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ABSTRACT
Summary: A set of new algorithms and software tools for auto-
matic protein identification using peptide mass fingerprinting
is presented. The software is automatic, fast and modular to
suit different laboratory needs, and it can be operated either
via a Java user interface or called from within scripts. The
software modules do peak extraction, peak filtering and pro-
tein database matching, and communicate via XML. Individual
modules can therefore easily be replaced with other software
if desired, and all intermediate results are available to the
user. The algorithms are designed to operate without human
intervention and contain several novel approaches. The per-
formance and capabilities of the software is illustrated on
spectra from different mass spectrometer manufacturers, and
the factors influencing successful identification are discussed
and quantified.
Motivation: Protein identification with mass spectrometric
methods is a key step in modern proteomics studies. Some
tools are available today for doing different steps in the ana-
lysis. Only a few commercial systems integrate all the steps
in the analysis, often for only one vendor’s hardware, and the
details of these systems are not public.
Results: A complete system for doing protein identifica-
tion with peptide mass fingerprints is presented, includ-
ing everything from peak picking to matching the database
protein. The details of the different algorithms are disclosed
so that academic researchers can have full control of their
tools.
Availability: The described software tools are available
from the Halmstad University website www.hh.se/staff/
bioinf/
Supplementary information: Details of the algorithms
are described in supporting information available from the
Halmstad University website www.hh.se/staff/bioinf/

∗To whom correspondence should be addressed.

1 INTRODUCTION
Mass spectrometry (MS) has become a standard tool
for the identification of proteins and mapping of pro-
teomes, using various technologies: matrix-assisted laser
desorption/ionization (MALDI), electrospray ionization
(ESI), ion traps, quadrupole and time-of-flight (TOF) spectro-
meters. For high-throughput protein identification, the most
common procedure today is two-dimensional (2D) gel sep-
aration followed by enzymatic digestion, MALDI-TOF mass
measurement and a peptide mass fingerprint (PMF). Identi-
fying a protein using PMF is a multistep process; it requires
extracting monoisotopic peaks from a mass spectrum, cal-
ibrating the spectrum, removing contaminant peptide peaks
and matching the resulting list of monoisotopic peaks with
expected theoretical peptide monoisotopic masses. The qual-
ity of each individual step affects the sensitivity and reliability
of the final protein identification, and knowledge about what
data processing was done, or will be done, in a previous/later
step can be used to improve the data processing in one step
of the process. For instance, the monoisotopic peak picking
step can be done for a range of parameter settings to increase
the sensitivity of the process (Rögnvaldsson et al., 2004), and
knowledge about the parameter settings for the database match
can be used to calibrate the spectrum and remove contamin-
ant peaks (Gobom et al., 2002). However, common software
systems do not allow the user the control to iterate between
steps or the freedom to combine different favorite tools or
algorithms for each step.

A suite of software modules and algorithms that perform
the different steps of PMF is presented in this paper. The
software, mostly written in C++, builds on several original
ideas, is fast, flexible and works under different conditions and
platforms (e.g. Windows, Unix, Linux, etc.). It can be used
in a streamlined fashion where each module feeds its results
onward to the next module, for high-throughput PMF, or in a
user-interactive setting with a graphical user interface (GUI).
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It can also be called from, e.g. a web interface or from scripts
within other programs. The different modules take their input
and produce their output in XML.

The description of the different modules is kept brief
and a full account of the algorithms is provided in the
Supplementary information.

2 METHODS
The software consists of three key modules: the peak extrac-
tion module, the peak post-processing module and the peptide
fingerprinting module.

2.1 Peak extraction
The peak extraction is done in four steps: estimate baseline and
noise level, construct peaks, cluster the peaks and deisotope
the clusters. In the discussion below, x and y denote the values
of m/z (mass/electric charge) and intensity, respectively.

2.1.1 Baseline and noise level estimation Baseline and
noise levels are estimated with a weighted average of the
minimum and maximum peak values, respectively, within
windows of small mass intervals. The weighting downweights
regions with large peaks in relation to regions with small
peaks. The noise level therefore equals the height of the smal-
lest peaks at a given resolution (a few Dalton) and the baseline
equals the minimum intensities at the same resolution.

2.1.2 Peak construction and clustering All datapoints
whose y values are above the estimated noise level (s/n = 1)
are used to construct peaks; a peak is defined as a consecut-
ive sequence of datapoints with y values above s/n = 1. The
location of a peak in the x direction is determined by a centroid
calculation, and the intensity is taken as the maximum y value
in the peak.

All constructed peaks are then grouped into clusters, where
a peak cluster consists of peaks distanced 1 ± 0.2 Da apart; a
cluster must contain at least one peak whose signal-to-noise
level is above the threshold trigger level set by the user (or
else it is discarded).

2.1.3 Monoisotope identification Each peak in a peak
cluster with R peaks can, in theory, be a monoisotopic
peak for a peptide. Each monoisotope is accompanied by
a number of isotopic peaks with known relative intensities
(relative w.r.t. the monoisotopic peak intensity). This can
be expressed as y ≈ Ma, with the intensity column vec-
tor y = (y1, y2, . . . , yR)T, ‘abundancy’ column vector a =
(a1, a2, . . . , aR)T, and isotopic R × R distribution matrix M.
The matrix M contains the expected isotopic relative intens-
ities at the peak cluster mass, and the ‘abundancy’ element ak

is the (non-negative) contribution to the peak cluster from a
monoisotope located at peak k in the cluster. The deisotoping
problem is therefore formulated as

minimize H = (Ma − y)T�−1(Ma − y) (1)

subject to the constraints that all components of the vector
a are non-negative. Here, M is a matrix with the tem-
plate isotope and � is a diagonal matrix with the peak
intensity uncertainties. Equation (1) is a quadratic program-
ming problem that is solved reliably and fast using standard
algorithms; Schittkowski (2003, http://www.uni-bayreuth.
de/departments/math/∼kschittkowski/) provides an example
of a robust and quick algorithm for this. The minimization
procedure corresponds to the objective of determining the
lowest number of peptides, and their m/z values, which,
given the measured peak intensities and the template isotope
distributions, can account for the isotopic pattern of the cluster.

The output from the peak extraction module is an XML
formatted list of likely monoisotopic peptides and their
properties, e.g. mass, intensity, signal-to-noise ratio, peak
width and ion current.

2.1.4 Peak extraction discussion The quadratic program-
ming deisotoping is novel and different from previously
published methods (Gras et al., 1999; Field et al., 2002;
Berndt et al., 1999; Breen et al., 2000). It allows fitting for
several overlapping peptides at once, in contrast to previous
approaches that use an iterative procedure where the contri-
bution from each peptide is subtracted from the spectrum and
a new fit is done in order to find overlapping peptides. Fur-
thermore, our approach allows for including a prior into the
cost, which expresses the prior probability for finding a cer-
tain number of peptides with approximately the same mass
(this is shown in the supporting information).

The deisotoping step allows custom isotopic distributions;
the template isotopic distribution is provided in a file and users
can specify their own preferences.

2.2 Peak list post-processing
Submitting the peak masses from the peak extraction module
directly to a peptide fingerprinting algorithm is usually a bad
idea because the list can be poorly calibrated and also contain
contamination peak masses. The peak list must therefore be
post-processed before it is submitted to the PMF module. This
post-processing is done in four main steps: removal of spuri-
ous peaks, internal calibration, removal of too low and too
high masses, and removal of unwanted contamination peaks.

2.2.1 Removing spurious peaks The spectrum will some-
times contain spurious peaks, e.g. a peak ‘echo’ following a
large peak or peaks that result from small spikes in the spec-
trum. Small peaks that lie very close to large peaks and peaks
that are very narrow are therefore by default removed (these
peaks can be kept if the user wishes so).

2.2.2 Internal calibration The peak list is compared to a
list of expected reference masses, which can be protease auto-
lysis peptides, human keratin peptides and/or matrix peaks.
These reference peaks are provided in a filter parameter file,
which is either created by the user or automatically generated
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using a batch of spectra; the latter is described in detail in a
separate paper (Levander et al., 2004). The masses in the peak
list that match reference peaks are used to determine the para-
meters (a, b, c) in a robust regression (outliers are detected
and removed) of the form

(m/z)1/2
new = a(m/z)old + b(m/z)

1/2
old + c, (2)

where (m/z)new is the mass value after calibration and
(m/z)old is the mass value before calibration. The form of this
equation was chosen by experiment, but similar approaches
have been presented before.

Automatic calibration can go wrong and the calibrated
masses, (m/z)new, are therefore always compared against
allowed biological peptide masses (Mann, 1995; Gay et al.,
1999) before the calibration is accepted. If the calibration
yields too large changes, as specified by the user, or if the like-
lihood for the calibrated monoisotopic peak masses is too low,
given the distribution of allowed biological peptide masses,
then the calibration is discarded.

2.2.3 Removing low and high masses Every MS experi-
ment has a mass range within which the data are considered
to be of high quality. It is common practice to discard low mass
peaks because of the matrix contamination. Furthermore, the
experimental sensitivity decreases towards high masses and
it is important for the peptide fingerprint matching to cor-
rectly specify the maximum expected mass. All masses that
fall outside of user-specified minimum and maximum masses
are therefore removed from the peak list. This information
is also passed onto the PMF module (described below) since
it needs to know the mass range within which peptides can
be detected in order to compute a precise match score.

2.2.4 Removing other unwanted masses Every spectrum
contains a number of peaks that originate from, e.g. pro-
tease autolysis and human skin proteins (Parker et al., 1998;
Karty et al., 2002). Purging these from the peak list improves
the statistics in the peptide fingerprint match (provided that
the unknown proteins in the sample do not have many pep-
tides that overlap with contamination peaks). The final step
in the post-processing is therefore to remove such contam-
ination masses. The post-processing yields a new peak list,
x = (x1, x2, . . . , xL), where a larger fraction of the peaks
come from the interesting proteins, and the mass precision
is significantly improved.

2.2.5 Peak post-processing discussion The peak list post-
processing is probably the single most important step in
the PMF analysis chain. Our own experiments indicate that
post-processing can double the success rate in a PMF exper-
iment (Levander et al., 2004), compared to using the raw
data coming out of the MS. Chamrad et al. (2003) report a
7-fold increase. It is, however, important to note that proper
post-processing means removing essentially all the contam-
inant peaks, calibrating each spectrum with several reference

masses (not just two or three) and providing correct inform-
ation on the valid mass range to the PMF database matching
module. The proper way to find all contaminant peaks in
a batch of spectra is to compare them all and identify peaks
that occur unreasonably often, as described by Levander et al.
(2004). Other suggested approaches (Chamrad et al., 2003;
Hjernø et al., 2002) use a predefined cut-off, e.g. peaks occur-
ing in 15% of the spectra, which is statistically incorrect since
it ignores the varying probability for observing peptides in
different mass ranges.

2.3 Peptide mass fingerprinting
The final step in the PMF analysis chain is the peptide mass
fingerprinting itself. This can, given an experimental peak
list x and a protein database, be divided into three separate
steps: creating theoretical spectra for the database entries,
computing the match between the empirical spectrum and the
theoretical spectra, and assessing the matching scores.

2.3.1 Creating theoretical spectra The enzymatic diges-
tion that was carried out in the laboratory is mimicked in the
computer for each entry in the database, also called a database
protein. The chemical rules for digestion, possible post-
translational modifications and possible missed cleavages are
applied, leading to a list of expected peptide masses from each
database protein. We denote the j -th entry in the protein data-
base by T [j ] and the corresponding expected set of peptide
masses by z(j) = [z1(j), z2(j), . . . , zN(j)(j)], where N(j) is
the number of peptides that resulted when T [j ] was digested
in silico.

2.3.2 Computing the spectrum match There are many
ways to express the match between an experimental peak
list x and a theoretical spectrum z(j) (Pappin et al., 1993;
Zhang and Chait, 2000; Clauser et al., 1999; Perkins et al.,
1999; Wool and Smilansky, 2002). Our approach is to consider
strong spectrum resemblance an unlikely event, which is also
the approach taken in the ProtoCall tool (Wool and Smilansky,
2002) and MASCOT (Perkins et al., 1999) (it is unknown to
us exactly how the MASCOT score is computed). This is reas-
onable because there is only one correct database protein (or a
small group of correct database proteins), if any, and we expect
only the correct protein(s) to show strong spectrum resemb-
lance. Non-correct proteins are not expected to show strong
spectrum resemblance; if they did, MS would not be a suit-
able tool for protein identification. The algorithm therefore
computes, for each database protein T [j ], the a priori ran-
dom probability for the set of peaks shared between z(j) and
x to occur. Proteins where the observed match is unlikely to
occur by chance are considered better candidates than proteins
where the match is more likely.

There are different ways to compute such a probability,
basically reflecting the level of approximation one is willing
to accept. Two different expressions for this probability are
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derived in the Supplementary information; only the expres-
sion used in the default version of the software (case 1 in the
Supplementary information) is described here. The a priori
probability that x and z(j) have r common peaks within a
tolerance window δ is

p(j) ≡ p(r | z(j), x, δ) =
(

L

r

)
P rQL−r , (3)

where L is the number of peaks in the experimental peak list
x, P = P(δ) is the probability for at least one match between
a peak from the experimental peak list x and one of the N(j)

peptide masses of T [j ], and Q = 1−P . A similar expression
is used in the ProtoCall search tool (Wool and Smilansky,
2002).

Protein T [j ] is given a score value by taking the negative
natural logarithm of the probability

σ(j) ≡ σ [z(j), x, δ] ≡ − ln[p(j)]. (4)

All database proteins are thus given a score value according
to Equation (4) and if σ(j) > σ(i) then T [j ] is considered
to be a more likely candidate protein than T [i].
2.3.3 Assessing the score values Obviously, there is
always one protein from the protein database with the highest
score value, irrespective of whether the unknown protein is
registered in the database as an entry or not. It is therefore
necessary to asses the scores (Eriksson et al., 2000; Fenyö
and Beavis, 2003; Berndt et al., 1999).

The assessment is such that we want to make sure that
the best scoring database proteins indeed have score values
that are significantly higher than what one would expect from
just random trials. By a random trial, we mean a comparison
between the experimental peak list x and a theoretical peak list
z = (z1, . . . , zN) whose peak values have been selected from
a random distribution. This random distribution is generated
at the same time as the proteins in the database are digested;
the assumption being that the distribution of peptides from
enzyme digests is fairly uniform over all proteins and that the
current database does not constitute a non-typical represent-
ation of all proteins. That such an assumption is reasonable
gets support from the fact that distributions of tryptic peptide
masses for different genomes show high similarity (Fenyö
et al., 1998).

Given the experimental peak list x and the set of peak match
tolerance windows δ (one or many) the probability to get,
during random trials, a score value higher than σc is

Prnd(σc) ≡ Prnd[σ > σc | (x, δ)]

=
∫

dzψ(z)�[σc − σ(z, x, δ)], (5)

where ψ(z) is the probability density for peak lists of diges-
ted proteins (described by z) and � is the Heaviside step
function [�(t) = 1 if t > 0, �(t) = 0 otherwise]. The

integral is estimated over all possible vectors z using Monte
Carlo integration. With Prnd it is straightforward to derive two
assessment measures that are intuitively easy to understand,
the well-known P -value and, also, another measure called
the quality, Q.

The P -value expresses the probability for getting the
observed result if the null hypothesis is true. Our null hypo-
thesis is that x matches a protein with random peptide masses
better than it matches database protein z(j), so the P -value
for score σj is

P -value = 1 − [1 − Pr n d(σ > σc)]D , (6)

where D is the size of the database. If Pr n d � 1, then we
have p-value ≈ D · Pr n d. It is customary to reject the null
hypothesis when the P -value is <5%.

The mathematical derivation of quality is given in the Sup-
plementary information; here, we describe the way it should
be interpreted in a database search. If

• the search is done in a protein database where the number
of protein entries is D (typical values of D are today
105–106);

• the highest score value for all database proteins is σtop;

• the quality value for σtop is Q(σtop) ≡ Qtop.

then one would need to make D exp (Qtop) random trials in
order to expect a score value of σtop. Another, intuitively
appealing, way of expressing this is that one would need a
random protein database the size of D exp(Qtop) in order to
expect to observe a score value of σtop the same number of
times as was done in the database with real proteins. There-
fore, if Qtop ≈ 0 then one would not really trust the top
candidate to be the unknown protein. On the other hand if, for
example, Qtop > 7 then one would need a random database
at least 1000 times larger than the real database in order to
observe a score value of σtop.

Significance of a search result is often presented in terms
of an E (expectation)-value in sequence alignment searches,
cf. BLAST (Altschul et al., 1997). A corresponding E-value
for a score σ is

E(σ) = n(σ) · exp[−Q(σ )], (7)

where n(σ) is the number of database proteins with a score
value of at least σ .

2.3.4 PMF database matching discussion The PMF data-
base matching is a pattern recognition problem; we want to
determine the most probable protein(s) in the mixture, given
the measured mass spectrum. In theory, to do this in an
optimal way we should estimate the a posteriori probabil-
ity p(T [j ] | x) for all proteins T [j ] in the database. Doing
this properly requires a good model for the probability of
observing a specific peptide, the prior probability p(T [j ])
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Fig. 1. Left panel: A spectrum where the curves for the levels of s/n = 0, s/n = 1 and s/n = 2 (the user-specified threshold) are shown. All
datapoints above the s/n = 1 level are used to build up the identified peaks. A peak cluster, typical for the higher mass range, is shown in the
inset. Right panel: A screen dump from the GUI showing a peak cluster where the peak extraction selects the first and the third peaks of the
cluster; both peaks survive the filtering step and both match the top scoring protein. The two top panels show the M+H ion masses whereas
the bottom panel shows the peptide masses without the extra proton.

for observing a certain protein, and the mass error in the MS,
which becomes a very complicated issue.

Most probability based algorithms (Perkins et al., 1999;
Wool and Smilansky, 2002), including ours, instead try to
answer a simpler but related question: what is the probabil-
ity that the observed peptide masses in the spectrum matches
a random sequence of peptides? If this probability is very
low then perhaps the best matching protein is indeed in the
sample, which often is the case. The procedure is the same
as in a standard hypothesis test; the null hypothesis being
that the observed peptide list is random and the null hypo-
thesis is rejected if the probability for the observed score is
very low.

The expression in Equation (3) is based on assuming that
it is equally likely to observe any expected peptide from
the database protein. We have, for example, refrained from
assuming that arginine-terminated peptides should be more
prominent than lysine-terminated peptides. Other scores have
been suggested (Parker, 2002; Magnin et al., 2004) that make
more specific use of the amino acid composition in the pep-
tides and it is straightforward to modify expression (3) if
certain peptides are not expected (just decrease the value of L).
However, introducing such a probability is guesswork, unless
one has access to MS data of an amount large enough for
making statistically reliable estimates, and specific enough
for being relevant to the experimental condition under investi-
gation. It is also uncertain how well such an algorithm would
generalize across different laboratories where slightly differ-
ent experimental protocols are used. Equation (3) therefore

assumes nothing about the specific features of the experiment
studied.

3 RESULTS AND DISCUSSION
3.1 Performance on sample spectra
The software tools are demonstrated using spectra from three
different manufacturers: MALDI-TOF MS from Amersham
Biosciences (EttanTM), Applied Biosystems (Voyager-DETM)
and Bruker Daltonics (autoflex�). The first two spectra are
shown in Figure 1, and the third is shown in the Supplement-
ary information. The second and third spectra come from
batches of spectra from samples on the same gel where the
software automatically identified calibration and contamina-
tion peaks, which enables comparison of the human operator
and the software. The fixed settings, for all spectra and all
searches, were as follows: s/n = 2.0; peak matching win-
dow: 0.1 Da; database: Swissprot40; digestion by trypsin;
chemical modifications are carbamidmethylation of cysteine
(fixed) and oxidation of methionine (variable), and allowing
for one missed cleavage. The human operator filters contained
known autolysis peaks from trypsin (bovine for the Applied
spectrum, porcine for the two others) and hair-α keratin. The
identities of the top scoring proteins for each spectrum and
their quality values Q are shown in Table 1.

The left panel of Figure 1 shows the estimated baseline,
noise and peaks in the peak extraction step. The upper dashed
line is the signal-to-noise level set by the user (s/n= 2 in this
example), the middle dashed line is the s/n = 1 level and the
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Table 1. Identification results when using spectra from different manufacturers

Filter and Amersham Applied Bruker
calibration Top ID Q Top ID Q Top ID Q

No DLDH_ECOLI 11.48 GR78_RAT 7.38 DHE3_RAT 2.36
Human DLDH_ECOLI 12.72 GR78_RAT 7.90 DHE3_RAT 2.68
Batch — — GR78_RAT 9.97 ATPA_HUMAN 11.97

— — DHE3_HUMAN 4.84

A dash (—) means that the setup was not tried.

lower dashed line is the s/n= 0 level. All datapoints between
the two lower lines constitute the noise (chemical, electronic,
etc.). The datapoints above the s/n= 1 level are used to build
up the peaks. The right panel of Figure 1 shows a peak cluster
from the Applied spectrum, at ∼1200 Da. It consists of five
peaks and the peak extraction selects the first and the third
peaks (counting from the left) as monoisotopes. The isotopic
pattern cannot be explained by one single peptide but two
peptides are sufficent. Both peaks survive the post-processing
step and both match peak masses of the top scoring protein:
GR78_RAT.

Given the robust peak extraction, the identification is rather
undramatic for the Applied and Amersham spectra, with high
statistical significance (high Q-values) both with and without
filters. For the Bruker spectrum, which comes from a human
sample, the situation is different. The software does not report
any significant candidates for the first two filter alternatives,
no filter and human operator. It is not until the automatically
generated filter is applied that significant candidates are repor-
ted; the filter was generated using the algorithm described by
Levander et al. (2004). Besides the extremely confident iden-
tification of ATPA_HUMAN, there is a likely identification
(defined as Q > 3) for DHE3_HUMAN. This indicates that
the sample contains a mixture of these two proteins, which is
possible since the two proteins are reasonably close in isoelec-
tric point and molecular weight. The reason for the dramatic
increase in score quality is that the automatically generated
filter has identified several trypsin autodigestion peaks that are
non-regular, i.e. not adjacent to lysine or arginine. Such effects
are hard for a human operator to detect, or foresee, but straight-
forward for the software (more extended examples of the role
of filters are provided in the Supplementary information).

3.2 Comparison to other PMF tools
All steps in a PMF experiment are important and influence
each other, why information should be carried between steps.
Furthermore, it should be simple to combine individual steps
with customized tools and/or alternative favorite tools, why
intermediate results should be easily available (e.g. if one
wants to apply one’s own calibration routine). This flexibil-
ity is, however, not offered by most available tools for PMF
analysis.

Table 2. Performance of our PMF tool (Piums), compared with Mascot and
ProFound, on 266 spectra with yeast protein samples

Piums Mascot ProFound
(v. 3.0.10) (v. 1.9) (v. 4.10.5)

True positive 132 120 88
False positive 4 1 0

The experiment is described in the text.

It is not difficult to find a peak picking tool; some tools are
freely available on the Internet and all MS vendors supply
software with their machines that can be used to pick peaks
(both manually and automatically). However, it is difficult to
find a flexible peak picking tool that is easily incorporated into
a PMF pipeline on any platform and which can, e.g. be called
from within scripts so that several signal-to-noise levels can
be scanned automatically.

It is also fairly easy to find PMF database matching soft-
ware; several tools are available on the Internet, but none
of them integrated with a peak picking tool. It has been our
experience that the scoring algorithm presented here is on par
with the well-known Mascot (Perkins et al., 1999) and Pro-
Found (Zhang and Chait, 2000) tools. This is illustrated in
Table 2 where the performances of these three tools on a set
of 266 spectra with yeast proteins are shown. The peak lists
were produced using the peak extraction tool described in
this paper, and filtered using an expert filter with known tryp-
sin autolysis peaks. The database searches were done using
a mass tolerance of 200 ppm, allowing one missed cleavage,
a fixed cysteine CAM (C2H3ON) modification and a variable
methionine oxidation modification. Significant hits for the
different softwares were defined as P -value <0.05 (Piums),
score >66 (Mascot) or Z-score >1.65 (ProFound). These are
comparable significance levels. The Piums and Mascot tools
searched against SwissProt v. 43.1 (220 438 entries) whereas
ProFound searched against NCBInr1004/07/01 (1 313 300
entries) because SwissProt was not available for ProFound.
It is harder to do a clear identification in a larger database
why the ProFound results are a bit worse than what they had
been with SwissProt.
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The execution time for analyzing (peak picking, peak filter-
ing and database matching) a batch of 91 samples was 3 min
for Piums (our tool) and 15 min with Mascot, when Mascot
had the protein database in memory and Piums had a pre-
cleaved database. Our tool was thus about five times faster in
batch mode than Mascot. The comparison using a pre-cleaved
database is relevant since our scoring software is designed for
batch processing with many spectra from the same gel: the
database is cleaved initially and then used for all spectra so
that time is saved from the second spectrum onwards.

All the PMF modules presented here are designed such that
they can be used on any platform (for which there exists a
C++ compiler) and can be called from within scripts, e.g. in
a PMF pipeline setting, or from a GUI, e.g. in an interactive
setting. Furthermore, each step outputs lots of information
in a structured way, information that can be used in later
steps of the process. We believe that this is their strength,
because the best PMF performance is achieved when each
step in the PMF analysis knows what the other steps have
done/will do.

4 CONCLUSIONS
Getting the most protein information out of a mass spectrum
requires a system-wide look at the problem. The way peaks
are extracted and post-processed has a considerable impact on
the success rate in the protein matching. A set of tools have
been presented that were designed to simplify the combin-
ation of different tools significantly and be flexible enough
to fit many different settings (academic, commercial, large-
scale and small-scale). The modular design and the use of
XML format makes them transparent and easy to use in whole
or in combination with other tools, e.g. other peak extraction
algorithms or peptide fingerprinting algorithms. The perform-
ance of these tools is state-of-the-art, in the sense that we
have not seen any other tools that consistently perform the
job better, but there are tools that do the job equally well.
The presented tools are, however, more modular, more eas-
ily scriptable, and more platform independent than any other
PMF tools known to us.
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