
Modular Software Design with Crosscutting Interfaces∗

William G. Griswoldλ Kevin Sullivanφ Yuanyuan Songφ Macneil Shonleλ

Nishit Tewariφ Yuanfang Caiφ Hridesh Rajanφ
φComputer Science

University of Virginia
Charlottesville, VA 22903

{sullivan,ys8a,yc7a,nt6x,hr2j}@cs.virginia.edu

λComputer Science & Engineering
UC San Diego

La Jolla, CA 92093-0114
{wgg,mshonle}@cs.ucsd.edu

Abstract

Aspect-oriented programming languages such as AspectJ
offer new mechanisms for decomposing systems into
modules and composing modules into systems. This pa-
per introducescrosscut programming interfaces (XPIs) as
a practical approach to improving the modular designs
of programs written using AspectJ-style AOP. It does not
limit existing aspect-oriented mechanisms or require new
ones.

Categories and subject descriptors: D.2.2 [Software En-
gineering]: Design Tools and Techniques—modules and
interfaces; D.3.3 [Programming Languages]: Language
Constructs and Features; D.2.11 [Software Engineering]:
Software Architectures—information hiding; D.2.7 [Soft-
ware Engineering]; Distribution, Maintenance, and En-
hancement.

General terms: Design, Languages.

Keywords: aspect-oriented, preconditions, postcondi-
tions.

1 Introduction

Aspect-oriented programming languages such as As-
pectJ [1] offer new mechanisms and possibilities for de-
composing systems into modules and composing modules
into systems. AspectJ-style design is based on the use
of aspect modules that support quantified advising of dy-
namic points in program execution: namely the invocation
of aspect-defined advice methods atjoin points matched
by pointcut descriptors, or PCDs. In practice, PCDs are
written directly in terms of lexical properties of advised
code.

∗This research supported in part by NSF CISE grants FCA-0429947
and FCA-0429786.

The contribution of this paper is the presentation of a
practical approach to improve the modular designs of pro-
grams written using AspectJ-style AOP. Our approach is
based on the use of what we callcrosscut programming
interfaces, or XPIs, to decouple aspects from the complex
and changeable details of the code that they advise [2].
Without limiting the possibilities for AO advising or re-
quiring new programming languages or mechanisms, our
approach appears to better modularize aspects and ad-
vised code, allowing for their separate and parallel evolu-
tion, and producing a better alignment between programs
and designs.

1.1 Problem

Our approach emerged from an experiment using AOP to
improve the design of HyperCast, a 300-class, 50 KLOC
Java system for multicast and other communications in
self-organizing overlay networks [3]. HyperCast’s log-
ging concern and client-facing event notification behav-
iors were implemented by scattered code fragments, mak-
ing enhancement of their limited behaviors difficult. Us-
ing AspectJ aspects to improve the design seemed a natu-
ral idea.

The oblivious design was obtained by assuming that
had the developers been able to ignore crosscutting con-
cerns, they would have written the same code, just leav-
ing out the code for the crosscutting concerns. Aspects
then advise the code in precisely the places where scat-
tered fragments appear in the original design.

We started by using aspects to modularize a logging
concern and a few concerns implemented with an implicit
invocation mechanism. We changed HyperCast as little
as possible, just encapsulating scattered code in aspects,
resulting in a design of the base functionality that was es-
sentially the same as before, absent the crosscutting con-
cerns. The AOP notion ofobliviousness presents such a

1

design as an ideal: designers should not have to consider
crosscutting concerns or aspects that implement them [4].
In comparison to the original object-oriented design, our
economic analysis showed an increasednet options value
of modularity in this straightforward AO design [2]. How-
ever, we encountered costly problems that largely offset
the net value improvement.

First, aspect design and evolution were complicated.
The designers had to inspect all the code to identify rel-
evant join points. Since join points were not exposed in
a consistent way, complex PCD expressions and advice
were needed. Innocuous changes to code could change
the matched join points, violating assumptions made by
the advising aspects.

Second, the resulting class and aspect abstractions did
not reflect the conceptual design. In the designers’ minds,
HyperCast’s protocols are implemented by abstract state
machines. Event notifications expose key state machine
transitions so that aspect-like clients can react to them.
Our traditionally derived AO design had no separate, ex-
plicit representation of the state machines as interfaces.
The PCDs of the aspects were candidates, but they fell
short; each aspect defined its own PCDs for its own pur-
pose.

One way to make the state machine abstraction clearer
in the design would have been to rename the pointcut de-
scriptors used in the aspects after the state machine con-
cepts they were implicitly using. However, as reconcep-
tualized, renamed, and used, these pointcuts would have
no longer belonged to their respective aspects,per se. Yet
there was no appropriate place for these pointcuts in a Hy-
perCast class, either, as the advised join points were not
centralized in a class or meaningful subclass hierarchy.
The pointcuts identified true crosscutting behaviors.

1.2 Approach

The above line of reasoning exposed important crosscut-
ting concerns distinct from those modularized in aspects.
The “new” concerns were HyperCast’s core protocols and
other crosscutting abstract behaviors. These behaviors
needed to be exposed through interfaces, against which
aspects could be implemented. Benefits would be ob-
tained in abstraction (e.g., the program structure reflecting
the key abstraction in the designers’ minds and conver-
sations), and modularity (e.g., parallel development and
modular evolution).

We thus repeated our experiment with HyperCast, us-
ing Design Rules as [5] conceptual interface constructs,
which stabilized and syntactically regularized the relevant
join points in the code, and also constrained the aspects

to not corrupt the state machine [2]. The resulting de-
sign better mirrors the conceptual design and provides far
better separation of aspect code from the details of the ad-
vised code. Our net option value analysis showed greater
value of modularity over the first design, while the com-
plexity of the aspects and overall coupling was signifi-
cantly reduced.

The primary contribution of this paper is to realize these
conceptual crosscutting interfaces as syntactic crosscut-
ting interfaces in AspectJ, with semantics defined by
weakest precondition invariants. A crosscut programming
interface, or XPI, has several elements:

• a name;

• a static scope over which it abstracts join points;

• one or more abstracted sets of join points, each ex-
pressed as:

– a concrete, named PCD;

– preconditions that must be satisfied at each join
point where advice can run, called aprovides
clause; and

– postconditions that must be satisfied after ad-
vice may have run, called arequires clause.

• a set of constraints, ordesign rules, prescribing how
code must be written to expose all and only the spec-
ified points in program execution through the given
PCDs.

In AspectJ these elements are declared in an aspect.
Checkable invariants can be checked with a separate plug-
gable aspect.

An XPI, like an API, abstracts changeable and complex
design decisions and operates as a decoupling contract be-
tween providers and users. Unlike an API, an XPI ab-
stracts a crosscutting concern rather than a localized con-
cern. In the case of AspectJ-style design, an XPI abstracts
advised join points. To paraphrase Parnas [6, p. 1058],
XPIs should modularize crosscutting design decisions that
are complex or likely to change. In turn, the implementor
implements an XPI, not by providing code to simulate a
specified behavior, but by shaping code to expose spec-
ified behaviors through join points matching designated
PCDs. With respect to obliviousness, a designer does not
necessarily anticipate particular aspects, such as logging,
but does anticipate the need for domain-relevant abstrac-
tions that facilitate development and evolution of aspects
expressible in terms of provided XPIs. The design method
that we have found to work is to identify domain abstrac-
tions that are not adequately captured in the class design,

2

and to express them as XPIs. Thus, no explicit reference
is made to future aspects in their design, although the use-
fulness of the XPIs can be checked against anticipated as-
pects.

In the following, we use a detailed comparative exam-
ple to show how to apply the XPI method and what bene-
fits can accrue from it.

2 Two Designs for a Figure Editor

In this section we present two designs for the classic figure
editor example [1]. The first is a traditional AOP modular-
ization; the second, a design with XPIs. We evaluate the
designs in terms of how well they manifest fundamental
design concerns, abstract irrelevant details, and accom-
modate change.

2.1 A Traditional AO Design

Consider a simple figure editing tool for editing draw-
ings comprising points and lines (figure elements), where
each figure element is depicted on a display, and where
the display always reflects the current states of figure ele-
ments. The FigureElement class provides an interface for
the concrete subclasses, Point and Line. The Display class
manages the display and provides a method, update(), to
display the current states of all figure elements. The spec-
ification requires a call to update() whenever the abstract
state of a figure element changes.

The figure editing example has been used to introduce
the ideas of crosscutting concerns, scattering and tangling,
and how AOP addresses these issues. The crosscutting
concern in this case is the policy that stateswhen the ab-
stract state of a FigureElement changes, the Display must
be updated. Implementing this policy in an OO style leads
to scattered update() calls throughout FigureElement sub-
class implementations, and the tangling of these calls into
code concerned with FigureElement updating.

The Observer pattern could be used to remove the ex-
plicit calls, but it still requires that event-related codebe
scattered and tangled in the FigureElement code and else-
where. The approach has been criticized on the grounds
that it requires that the author of the FigureElement code
anticipate extensions. AOP provides an alternative that
avoids the need for such preparation in support of display
updating. The DisplayUpdate aspect, shown in Figure 1,
satisfies the update specification.

We implemented this aspect in the manner popular-
ized in the research and practitioner literature on AOP.
We studied the FigureElement code to find points where

public aspect DisplayUpdate {
pointcut FigureElementStateTransition():

call (* FigureElement+.set*(..))
|| call (* FigureElement+.moveBy(..));

after(FigureElement f):
FigureElementStateTransition(f) && target(f) {
Display.update(f);

}
}

��������������������� 	
��������� 	
����������
�� 	
���� 	
�� ����� ������������������������ 	 �
���������� 	 �
����������

��� 	 �
����� 	 �
�������� !"#$%&''
���()*+�,,-�./0�12�3���
�4�5*����6�7829:

;<
�*)��(��	 =
�4(�>?�����@�*��A(*��
�
�?��6�7829:B8C9��

Figure 1: A traditional display updating aspect and the
resulting aspect-oriented design of figure editor.

changes in FigureElement abstract state occur. We gen-
eralized and described this set of points in the form of
a PCD, FigureElementStateTransition(), which captures
calls to mutator methods of Line and Point and calls to
moveBy(), which moves a figure element by a certain off-
set. Figure 1 presents a UML model of this design. As is
typical in straightforward AOP, the DisplayUpdate aspect
depends on implementation details of the Point and Line
classes. A more sophisticated AO design could remove
these dependences.

There are several reasons to be concerned about such a
design. First, the Point and Line implementations had to
be written before the aspect could be written, limiting the
available parallelism in development. Second, the aspect
implementor had to study the Point and Lineimplemen-
tations in order to be able to write the aspect (pointcut
descriptors) correctly. The lack of an abstraction layer
between the aspect and the advised code adds to the cog-
nitive load on the aspect implementor. The aspect lets the
FigureElement writer ignore display updating, but the as-
pect writer cannot ignore low-level details of FigureEle-
ment. Third, the correctness of the aspect depends on un-
stable details of the Point and Line implementations. The
design is thus subject to be compromised by apparently
innocuous changes in them.

3

2.2 An AO Design with XPIs

By employing XPIs, the designer seeks to insulate as-
pects from the details of the code they advise, while con-
straining that code to expose certain behaviors in specified
ways. In the process, important but previously submerged
crosscutting concerns become manifest as XPIs in the pro-
gram. In the figure editing case, an XPI will separate the
DisplayUpdate aspect from FigureElement details. Our
XPI reifies the concepta transition has occurred in the ab-
stract state of a FigureElement. It provides simple PCDs
by which aspects can advise all such actions without hav-
ing to depend on the underlying source code, while con-
straining the system implementor to ensure that all ab-
stract state changes (and only such state changes) are im-
plemented in a way that matches the PCDs.

The syntactic part of the XPI exposes two named PCDs,
point() and topLevelPoint() . The PCD signature (name
and parameters) constitute the abstract interface; the part
of the PCD that matches points in the code is part of the
hidden implementation of the XPI (see Figure 2). It is
only here that dependences on details of the underlying
code arise.

We document the semantics informally in the following
prose. The point() PCD exposes all FigureElement state
transitions.1 This abstraction is implemented, in a sense,
by the pattern that matches calls to FigureElement muta-
tors. The system designer is constrained to ensure that
the PCD pattern matches all and only such FigureElement
mutator calls and that state transitions occur only as a re-
sult of such calls. The topLevelPoint() PCD exposes all
and only changes to the states of compound FigureEle-
ment objects (such as Line) but not changes to their com-
ponent elements (namely Point).

The semantics of XPIs can include behavioral con-
straints on aspects. In our example, we require that no
advisor of this XPI cause a side-effect on a FigureElement
object. This constraint in effect prohibits advice from call-
ing FigureElement mutators either directly or indirectly.

Like APIs, XPIs enable a degree of contract check-
ing [7]. When included in the program’s build, the aspect
shown below the XPI in Figure 2 constrains developers
to modify the internal state of a FigureElement from only
within the FigureElement mutators. To a degree, it also
ensures that the aspects using the XFigureElementChange
XPI are not able to modify the abstract state of any Fig-
ureElement. The aspect cannot, however, verify the pro-
grammer’s adherence to the naming requirements.

Figure 3 presents a DisplayUpdate aspect using this

1We use the generic PCD name,point(), not to be confused with the
Point class, as an analog of a generic “run” method name; the semantics
are already suggested by the name of the containing XPI.

public aspect XFigureElementChange {
/*
The purpose of the point() PCD is to expose all and
only FigureElement abstract state transitions. We
require that all such transitions be implemented by
calls to FigureElement mutators with names that match
the PCDs of this XPI, and we assume that any such call
causes such a state transition. Advisors of this XPI
may not change the state of any FigureElement
directly or indirectly. The topLevelPoint() PCD
exposes all and only "top level" transitions in the
abstract states of compound FigureElement objects.
*/
public pointcut point(FigureElement fe):

target(fe)
&& (call(void FigureElement+.set*(..))

|| call(void FigureElement+.moveBy(..))
|| call(FigureElement+.new(..)));

public pointcut topLevelPoint(FigureElement fe):
point(fe) && !cflowbelow(point(FigureElement));

protected pointcut staticscope():
within(FigureElement+);

protected pointcut staticmethodscope():
withincode (void FigureElement+.set*(..))
|| withincode(void FigureElement+.moveBy(..))
|| withincode (FigureElement+.new(..));

}

/*
Checks the contracts for the XFigureElementChange XPI.

*/
public aspect FigureElementChangeContract {
/*
PROVIDES: XPI matches all calls and only
calls to FigureElement mutators
*/

declare error:
(!XFigureElementChange.staticmethodscope()
&& set(int FigureElement+.*)):

"Contract violation: must set FigureElement"
+ " field inside setter method!";

/*
REQUIRES: advisers of this XPI must not change
the abstract state of any FigureElement object
*/

private pointcut advisingXPI():
within(XFigureElementChange+) && adviceexecution();

before(): cflow(advisingXPI())
&& XFigureElementChange.point(FigureElement) {
ErrorHandling.signalFatal("Contract violation:"

+ " advisor of XFigureElementChange cannot"
+ " change FigureElement instances");

}
}

Figure 2: The XFigureElementChange XPI and separate
contract-checking aspect.

4

public aspect DisplayUpdate {
after():
XFigureElementChange.topLevelPoint(FigureElement) {
updateDisplay();

}

public void updateDisplay() {
Display.update();

}
}

��������������������� 	
��������� 	
������������ 	
���� 	
������� ������������������������ 	 �
���������� 	 �
������������� 	 �
����� 	 �
������� !"#$%&'(
���)*+,�-.�/01�23�4���
�5�6+����7�893:;<=

�>?@AB!CDE&'�>?@AE!BF#"#G>!CDE&'(
���)*+,�-H.�/01�23�4���IJ:�/�

�+*��)��	 ��K���L�
����7�893:;M9N:��
Figure 3: Display updating aspect using an XPI, and the
resulting aspect-oriented design.

XPI and the resulting UML model. The aspect now de-
pends only on the abstract, public PCD signatures of
XFigureElementChange, not on implementation details of
the Point and Line classes. Classes Point and Line con-
tribute to implementing the XFigureElementChange XPI
by ensuring that method names match the given PCDs if
and only if they have the specified change semantics.

3 Analysis of the Designs

We now compare the designs in terms of abstraction and
evolvability. As Kiczales and Mezini did [8], we first
change public data members to private, forcing updates
to occur through advisable method calls. We then extend
FigureElement to include Color. The next section shows
how adding a classic “non-functional” aspect, property
enforcement, is facilitated by XPIs.

3.1 Data Member Access
In our original design, the coordinates in the Point
class were public, permitting this implementation of
Line.moveBy():

public void moveBy(int dx, int dy) {
p1.x += dx;
p1.y += dy;

p2.x += dx;
p2.y += dy;

}

Making the fields private drives the Line.moveBy() de-
signer to change to the implementation:

public void moveBy(int dx, int dy) {
p1.moveBy(dx, dy);
p2.moveBy(dx, dy);

}

Now consider the DisplayUpdate aspect implemented
without the XPI. When Line.moveBy() is invoked, the
advice is invoked three times: once for the call to
Line.moveBy() and once for each call to Point.moveBy()
in the body of Line.moveBy(). The assumption by the as-
pect about Line’s otherwise-hidden implementation was
broken by the apparently innocuous change [9].

The XPI approach avoids such problems by establish-
ing an interface in the form of design rules, where aspects
can assume that the rules are followed, and code within
the scope of the XPI is required to conform to its terms,
and vice versa. It is important that XPIs have both syn-
tax, in the form of convenient abstract PCDs, and seman-
tics. Our XPI specifies that the PCD must match a join
point if and only if it indicates a change in the abstract
state of a FigureElement. Under this XPI, DisplayUpdate
uses the provided convenient PCD (and promises not to
inject changes into FigureElement), and the implementor
of Line would implement Line.moveBy() so that it’s join
point is captured by the PCD.

3.2 Adding Color to Figure Elements

The second change is behavioral, adding Color as a Line
attribute with getter and setter methods, with the require-
ment that all observers of figure element update when a
Line’s color changes. In the non-XPI approach, one of
two undesirable scenarios are required to ensure that the
display updates properly. One, the Color implementer
must be aware of the DisplayUpdating aspect and its PCD
implementation to figure out how to name the Color setter
method so the PCD will match it. Two, the aspect imple-
mentor must change the DisplayUpdating PCD to match
whatever choice the Color implementor makes. With
more aspects involved, these scenarios become less ap-
pealing.

In the XPI case, the Color implementor need only be
aware of the figure element state-change XPI and its con-
straint that a state can be changed only by a method named
moveBy or a name starting with set. The presence of an
XPI thus guides the implementor in choosing names for
methods and in making other decisions that can influence

5

PCD matching. In this case, the implementor must name
the method something like setColor, rather than change-
Color; and merely doing so exposes color changes as ab-
stract state changes through the XPI. To our knowledge,
no prior work clearly guides programmers to design code
for ease of advising.

4 Extending the New Design

Adding a property and its implementation to a system is
an important issue. We explore it in the context of XPIs
by adding a feature that maintains a geometric invariant
in the figure editor: Lines may not be degenerate. That is,
the two points that define a line cannot have identical co-
ordinates. Enforcing this invariant requires that no Line be
degenerate when first created and that no change to a Point
in a Line makes it degenerate. This is an instance of the
more general problem of maintaining invariants for com-
pound structures under changes to their respective parts.

Note that invariant enforcement essentially changes the
originally specified behavior of Points by conditioning the
effects of a Point mutator on a Point’s participation in a
Line. Such a change could require broad changes in the
software’s implementation; the advantage of using an as-
pect is that the code changes can be localized to the as-
pect, even if their effects are not. With this observation
in mind, we now argue that the use of XPIs, while not a
panacea, can improve a designer’s ability to express and
use abstractions that both manage these complex effects
and are central to designers’ thinking.

We assume that the designer has decided to use an
aspect module to implement the invariant enforcement.
Since an appropriate XPI to write the aspect against does
not already exist, we need to determine the domain ab-
straction for decoupling development of the aspect from
development of the normal case, and then write that XPI.
The behavioral abstraction we need ischange to a Point
that is part of a Line. Given this, the aspect can then im-
plement the policyprevent changes to Points in Lines that
would create any degeneracies.

The precise invariant we seek for the given de-
sign is that a Line cannot have two end Points at the
same coordinate. Modifying a Line by calling method
Line.setP1(Point) or Line.setP2(Point) can violate this in-
variant. So can directly modifying the coordinates of a
Point that belongs to a Line, without direct reference to
the Line. However, a key concept absent from the origi-
nal system is the relation between Points and Lines. For
instance, there is no field in Point that stores a containing
Line. A subtlety is that some Points are part of a Line, and

public aspect PointLineRelation {
private Line Point.parent;

public boolean Point.partOfLine() {
return parent != null;

}

public Line Point.getParent() {
return parent;

}

/*
When a Line’s Point is possibly set,
reestablish the parent of the Line’s Points.
*/

private pointcut changePoint(Line l):
target(l)
&& XFigureElementChange.point(FigureElement);

before(Line l): changePoint(l) {
l.getP1().parent = null;
l.getP2().parent = null;

}

after(Line l): changePoint(l) {
l.getP1().parent = l;
l.getP2().parent = l;

}
}

Figure 4: The PointLineRelation aspect.

some are not.2

Thus, the first part of our solution creates a represen-
tation of a new Point-Line relation. We use an aspect to
introduce aparent field into the Point, to record the Line
to which a point belongs, if any (see Figure 4). The aspect
uses the XFigureElementChange XPI, updating the par-
ent field as appropriate when a Line is created or one of
its Points replaced. Note that although this aspect updates
the parents of Points, it does not violate the XFigureEle-
mentChange Requires contract because the parent is part
of the hidden state of FigureElements. In keeping with
this XPI, no setParent method is introduced, calls to which
would inappropriately result in updating the Display.

Figure 5 presents the XPI and resulting design. The
XPointInLineChange XPI exposes three events on the
end-points of a line: change in X coordinate, change in
Y coordinate, and change in both coordinates.

Having written this XPI, it is now straightforward to
write an aspect for invariant enforcement (not shown): us-
ing around advice, it advises changes in Points that are in
Lines and allows them to occur only if they preserve the
invariant. The XPI abstracts changes to Points in Lines.
The aspect separately abstracts the invariant and enforce-
ment policy. This kind of separation is at the heart of our
interface-oriented approach to AO design for improved
modularity and abstraction. It permits reuse of the XPI

2And in a real system, a point may be a part of many lines.

6

/*
The X() PCD exposes changes to the x coordinate
of any point that belongs to a line (similarly
for Y() and XY().
*/

public aspect XPointInLineChange {
public pointcut X(Point p, int x):
call(void Point+.setX(int))
&& target(p) && args(x) && if(p.partOfLine());

public pointcut Y(Point p, int y):
call(void Point+.setY(int))
&& target(p) && args(y) && if(p.partOfLine());

public pointcut XY(Point p, int dx, int dy):
call(void Point+.moveBy(int,int))
&& target(p) && args(dx, dy)
&& if(p.partOfLine());

}

��������������������� 	
��������� 	
������������ 	
���� 	
�� ����� ������������������������ 	�
���������� 	�
�������������	�
�����	�
������� !"#$%&'((
���)*+,�--.�/01�23�4���56
�789:;&'�789:<&'�789:;<&'=
���)*+,�>?�����@�����ABC�/�

�+)D�E��
��F��	����+)D�E��
��F��	����+)D�E��
��FE�FE��	����@�GC1�C��AB�HI��/
Figure 5: The XPointInLineChange XPI and the resulting
design.

for implementing other aspects, and decouples those as-
pects from possible changes to the ways that Points and
Lines may be modified.

5 Related Work

Most work that aims to improve program modularity un-
der the use of AO mechanisms focuses on language mod-
els and expressiveness, rather than on software design
methodology. Two recent developments that address de-
sign more directly are relevant here.

Join point scoping. Larochelle et al. proposed a
PCD-based mechanism for hiding a crosscutting set of
join points, thus preventing their being advised by as-

pects [10]. Dantas and Walker’s AspectML provides ad-
vice access controls to the parameters of a function def-
inition, hence modifying the join point signature of calls
on the function [11]. The XPI approach does not pro-
vide a hiding mechanism, rather it specifies the expo-
sure of given abstract execution phenomena. Combining
these approaches might produce an interesting point in the
space of design methods and supporting mechanisms.

Aldrich, among others, has proposed language
constructs—and by implication a design method—for
module-based join point interfaces. Open Modules ex-
pose only PCD-selected join points on private state [9].
The Open Modules system provides for the exposure of
join points such that a module state that is intended to be
hidden cannot be advised. Simply, a module has to de-
clare a pointcut in order to export join points on its pri-
vate state. Thus, it permits the evolution of a module
implementation without requiring rework of aspects. Be-
cause the resulting interface is limited to crosscutting the
module’s implementation, it would be at best awkward to
capture the crosscutting concepts found in our HyperCast
case study [2].

Aspect-aware interfaces. Kiczales and Mezini recog-
nized the need to program against crosscutting interfaces.
They defined a notion ofaspect-aware interfaces (AAIs),
in which aspects extend the interfaces of modules they
advise [8]. Specifically, dependences of aspects on join
points are computed for a system and are shown as anno-
tations on the explicit interfaces of advised code.

Revealing such dependences is an enabler of modu-
lar reasoning and change. A programmer can see how
join points are being advised and avoid making changes
that invalidate those uses. Prior to the emergence of sta-
ble modular interfaces (for example in XP-style develop-
ment [12]), AAIs can serve as a valuable substitute—they
inform, even if they do not decouple and abstract. Like-
wise, the cross-references provided by AAIs could prove
useful in guiding refactoring activities, perhaps resulting
in XPIs.

Yet, AAIs do not clearly manifest conceptual design
concerns. There is no textually distinct interface con-
struct, but instead a set of annotations. There is no con-
struct for attaching contracts or programming against.
Also, support for modularity is limited. The display of ex-
isting dependences between existing code and PCDs can-
not tell developers how to shape new code to correctly
expose behaviors to existing PCDs, nor how to write new
PCDs to capture the desired behaviors of existing code.

7

6 Conclusion

The XPI approach decouples aspect code from the unsta-
ble details of advised code without compromising the ex-
pressiveness of existing AO languages or requiring new
ones. By extending well-understood notions of module
interfaces to crosscutting interfaces, it provides a prin-
cipled alternative to the concept of oblivious design. In
our discussions with best-practice AO programmers, we
have found that some indeed design and develop in styl-
ized ways that are consistent with the XPI approach. It
thus has the potential to ground, regularize, and dissem-
inate best software engineering practices using the new
mechanisms provided by AO programming languages.

Our experience to date with XPIs is limited to two sys-
tems, HyperCast [2] and figure element. We expect that
IDE support could aid programmers by showing the scope
of an XPI’s applicability. Being non-hierarchical, XPIs
could overlap, but we have not seen this possibly com-
plex interaction. We have yet to investigate the promise
of XPIs for AO languages with different mechanisms than
AspectJ’s.

References

[1] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of As-
pectJ. In15th European Conference on Object-
Oriented Programming (ECOOP 2001), pages 327–
353, June 2001.

[2] Kevin J. Sullivan, William G. Griswold, Yuanyuan
Song, Yuanfang Cai, Macneil Shonle, Nishit Tewari,
and Hridesh Rajan. Information hiding interfaces for
aspect-oriented design. InESEC/FSE 2005, page To
Appear, 2005.

[3] Jorg Liebeherr and Tyler K. Beam. Hypercast: A
protocol for maintaining multicast group members
in a logical hypercube topology. InNetworked
Group Communication, pages 72–89, 1999.

[4] Robert E. Filman and Daniel P. Friedman. Aspect-
oriented programming is quantification and oblivi-
ousness. InAspect-Oriented Software Development,
pages 21–35. Addison-Wesley, 2005.

[5] C. Y. Baldwin and K. B. Clark.Design Rules: The
Power of Modularity. MIT Press, Cambridge, MA,
2000.

[6] D. L. Parnas. On the criteria to be used in decom-
posing systems into modules.Communications of
the ACM, 15(12):1053–1058, 1972.

[7] Bertrand Meyer. Applying ”design by contract”.
Computer, 25(10):40–51, 1992.

[8] Gregor Kiczales and Mira Mezini. Aspect-oriented
programming and modular reasoning. InICSE ’05:
Proceedings of the 27th international conference on
software engineering, 2005.

[9] Jonathan Aldrich. Open modules: Modular reason-
ing about advice. In2005 European Conference on
Object-Oriented Programming (ECOOP’05), page
To Appear, July 2005.

[10] David Larochelle, Karl Scheidt, Kevin Sullivan,
Yuan Wei, Joel Winstead, and Anthony Wood. Join
point encapsulation. InIn Workshop on Software-
engineering Properties of Languages for Aspect
Technologies (SPLAT) at AOSD 2003, March 2003.

[11] Daniel S. Dantas and David Walker. Aspects, in-
formation hiding and modularity. Technical Report
TR-696-04, Princeton University, November 2003.

[12] K. Beck. Extreme Programming Explained: Em-
brace Change. Addison-Wesley, Reading, MA,
1999.

8

