 0

Y2 0 −Y1






+

g′

g







2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5












, for kg = 2 and ρN 6= ρL . (3.16)

In both cases, up to an overall factor, the matrix Y depends on one complex parameter

g′/g and the VEV 〈τ〉.

– 8 –



J
H
E
P
0
4
(
2
0
1
9
)
0
0
5

Considering further the case of kg = 4, we have

[

g
(

N c LY
(4)
1

)

1

+ g′
(

N c LY
(4)
2

)

1

+ g′′
(

N c LY
(4)
3

)

1

+ g′′′
(

N c LY
(4)
3′

)

1

]

Hu . (3.17)

Again we have two equivalent possibilities with ρN = ρL and two others with ρN 6= ρL. In

the former case, the matrix Y reads

Y = g






Y1Y2







1 0 0

0 0 1

0 1 0






+
g′

g







0 Y 2
2 Y 2

1

Y 2
2 Y 2

1 0

Y 2
1 0 Y 2

2






(3.18)

+
g′′

g







2(Y1Y4−Y2Y5) Y2Y4−Y1Y3 Y2Y3−Y1Y5
Y2Y4−Y1Y3 2(Y1Y5−Y2Y3) Y2Y5−Y1Y4
Y2Y3−Y1Y5 Y2Y5−Y1Y4 2(Y1Y3−Y2Y4)







+
g′′′

g







0 Y1Y3+Y2Y4 −Y1Y5−Y2Y3
−Y1Y3−Y2Y4 0 Y1Y4+Y2Y5
Y1Y5+Y2Y3 −Y1Y4−Y2Y5 0












, for kg =4 and ρN = ρL .

It depends on 7 real parameters and the complex 〈τ〉. In the case of different representations

ρN 6= ρL, 3⊗3′ does not contain the invariant singlet, such that the first term in eq. (3.17)

is not possible. The sum of three remaining terms yields

Y = g′













0 −Y 2
2 Y 2

1

−Y 2
2 Y 2

1 0

Y 2
1 0 −Y 2

2






± g′′

g′







0 Y1Y3−Y2Y4 Y2Y3−Y1Y5
Y2Y4−Y1Y3 0 Y1Y4−Y2Y5
Y1Y5−Y2Y3 Y2Y5−Y1Y4 0






(3.19)

+
g′′′

g′







2(Y1Y4+Y2Y5) −Y1Y3−Y2Y4 −Y1Y5−Y2Y3
−Y1Y3−Y2Y4 2(Y1Y5+Y2Y3) −Y1Y4−Y2Y5
−Y1Y5−Y2Y3 −Y1Y4−Y2Y5 2(Y1Y3+Y2Y4)












, for kg =4 and ρN 6= ρL ,

where plus sign in ± corresponds to (ρN , ρL) ∼ (3,3′) and minus sign to (ρN , ρL) ∼ (3′,3).
This minus sign can be absorbed in g′′. Thus, apart from 〈τ〉, the matrix Y depends on

5 real parameters. Given the rising multiplicity of free parameters, we do not consider

weights kg higher than 4 in the present analysis.

3.3 The charged lepton Yukawa couplings

Further we investigate the charged lepton Yukawa interaction terms in the superpotential.

Since we consider ρi ∼ 1 or 1′ and ρL ∼ 3 or 3′, we have four possible combinations ρi⊗ρL.

None of them contain the invariant singlet. Thus, the weights kαi
cannot be zero, i.e., they

are strictly positive, kαi
> 0. Moreover, fEi

(Y ) should transform in 3 if (ρi, ρL) ∼ (1,3)

or (1′,3′), and in 3′ if (ρi, ρL) ∼ (1,3′) or (1′,3). Thus, for each i = 1, 2, 3, we have

αi (E
c
i LfEi

(Y ))
1
Hd = Ec

i

∑

a

αi,a

[

L1

(

Y
(kαi

)
a

)

1
+ L2

(

Y
(kαi

)
a

)

3
+ L3

(

Y
(kαi

)
a

)

2

]

Hd ,

(3.20)

where Y
(kαi

)
a are independent triplets (3 or 3′ depending on ρi and ρL) of weight kαi

.
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We ρL ρ1 ρ2 ρ3

eqs. (3.22), (3.27)
3 1′ 1 1′

3′ 1 1′ 1

eqs. (3.23), (3.25)
3 1′ 1′ 1

3′ 1 1 1′

eqs. (3.24), (3.26)
3 1 1′ 1′

3′ 1′ 1 1

Table 1. The possible assignments of irreps for the L, Ec
1, E

c
2 and Ec

3 superfields in the described

minimal set-up. For each form of We, the upper and lower lines lead to the same results for the

matrix λ.

There exists only one triplet (Y3, Y4, Y5)
T ∼ 3′ of the lowest non-trivial weight 2. If

kαi
= 2, eq. (3.20) reads

αi (E
c
i LY3′)

1
Hd = αiE

c
i [L1 Y3 + L2 Y5 + L3 Y4]Hd . (3.21)

Therefore, if kαi
= 2 for all i = 1, 2, 3, three rows of the charged lepton Yukawa matrix λ

will be proportional to each other, and rank(λ) = 1 implying that two of the three charged

lepton masses are zero, since rank(λ) = rank(λ†λ). If kαi
= kαj

= 2, where i 6= j, and

kαp > 2, one has rank(λ) = 2, i.e., one of the masses is zero. Thus, in order to have

maximal rank, rank(λ) = 3, and no zero masses, only one kαi
can be equal to 2.

The minimal (in terms of weights) possibility is defined by kαi
= 2 and kαj

= kαp = 4,

for j 6= p. Indeed, there are two triplets of weight 4, namely Y
(4)
3

and Y
(4)
3′ . To avoid

having a reduced rank(λ), the representations ρj and ρp should be different. This ensures

that both Y
(4)
3

and Y
(4)
3′ are present in the superpotential, and the corresponding rows in

the matrix λ are linearly independent. Then the relevant part of W , which we denote as

We, takes one of the following 6 forms:

α (Ec
1 LY3′)

1
Hd + β

(

Ec
2 LY

(4)
3

)

1

Hd + γ
(

Ec
3 LY

(4)
3′

)

1

Hd , (3.22)

α (Ec
1 LY3′)

1
Hd + β

(

Ec
2 LY

(4)
3′

)

1

Hd + γ
(

Ec
3 LY

(4)
3

)

1

Hd , (3.23)

α
(

Ec
1 LY

(4)
3

)

1

Hd + β (Ec
2 LY3′)

1
Hd + γ

(

Ec
3 LY

(4)
3′

)

1

Hd , (3.24)

α
(

Ec
1 LY

(4)
3′

)

1

Hd + β (Ec
2 LY3′)

1
Hd + γ

(

Ec
3 LY

(4)
3

)

1

Hd , (3.25)

α
(

Ec
1 LY

(4)
3

)

1

Hd + β
(

Ec
2 LY

(4)
3′

)

1

Hd + γ (Ec
3 LY3′)

1
Hd , (3.26)

α
(

Ec
1 LY

(4)
3′

)

1

Hd + β
(

Ec
2 LY

(4)
3

)

1

Hd + γ (Ec
3 LY3′)

1
Hd . (3.27)

The possible assignments of irreps to the L and Ec
i superfields for each of these forms of

We are given in table 1. Equation (3.22) leads to

λ =







αY3 αY5 αY4
β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)

γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)






, (3.28)
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kg

kΛ
0 2 4

0 1 (1) [6] 1 (3) [6] 5 (7) [10]

2 3 (5) [8] 3 (5) [8] 7 (9) [12]

4, ρN 6= ρL 5 (7) [10] 5 (7) [10] 9 (11) [14]

4, ρN = ρL 7 (9) [12] 7 (9) [12] 11 (13) [16]

Table 2. Number of free independent real parameters in models containing modular forms of

weights ≤ 4. For each pair (kΛ, kg), the first number is the number of parameters in Mν apart

from 〈τ〉. The second number (in parentheses) is the number of parameters in Mν including the 2

real parameters from 〈τ〉. The third number [in brackets] is the total number of free independent

parameters contained in Mν and Me.

while the other 5 forms of We yield a λ which differs from that in eq. (3.28) by permutations

of the rows (and renaming of the free parameters). However, those permutations do not

affect the matrix Ue diagonalising MeM
†
e = v2d λ

†λ, and thus do not lead to new results for

the PMNS matrix. In what follows, without loss of generality, we adhere to the minimal

choice in eq. (3.22), taking kα1
= 2 and kα2

= kα3
= 4. As we can see, in this “minimal”

example the matrix λ depends on 3 free parameters, α, β and γ, which can be rendered

real by re-phasing of the charged lepton fields, and the complex 〈τ〉.
The next natural choice of the weights would be kαi

= 4 for any i = 1, 2, 3. However,

such a combination of weights leads to rank(λ) < 3, since there are only two independent

triplets Y
(4)
3

and Y
(4)
3′ of weight 4. Hence, for further choices of the kαi

at least one of them

should equal 6.

3.4 Summary of models

Let us bring together the different pieces we have obtained so far and summarise the number

of free and independent real parameters in the models containing modular forms of weights

≤ 4. Apart from the dependence of Mν and Me on 〈τ〉 (2 real parameters),3 we have 3

real parameters α, β and γ from the charged lepton sector. Making use of eq. (3.6), we

can count the number of free parameters in the light neutrino Majorana mass matrix Mν

for different combinations of kΛ and kg. We present the results in table 2.

In the case of kΛ = kg = 0, the light neutrino mass matrix has the following form (see

eqs. (3.6), (3.8) and (3.13)):

Mν = −g2v2u
2Λ







1 0 0

0 0 1

0 1 0






, (3.29)

which leads to |m1| = |m2| = |m3| in contradiction with the neutrino oscillation data. In

the cases of kΛ = kg = 4, the total number of free independent real parameters is bigger

than 12, i.e., than the number of observables we want to describe or predict. The ob-

servables are 3 charged lepton masses, 3 neutrino masses, and 3 mixing angles, 1 Dirac

3In the case kΛ = kg = 0, Mν does not depend on 〈τ〉.
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Observable Best fit value and 1σ range

me/mµ 0.0048± 0.0002

mµ/mτ 0.0565± 0.0045

NO IO

δm2/(10−5 eV2) 7.34+0.17
−0.14

|∆m2|/(10−3 eV2) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|∆m2| 0.0299± 0.0008 0.0301± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Table 3. Best fit values and 1σ ranges for neutrino oscillation parameters, obtained from the

global analysis of ref. [2], and for charged lepton mass ratios, given at the scale 2 × 1016 GeV with

the tan β averaging described in [7], obtained from ref. [16]. The parameters entering the definition

of r are δm2 ≡ m2
2 −m2

1 and ∆m2 ≡ m2
3 − (m2

1 +m2
2)/2. The best fit value and 1σ range of δ did

not drive the numerical searches here reported.

and 2 Majorana [20] CPV phases in the PMNS matrix. In the next section we will inves-

tigate in detail potentially viable models with both kΛ and kg ≤ 2.

4 Numerical analysis

Each of the investigated models depends on a set of dimensionless parameters

pi = (τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .) , (4.1)

which determine dimensionless observables (mass ratios, mixing angles and phases), and

two overall mass scales: vd α for Me and v2u g
2/Λ for Mν . Phenomenologically viable

models are those that lead to values of observables which are in close agreement with the

experimental results summarised in table 3.4

As a measure of goodness of fit, we use the sum of one-dimensional ∆χ2
j functions

∆χ2(pi) =
6
∑

j=1

∆χ2
j (pi) , (4.2)

for six accurately known dimensionless5 observable quantities

qj = (me/mµ, mµ/mτ , r, sin
2 θ12, sin

2 θ13, sin
2 θ23) . (4.3)

4The atmospheric mass-squared difference ∆m2
31 = ∆m2+ δm2/2 for the NO spectrum of light neutrino

masses and ∆m2
32 = ∆m2 − δm2/2 for the IO spectrum. We assume also to be in a regime in which

the running of neutrino parameters is negligible (see section 6 for a discussion of renormalisation group

corrections).
5If a model successfully reproduces dimensionless observables, the overall mass scales can be easily recov-

ered by fitting them to the charged lepton masses me, mµ, mτ , and the neutrino mass-squared differences

δm2 and |∆m2|.
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In eq. (4.2) we have assumed approximate independence of the fitted quantities (observ-

ables). In what follows, we define Nσ ≡
√

∆χ2. For sin2 θij , we make use of the one-

dimensional projections ∆χ2
j (j = 4, 5, 6) from ref. [2],6 whereas for the remaining quantities

we employ the Gaussian approximation:

∆χ2
j (pi) =

(

qj(pi)− qj,best fit

σj

)2

, j = 1, 2, 3 . (4.4)

We restrict the parameter space in the following way:

log10(β/α), log10(γ/α), log10
∣

∣g′/g
∣

∣ , log10
∣

∣Λ′/Λ
∣

∣ , . . . ∈ [−4, 4] ,

arg(g′/g), arg(Λ′/Λ), . . . ∈ [−π, π],
(4.5)

and τ is taken from the fundamental domain D of Γ,

D =

{

τ ∈ C : Im τ > 0 , |Re τ | ≤ 1

2
, |τ | ≥ 1

}

, (4.6)

depicted in figure 1, with an additional constraint of Im τ ≤ 2. The probability distribution

for the numerical scan is chosen to be uniform with respect to the parameters in eq. (4.5)

and to Re τ and Im τ . For further details of our numerical approach, see appendix C.

Let us comment on why it is sufficient to scan τ in the fundamental domain (4.6).

Since the underlying theory enjoys the modular symmetry Γ, all the vacua related by

modular transformations are physically equivalent. Therefore, given a non-zero VEV of

the modulus τ , we can send it to τ ′ ∈ D with a modular transformation. This is similar

to the choice of the Higgs doublet VEV in the Standard Model, which we can bring to

its second component and make real by acting with a global gauge transformation. Note

however that couplings (α, β, etc.) also transform non-trivially: the kinetic terms of the

chiral supermultiplets arising from the Kähler potential in eq. (2.11) should be rescaled to

their canonical forms, and we implicitly absorb these rescalings into the couplings. Since

the kinetic term scalings change under modular transformations, one has to rescale the

couplings accordingly, i.e.

τ → aτ + b

cτ + d
⇒ gi → (cτ + d)−kYigi , (4.7)

where kYi
is the weight of the modular form corresponding to the coupling gi. For the

models under investigation it means that dimensionless parameters in eq. (4.1) transform as

(

τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .
)

→
(

aτ + b

cτ + d
, (cτ + d)−2 β/α, (cτ + d)−2 γ/α, g′/g, . . . , Λ′/Λ, . . .

)

.
(4.8)

One can check that these two sets of parameters are physically equivalent, i.e., they lead

to the same values of observables.

6These one-dimensional ∆χ2
j (j = 4, 5, 6) projections were kindly shared with us by the authors of ref. [2],

and they are represented in figure 3 of this reference.
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Another useful relation between different sets of parameters is a conjugation transfor-

mation defined as follows:

(

τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .
)

→
(

−τ∗, β/α, γ/α, (g′/g)∗, . . . , (Λ′/Λ)∗, . . .
)

. (4.9)

This transformation leaves all observables unchanged, except for the CPV phases, which

flip their signs. Therefore all the points we find in the following analysis come in pairs with

the opposite CPV phases.

To see this, let us first notice that under τ → −τ∗ modular multiplets of weight 2

transform as

Y2,3′(τ) → Y2,3′(−τ∗) =
[

−ρ2,3′

(

T−1
)

Y2,3′(τ)
]∗

(4.10)

(see appendix D), which is equivalent to:

1. a modular transformation T−1,

2. change of sign Y → −Y ,

3. complex conjugation of the result.

The first operation does not affect the physics as discussed earlier. The effect of the second

transformation can be absorbed into the unphysical phases for the mass matrices under

consideration. Therefore τ → −τ∗ acts as complex conjugation on the modular forms.

Together with complex conjugation of couplings, it is nothing but complex conjugation of

the mass matrices, which flips the signs of the CPV phases. Inside the fundamental domain,

each viable 〈τ〉 will thus be paired to −〈τ〉∗, its reflection across the imaginary axis.

4.1 Models with (kΛ, kg) = (2, 0)

In this case, the matrices are given by eqs. (3.10), (3.13) and (3.28). According to our

numerical search, this model is unable to reproduce known data. The best point we have

found is excluded at around 9.7 sigma confidence level, as it does not provide acceptable

values of sin2 θ12 and sin2 θ23 (see table 4).

4.2 Models with (kΛ, kg) = (0, 2)

In this case the matrices are given by eqs. (3.8), (3.15) or (3.16), and (3.28). Through

numerical search, we find five pairs of distinct local minima of ∆χ2 corresponding to five

pairs of distinct values of τ . The two minima in each pair lead to opposite values of the

Dirac and Majorana phases, but the same values of all other observables. We denote the

cases belonging to the first pair as A and A∗, to the second pair as B and B∗, etc. (see
figure 1). For cases A(∗) and B(∗) one has ρN 6= ρL, while for the remaining cases ρN = ρL.

Note that starred cases correspond to predictions for δ not in line with its experimentally

allowed 3σ range. We present the best fit values along with 2σ and 3σ confidence intervals

in tables 5a–5e.

Interestingly, from figure 1 we observe that 6 out of 10 values of τ corresponding to local

minima lie almost on the boundary of the fundamental domain D. The four points which

are relatively far from the boundary (C, C∗, D, and D∗) correspond to inverted ordering.
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Re τ ±0.4962

Im τ 1.208

β/α 0.0002365

γ/α 0.03178

vd α [MeV] 1059

v2u g
2/Λ [eV] 0.1594

me/mµ 0.0048

mµ/mτ 0.0562

r 0.03003

δm2 [10−5 eV2] 7.334

|∆m2| [10−3 eV2] 2.442

sin2 θ12 0.5032

sin2 θ13 0.02235

sin2 θ23 0.4021

Ordering IO

m1 [eV] 0.05981

m2 [eV] 0.06042

m3 [eV] 0.03423
∑

imi [eV] 0.1545

|〈m〉| [eV] 0.04987

δ/π ±1.503

α21/π ±1.661

α31/π ±1.825

Nσ 9.657

Table 4. Best fit values of the parameters and observables in the models with (kΛ, kg) = (2, 0).

Here and in the following tables the weights (kα1
, kα2

, kα3
) = (2, 4, 4).

The structure of a scalar potential V for the modulus field τ has been previously studied

in the context of string compactifications and supergravity (see, e.g., [17–19]). In ref. [19],

considering the most general non-perturbative effective N = 1 supergravity action in four

dimensions, invariant under modular symmetry, it has been conjectured that all extrema of

V lie on the boundary of D and on the imaginary axis (Re τ = 0). This conjecture has been

checked there in several examples. If — as suggested by global analyses — it turns out that

the normal ordering of light neutrino masses is realised in Nature, this could be considered

as an additional indication in favour of the modular symmetry approach to flavour.

The models with (kΛ, kg) = (0, 2) analysed by us are characterised by six real parame-

ters, vd α, β/α, γ/α, v
2
u g

2/Λ, |g′/g|, Im τ , and two phases arg(g′/g) and Re τ .7 The three

7Notice that the dependence on τ arises through powers of exp(2πiτ/4).
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real parameters vd α, β/α and γ/α are fixed by fitting the three values of the charged

lepton masses. The remaining three real parameters and two phases (v2u g
2/Λ, |g′/g|, Im τ ,

arg(g′/g), Re τ) are used to describe the three neutrino masses, three neutrino mixing angles

and the one Dirac and two Majorana CPV phases present in the PMNS matrix. Obviously,

the values of some of these altogether nine observables are expected to be correlated.

In the analysis of the five different pairs of models, A and A∗, B and B∗, . . ., E and

E∗, as indicated earlier, we used as input the e, µ and τ masses, the one-dimensional χ2

projections for sin2 θij from ref. [2] and the Gaussian approximation for δm2 and ∆m2. As

a result of the analysis we obtain:

i) the best fit values and the 2σ and 3σ ranges of Reτ , Imτ , β/α, γ/α, vd α, Re(g
′/g),

Im(g′/g), v2u g
2/Λ, for which we have a sufficiently good quality of the fit to the data,

ii) the best fit values and the 2σ and 3σ allowed ranges of sin2 θij , δm
2 and ∆m2, to be

compared with those found in ref. [2] and quoted in table 3,

iii) the predicted best fit values and the 2σ and 3σ ranges of the absolute neutrino mass

scale min(mj), j = 1, 2, 3, and of the CPV phases δ, α21 and α31. Together with the

results on δm2, ∆m2, sin2 θ12 and sin2 θ13, this allows us to obtain predictions for the

sum of neutrino masses
∑

imi and for the effective Majorana mass in neutrinoless

double beta decay |〈m〉| (see, e.g., [1, 21]).

These results are reported in tables 5a–5e.

A successful description of the data in the lepton sector, as our analyses show, implies

a correlation between the values of Re τ and Im τ (see figure 1), as well as between the

values of Im(g′/g) and Im τ and of Re(g′/g) and Im τ (see figure 4). In what concerns

the neutrino masses and mixing observables, we find that the value of sin2 θ23 is correlated

with the values i) of the Dirac phase δ, ii) of
∑

imi and iii) of |〈m〉|. These correlations

are illustrated in figure 2.8 We note that the correlation between the values of sin2 θ23 and

|〈m〉| is a consequence, in particular, of the correlations between the values of sin2 θ23 and

of the Majorana phases α21 and α31.
9

Finally, we comment in appendix E on the correspondence of models with (kΛ, kg) =

(0, 2) to the model with kL = 2 considered in [9], where the light neutrino masses are

generated via the Weinberg operator.

4.3 Models with (kΛ, kg) = (2, 2)

In this case the matrices are given by eqs. (3.10), (3.15) or (3.16), and (3.28). According

to our numerical search, this model cannot accommodate the experimental data. The best

points we have found through numerical search are presented in table 6.

8In figure 2 we do not show correlations in the cases of the models E and E∗ since these models are

noticeably less favoured by the data than the other four pairs of models (see tables 5a–5e).
9As a consequence of their correlations with sin2 θ23, the values of δ and of α21 and of α31 are also cor-

related.
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B

A

DC

D*

C*

A*

B*

D

0.14 0.16 0.18 0.20

1.1

1.2

1.3

1.4

1.5

1.6

1.7

Re τ

Im
τ

– 0.18 – 0.16 – 0.14 – 0.12

1.1

1.2

1.3

1.4

1.5

1.6

Re τ

Im
τ

0.13 – 0.12 – 0.11 – 0.10

0.995

1.000

1.005

1.010

Re τ

Im
τ

– 0.09 0.10 0.11 0.12

1.005

1.010

1.015

1.020

Re τ

Im
τ

A,B*

C*

A*,B

C

D* D
E*E

Figure 1. Red dots signal τ values inside the fundamental domain D of the modular group corre-

sponding to the five pairs of ∆χ2 minima in the case of (kΛ, kg) = (0, 2). Here and in the following

plots, the green, yellow and red regions correspond to 2σ, 3σ and 5σ confidence levels, respectively.

– 17 –



J
H
E
P
0
4
(
2
0
1
9
)
0
0
5

0.50 0.55 0.60
1.20

1.40

1.60

1.80

2.00

sin2 θ23

±
δ
/π

0.50 0.55 0.60
0.075

0.080

0.085

0.090

0.095

0.100

0.105

sin2 θ23
∑

k
m

k
/
eV

0.50 0.55 0.60

0.012

0.014

0.016

0.018

0.020

0.022

sin2 θ23

|〈
m

〉|
/
eV

0.40 0.45 0.50 0.55 0.60

1.86

1.88

1.90

1.92

1.94

1.96

1.98

2.00

sin2 θ23

±
δ
/π

0.40 0.45 0.50 0.55 0.60
0.090

0.095

0.100

0.105

0.110

sin2 θ23

∑
k
m

k
/
eV

0.40 0.45 0.50 0.55 0.60
0.017

0.018

0.019

0.020

0.021

0.022

0.023

0.024

sin2 θ23
|〈

m
〉|

/
eV

Cases B, B*

Cases A, A*

0.45 0.50 0.55 0.60

0.90

1.00

1.10

1.20

1.30

sin2 θ23

±
δ
/π

0.45 0.50 0.55 0.60

0.100

0.105

0.110

0.115

0.120

sin2 θ23

∑
k
m

k
/
eV

0.45 0.50 0.55 0.60

0.020

0.025

0.030

0.035

0.040

0.045

sin2 θ23

|〈
m

〉|
/
eV

Cases C, C*

0.54 0.56 0.58 0.60 0.62

1.20

1.30

1.40

1.50

sin2 θ23

±
δ
/π

0.54 0.56 0.58 0.60 0.62

0.112

0.114

0.116

0.118

0.120

0.122

0.124

sin2 θ23

∑
k
m

k
/
eV

0.54 0.56 0.58 0.60 0.62

0.025

0.030

0.035

0.040

sin2 θ23

|〈
m

〉|
/
eV

Cases D, D*

Figure 2. Correlations between sin2 θ23 and the Dirac CPV phase, the sum of neutrino masses,

and the effective Majorana mass in neutrinoless double beta decay, in models with (kΛ, kg) = (0, 2).

The plus (minus) sign of δ refers to the case without (with) an asterisk.
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Best fit value 2σ range 3σ range

Re τ ±0.1045 ±(0.09597− 0.1101) ±(0.09378− 0.1128)

Im τ 1.01 1.006− 1.018 1.004− 1.018

β/α 9.465 8.247− 11.14 7.693− 12.39

γ/α 0.002205 0.002032− 0.002382 0.001941− 0.002472

Re g′/g 0.233 −0.02383− 0.387 −0.02544− 0.4417

Im g′/g ±0.4924 ±(−0.592− 0.5587) ±(−0.6046− 0.5751)

vd α [MeV] 53.19

v2u g
2/Λ [eV] 0.00933

me/mµ 0.004802 0.004418− 0.005178 0.00422− 0.005383

mµ/mτ 0.0565 0.048− 0.06494 0.04317− 0.06961

r 0.02989 0.02836− 0.03148 0.02759− 0.03224

δm2 [10−5 eV2] 7.339 7.074− 7.596 6.935− 7.712

|∆m2| [10−3 eV2] 2.455 2.413− 2.494 2.392− 2.513

sin2 θ12 0.305 0.2795− 0.3313 0.2656− 0.3449

sin2 θ13 0.02125 0.01988− 0.02298 0.01912− 0.02383

sin2 θ23 0.551 0.4846− 0.5846 0.4838− 0.5999

Ordering NO

m1 [eV] 0.01746 0.01196− 0.02045 0.01185− 0.02143

m2 [eV] 0.01945 0.01477− 0.02216 0.01473− 0.02307

m3 [eV] 0.05288 0.05099− 0.05405 0.05075− 0.05452
∑

imi [eV] 0.0898 0.07774− 0.09661 0.07735− 0.09887

|〈m〉| [eV] 0.01699 0.01188− 0.01917 0.01177− 0.02002

δ/π ±1.314 ±(1.266− 1.95) ±(1.249− 1.961)

α21/π ±0.302 ±(0.2821− 0.3612) ±(0.2748− 0.3708)

α31/π ±0.8716 ±(0.8162− 1.617) ±(0.7973− 1.635)

Nσ 0.02005

Table 5a. Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

A and A∗, which refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1).
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Best fit value 2σ range 3σ range

Re τ ∓0.109 ∓(0.1051− 0.1172) ∓(0.103− 0.1197)

Im τ 1.005 0.9998− 1.007 0.9988− 1.008

β/α 0.03306 0.02799− 0.03811 0.02529− 0.04074

γ/α 0.0001307 0.0001091− 0.0001538 0.0000982− 0.0001663

Re g′/g 0.4097 0.3513− 0.5714 0.3241− 0.5989

Im g′/g ∓0.5745 ∓(0.5557− 0.5932) ∓(0.5436− 0.5944)

vd α [MeV] 893.2

v2u g
2/Λ [eV] 0.008028

me/mµ 0.004802 0.004425− 0.005175 0.004211− 0.005384

mµ/mτ 0.05649 0.04785− 0.06506 0.04318− 0.06962

r 0.0299 0.02838− 0.03144 0.02757− 0.03223

δm2 [10−5 eV2] 7.34 7.078− 7.59 6.932− 7.71

|∆m2| [10−3 eV2] 2.455 2.414− 2.494 2.393− 2.514

sin2 θ12 0.305 0.2795− 0.3314 0.2662− 0.3455

sin2 θ13 0.02125 0.0199− 0.02302 0.01914− 0.02383

sin2 θ23 0.551 0.4503− 0.5852 0.4322− 0.601

Ordering NO

m1 [eV] 0.02074 0.01969− 0.02374 0.01918− 0.02428

m2 [eV] 0.02244 0.02148− 0.02522 0.02101− 0.02574

m3 [eV] 0.05406 0.05345− 0.05541 0.05314− 0.05577
∑

imi [eV] 0.09724 0.09473− 0.1043 0.0935− 0.1056

|〈m〉| [eV] 0.01983 0.01889− 0.02229 0.01847− 0.02275

δ/π ±1.919 ±(1.895− 1.968) ±(1.882− 1.977)

α21/π ±1.704 ±(1.689− 1.716) ±(1.681− 1.722)

α31/π ±1.539 ±(1.502− 1.605) ±(1.484− 1.618)

Nσ 0.02435

Table 5b. Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

B and B∗, which refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1).
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Best fit value 2σ range 3σ range

Re τ ∓0.1435 ∓(0.137− 0.1615) ∓(0.1222− 0.168)

Im τ 1.523 1.147− 1.572 1.088− 1.594

β/α 17.82 10.99− 21.38 9.32− 23.66

γ/α 0.003243 0.002518− 0.003565 0.00227− 0.003733

Re g′/g −0.8714 −(0.8209− 1.132) −(0.7956− 1.148)

Im g′/g ∓2.094 ∓(1.439− 2.157) ∓(1.409− 2.182)

vd α [MeV] 71.26

v2u g
2/Λ [eV] 0.008173

me/mµ 0.004797 0.00442− 0.005183 0.004215− 0.005378

mµ/mτ 0.05655 0.04806− 0.06507 0.04348− 0.0698

r 0.0301 0.02857− 0.03162 0.0278− 0.03246

δm2 [10−5 eV2] 7.346 7.084− 7.589 6.946− 7.717

|∆m2| [10−3 eV2] 2.44 2.4− 2.479 2.377− 2.498

sin2 θ12 0.303 0.278− 0.3288 0.2657− 0.3436

sin2 θ13 0.02175 0.02035− 0.0234 0.01957− 0.0242

sin2 θ23 0.5571 0.4905− 0.588 0.4551− 0.6026

Ordering IO

m1 [eV] 0.0513 0.04938− 0.0518 0.04882− 0.05207

m2 [eV] 0.05201 0.05012− 0.05248 0.04958− 0.05274

m3 [eV] 0.01512 0.00576− 0.01594 0.00316− 0.0163
∑

imi [eV] 0.1184 0.1053− 0.1201 0.102− 0.1208

|〈m〉| [eV] 0.0263 0.0239− 0.04266 0.02288− 0.04551

δ/π ±1.098 ±(1.026− 1.278) ±(0.98− 1.289)

α21/π ±1.241 ±(1.162− 1.651) ±(1.113− 1.758)

α31/π ±0.2487 ±(0.1474− 0.3168) ±(0.069− 0.346)

Nσ 0.0357

Table 5c. Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

C and C∗, which refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1).
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Best fit value 2σ range 3σ range

Re τ ±0.179 ±(0.165− 0.1963) ±(0.1589− 0.199)

Im τ 1.397 1.262− 1.496 1.236− 1.529

β/α 15.35 11.67− 18.66 10.79− 21.09

γ/α 0.002924 0.002582− 0.003289 0.002443− 0.003459

Re g′/g −1.32 −(1.189− 1.438) −(1.131− 1.447)

Im g′/g ±1.733 ±(1.357− 1.948) ±(1.306− 2.017)

vd α [MeV] 68.42

v2u g
2/Λ [eV] 0.00893

me/mµ 0.004786 0.004431− 0.005186 0.004221− 0.005386

mµ/mτ 0.0554 0.0481− 0.06502 0.04343− 0.06968

r 0.03023 0.02859− 0.03163 0.02775− 0.03244

δm2 [10−5 eV2] 7.367 7.088− 7.59 6.937− 7.713

|∆m2| [10−3 eV2] 2.437 2.4− 2.479 2.378− 2.499

sin2 θ12 0.3031 0.2791− 0.3286 0.2657− 0.3436

sin2 θ13 0.02184 0.02038− 0.02337 0.01954− 0.0242

sin2 θ23 0.5577 0.5509− 0.5869 0.5482− 0.6013

Ordering IO

m1 [eV] 0.05122 0.05051− 0.05185 0.05023− 0.05212

m2 [eV] 0.05193 0.05125− 0.05253 0.05098− 0.05279

m3 [eV] 0.01495 0.01293− 0.01613 0.01223− 0.01649
∑

imi [eV] 0.1181 0.1149− 0.1203 0.1139− 0.1212

|〈m〉| [eV] 0.03104 0.02666− 0.03597 0.02515− 0.03677

δ/π ±1.384 ±(1.32− 1.4245) ±(1.271− 1.437)

α21/π ±1.343 ±(1.227− 1.457) ±(1.171− 1.479)

α31/π ±0.806 ±(0.561− 1.092) ±(0.448− 1.149)

Nσ 0.3811

Table 5d. Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

D and D∗, which refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1).
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Best fit value 3σ range

Re τ ∓0.4996 ∓(0.48− 0.5084)

Im τ 1.309 1.246− 1.385

β/α 0.000243 0.0002004− 0.0002864

γ/α 0.03335 0.02799− 0.03926

Re g′/g −0.06454 −(0.01697− 0.1215)

Im g′/g ∓0.569 ∓(0.4572− 0.6564)

vd α [MeV] 1125

v2u g
2/Λ [eV] 0.0174

me/mµ 0.004797 0.004393− 0.005197

mµ/mτ 0.05626 0.04741− 0.0654

r 0.02985 0.02826− 0.03146

δm2 [10−5 eV2] 7.332 7.055− 7.593

|∆m2| [10−3 eV2] 2.456 2.413− 2.497

sin2 θ12 0.311 0.2895− 0.3375

sin2 θ13 0.02185 0.02041− 0.02351

sin2 θ23 0.4469 0.43− 0.4614

Ordering NO

m1 [eV] 0.01774 0.01703− 0.01837

m2 [eV] 0.0197 0.01906− 0.02025

m3 [eV] 0.05299 0.05251− 0.05346
∑

imi [eV] 0.09043 0.08874− 0.09195

|〈m〉| [eV] 0.006967 0.006482− 0.007288

δ/π ±1.601 ±(1.287− 1.828)

α21/π ±1.093 ±(0.8593− 1.178)

α31/π ±0.7363 ±(0.3334− 0.9643)

Nσ 2.147

Table 5e. Best fit values along with 3σ ranges of the parameters and observables in cases E and

E∗, which refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1).
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Subcase ρL = ρN ρL 6= ρN

Re τ ±0.1119 ±0.2286

Im τ 1.458 0.9736

β/α 0.0002667 0.003258

γ/α 0.03676 8.267

Re g′/g 0.9038 1.677

Im g′/g ∓0.3198 ±0.004508

vd α [MeV] 1198 49.05

v2u g
2/Λ [eV] 0.0352 0.002206

me/mµ 0.004799 0.0048

mµ/mτ 0.05661 0.05657

r 0.02999 0.03093

δm2 [10−5 eV2] 7.355 7.509

|∆m2| [10−3 eV2] 2.453 2.428

sin2 θ12 0.4165 0.3859

sin2 θ13 0.02125 0.02175

sin2 θ23 0.5624 0.8239

Ordering NO NO

m1 [eV] 0.01284 0.01027

m2 [eV] 0.01544 0.01343

m3 [eV] 0.05152 0.0507
∑

imi [eV] 0.07979 0.0744

|〈m〉| [eV] 7.381 · 10−8 7.341 · 10−6

δ/π ±1.705 ±1.998

α21/π ±0.9838 ±0.9992

α31/π ±0.5056 ±0.9989

Nσ 6.68 16.44

Table 6. Best fit values of the parameters and observables in the models with (kΛ, kg) = (2, 2).
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5 Residual symmetries

Residual symmetries arise whenever the VEV of the modulus τ breaks the modular group

Γ only partially, i.e., the little group (stabiliser) of 〈τ〉 is non-trivial. There are only 2

inequivalent finite10 points with non-trivial little groups, namely 〈τ〉 = −1/2+ i
√
3/2 ≡ τL

(“the left cusp”) with residual symmetry Z
ST
3 = {I, ST, (ST )2}, and 〈τ〉 = i ≡ τC with

residual symmetry Z
S
2 = {I, S} (see, e.g., [22]). Indeed, the actions of ST on τL and

of S on τC leave respectively τL and τC unchanged. Any other point with non-trivial

little group is related to τL or τC by a modular transformation, and is therefore physically

equivalent to it. For example, τR = +1/2+i
√
3/2 (“the right cusp”) has residual symmetry

Z
TS
3 = {I, TS, (TS)2}, and it is related to τL by a T transformation: τR = T τL. With one

modulus field τ we can have either the Z3 or the Z2 residual symmetry, and it will be a

common symmetry of the charged lepton and neutrino sectors of the theory.

In the basis we have employed (see also appendix A.1), the triplet irreps of the gener-

ators S and T have the form:

S = ± 1

3







−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2






, T = ± 1

3







−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω






, (5.1)

where the plus (minus) sign corresponds to the representation 3 (representation 3′) of

S4. It follows from eq. (5.1) that in the basis we are using the product of the triplet

representations of S and T generators is a diagonal matrix given by:11

ST =







1 0 0

0 ω2 0

0 0 ω






. (5.2)

In the left cusp point 〈τ〉 = τL, corresponding to the residual symmetry Z
ST
3 , the five

independent modular forms take the following values:

Y1 = 0 , Y3 = 0 , Y5 = 0 ,

Y2 = i 2.11219 , Y4 = −i 2.43895 , Y2/Y4 = −
√
3

2
.

(5.3)

In the point 〈τ〉 = τC , invariant under the action of the S generator and in which we

have the residual symmetry Z
S
2 , the modular forms Y2, Y3, Y4 and Y5 can be expressed in

terms of the form Y1:

Y2 = −ω2 Y1 , Y3 =
2

3
√
3
ω Y1 ,

Y4 =
2

3
√
3
(1 +

√
6)ω2 Y1 , Y5 =

2

3
√
3
(1−

√
6)Y1 .

(5.4)

At 〈τ〉 = i (= τC) we have Y1(τ = i) = 0.7107 + i 1.231.

10Note that 〈τ〉 = i∞ breaks Γ4 to Z
T
4 = {I, T, T 2, T 3}.

11The form we get in the triplet representation of ST coincides with the form of the triplet representation

of the S4 generator T in a different presentation for the S4 generators (see, e.g., [6] and appendix F).
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We could not find models with one modulus field τ and residual symmetry Z
ST
3 or ZS

2 ,

which are phenomenologically viable. Since the residual symmetry is the same for both the

charged lepton and neutrino mass matrices,12 the resulting neutrino mixing matrix always

contains zeros, which is ruled out by the data.

We will consider next the case of having two moduli fields in the theory — one, τ ℓ,

responsible via its VEV for the breaking of the modular S4 symmetry in the charged lepton

sector, and a second one, τν , breaking the modular symmetry in the neutrino sector. This

will be done on purely phenomenological grounds: we will not attempt to construct a model

in which the discussed possibility is realised; we are not even sure such models exist.

We will assume further that we have a residual ZST
3 symmetry in the charged lepton

sector and a residual ZS
2 symmetry in the neutrino sector. Under the indicated conditions,

one of the charged lepton masses vanishes: the first column of eq. (3.28) is exactly zero at

τL, which follows immediately from eq. (5.3). However, it is possible to render all masses

non-vanishing from the outset if we replace the last Yukawa interaction term in eq. (3.22)

with a singlet containing modular forms of weight 6:

α (Ec
1 LY3′)

1
Hd + β

(

Ec
2 LY

(4)
3

)

1

Hd + γ
(

Ec
3 LY

(6)
3

)

1

Hd , (5.5)

where

Y
(6)
3

=







Y 2
2 Y4 − Y 2

1 Y5
Y 2
2 Y5 − Y 2

1 Y3
Y 2
2 Y3 − Y 2

1 Y4






(5.6)

is the only modular form triplet of weight 6 transforming in the 3 of S4. In this case we

get diagonal MeM
†
e at τL:

MeM
†
e = v2d diag

(

γ2 |Y 2
2 Y4|2, β2 |Y2 Y4|2, α2 |Y4|2

)

. (5.7)

The mixing is therefore determined by the neutrino mass matrix having a Z
S
2 symmetry.

It is possible to obtain phenomenologically viable solutions in this scenario. For example, in

the case (kΛ, kg) = (4, 0), the neutrino mass matrix is given by eqs. (3.6), (3.12) and (3.13),

and we find a point

τν = i, Λ′/Λ = 0.3836 + 1.0894i, Λ′′/Λ = −0.3631 + 0.0039i, (5.8)

consistent with the experimental data at 1σ C.L. (for NO spectrum):

r=0.0299, δm2=7.34·10−5 eV2, ∆m2=2.455·10−3 eV2,

sin2 θ12=0.3187, sin2 θ13=0.02144, sin2 θ23=0.5512,

m1=0.03437 eV, m2=0.03542 eV, m3=0.0606 eV,
∑

imi=0.1304 eV, |〈m〉|=0.0224 eV,

δ/π=1.5738, α21/π=1.3793, α31/π=1.2281.

(5.9)

In this case the three masses, three mixing angles and three CPV phases in the neutrino

sector are described by three real parameters, v2u g
2/Λ, |Λ′/Λ| and |Λ′′/Λ|, and two phases,

12Namely, ρL(γ)
†MeM

†
eρL(γ) = MeM

†
e and ρL(γ)

TMνρL(γ) = Mν , where γ = ST or S.
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Figure 3. Correlations between sin2 θ12 and sin2 θ13 (left) and between sin2 θ23 and δ (right) in a

model with residual symmetry.

arg(Λ′/Λ) and arg(Λ′′/Λ). As a consequence, the values of certain neutrino mass and

mixing observables should be correlated. Indeed, through a numerical scan in the vicinity

of the point given by eq. (5.8) (keeping τν = i fixed) we find strong correlations between

sin2 θ12 and sin2 θ13, and between sin2 θ23 and δ, as shown in figure 3.

We note that instead of considering two different moduli fields, one could also realise

this scenario with only one modulus τ = τν and extra flavon fields. Below we detail such

an alternative model, leading to a diagonal charged lepton mass matrix while preserving

at leading order the above results for the neutrino sector. However, the joint description

of the lepton and quark flavour, most likely, will require the introduction of two different

moduli which develop different VEVs.

Suppose that Ec and L are a 3 and a 3′ triplet, respectively, and the combination EcL

has zero modular weight. Let us introduce three flavon fields of zero weight, φ1′ , φ3 and

φ3′ , which develop the following VEVs preserving Z
ST
3 :

〈φ1′〉 = v1 , 〈φ3〉 = (v2, 0, 0) , 〈φ3′〉 = (v3, 0, 0) . (5.10)

Let us also assume that the flavon field VEVs are suppressed with respect to the scale of

flavon dynamics Λ̃, vi/Λ̃ ≪ 1, so that only the lowest dimension effective operators in the

superpotential are relevant.

Since it is impossible to form a trivial singlet from a 3 ⊗ 3′ tensor product, the term

(EcL)1Hd is not present. Therefore, the charged lepton mass matrix originates from the

linear couplings of EcL to flavons:

α(EcLφ1′)1Hd + β(EcLφ3)1Hd + γ(EcLφ3′)1Hd , (5.11)

which lead to the following result:

Me = vd α













1 0 0

0 0 1

0 1 0






+

β

α







0 0 0

0 0 −1

0 1 0






+

γ

α







2 0 0

0 0 −1

0 −1 0












, (5.12)
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where we have reabsorbed the non-zero VEVs from eq. (5.10) into α, β and γ. The relevant

product is diagonal:

MeM
†
e = v2d α

2 diag

(

∣

∣

∣1 + 2
γ

α

∣

∣

∣

2
,

∣

∣

∣

∣

1− β + γ

α

∣

∣

∣

∣

2

,

∣

∣

∣

∣

1 +
β − γ

α

∣

∣

∣

∣

2
)

, (5.13)

making it possible to fit the charged lepton masses, by setting vd α ≈ 660MeV, β/α ≈ 1.34,

and 1 + 2 γ/α ≈ −7.7× 10−4, with α ∼ β ∼ γ. The introduction of the above flavon fields

will imply corrections to the neutrino sector of the theory of the order of vi/Λ̃. These can

be at the level of a few percent for fairly small tan β ≡ vu/vd.

As a final remark, we comment on the famed tri-bimaximal (TBM) mixing [23, 24]

(see also [25]) in the context of considered residual symmetries in appendix F.

6 Potential sources of corrections

One needs to address three potential sources of corrections, namely, SUSY-breaking effects,

the renormalisation group (RG) running, and corrections to the Kähler potential given in

eq. (2.11). The first two effects were analysed in detail in ref. [10] for closely related

modular-invariant models based on the group A4.

As far as SUSY-breaking effects are concerned, the results of ref. [10] are applicable

to the scenario under study. Namely, as demonstrated therein, corrections to masses and

mixing which may not be absorbed in a redefinition of superpotential parameters can still

be made negligible, provided one realises a sufficient separation between i) the scale M of

communication of SUSY-breaking effects to the visible sector and ii) the characteristic scale

mSUSY ∼ F/M of the soft terms, with F being the spurion VEV assumed to parameterise

the breaking of supersymmetry. Asking for such a gap does not hinder dramatically the

choice of possible values for mSUSY.

RG effects on neutrino mixing parameters strongly depend on i) tan β and ii) the

absolute neutrino mass scale mmin. The effects generically become larger when either tan β

or mmin are increased (see, e.g., [26]). Furthermore, for the IO neutrino mass spectrum,

these effects can be sizeable even for mmin → 0, since in this case the one-loop β-functions

for θ12 and δ are enhanced by ∆m2
23/∆m2

21 independently of mmin (see table 2 in [26]).

It has been found in ref. [10] that for a model predicting the normal ordering of

neutrinos masses with mmin ≈ 0.01 eV, the RG effects on the predictions of the neutrino

parameters are negligible even for relatively large value of tan β = 25. For the models

considered in our study, which lead to the NO spectrum, mmin ≈ 0.02 eV (0.01 eV) for

cases A(∗), B(∗) and E(∗) in tables 5a, 5b and 5e, respectively (for the case characterised

by kΛ = kg = 2 in table 6). Thus, we expect the RG corrections to the predictions in

tables 5a, 5b, 5e and 6 to be negligible.

For the second model of ref. [10], which predicts the IO spectrum, it has been shown

that for tan β . 10, the RG effects are not sizeable. It has been also demonstrated that

the effects depend moderately on the SUSY breaking scale mSUSY, with the effects being

somewhat less important for larger mSUSY (mSUSY = 104GeV and 108GeV have been

compared). The same conclusions are expected to hold for our cases C(∗) and D(∗) in
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tables 5c and 5d, respectively, as well as for the case characterised by (kΛ, kg) = (2, 0) in

table 4.

We also would like to note that the case in table 4 (without taking the RG effects

into account) leads to a value of sin2 θ12 which is larger than the upper bound of the

experimentally allowed 3σ range. If one takes into account the RG evolution of the leptonic

parameters, assuming the predictions in tables 4 to hold at the GUT scale, ΛGUT ∼ 1015−
1016GeV, the situation, in the general case, will worsen. The reason for this is the fact

that sin2 θ12 increases when running from high to low energies, as can be seen in figure 2

in [26] (unless the Majorana phase α21 ≈ π, which is not the case in table 4).

In general, one should also take into account threshold corrections. They depend on

the specific SUSY spectrum and, as argued in ref. [10], can be rendered unimportant. This

naturally happens if tan β is small.

Finally, modifications to the Kähler potential can seriously compromise the predictive

power of the modular scenario. According to ref. [19], there exist compactifications which

do not lead to dangerous instanton contributions to the Kähler potential. Given the above,

and in consonance with ref. [7], we are taking the simple choice in eq. (2.11) as a defining

pillar of the bottom-up modular scheme.

7 Summary and conclusions

In the present article, we have continued to develop a new and very interesting approach

to flavour proposed in ref. [7]. This approach is based on invariance of the physical su-

persymmetric action under the modular group. Assuming, in addition, that the matter

superfields transform in irreps of the finite modular group Γ4 ≃ S4, we have investigated

the minimal scenario in which the only source of modular symmetry breaking is the VEV

of the modulus field τ and no flavons are introduced. Yukawa couplings in such minimal

class of models are modular forms of level 4, transforming in certain irreps of Γ4.

Using the basis for the lowest non-trivial weight (k = 2) modular forms found in

ref. [9], we have constructed in a systematic way minimal models in which the light neutrino

masses are generated via the type I seesaw mechanism. After stating several simplifying

assumptions formulated in the beginning of section 3, we have classified the minimal models

according to the weights of the modular forms entering i) the Majorana mass-like term of

the gauge singlet neutrinos (weight kΛ), ii) the neutrino Yukawa interaction term (weight

kg), and iii) the charged lepton Yukawa interaction terms (weights kαi
, i = 1, 2, 3), see

eq. (3.2). We have shown that the most economic (in terms of weights) assignment, which

yields the correct charged lepton mass spectrum, is (kα1
, kα2

, kα3
) = (2, 4, 4). Adhering to

the corresponding matrix of charged lepton Yukawa couplings given in eq. (3.28), we have

demonstrated that in order to have a relatively small number of free parameters (≤ 8),

both weights kΛ and kg have to be ≤ 2 (table 2).

Further, we have performed a thorough numerical analysis of the models with

(kΛ, kg) = (2, 0), (0, 2) and (2, 2).13 We have found that the models characterised by

13The weights (kΛ, kg) = (0, 0) lead to a fully degenerate neutrino mass spectrum in contradiction with

the neutrino oscillation data.
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(kΛ, kg) = (2, 0) and (2, 2) do not provide a satisfactory description of the neutrino mixing

angles (tables 4 and 6). The models with (kΛ, kg) = (0, 2) instead not only successfully

accommodate the data on the charged lepton masses, the neutrino mass-squared differences

and the mixing angles, but also lead to predictions for the absolute neutrino mass scale and

the Dirac and Majorana CPV phases. Our numerical search has revealed 10 local minima

of the ∆χ2 function. Each of them is characterised by certain values of 〈τ〉 (figure 1) and

other free parameters. By investigating regions around these minima we have calculated

2σ and 3σ ranges of the observables, which are summarised in tables 5a–5e. Moreover, our

numerical procedure has shown that the atmospheric mixing parameter sin2 θ23 is corre-

lated with i) the Dirac CPV phase δ, ii) the sum of neutrino masses, and iii) the effective

Majorana mass in neutrinoless double beta decay. We present these correlations in figure 2.

The obtained values of 〈τ〉 in the minima of the ∆χ2 function lead to a very intriguing

observation. Namely, 6 of them, which occur very close to the boundary of the fundamental

domain D of the modular group, correspond to the NO neutrino mass spectrum, while 4

others, which lie relatively far from the boundary, correspond to the IO spectrum (figure 1).

The structure of a scalar potential for the modulus field τ has been previously studied in

the context of string compactifications and supergravity, and it has been conjectured in

ref. [19] that all extrema of this potential occur on the boundary of D and on the imaginary

axis (Re τ = 0). If — as suggested by global analyses of the neutrino oscillation data —

it turns out that the NO spectrum is realised in Nature, this could be considered as an

additional indication in favour of the considered modular symmetry approach to flavour.

Finally, we have performed a residual symmetry analysis, based on the fact that the

points 〈τ〉 = i, 〈τ〉 = exp(2πi/3) and 〈τ〉 = exp(πi/3) preserve respectively the ZS
2 , Z

ST
3 and

Z
TS
3 subgroups of the modular group. While a single preserved residual symmetry cannot

lead to a viable neutrino mixing matrix, one can assume that residual symmetries of the

charged lepton and neutrino sectors are different. In this case, two moduli fields — one,

responsible for the breaking of the modular symmetry in the charged lepton sector, and a

second one breaking the modular symmetry in the neutrino sector — may be needed. We

have considered this scenario on purely phenomenological grounds with an assumption of

having a residual ZST
3 symmetry in the charged lepton sector and a residual ZS

2 symmetry

in the neutrino sector. We have provided a phenomenologically viable example for which

the charged lepton mass term (more specifically, the matrix MeM
†
e ) is diagonal, and lepton

mixing is fully determined by the neutrino mass matrix.14

In conclusion, the modular symmetry approach to flavour points to a very intriguing

connection between modular-invariant supersymmetric theories (possibly originating from

string theory) and the flavour structures observed at low energies. Its predictions will be

tested with future more precise neutrino oscillation data, with prospective results from

direct neutrino mass and neutrinoless double beta decay experiments, as well as with

improved cosmological measurements.

14In this example, the weights (kα1
, kα2

, kα3
) = (2, 4, 6) and (kΛ, kg) = (4, 0). We have pointed out that,

alternatively, instead of considering two different moduli fields, one could also realise this scenario with one

modulus τ = τν and extra flavon fields. In such a model, the flavons develop particularly aligned VEVs

which are responsible for the diagonal form of the charged lepton mass term.
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A S4 group theory

A.1 Presentation and basis

S4 is the symmetric group of permutations of four objects. It contains 4! = 24 elements

and admits the five irreps 1, 1′, 2, 3 and 3′ (see, e.g., [27]). While a presentation of S4

in terms of three generators (see appendix F) is commonly used, it proves convenient to

consider in this context a presentation given in terms of two generators S and T , namely

S2 = (ST )3 = T 4 = I . (A.1)

Following the identifications described in ref. [9], from the results in ref. [28] one can find

the explicit basis for the S4 generators in different irreps which we employ in our discussion:

1 : ρ(S) = 1, ρ(T ) = 1 , (A.2)

1′ : ρ(S) = −1, ρ(T ) = −1 , (A.3)

2 : ρ(S) =

(

0 ω

ω2 0

)

, ρ(T ) =

(

0 1

1 0

)

, (A.4)

3 : ρ(S) =
1

3







−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2






, ρ(T ) =

1

3







−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω






, (A.5)

3′ : ρ(S) = −1

3







−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2






, ρ(T ) = −1

3







−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω






, (A.6)

where as usual ω = e2πi/3.

A.2 Clebsch-Gordan coefficients

For the basis given in the previous subsection, one can directly make use of the Clebsch-

Gordan coefficients listed in ref. [28], which we reproduce here for completeness. Entries

– 31 –



J
H
E
P
0
4
(
2
0
1
9
)
0
0
5

of each multiplet entering the tensor product are denoted by αi and βi.

1 ⊗ r = r ∼ αβi

1′ ⊗ 1′ = 1 ∼ αβ

1′ ⊗ 2 = 2 ∼
(

αβ1

−αβ2

)

1′ ⊗ 3 = 3′ ∼







αβ1

αβ2

αβ3







1′ ⊗ 3′ = 3 ∼







αβ1

αβ2

αβ3







(A.7)

2 ⊗ 2 = 1 ⊕ 1′ ⊕ 2



























1 ∼ α1β2 + α2β1

1′ ∼ α1β2 − α2β1

2 ∼
(

α2 β2

α1 β1

)

2 ⊗ 3 = 3 ⊕ 3′











































3 ∼







α1 β2 + α2 β3

α1 β3 + α2 β1

α1 β1 + α2 β2







3′ ∼







α1 β2 − α2 β3

α1 β3 − α2 β1

α1 β1 − α2 β2







2 ⊗ 3′ = 3 ⊕ 3′











































3 ∼







α1 β2 − α2 β3

α1 β3 − α2 β1

α1 β1 − α2 β2







3′ ∼







α1 β2 + α2 β3

α1 β3 + α2 β1

α1 β1 + α2 β2







(A.8)

3 ⊗ 3 = 3′ ⊗ 3′ = 1 ⊕ 2 ⊕ 3 ⊕ 3′











































































1 ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1

α3β3 + α1β2 + α2β1

)

3 ∼







2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1







3′ ∼







α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3







(A.9)
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3 ⊗ 3′ = 1′ ⊕ 2 ⊕ 3 ⊕ 3′











































































1′ ∼ α1β1 + α2β3 + α3β2

2 ∼
(

α2β2 + α1β3 + α3β1

−α3β3 − α1β2 − α2β1

)

3 ∼







α2β3 − α3β2

α1β2 − α2β1

α3β1 − α1β3







3′ ∼







2α1β1 − α2β3 − α3β2

2α3β3 − α1β2 − α2β1

2α2β2 − α1β3 − α3β1







(A.10)

B Higher weight modular forms

In this appendix we present the modular multiplets arising at weights 6, 8 and 10. The

linear space of modular forms of weight k (and level N = 4, corresponding to Γ4 ≃ S4) has

dimension 2k + 1. At weight k = 6, one has the irreps:

Y
(6)
1

= Y 3
1 + Y 3

2 , Y
(6)
1′ = Y 3

1 − Y 3
2 ,

Y
(6)
2

=

(

Y 2
1 Y2

Y1Y
2
2

)

, Y
(6)
3

=







Y 2
2 Y4 − Y 2

1 Y5

Y 2
2 Y5 − Y 2

1 Y3

Y 2
2 Y3 − Y 2

1 Y4






,

Y
(6)
3′,1 =







Y1Y2Y3

Y1Y2Y4

Y1Y2Y5






, Y

(6)
3′,2 =







Y5Y
2
1 + Y 2

2 Y4

Y3Y
2
1 + Y 2

2 Y5

Y4Y
2
1 + Y 2

2 Y3






,

(B.1)

corresponding to a total dimension of 13. At weight k = 8 one has

Y
(8)
1

= Y 2
1 Y

2
2 , Y

(8)
2,1 =

(

Y1Y
3
2

Y 3
1 Y2

)

, Y
(8)
2,2 =

(

Y 3
1 − Y 3

2

)

(

Y1

−Y2

)

,

Y
(8)
3,1 =

(

Y 3
1 − Y 3

2

)







Y3

Y4

Y5






, Y

(8)
3,2 =







Y 2
1 Y2Y4 − Y1Y

2
2 Y5

Y 2
1 Y2Y5 − Y1Y

2
2 Y3

Y 2
1 Y2Y3 − Y1Y

2
2 Y4






,

Y
(8)
3′,1 =

(

Y 3
1 + Y 3

2

)







Y3

Y4

Y5






, Y

(8)
3′,2 =







Y 2
1 Y2Y4 + Y1Y

2
2 Y5

Y1Y
2
2 Y3 + Y 2

1 Y2Y5

Y 2
1 Y2Y3 + Y1Y

2
2 Y4






,

(B.2)
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corresponding to a total dimension of 17. Finally, at weight k = 10 one has

Y
(10)
1

= Y2Y
4
1 + Y 4

2 Y1 , Y
(10)
1′ = Y1Y2

(

Y 3
1 − Y 3

2

)

,

Y
(10)
2,1 =

(

Y 3
1 Y

2
2

Y 2
1 Y

3
2

)

, Y
(10)
2,2 =

(

Y 3
1 − Y 3

2

)

(

−Y 2
2

Y 2
1

)

,

Y
(10)
3,1 =







Y1Y
3
2 Y4 − Y 3

1 Y2Y5

Y1Y
3
2 Y5 − Y 3

1 Y2Y3

Y1Y
3
2 Y3 − Y 3

1 Y2Y4






, Y

(10)
3,2 =

(

Y 3
1 − Y 3

2

)







Y1Y4 + Y2Y5

Y2Y3 + Y1Y5

Y1Y3 + Y2Y4






,

Y
(10)
3′,1 =







Y 2
1 Y

2
2 Y3

Y 2
1 Y

2
2 Y4

Y 2
1 Y

2
2 Y5






, Y

(10)
3′,2 =







Y1Y
3
2 Y4 + Y 3

1 Y2Y5

Y 3
1 Y2Y3 + Y1Y

3
2 Y5

Y1Y
3
2 Y3 + Y 3

1 Y2Y4






,

Y
(10)
3′,3 =

(

Y 3
1 − Y 3

2

)







Y1Y4 − Y2Y5

Y1Y5 − Y2Y3

Y1Y3 − Y2Y4






,

(B.3)

corresponding to a total dimension of 21. The correct dimensionality of each linear space is

guaranteed via an appropriate number of constraints relating products of modular forms.

C Numerical procedure

Our goal is to explore phenomenologically viable regions in the parameter space, i.e.,

{pi : l(pi) ≤ lmax} , (C.1)

where l(pi) is the “loss” objective function, which we define as l(pi) ≡ Nσ(pi) ≡
√

∆χ2(pi),

and lmax is the threshold, which we set to 3, so that it corresponds to compatibility with

the observed data at 3σ confidence level.

We decompose this problem into two parts: first, we find local minima p
(1)
i , p

(2)
i , . . .

of l(pi), and then we explore connected regions around the minima p
(n)
i that satisfy the

constraint l (pi) ≤ lmax.

To find local minima of l(pi), we use the following algorithm:

1. Pick parameters pi at random until we find a “good enough” point such that l(pi) <

l0.01. The threshold l0.01 is a 0.01 quantile of the l(pi) distribution, i.e., it is chosen

in such a way that we accept roughly 1% points. We use this preliminary step to

filter out unpromising points which are very far from the regions of interest. Note

that typically l0.01 > lmax, i.e. the regions of interest cover only a tiny fraction of the

parameter space, so this step is needed to speed up the computation.

2. Run a conventional gradient-based local minimisation algorithm for the objective

function l(pi) starting from this point. If the resulting local minimum satisfies the

constraint l ≤ lmax, then add it to a set of viable minima.

3. Repeat steps 1 and 2 until we stop finding any new viable minima.
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Figure 4. Correlations between the parameters Im τ , Re g′/g and Im g′/g in cases A and A∗, which

refer to (kΛ, kg) = (0, 2) and to a certain region in the τ plane (see figure 1). The plus (minus)

signs refer to the case without (with) an asterisk.

At this point, we have a set of distinct viable minima, so for each of them we have to

explore the viable region around them. A simple approach to the problem is to vary param-

eters pi individually until the objective function l(pi) increases to lmax. It corresponds to

approximation of the viable region with a parallelepiped. A more sophisticated approach is

to approximate the viable region with an ellipsoid by expanding l(pi) around the minimum

up to the second order. However, neither of these approaches work well in our setting

due to peculiar shapes of viable regions, see, e.g., figure 4. Typically, only a small part of

a viable region can be approximated with a parallelepiped or an ellipsoid, therefore such

approximations lead to a significant underestimation of the full viable parameter space.

Instead, we explore a viable region with a random walk process known as the Metropolis

algorithm. The algorithm mimics the Brownian motion of a probe particle in a potential.

The procedure is as follows:

1. Define a “potential”

V (pi) =

{

l(pi) , if l(pi) ≤ l′max ,

+∞ , otherwise.
(C.2)

We set l′max = 5 > lmax in order to make the boundary l(pi) = lmax clearly visible in

the plots.

2. Start a sequence with any point p
(0)
i from the viable region, e.g., the local minimum

found previously.

3. At iteration t, generate a candidate point p′i according to a Gaussian distribution

centred at p
(t)
i with covariance Σ = diag(σ2

1, . . . , σ
2
6), where σi are “step sizes” along

different axes, which have to be tuned.

4. Accept the candidate point with probability α = min
[

1, exp
(

(V (p
(t)
i )− V (p′i))/T

)]

,

where T is the “temperature” to be tuned.

5. Repeat steps 3 and 4 until the region is fully explored.
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One can show that the resulting sequence is distributed according to the Boltzmann

(Gibbs) distribution P (pi) ∝ exp (−V (pi)/T ), which explains our choice of the poten-

tial V (pi).

D Complex conjugation of modular forms

Suppose that fi(τ) is a modular multiplet of weight k and level N , i.e. fi(τ) are holomorphic

functions transforming under the modular group Γ as given by eq. (2.7). Let us define

f̃i(τ) ≡ f∗
i (−τ∗). f̃i(τ) are holomorphic and well-defined in the upper half-plane. Under

the modular group they transform as

f̃i

(

aτ + b

cτ + d

)

= f∗
i

(

−aτ∗ + b

cτ∗ + d

)

= f∗
i

(

a(−τ∗) + (−b)

(−c)(−τ∗) + d

)

=

[

((−c)(−τ∗) + d)k ρij

((

a −b

−c d

))

fj(−τ∗)

]∗

= (cτ + d)kρ∗ij

((

a −b

−c d

))

f̃j(τ) .

(D.1)

Note that ρ∗ij
((

a −b
−c d

))

is a well-defined unitary representation of ΓN , since

(

a b

c d

)

7→
(

a −b

−c d

)

(D.2)

is an automorphism of Γ which preserves Γ(N).

From eq. (D.1) it follows that f̃i(τ) is a modular multiplet of the same weight, level

and dimension as fi(τ). In the case of level 4 and weight 2, there is only one modular

multiplet of dimension 2, which is Y2(τ), and one modular multiplet of dimension 3, which

is Y3′(τ), so the conjugated multiplets Y ∗
2
(−τ∗) and Y ∗

3′(−τ∗) should be related by linear

transformations to Y2(τ) and Y3′(τ), respectively. From the q-expansions one can find that

these transformations coincide up to a sign with the inverse of the modular transformation

T in the corresponding representation:

Y ∗
2 (−τ∗) = −ρ2

(

T−1
)

Y2(τ),

Y ∗
3′(−τ∗) = −ρ3′

(

T−1
)

Y3′(τ).
(D.3)

E Correspondence to the Weinberg operator models

Reference [9] studies modular S4 models in which the neutrino masses are generated via

the supersymmetric Weinberg operator. One might expect that seesaw type I modular S4

models at low energies should correspond to a subclass of the Weinberg operator modular

S4 models. However, this is not the case for most choices of modular weights of N c
i .

Namely, in the case kN 6= 0 ⇔ kΛ 6= 0 the mass matrix M of the heavy neutrinos

N c depends explicitly on τ . The effective light neutrino mass matrix Mν obtained by

integrating out N c includes the inverse of M (see eq. (3.6)), so its entries are polynomials of
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the modular forms divided by detM . It is straightforward to check that detM is a modular

singlet of weight 6kN which depends non-trivially on τ . Moreover, such a modular singlet

vanishes for certain values of τ (see, e.g., [22]).15 For example, in the case kN = 1 ⇔ kΛ = 2

the matrix M is given by eq. (3.10), and detM ∝ Y
(6)
1

= Y 3
1 + Y 3

2 vanishes at τ = τC = i

as follows from eq. (5.4). Therefore, the resulting light neutrino mass matrix Mν is non-

analytic in τ . On the contrary, the neutrino mass matrix originating from the Weinberg

operator without the seesaw mechanism is analytic in τ by construction.

The only choice of kN which saves analyticity is kN = 0 ⇔ kΛ = 0. Indeed, the

mass matrix for the heavy neutrinos is independent of τ in this case, as can be seen from

eq. (3.8). Therefore, the heavy neutrinos can be safely integrated out without loss of

analyticity, leading to a Weinberg operator modular S4 model.

For the phenomenologically viable case (kΛ, kg) = (0, 2) considered in this article and

corresponding to kL = 2 (see eq. (3.3)), one can show by direct calculation that the light

neutrino mass matrix Mν coincides with the light neutrino mass matrix from ref. [9] in the

case kL = 2 (model II therein) with a specific choice of parameters:



























(g/g′)W = 2
1− 4

9 (g
′/g)2

1 + 4
9 (g

′/g)2
,

(g′′/g′)W = 2
(g′/g)

(

1 + 2
3
√
3
(g′/g)

)

1 + 4
9 (g

′/g)2
,

for ρN = ρL ,



















(g/g′)W = −2 ,

(g′′/g′)W = 2
(g′/g)

1− 2√
3
(g′/g)

,

for ρN 6= ρL .

(E.1)

Here g′/g is the light neutrino mass matrix parameter as defined in this article in eqs. (3.15)

and (3.16), and (g/g′)W, (g′′/g′)W are the corresponding parameters of model II as defined

in ref. [9]. Note that the different subcases ρN = ρL and ρN 6= ρL translate into two different

subspaces of codimension 2 of the parameter space of model II. Moreover, since the charged

lepton mass matrices are the same in these models, they lead to the same observables. One

can check, for instance, that the best fit values presented in tables 5a–5e can be realised in

the Weinberg operator model II by a transformation of parameters according to eq. (E.1).

F Residual symmetries and tri-bimaximal mixing

It is interesting to check whether TBM mixing [23, 24] (see also [25]) can be realised with

the residual symmetries corresponding to the self-dual points. The presentation of S4 which

15In this case, it is actually impossible to integrate out all Nc
i for such values of τ , because detM = 0

implies that at least one of the Nc
i fields is massless.
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naturally leads to the TBM mixing matrix

UTBM =













√

2
3

√

1
3 0

−
√

1
6

√

1
3 −

√

1
2

−
√

1
6

√

1
3

√

1
2













(F.1)

involves three generators S̃, T̃ and Ũ [29], satisfying [30]

S̃2 = T̃ 3 = Ũ2 = (S̃T̃ )3 = (S̃Ũ)2 = (T̃ Ũ)2 = (S̃T̃ Ũ)4 = I . (F.2)

In the basis for S4 from [29] the matrices for these three generators in the irrep 3 read

ρ(S̃) =
1

3







−1 2 2

2 −1 2

2 2 −1






, ρ(T̃ ) =







1 0 0

0 ω2 0

0 0 ω






and ρ(Ũ) = −







1 0 0

0 0 1

0 1 0






, (F.3)

where ω = e2πi/3. It is worth noting that this presentation of S4 has been worked out

in [29] in order to connect S4 downwards to A4 generated by S̃ and T̃ . Indeed, ρ(S̃) and

ρ(T̃ ) in eq. (F.3) represent the widely known Altarelli-Feruglio basis for A4 [31]. The S̃ and

Ũ elements generate the Z
S̃
2 × Z

Ũ
2 subgroup of S4. When preserved in the neutrino sector,

this subgroup leads to TBM mixing, since ρ(S̃) and ρ(Ũ) are simultaneously diagonalised

by UTBM.

Considering the presentation of S4 in terms of two generators S and T given in

eq. (A.1), which we repeat here for convenience,

S2 = (ST )3 = T 4 = I , (F.4)

one can show that16







S = S̃T̃ S̃Ũ ,

T = T̃ 2S̃T̃ Ũ ,
or vice versa



















S̃ = T 2 ,

T̃ = ST ,

Ũ = ST 2ST 3 .

(F.5)

Thus, the preserved S generator corresponds to S̃T̃ S̃Ũ , and a 3-dimensional ρ(S̃T̃ S̃Ũ) is

not diagonalised by UTBM. In order to preserve S̃ one would need to preserve T 2. The

value of 〈τ〉 = i∞ has residual symmetry Z
T
4 = {I, T, T 2, T 3}, which contains T 2, but this

does not work because ρ(T ) itself is not diagonalised by UTBM. The question is whether

there exists a value of 〈τ〉 which preserves the Z
T 2

2 = {I, T 2} subgroup of S4. There are

only two inequivalent finite points in the 〈τ〉 plane with non-trivial little groups (τL and

τC), both of which we have considered in section 5, and they do not preserve Z
T 2

2 . Thus,

it seems rather difficult to realise TBM mixing in the considered set-up.

16We have checked this correspondence for all five irreps of S4, using eqs. (A.2)– (A.6) and the corre-

sponding expressions for ρ(S̃), ρ(T̃ ) and ρ(Ũ) from appendix A of [30]. Note that due to the choice of tr(Ũ)

made in ref. [30], our irrep 3 (3′) corresponds to their 3
′ (3).
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