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Abstract: This paper proposes a single-stage three-phase modular flyback differential inverter (MF-
BDI) for medium/high power solar PV grid-integrated applications. The proposed inverter structure
consists of parallel modules of flyback DC-DC converters based on the required power level. The MF-
BDI offers many features for renewable energy applications, such as reduced components, single-stage
power processing, high-power density, voltage-boosting property, improved footprint, flexibility
with modular extension capability, and galvanic isolation. The proposed inverter has been modelled,
designed, and scaled up to the required application rating. A new mathematical model of the pro-
posed MFBDI is presented and analyzed with a time-varying duty-cycle, wide-range of frequency
variation, and power balancing in order to display its grid current harmonic orders for grid-tied
applications. In addition, an LPF-based harmonic compensation strategy is used for second-order
harmonic component (SOHC) compensation. With the help of the compensation technique, the grid
current THD is reduced from 36% to 4.6% by diminishing the SOHC from 51% to 0.8%. Moreover,
the SOHC compensation technique eliminates third-order harmonic components from the DC input
current. In addition, a 15% parameters mismatch has been applied between the flyback parallel
modules to confirm the modular operation of the proposed MFBDI under modules divergence. In
addition, SiC MOSFETs are used for inverter switches implementation, which decrease the inverter
switching losses at high-switching frequency. The proposed MFBDI is verified by using three flyback
parallel modules/phase using PSIM/Simulink software, with a rating of 5 kW, 200 V, and 50 kHz
switching frequency, as well as experimental environments.

Keywords: modular flyback differential inverter (MFBDI); continuous modulation scheme (CMS);
static linear strategy (SLS); harmonic compensation strategy

1. Introduction

Recently, the COVID-19 pandemic has disturbed most energy resources and prevented
the importation and exportation of fuel between the countries. In addition, the large
need for energy in human life has increased the requirements for renewable energy sources
(RESs) [1]. Among the different RESs, photovoltaic (PV) is the most common and promising
energy resource due to its operation sustainability in the distributed generation systems,
which provide freely available energy hunks for humankind [2–4]. Therefore, different
single-stage and multistage inverter topologies have been developed as an attractive key
for grid-integrated RESs at different climatic conditions [5–8]. In comparison with the
multistage inverter, single-stage structures offer reliable, compact, high power density, and
improved footprint converters [9–13]. Different multilevel inverter (MLI) structures are
presented for high power-quality stand-alone and grid-integrated PV applications [6,8].
However, large-size line-frequency transformers are required in many topologies that
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decrease the system power density and increase the required components. Owing to
galvanic isolation necessity, high-frequency transformer (HFT)-based inverters have been
developed for inverter footprint and efficiency improvement [14,15]. HFT-based inverters
start with a two-stage operation using a decoupling capacitor/inductor, which increases
the required components number, size, and system overall footprint [16–19].

Motivated by the preceding drawbacks of the two-stage inverter, single-stage inverter
architectures have been presented in single/three-phase applications with continuous
DC-input current waveform [6]. In [6], single-phase single-stage isolated DC-AC MLI
is presented for stand-alone and grid-integrated PV applications. Despite the improved
power quality of these converters, many power switches are required. Therefore, PV-
microinverters have been widely recommended in recent decades due to their features
such as low cost, compactness, reliability, improved footprint, and galvanic isolation
requirements for grid-connected applications [20,21]. Microinverter-based flyback DC-DC
modules are commonly utilized in combined with the unfolding circuit due to the reduced
passive components, a low number of switches, and a simple control strategy [22,23].
However, the recently available PV-microinverters are applicable for low-power purposes
(below 200 W). Therefore, DC-DC converter-based differential inverter topologies have
been presented for isolated single-stage high power applications. In [24,25], single-phase
differential inverters have been introduced with buck and boost converter modules for
compact and efficient operation. However, the presented topologies suffer from the high
voltage stress over the converter components [26]. In [27], the Cuk differential inverter
has been presented for single-phase applications; however, it requires a comparatively
increased number of components. Therefore, a single-phase single-stage Cuk differential
inverter is proposed for PV direct power conversion with compact and high-efficiency
operation [28,29]. However, the proposed control strategy increases the ripples of the DC
input current that decreases the input power factor. For three-phase purposes, a three-phase
single-stage Cuk differential inverter is proposed for PV applications [30,31]. However,
three separate input filters are required for continuous input current operation for RESs.
In [32], the three-phase single-stage SEPIC differential inverter is presented with only four
switches. However, the presented topology is applicable for low-power applications due to
the drop of grid isolation.

In comparison with the former buck-boost based differential inverter topologies, the
proposed modular flyback inverter structure has the following merits; it utilizes a reduced
number of passive elements and power switches, single-stage DC-AC conversion, volt-
age boosting, modularity, compact size, and galvanic isolation property. The three-phase
flyback differential inverter (FBDI) parameters design and selection, hardware implemen-
tation, and control technique were analyzed. Modular FBDI (MFBDI) was presented and
analyzed for megawatt-class DC-DC converter-based inverters. Mathematical modelling
of the proposed MFBDI was analyzed, which confirmed the existence of a second-order
harmonic component (SOHC). In addition, SOHC compensation was achieved by con-
sidering an LPF-based harmonic elimination strategy for grid current THD reduction in
order to follow the IEC61000-3-2 (Class-A) harmonic standard limit. In order to confirm
the modular operation of the proposed MFBDI, a 15% mismatch between the paralleled
flyback DC-DC modules was used with three-paralleled modules in each phase for an
overall rating of 5 kW. It is worth mentioning that the proposed MFBDI was compared with
its recent counterpart topologies, by considering the number of components and passive
elements, modulation scheme, number of control loops, controller, switching frequency,
current THD, number of required sensors, power rating, and the utilized switches ratings
as depicted in Table 1. Obviously, the proposed converter utilizes a reduced number of
components, control loops, and sensors that enhances the system footprint and cost.
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Table 1. Comparison study for MFBDI with its counterpart topologies.

Control/Ref. [29] [33] [34] [35] Proposed
Switch No. 4 6 6 5 6
Diodes No. 4 6 6 4 0

Inductor No. 7 9 6 4 1
Capacitor No. 6 9 0 3 4

Modulation scheme DMS DMS CMS CMS CMS
No. of loops 5 3 3 2 2
Controller PR NA PR Hysteresis PI
FSW (kHz) 100 125 25 120 50
THD (%) 4 4 1.2 1.9 4.5

No. of sensors 7 7 7 4 5

Power rating, W 500
(Single-phase)

500
(Three-phase)

2500
(Three-phase)

210
(Single-phase)

1600
(Three-phase)

Switch rating (GS66508P)
650 V, 30 A NA (IRG7PH50K10D)

1200 V, 90 A
FDP51N25

IPAW60R190CE
(C2M0040120D)

1200 V, 60 A
NA: Not Available.

The paper manuscript has been organized as follows: Section 2 illustrates the modular
operation of the proposed MFBDI and its mathematical model. In addition, the flyback
converter parameters’ design and selection, as well as hardware implementation, are
analyzed in Section 3. Moreover, the MFBDI control scheme and the system simulation and
experimental verifications are illustrated and analyzed in Sections 4 and 5, respectively.
Finally, Section 6 concludes the paper’s contributions and verifications.

2. Modular Flyback Differential Inverter

The proposed MFBDI consists of N number of isolated DC-DC flyback modules,
which are connected in parallel at the input and output sides, Input Parallel Output Parallel
(IPOP), as depicted in Figure 1. However, the three-phase configuration is connected in
parallel at the DC input side and differentially on the grid side. In addition, the power
rating of the MFBDI is simply N-multiple of single module power rating, where N is a
number of parallel modules in each phase as shown in Figures 1 and 2. Hence, the operation
principles of a single flyback module and mathematical modeling of the proposed MFBDI
are analyzed in this section.
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Figure 1. Circuit configuration of the single-stage three-phase MFBDI.
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2.1. Single Flyback Module Operation

Figure 1 shows the power stage of the proposed MFBDI, where the power stage of one
phase of the proposed MFBDI is portrayed in Figure 2. A one-phase of the proposed MFBDI
is consists of three parallel modules to increase the system power rating to triple-level
(N = 3). A single module is composed of; a single LC input low-pass filter (Lin, Cin), two
SiC-MOSFET switches (SMx, and SRx), a flyback high-frequency transformer (FB-HFT), a
robust designed snubber-circuit, and a single output capacitor (COx). The proposed inverter
is controlled with a time-varying duty-cycle (dx). Thus, the generated output voltage at
the inverter terminal is DC-voltage with a sinusoidal envelope as depicted in Figure 3.
Obviously, the MFBDI terminal voltage contains a DC voltage offset due to the unipolar
operation of the flyback modules, which is canceled at the grid side by a differential
connection. Hence, a sinusoidal output voltage can be synthesized for sinusoidal grid
injected current. In addition, the phase-shift between the flyback modules of the same
phase is 0◦ and 120◦ between the DC-DC modules of different phases. In addition, a single-
module operation can be divided into two operational modes [36]: a. Turing-ON of primary
switch passes the current in the primary side of FB-HFT, which stores energy in the HFT
magnetic inductance as a magnetic field. The grid-current is maintained by the inverter
terminal capacitor during this mode. b. As the main switch turns-OFF, the stored energy
releases through the body-diode of the synchronous switch to supply the grid-current and
charge the output capacitor as a Current Source Inverter (CSI). The operational modes of a
one-phase/single module of the proposed three-phase MFBDI with its bidirectional power
flow are portrayed in Figure 4. Moreover, the flyback converter operates temporarily to
transfer the power from input to output sides, as clearly portrayed in Figure 5a,b.
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inductance, (b) Energy release to supply the load and charging the output capacitor.

The input DC-voltage/PV voltage is assumed to be constant due to LC filter’s large
capacitance at the input side. The proposed MFBDI is controlled via continuous conduction-
mode (CCM), in which the transformer core incompletely demagnetizes in one switching
cycle. The demagnetizing effect of the MFBDI transformer has a negligible effect on the
inverter output power-factor as the magnetizing energy is very low compared with the
transferred energy to the output side [36]. In addition, the voltage spikes are limited by a
stringently designed snubber-circuit.

2.2. Mathematical Model of MFBDI

Generally; as the proposed MFBDI is supplied with DC-voltage at the input-side and
controlled by time-varying duty-cycle, an output-voltage with sinusoidal envelope can be
synthesized at the terminal of each module considering the converter conversion ratio as
follows:

M(d) =
ndx

dx ′
·
(

1− dx
′·Vd

n·dx·Vin

)
×

 1

1 + rlxdxn2

Req ·dx ′2
+ rsxdxn2

Req ·dx ′2
+ rd

Req ·dx ′

 (1)

where,
M(d) is the input-to-output voltage conversion ratio,
Vin is the input DC voltage,
n is the transformer turns ratio, n = n2/n1,
dx is the main switch duty cycle,
Vd is the voltage drop over the diode,
rlx is the primary inductor resistance,
Req is the grid equivalent resistance,
rsx is the MOSFET semiconductor switch on-resistance,
rd is the diode on-resistance.
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Based on Equation (1), the resistances of the inductor, switches, and diodes limit the
MFBDI voltage gain. Thus, maintaining these resistances at a low level is an important
aspect [37]. An important issue of the buck-boost-based inverter is the nonlinear relation
between the converter input and output, which results in the low-order harmonics in the
grid injected currents. In addition, it results in high voltage stress over power components
that increases the inverter power loss and diminishes its efficiency. The voltage/current
stress over the proposed MFBDI, related to its parameters, is listed in Table 2. Thus, the
selection of the different elements rating can be decided to avoid components failure and
unstable running operation due to the presence of the passive elements. The passive-
elements values determine the system stability over the wide range of duty-cycle and
frequency variations.

Table 2. Voltage and current stresses.

Component Voltage Current Ripple Component

Cin vin (VPV) Cin· dvin
dt

n·dx ·ix
Cox · fsw

LMx (HFT) vox
n n·ix −dx ·vin

Lmx · fsw

Cox vox ix·
(

1
(1−dx)

− 1
)

dx ·ix
Cin · fsw

Primary switch
(S1 or S2) vin + vox

n
n·ix

(1−dx)
dx ·vin

Lmx · fsw

Secondary switch
(S3 or S4) vox

ix
(1−dx)

dx ·vin
Lmx · fsw

where x = u, v, or w.

The switching waveforms of a single flyback module is depicted in Figure 6, which
portrays the three-phase duty-cycles (dx), HFT primary switched voltage and current
waveforms (vpri_x, ipri_x), switched voltage and current waveforms of HFT secondary
side (vsec_x, isec_x), capacitor current icx, three-phase output voltages (vox), three-phase
grid-voltages (vx), and three-phase grid-injected currents (isx). For ideal operation of the
proposed three-phase inverter, the three-phase balanced voltages and grid currents can be
formulated as follows:  vsu(t)

vsv(t)
vsw(t)

 =
√

2·E·

 sin(ωt + α)

sin
(
ωt + α− 2π

3
)

sin
(
ωt + α + 2π

3
)
 (2)

 isu(t)
isv(t)
isw(t)

 =
√

2·I·

 sin(ωt + α)

sin
(
ωt + α− 2π

3
)

sin
(
ωt + α + 2π

3
)
 (3)

where E and I are the RMS values of the grid voltage and current, respectively. In addition,
ω is the grid angular-frequency, and α is the arbitrary angle.

Due to the parallel connection of flyback modules sharing identical amount of power,
then the total grid current can be formulated as follows: isu(t)

isv(t)
isw(t)

 =
√

2·I·N·

 sin(ωt + α)

sin
(
ωt + α− 2π

3
)

sin
(
ωt + α + 2π

3
)
 (4)

where N is the number of parallel modules in each phase of MFBDI.
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Figure 6. Switching waveforms of single flyback module of the proposed MFBDI.

Based on Equation (1) for the output-to-input voltage transfer ratio of the buck-boost
based inverters, the ideal voltage transfer ratio can be formulated as follows:

vox

vin
=

iin,Nx

isxN
=

dx

1− dx
(5)

where iin,Nx, isxN are the input and grid currents of module N in phase x.
Therefore, the duty cycle can be expressed as follows:

dx =
vox

vox + vin
(6)

Evidently, the buck-boost converter input-to-output nonlinear relation results in low-
frequency odd harmonics; however, the low-order even harmonics result from the modules
mismatch. Therefore, the proposed MFBDI is controlled in continuous conduction-mode
(CCM), in CMS merged with static linearization-strategy (SLS) for low-order odd harmonics
minimization. In addition, SOHC is created by the flyback modules mismatch: hence, a
secondary loop is required for SOHC elimination. With the help of the properly controlled
duty cycle and the DC-DC flyback converter-based operation, the inverter synthesized
output voltage has two components; DC offset voltage and line-frequency AC voltage for
grid integration. The DC offset voltage is approximately equal for all modules. Thus, the
output voltage can be formulated as follows: vou(t)

vov(t)
vow(t)

 = Vdc0 + vsx(t) = Vdc0 +
√

2·E·

 sin(ωt + α)

sin
(
ωt + α− 2π

3
)

sin
(
ωt + α + 2π

3
)
 (7)
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To decrease the voltage stress over the switches, the peak value of AC component is
adjusted to be equal to DC component (Vdc0). Thus, the inverter terminal voltages can be
formulated as follows:

vox(t) = Vdc0 + Vdc0·Kx = Mvin + Mvin·Kx= Mvin·(1 + Kx) (8)

where M is the flyback converter voltage-gain and K is the instantaneous unity of three-
phase waveforms:

Kx =

 sin(ωt + α)

sin
(
ωt + α− 2π

3
)

sin
(
ωt + α + 2π

3
)
 (9)

From (6) and (8), the static-linearized duty-cycle can be synthesized as follows:

dx =
M(1 + Kx)

M(1 + Kx) + 1
(10)

The maximum voltage-gain of the flyback module, at K = 1, can be formulated as:

M =
Vox

2vin
(11)

where Vox is the peak value of converter terminal voltage.
Therefore, each flyback module operates with variable duty-cycle to transfer its rated

power based on the required voltage transfer ration, which inspire its modular operation
by increasing the number of parallel operating modules in each phase of the proposed
MFBDI. Hence, the total input current to one phase (u) is the sum of all currents to each
individual module:

iin,u =
N

∑
m=1

iin,m (12)

Thus, the total input DC current of the MFBDI can be expressed as follows:

idc = iin,u + iin,v + iin,w (13)

Based on (5) and (10), the output current of one-phase (u) can be formulated as follows:

iin,Nx = 0.5MisxN + MK·isxN − 0.5MK1·isxN (14)

where K1 is the second-order sinusoidal constant of the inverter input current, which
illustrates the circulating power between the different flyback modules at double of the
line-frequency as shown in Figure 3. It can be formulated as follows:

K1 =

 Cos(2ωt + α)

Cos
(
2ωt + α− 2π

3
)

Cos
(
2ωt + α + 2π

3
)
 (15)

Therefore, the input power to a single flyback module can be expressed as follows:

pin,Nx = 0.5MvinisxN + MK·vinisxN − 0.5MK1·vinisxN (16)
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3. Converter Parameters Design and Selection

In the parameter selection of the proposed converter, each DC-DC flyback module
is designed with reduced switching components. In addition, the designed parameters
for the flyback module are listed in Table 3. The plot of flyback converter voltage gain
with different duty cycles (dx = 0~0.9), based on (5) and (11), is seen in Figure 7. The
main and synchronous switches of each flyback module (SMa, SRa) are complementary
controlled. In addition, continuous DC input current is an important aspect for renewable
energy applications, such as photovoltaics and fuel cells. Therefore, the high-frequency
switched differential structure of the proposed converter, together with a single LC input
filter, provides the following features: (a) it provides DC input current considering single
input filter, (b) it eradicates the large electrolytic capacitor over the input PV modules, (c)
it provides galvanic isolation that minimizes the EMI and CMV, and (d) it minimizes the
inverter size due to the single-stage operation [30,37]. The large-signal model is used to
illustrate the low-frequency component of the current and voltage waveforms to illustrate
the components voltage and current stresses. Figure 8 shows the duty cycle, primary
current, main switch voltage, synchronous switch current, capacitor average current, and
grid-injected current. The flyback module parameters design and selection are cleared in
the following sections.

Table 3. Flyback converter parameters.

Input DC voltage, Vdc 100 V
Input filter, Lin, Cin 150 µH, 10 µF

Grid voltage (L.L), Vg 200 V, 60 Hz
Grid filter, Lg 4 mH

HFT magnetizing inductance, LMx 115 µH
HFT leakage inductance, LLeakage 2.25 µH

Output capacitor, COx 12.8 µF
HFT turns ratio, n 1:1

Switching Frequency, FSW 50 kHz
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Figure 8. Averaged one-cycle of the proposed MFBDI.

Based on the system parameters that are listed in Table 3, each three-phase module of
the MFBDI processes 1.6 kW. Therefore, each flyback module processes one-third of the
converter power as follows:

PModule =
PFBDI

3
=

1600
3

= 533.3 W (17)

Thus, each module processes 533.3 W from the DC side to the grid side.
In addition, based on (11) the maximum voltage gain of each flyback converter can be

calculated as follows:
M =

vox

2vin
=

2× 163.3
2× 100

= 1.633 (18)

Therefore, the minimum and optimal value for M is (1.633) for inverter differential
operation.
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Moreover, the required grid-injected current can be calculated as follows:

PModule = E · ix = 533.3 W
ix = 4.6185 A

(19)

where ix refers to the RMS value of the grid injected current.
Considering the maximum operating duty cycle (dx = 0.8) during the converter pa-

rameters design, the peak value of input current to the converter can be calculated as
follows:

Iin =

[
dx

1− dx
+ 1
]
·Ix = 32.66 A (20)

Consequently, the grid equivalent resistance is 25 Ω and the voltage and current
stresses can be calculated as follows:

VSMx = vin + vox = 100 + 2 × 200
√

2√
3

= 426.5 V
ISMx = 32.66 A

(21)

3.1. Passive Elements Design

Based on (6), the proposed inverter operating at a wide-range of duty cycle variation,
which disturbs the converter dynamic and its stability. Therefore, a robust design of
converter passive components is very important aspect. The acceptable limits of the
capacitor voltage and inductor current ripples are less than 10% and 20%, respectively [37].
In addition, 50 kHz switching frequency is selected for ripples minimization and passive
elements size reduction.

According to the former permissible limits for the output voltage and current ripples,
the HFT required magnetizing inductance can be designed as follows [37,38]:

LMx =
Dx ×Vin

2× ∆I × FSW
=

0.8× 100
2× 40× 0.2× 50000

= 100 µH (22)

Moreover, the converter output capacitor can be designed as follows:

Cox =
(

dx
1−dx

)2
× Vin

2×Req×∆V×FSW

=
( 0.8

1−0.8
)2 ∗ 100

2∗25∗0.1∗500∗50000 = 12.8 µF
(23)

Therefore, the HFT magnetizing inductance and output capacitor of each flyback
converter module are selected as 100 µH and 12.8 µF, respectively.

3.2. Hardware Implementation

Different outstanding magnetic materials are utilized for high frequency transform-
ers/inductors design, such as monocrystalline, ferrite, nanocrystalline, amorphous, and
powder magnetic materials. A comparison between these materials has been demonstrated
in [38,39]. Soft ferrite materials are the common, low cost, and acceptable power loss in low
power applications for micro-inverters power-level applications [39]. Thus, EER-94 soft
ferrite core is used for the proposed converter module implementation. The core parame-
ters are: Ae = 712 mm2 effective cross-section area, Ve = 158,000 mm3 effective volume, and
permeability µ = 2500. In addition, LITZ wire has been used for HFT implementation for
eddy current minimization to improve the system efficiency.

Recent isolated converters utilize a complicated magnetic structure that is composed
of multiple heterogeneous elements (core material + air gap) and different winding layers.
The terminal voltage of the proposed MFBDI is variable due to the variable duty cycle;
therefore, the number of turns can be obtained as follows [38,39];

N =
Vpri_x(max)

Kv × B× Ae × FSW
(24)
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where,
Vpri_x(max) is the maximum primary voltage of the HFT,
Kv is waveform factor,
B is the flux density,
Ae the core cross section area.
Moreover, the length of the required air gap is set to 1.6 mm for rated power operation,

which can be formulated as follows [39]:

le =
N2·µo·ACore

Lm
(25)

where µo is the free space permeability and le is the air-gap length.
Based on (24), the required number of turns for EER soft-ferrite core is 10, which

is increased to 15 to maintain the required inductance when the air gap is included.
Figure 9 show the PCB board of a single flyback module with the designed elements
and power switches.
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3.3. Input LC Filter Design

A single second-order LC low pass filter is used at the inverter input side for continu-
ous DC input current with input ripples alleviation for renewable energy applications. The
input filter is designed at a resonating frequency of fo, which can be expressed as [37];

fo =
1

2π·
√

LinCin
(26)

where the resonating frequency must follow the following expression:

10 fg ≤ fo ≤
fsw

10
(27)



Sensors 2022, 22, 2064 13 of 24

Therefore, fo is selected as 4 kHz in which the input filter inductance and capacitance
are 150 µH and 10 µF, respectively.

4. MFBDI Control Scheme

As earlier discussed, the flyback modules are controlled over a wide-range of duty-
cycle variation to shape the modulus of sinusoidal voltage waveform with 120◦ phase-shift
between the modules of different phases. Based on (2) and (3), assuming lossless operation
of the proposed inverter, and by applying power balance of each phase of MFBDI, the
instantaneous grid-powers (pu, pv, and pw) can be expressed as follows:

pu = 2Esuisusin2(ωt + α) (28)

pv = 2Esvisvsin2
(

ωt + α− 2π

3

)
(29)

pw = 2Eswiswsin2
(

ωt + α +
2π

3

)
(30)

Moreover, the input power to each module can be expressed as follows:

px = viniin,mx(t) (31)

where m = (1, . . . , N), x = (u, v, w)
By applying power balance, therefore, the input currents can be formulated as follows:

imu(t) =
2Esuisu

vin
sin2(ωt + α) (32)

imv(t) =
2Esvisv

vin
sin2

(
ωt + α− 2π

3

)
(33)

imw(t) =
2Eswisw

vin
sin2

(
ωt + α +

2π

3

)
(34)

where (Esu, Esv, Esw) and (isu, isv, isw) are the grid RMS voltages and currents, respectively.
Based on the former equations, the input current for each module has a squared sinu-

soidal waveform due to the virtual unfolding stage offered by the differential connection at
the grid side. Thus, the reference input currents for the proposed MFBDI can be formulated
as follows:

i∗mu(t) =
2Esu

vin
Isusin2(ωt + α) (35)

i∗mv =
2Esv

vin
Isvsin2

(
ωt + α− 2π

3

)
(36)

i∗mw =
2Esw

vin
Iswsin2

(
ωt + α +

2π

3

)
(37)

where Isu, Isv, and Isw are peak values of grid-injected currents that can be decided by the
PV MPPT technique in solar PV applications. In addition, the constant in these equations is
used as

Hx =
2Esx

vin
Isx (38)

Based on the control-to-output transfer function of the flyback converter, the flyback
module has a right half-plane zero (RHPZ) that affects the inverter stability during the
inverter operation over a wide-range of duty-cycle variation [37]. Therefore, an accurate
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dynamic model is very important. Thus, the control-to-output transfer function of the
flyback module can be expressed as follows [34,37];

Gvdx(s) =
vox(s)
dx(s)

= G0·
b0 + b1S + b2S2 + b3S3

a0 + a1S + a2S2 + a3S3 (39)

where G0 is the DC gain, (b0–b3) are constants decides the zero locations, and (a1–a3) are the
constants of poles locations, which are formulated in Table 4 based on the system parameters.

Table 4. Transfer Function Parameters.

b3 = CinDLin
2LMVin a3 = CinLin(1− D)2[LinLM + CoReq(LinrL + LMRin)

]
b2 = −CinDVin

[
(LinrL) + (LMRin) + LinReq(2− D)

]
a2 = Lin(1− D)2

[
CinLinReq(1− D)2 + Cin(LinrL + LMRin)

+Co(LMReq + D2 + CinReqRinrL)
]

b1 = −Vin[DLin(DLin + CinRinrL + LM)

− CinLMReqrL(1− D)2
] a1 = Lin(1− D)2

[
LM + D2Lin + CinReqRin(1− D)2

+CoReq
(

RinD2 + rL
)]

b0 = Vin

[
Req(1− D)2 − D(DRin + rL)

]
a0 = (1− D)2

[
Req(1− D)2 + rL + RinD2)

]
where LM is the HFT magnetizing inductance, Co or Cout is the flyback module output inductance, Req is the
grid equivalent resistance, Rin is the resistance of the input inductor, rL is the resistance of the HFT magnetizing
inductor.

Therefore, a robust designed compensator is required to maintain the inverter stability
over a wide-range of duty-cycle and frequency variations. Considering the order of the
proposed MFBDI transfer function, a Type-II compensator is used to stabilize the system,
where its transfer function can be expressed as follows [40]:

Gcx(s) = Gc0·

(
1 + S

ωz1

)
(

1 + S
ωp1

)
·
(

1 + S
ωp2

) (40)

where Gc0 is compensator open-loop gain,
ωz1, ωp1, and ωp2 are frequency locations of converter zeros and poles, respectively.
The compensator static gain, Gc0, boosts the DC-gain of the converter open-loop trans-

fer function, which enhances the controller steady state error. In addition, the compensator
PID zero (ωz1) improves the flyback converter phase-margin (PM) that enhances the system
stability and stretches its bandwidth. Moreover, the two poles of the PID compensator are
located, one at low-frequency (ωp1), and the other at high-frequency close to switching
frequency (ωp2). The low-frequency pole flattens the converter DC-gain that improves the
controller accuracy; however, high-frequency pole eliminates the high-frequency oscilla-
tions and damps the converter switching harmonics.

In addition, the mismatch between the flyback modules flows circulating power
between converter modules, which results in the SOHC in the grid-injected currents as
illustrated in (15) and (16). Therefore, the proposed control strategy comprises two control
loops; the main and secondary control loops. The main control loop regulates the grid
currents by controlling the converter three-phase primary currents: however, the secondary
control loop eliminates the negative sequence SOHC for sinusoidal grid injected currents.
Low-pass filter (LPF), triggered at (−2ω), is used for SOHC mitigation in the secondary
control-loop. The three-phase grid currents are sensed in which SOHCs are extracted using
LPFs, and consequently eradicated from the grid currents. The LPF transfer function as be
expressed as follows:

Gs(s) =
1(

1 + S
ωn

) (41)
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The closed-loop control scheme of the proposed MFBDI for grid-integrated operation
is portrayed in Figure 10. Moreover, the overall open-loop transfer function of the converter
can be expressed as follows [37]:

T(s) = Gvdx(s)·Glgx(s)·Gc1x(s)·Gpwm(s)·Hsx(s)·GSLS(s) (42)

where T(s) is open-loop transfer function,
Gvdx(s) is control-to-output transfer function,
Glgx(s) is grid filter transfer function,
Gc1x(s) is compensator transfer function considering LPF,
Gpwm(s) is modulator transfer function,
Hsx(s) is sensor transfer function,
GSLS(s) is static linearization strategy of converter duty cycle.
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In addition, the static linearized duty cycle of the proposed flyback module can be
expressed, based on (10), as follows:

GSLSx(s) =
m(s)·(1 + Kx)

m(s)·(1 + Kx) + 1
(43)

where m(s) is the compensator’s output signals or static gain of the small-signal component
of the differential converter.

Moreover, the bode plot of the inverter transfer function, considering the LPF, is
depicted in Figure 11 using MATLAB/Simulink software. The proposed compensator sta-
bilizes the MFBDI over the wide-range of duty cycle variations. Considering the proposed
control strategy, the converter closed-loop transfer function DC-gain and bandwidth are 91
dB and 700 Hz, respectively. In addition, the converter phase margin is 36 degrees, which
confirms converter stability over a wide-range of duty cycle and frequency variations.
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Figure 11. Bode plot of the proposed control scheme of MFBDI.

5. System Verification
5.1. Simulation Results

The proposed MFBDI is verified by using PSIM simulation software of 5 kW modular
flyback differential inverter architecture considering three paralleled flyback modules
in each phase. The simulation parameters of the proposed MFBDI are listed in Table 5.
Figure 12 shows the simulation results of the grid integrated MFBDI with and without the
SOHC compensation strategy. In both cases, the waveforms of the proposed converter are
depicted as follows: duty cycles (du, dv, dw), grid voltages (vsu, vsv, vsw), grid currents (isu,
isv, isw), u-phase currents (isu, isu1, isu2, isu3), and d-q axis currents (id,ref , id,act.). The grid
injected currents have a high SOHC, which increases the THD of the grid currents. With the
proposed LPF-based compensation strategy, the MFBDI supplies the grid with sinusoidal
current waveforms with low contained THD. It is worth mentioning that in both cases, the
proposed control algorithm manages the power-sharing between the parallel modules for
high power applications.

Table 5. Simulation parameters of the MFBDI.

Rated inverter power, P 5 kW
Input DC voltage, Vdc 100 V

Input filter, Lin, Cin 150 µH, 10 µF
Input filter resistance, rin 2 Ω
Grid voltage (L.L), E, ω 200 V, 2 × π × 60 rad/s

HFT magnetizing inductance, LMx 115 µH
HFT primary resistance, rM 50 mΩ

Output capacitor, COx 12.8 µF
HFT leakage inductance, LLeakage 2.25 µH

HFT turns ratio, n 1:1
Grid filter, Lg 4 mH

Grid inductor resistance, rg, 25 mΩ
Switching Frequency, FSW 50 kHz
PI controller gains, KP, KI 0.097 A/V, 280 rad/s
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Figure 12. Simulation results of the proposed MFBDI at 5 kW; (a) with SOHC, (b) without SOHC.

In addition, a 15% mismatch between the parameters of the flyback parallel modules
of (u-phase) to investigate the proposed converter operation during parameters divergence.
The u-phase parameters mismatch is considered according to Table 6. Figure 13 shows the
system results considering the parameters mismatch. Figure 13a shows the waveforms
of duty cycles, grid voltages, grid currents, primary currents, output voltages, and the
input DC voltage and current to confirm the system stable operation during the circuit
parameters mismatch. Moreover, the input current ripples are alleviated for continuous
input current operation for renewable energy applications. In addition, Figure 13b depicts
zoomed region of the system results to illustrate the parameters mismatch effects on the
primary currents, grid currents, and output voltages of phase (u). Clearly, the converter
has small deviations between the primary currents, grid supplied currents, and output
voltages waveforms, which have a negligible effect on the converter overall operation.

Table 6. Parameter mismatch of the proposed MFBDI.

Element Divergence
Values

Average
Current/Voltage

Mismatch
Percentage

HFT Magnetizing
inductance

LM(u1) = 115 µH 21 A
3.57% (0.75 A)LM(u2) = 132.25 µH 21.75 A

LM(u3) = 97.75 µH 20.25 A

HFT Leakage
inductance

LLK(u1) = 2 µH 21 A
3.57% (0.75 A)LLK(u2) = 2.3 µH 21.75 A

LLK(u3) = 1.7 µH 20.25 A

Output capacitor
Co(u1) = 12.8 µH 163.3 V

0.6124% (1 V)Co(u2) = 14.72 µH 164.3 V
Co(u3) = 10.88 µH 162.3 V
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Figure 13. Simulation results of the proposed MFBDI at 5 kW considering 15% parameter mismatch.
(a) Power frequency waveforms; (b) switching frequency waveforms.

5.2. Experimental Results

In order to validate the proposed three-phase MFBDI, a single module/phase experi-
mental system prototype was carried out for the proposed DFBDI. Hence, the proposed
system was validated via a single module/phase 1.6 W, 200 V, and 50 kHz switching fre-
quency experimental prototype. The system prototype photograph is depicted in Figure 14.
The system prototype considers three flyback modules utilizing a single module in each
phase. SiC MOSFETs (C2M0040120D) are used for the converter switches in the experimen-
tal system, which decrease the system losses and improves the system overall efficiency. In
addition, a simple robust designed RC snubber-circuit was designed according to [37] for
voltage spikes mitigation due to the existence of the HFT leakage inductance. Moreover,
the proposed MFBDI is controlled experimentally using a DSP (TMS320C6713A, TI) digital
controller. The proposed system experimental parameters are listed in Table 7. The MFBDI
experimental results were captured from the screen of a Yokogawa DL850E digital oscillo-
scope considering two operating conditions; without and with SOHC compensation. In
both cases, the captured experimental waveforms are arranged as follows: three-phase grid
voltages, grid currents, output voltages, input DC voltage, and input DC current, respec-
tively. Without SOHC compensation, Figure 15 shows the input and output waveforms of
the proposed MFBDI. Clearly, the grid currents are distorted by high SOHC of 51%, which
matches the former simulation results, which increases the grid current THD to 36% that
exceeds the IEEE and IEC harmonic standard limits. In addition, the SOHC in the grid
currents distorts the converter input DC current with a third harmonic order as clearly
portrayed in Figure 15, which is important for renewable energy applications such as solar
PV and fuel cells. On the other hand, the converter experimental results after the harmonic
elimination strategy are depicted Figure 16. With the help of the harmonic compensation
strategy, the SOHC was eliminated from the grid-injected currents and the SOHC was
reduced to 0.82%, as shown in Figure 16b. Thus, the grid-injected currents are almost sinu-
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soidal waveforms with a THD of 4.6%, which matches IEEE and IEC harmonic standard
limits. Moreover, the SOHC compensation strategy eliminates the third order harmonic
component from the DC input current, as depicted in Figure 16a, which is important for
solar PV applications. Moreover, the single LC input filter mitigates input current ripples,
which offers an important feature for renewable energy applications. It worth mentioning
that the voltage stress of the converter components is within the designed region due to the
robust designed snubber circuit.
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Table 7. Experimental parameters of the MFBDI.

Rated inverter power, P 1650 kW
Input DC voltage, Vdc 100 V

Input filter, Lin, Cin 152.3 µH, 10 µF
Input filter resistance, rin 1.5 Ω
Grid voltage (L.L), E, ω 200 V, 2 × π × 60 rad/s

HFT magnetizing inductance, LMx 115.52 µH
HFT primary resistance, rm 50 mΩ

Output capacitor, COx 12 µF
HFT leakage inductance, LLeakage 2.56 µH

HFT turns ratio, n 1:1
Grid filter, Lg 4 mH

Grid inductor resistance, rg, 25 mΩ
Switching Frequency, FSW 50 kHz
PI controller gains, KP, KI 0.097 A/V, 280 rad/s
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Figure 15. Experimental system results without SOHC compensation. (a) Converter results without
SOHC compensation. (b) Grid current FFT harmonic spectrum without SOHC compensation.

In addition, the harmonic orders of the grid injected currents are compared with
the IEC 63000-3-2(Class-A) harmonic standard, as depicted in Figure 17. Obviously, the
grid current harmonic orders are within the acceptable limit up to the 15th order, which
confirms the operation of the SOHC compensation loop in the system control scheme.
Finally, the proposed converter efficiency profile was analyzed considering a single flyback
DC-DC module operation from the proposed MFBDI between (75 and 600 W) as depicted
in Figure 18. Obviously, the converter efficiency is low for low-power operation due to
the system conduction loss. However, the system efficiency enhances with increasing the
power processed by the proposed converter to reach its optimal value and start to decrease
again as depicted in the converter efficiency profile portrayed in Figure 18.
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Figure 16. Experimental system results with SOHC compensation. (a) Converter results with SOHC
compensation. (b) Grid current FFT harmonic spectrum with SOHC compensation.
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Figure 18. Efficiency profile of a single flyback module of the proposed MFBDI.

6. Conclusions

A modular single-stage three-phase differential inverter is presented in this paper
based on the flyback DC-DC module. The proposed converter is verified via three-parallel
flyback modules for 5 kW power rating for renewable energy applications. A detailed
mathematical model of the proposed MFBDI confirming the SOHC is provided in this
paper. Module parameters design strategy are illustrated for acceptable voltage and current
ripples. In addition, a new control scheme based-on flyback primary current detection is
used to control the grid integrated operation. Two control loops are used in the proposed
control scheme for grid currents regulation (loop-1) and SOHC compensation (loop-2),
respectively. To ensure the modular operation of the proposed converter architecture,
15% parameters mismatch is applied between the parallel flyback modules to confirm
the modular operation of the MFBDI over flyback modules divergence. For experimental
validation of the MFBDI, a laboratory prototype based 1.6 W/200 V was built and the
experimental results of the proposed converter without and with the LPF-based harmonic
elimination strategy are carried out. Clearly, the experimental results follow the simulation
results that confirms the robust design of the converter. Moreover, the grid current harmonic
orders are compared with the IEC61000-3-2 (Class-A), which are within the standard
permissible limit. Furthermore, the converter efficiency profile is analyzed at different
power levels.
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