
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Transactions on Software Engineering. This
paper has been peer-reviewed but does not include the final publisher proof-corrections or journal
pagination.

Citation for the original published paper (version of record):

Leungwattanakit, W., Artho, C., Hagiya, M., Tanabe, Y., Yamamoto, M. et al. (2014)
Modular Software Model Checking for Distributed Systems.
IEEE Transactions on Software Engineering, 40(5): 483-501

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-199121



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 1

Modular Software Model Checking for
Distributed Systems

Watcharin Leungwattanakit, Cyrille Artho, Masami Hagiya,

Yoshinori Tanabe, Mitsuharu Yamamoto, and Koichi Takahashi

Abstract—Distributed systems are complex, being usually composed of several subsystems running in parallel. Concurrent execution

and inter-process communication in these systems are prone to errors that are difficult to detect by traditional testing, which does not

cover every possible program execution. Unlike testing, model checking can detect such faults in a concurrent system by exploring every

possible state of the system. However, most model-checking techniques require that a system be described in a modeling language.

Although this simplifies verification, faults may be introduced in the implementation. Recently, some model checkers verify program

code at runtime but tend to be limited to stand-alone programs. This article proposes cache-based model checking, which relaxes

this limitation to some extent by verifying one process at a time and running other processes in another execution environment. This

approach has been implemented as an extension of Java PathFinder, a Java model checker. It is a scalable and promising technique to

handle distributed systems. To support a larger class of distributed systems, a checkpointing tool is also integrated into the verification

system. Experimental results on various distributed systems show the capability and scalability of cache-based model checking.

Index Terms—Software model checking, software verification, distributed systems, checkpointing.

✦

1 INTRODUCTION

D ISTRIBUTED systems [1] are complex due to multi-
ple units of execution operating in parallel. They

are composed of several processes, generally running
on different platforms. Processes communicate with each
other over a network. As network communication is not
perfect in practice, messages may be delayed or even
lost. However, well-written applications should be able
to continue working as expected or terminate gracefully,
even encountering such unpredictable circumstances.
Furthermore, a process may be multithreaded by creating
dedicated threads that handle connections with other
processes [2]. The threads in the process are interleaved
according to the policy adopted by the operating sys-
tem. How the threads will be interleaved is usually not
known beforehand.

Faults caused by concurrency are usually difficult
to detect and reproduce since they only happen on a
certain timing. Testing [3] does not cover every possible
way that a system can be executed, even if it runs the
system several times. Concurrent faults therefore may
still be remaining, even after the application has passed
a rigorous test suite. Model checking [4] is a technique

• W. Leungwattanakit and M. Yamamoto are with the Department of
Mathematics and Informatics, Chiba University, Chiba, Japan.

• C. Artho and K. Takahashi are with the Research Institute for Secure
Systems at the National Institute of Advanced Industrial Science and
Technology (AIST), Amagasaki and Tsukuba, Japan.

• M. Hagiya is with the Department of Computer Science, University of
Tokyo, Tokyo, Japan.

• Y. Tanabe is with National Institute of Informatics (NII), Tokyo, Japan.

Manuscript received April XX, 2013; revised September 23, 2013.

to detect property violations in a concurrent system by
exploring every possible execution path. Accordingly,
every possible state of the system is checked against
given properties. This technique is especially useful for
quality assurance of safety-critical systems and core algo-
rithms/protocols of large systems. Model checking was
originally developed for hardware verification, but the
concept of state-space exploration has been applied to a
wide range of software systems as well [5], [6].

In the traditional approach, a system to be verified
is abstracted into an input language supported by the
model checker. The model checker then generates a di-
rected graph that represents a state space of the system.
It traverses the graph and checks if the desired properties
hold at every state. This activity is referred to as state
exploration. After verification of the model, the system is
usually implemented in a programming language, based
on the verified model.

Although model checking originally required an ab-
stract model, recent work in the community applies
model checking directly to an implementation; this ac-
tivity is often called software model checking. Direct veri-
fication on real code gives more confidence on software
safety. The fact that system design meets a specification
does not imply that the implementation does as well.
Many concurrency-related faults are introduced by pro-
gramming mistakes during the implementation phase,
such as race conditions, deadlocks, etc. Verification in
the design phase cannot guarantee the absence of faults
in the final deliverables. The software model-checking
community focuses on the analysis of real implemen-
tations, written in mainstream programming languages
such as Java and C [6], [7]. In the software develop-
ment life cycle, software verification is not intended to



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 2

SUT Peer

Model Checker

Fig. 1. Only one process is verified by a model checker.

replace system design verification; instead, it serves as
the last line of defense before a software release. Careful
verification on both the system design and the system
implementation is important in software development.

Most software model checkers only verify a single-
process program. Network communication is not mod-
eled in such model checkers. Extending the capability of
existing model checkers to support network communi-
cation is not straightforward. Each process in a system
may interleave with each other, generating an extremely
large composite state space. Furthermore, model check-
ing on real code explores many more states than model
checking on modeling languages because of the more
detailed scenario. Full state exploration therefore is not
scalable. To improve scalability, one can separate the
processes in a system into a system under test (SUT) and
peer processes [8]. The SUT is a process that a tester wants
to verify in a software model checker. The peer processes
are part of the system that runs as normal. They interact
with the SUT and are necessary for the system to execute.
The model checker only verifies the SUT while the peer
processes are not subject to verification, as shown in
Figure 1. The peer processes are assumed correct (and
can be verified in a separate verification run). Although
this approach trades accuracy for scalability, we believe it
is a reasonable trade-off. Developers usually only want
to test the process they develop, not the environment,
i. e., peer processes.

Compared to approaches that use stubs to emulate
peer behavior [9], our approach is fully automated and
guaranteed to be accurate, as the real peer process is
used. Compared to approaches that transform peer pro-
cesses into threads (executed inside the SUT) [10], [11],
our approach is more scalable because the state space of
only a single process is fully analyzed [12].

When a model checker reaches a terminal state during
state-space exploration, it reverts to a previously ob-
served state that still has unexplored successor states.
This activity is called backtracking or rollback. In dis-
tributed systems, backtracking poses a challenge in state
synchronization. Network operations, once performed,
cannot be reverted since the environment (peers) has
been affected. Peers that are not rolled back cannot cor-
rectly interact with the SUT when state space exploration
continues after backtracking.

This article presents the concept of cache-based model
checking, which concentrates on verifying a single process
in a distributed system [8], [12], [13]. A series of ap-
proaches, based on this concept, is explained to support

a model checker in dealing with distributed applications.
Cache-based model checking emulates the behavior of
the environment by recording the communication be-
tween the SUT and the environment. Communication
messages are stored in a cache that interoperates with
the model checker. The cache adapts itself according to
changes of the SUT state so that it can interact with
the SUT on behalf of the real peer processes. Cache-
based model checking offers a scalable method to verify
a single process in a system since the state space of
one process is explored rather than the composite state
space of all processes. It also has the benefit of allowing
testers to verify a system with a peer process that is
difficult to model. Furthermore, process checkpointing [14]
is introduced into software model checking to capture
the environment state under certain circumstances where
the cache is not sufficient to emulate the environment
behavior. The conditions and assumptions required to
use each approach are discussed in this article. Our
experiment both applies the pure cache-based model
checking approach and cache-based model checking
with the process-checkpointing function. It shows that
cache-based model checking with process-checkpointing
support, given appropriate optimization, is more pow-
erful than, yet as scalable as pure cache-based model
checking.

Our contributions are as follows: This article
1) proposes methods to synchronize a process con-

trolled by a software model checker with external
processes;

2) formalizes and classifies applications by I/O deter-
minism;

3) presents cache-based model checking, which im-
proves the performance of single-process verifica-
tion;

4) integrates checkpointing into software model
checking to overcome the limitation of caching;

5) evaluates the performance and applicability of each
approach;

6) introduces the concept of trace convergence, which
prevents a single-process model checker from dis-
covering every fault in a program.

This article is organized as follows. Section 2 reviews
the background and fundamental knowledge required
to read the article. Section 3 explains why state syn-
chronization is necessary in verification of multi-process
systems. Section 4 presents the concept of cache-based
model checking. Section 5 shows how to implement
the concept on Java PathFinder, a Java model checker.
Section 6 explains why and how we use a checkpointing
tool in the verification of distributed systems. Section 7
shows and discusses experimental results. Section 8 cov-
ers related work in software model checking. Section 9
summarizes the article and concludes.

2 PRELIMINARIES

This section reviews software verification techniques and
fundamental knowledge. The concept of model checking



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 3

is briefly explained. The definition of transition systems
with input/output is reviewed since it is used to formal-
ize software processes in later sections.

2.1 Model Checking

Model checking is a technique for concurrency analysis.
It systematically explores the entire state space of a
system by analyzing the outcome of all possible traces in
a system, starting from a given initial state. A system to
be analyzed is usually represented by a transition system
such as a Kripke structure [4].

The system specification defines a set of properties
that must hold for a particular system. Model checking
verifies whether the specification holds. A tool that
performs this verification is called a model checker. When
analyzing software, the specification also includes the
absence of assertion violations and uncaught exceptions.

Model checking was originally developed to verify
hardware systems, algorithms, and protocols. Because of
its success, model checking has later also been applied to
software systems. “Classical” model checkers take a sys-
tem description in a special-purpose modeling language
as input. A developer may write an algorithm in the
modeling language during the design phase and verify
it by a model checker.

Modern software model checkers have been designed
to accept the actual implementation of programs, writ-
ten in standard programming languages. These model
checkers either operate directly on the program or con-
vert a program to an abstract representation that is
then taken as input by the model checker. This kind of
direct verification is more precise since it can detect hu-
man errors introduced during the implementation phase.
Examples of such model checkers include SLAM [15],
Blast [5], and Java PathFinder [6]. Java PathFinder is used
as the base model checker to implement the approaches
presented in this article.

A software model checker exhaustively explores, by a
search algorithm, the state space of a target program to
find an error state, which violates specifications. If such
a state is found, the model checker will report an error
trace, a path from the initial state to the error state as
evidence. The error trace serves as a counterexample
that proves incorrectness of the system. Programmers
then can make use of this information to analyze the
fault. If all states are visited and no error state is found,
the program meets the specifications. Software model
checking surpasses software testing in terms of coverage
since it takes every possible non-deterministic outcome
into account. Since this article only concentrates on
software model checking, we simply refer to software
model checking as “model checking” for the rest of the
article unless stated otherwise.

2.2 Input-output Transition Systems

A labeled transition system with input/output is a mathemat-
ical object that can be used to formalize the behavior of

communication systems [16]. We use this representation
to classify the behaviors of different types of systems.

A labeled transition system with input/output, abbre-
viated to LTS, is a 5-tuple 〈S,LI , LO, T, s0〉, where

• S is a finite set of process states;
• LI and LO are a set of input labels and a set of output

labels, respectively;
• LI ∩ LO = φ.
• T ⊆ S × (LI ∪ LO ∪ {τ})× S is a set of transitions;
• τ /∈ LI ∪ LO is an unobservable action;
• s0 ∈ S is the initial state;

A process moves from one state to another state ac-
cording to a label. The label is an action of the pro-
cess and can be either input from another process,
output to another process, or an unobservable action.
The unobservable action can be considered an internal
computation that does not involve communication with
the environment. Although there can be a number of
different unobservable actions, this formalization uses
label τ to represent all of them, without distinction.
In contrast with unobservable actions, we call action
l ∈ LI ∪ LO an observable action. The set of labels of LTS
P , denoted by L(P ), includes every possible label, that
is LI ∪ LO ∪ {τ}.

2.3 Properties of Verification Systems

Error states in an LTS represent undesirable situations
in a concrete system such as deadlocks, assertion fail-
ures, or unhandled exceptions. The objective of model
checking is to find such error states. Model checkers
return a verdict on the presence of system faults after
exploring the state space. In this work, only the state
space of the SUT is taken into account; external processes
are not covered. If the model checker rejects a system
that contains no defect, its report is called a false positive.
False positives may arise due to the imprecision of the
LTS, which shows a behavior that never happens in the
real system. We also say the report is a true positive if an
error state really exists. Conversely, if the model checker
accepts a defective system, its report is called a false
negative. In this case, the model checker misses a defect
in the system, because the LTS is too coarse to capture
every system behavior. Similarly, a true negative means
the system does not contain a defect. Both false positives
and false negatives are properties used in describing a
verification system.

3 STATE SYNCHRONIZATION

Model checking involves system states and transitions.
In a software system, a state can be composed of stack
data, heap data, and thread information. The software
state changes by instruction execution, including com-
munication with other systems.

Our approach maintains scalability by verifying a
single process of a distributed application in a model
checker. This kind of verification is called single-process



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 4

verification. In single-process verification, both an SUT
and a peer change their states during execution (veri-
fication). However, the SUT state can be reverted by a
model checker while the peer state can only move for-
ward by executing program instructions. This restriction
leads to an inconsistency between both processes during
verification, because the peer is not aware of the model
checker. The definition of consistency is formally defined
in Section 3.3. The states of both processes must be
synchronized with each other to preserve consistency of
the system behavior. This section discusses the problems
related to state synchronization and possible solutions.

3.1 Definitions and Terminology

To describe our approach, processes in a verification
system are modeled by a labeled transition systems (LTS)
with input/output (see Section 2.2). The state of the
process changes during execution. Instruction execution
is modeled as a transition. The transition from state s to
s′ by action l is denoted by s

l
→ s′. An action can be

either reading input, writing output, or an unobservable
action. This notation is extended for multiple actions.

If s
l1→ s′ and s′

l2→ s′′, we write shorthand notation

s
l1,l2
−→ s′′. This shorthand notation is used to describe

reachablity. Let P 〈S,LI , LO, T, s0〉 be an LTS; state s ∈ S
is reachable iff there exist actions l1, . . . , ln ∈ L(P ) such

that s0
l1,...,ln
−→ s. A system in the initial state can be

in a reachable state by performing available actions.
Generally, we only consider reachable states and assume
every state in S is reachable for the rest of the article.

A system reaches any reachable state by taking a
sequence of actions, resulting in an event trace. In the
example above, 〈l1, . . . , ln〉 is an event trace from state s0
to state s. An event trace may include a number of
unobservable actions. When we consider communication
between processes, taking only observable actions into
account is more convenient. We therefore define observ-
able event traces, which exclude action τ from considera-
tion. Let s and s′ be states, m,mi ∈ LI ∪ LO;

s
ǫ
⇒ s′ ⇔ s = s′ or s

τ,...,τ
−→ s′

s
m
⇒ s′ ⇔ ∃s1, s2 : s

ǫ
⇒ s1

m
→ s2

ǫ
⇒ s′

s
m1,...,mn

=⇒ s′ ⇔ ∃s1, . . . , sn : s
m1⇒ s1

m2⇒ . . .
mn⇒ sn = s′

We use a double arrow to represent the observable
actions observed while a system is moving from state s
to s′. In the first form of the double-arrow notation,
only τ -transitions are taken by the system to move
from state s to s′, so no event trace is observed. This
empty event trace is denoted by ǫ. In the second form,
there is exactly one transition associated with a mes-
sage in a path from state s to s′. Other transitions in
the path are not observed. The observable event trace,
therefore, contains one observable action m. In the third
form, multiple messages are observed along a path from
state s to s′. In this paper, an observable event trace
is denoted by 〈m1, . . . ,mn〉. For simplicity, we assume

every LTS reads and writes messages in an alternating
way. Each reading and writing operation is performed
in one transition. Formally, every observable event trace
〈m1, . . . ,mn〉 satisfies ∀1≤i<n : (mi ∈ LI → mi+1 ∈ LO)∧
(mi ∈ LO → mi+1 ∈ LI). This assumption is only for
this discussion of our approach. Our implementation
supports partial reads and writes, i. e., multiple read or
write actions may be performed consecutively.

The same event trace does not necessarily lead to
the same state due to non-determinism in the transition
system. For example, both s

l
→ s′ and s

l
→ s′′, where

s′ 6= s′′, hold at the same time if both (s, l, s′) and
(s, l, s′′) are in the set of transitions. Determinism of an
LTS, however, is determined differently in this article.
We only consider output traces of a system, given an
input trace. Unobservable actions are ignored. Under this
definition, if an LTS is to perform a write action, only
one write action will be available at a given state. This
is formally defined as follows.

∀k ·
(

∀j < k ·
(

mj = m′
j

))

∧ (mk ∈ LO ∨m′
k ∈ LO) → mk = m′

k

(1)

where 〈m1, . . . ,mk〉 and 〈m′
1, . . . ,m

′
k〉 are observable

event traces starting from state s0; k is the length of both
observable event traces. To distinguish our definition
from classical determinism, we call it I/O determinism.
This definition is very important in the classification
of applications introduced later. Some systems produce
deterministic output, although they contain internal non-
determinism due to concurrency. I/O determinism is
usually desirable since it shows that the output of the
system is independent of the thread schedule. Note that
this definition of determinism does not correspond to a
stateless system. If a system were completely stateless,
then the output symbol would only depend on the last
input symbol, regardless of any prior events.

3.2 Classification of Applications

In this article, distributed applications are classified into
a number of classes according to their I/O determinism.
For simplicity, we assume a distributed application is
composed of an SUT and a peer process. Both processes
may be either deterministic or non-deterministic. There-
fore, applications can be classified into four groups, as
shown in Figure 2.

An application may be I/O non-deterministic because
of unpredictable external data such as random numbers,
file contents, system time, etc. Such data is possibly
different in each run, so the computation does not give
the same result (output) on each input.

3.3 State Consistency

As mentioned before, the state of an SUT running inside
a model checker may be inconsistent with the state of a
peer during verification. This happens when the model
checker backtracks the SUT to explore an alternative
path. Two problems arise:



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 5

SUT

Peer

Deterministic Non-deterministic

D
e
te
rm

in
is
tic

N
o
n
-d
e
te
rm

in
is
ti
c

(1) (2)

(4)(3)

Fig. 2. Four groups of target systems classified by I/O

determinism of SUT and peers.

1) The SUT may send a duplicate output to the peer
that was already sent before backtracking. The peer,
which does not expect the duplicate message, may
deal with that input in a wrong way.

2) The SUT may expect an input from the peer it has
received before backtracking. Since the peer is not
aware of backtracking, it does not send the same
message again.

Both problems are caused by an inconsistency between
the states of the SUT and the peer. A formal definition
of state consistency allows a classification of different
approaches to deal with this problem. Without loss of
generality, we assume a single peer process for the
remainder of this discussion.

Both an SUT and a peer are modeled as LTS. Let the
SUT and peer be represented by LTS P 〈S,LI , LO, T, s0〉
and Q

〈

S̄, LO, LI , T̄ , s̄0
〉

, respectively. The labels in LI

represent every possible message content process P may
read while the labels in LO are message contents process
P may write. Sets LI and LO are reversed in process Q,
which reads what P writes and writes what P reads.
The system composed of P and Q running in parallel
is also an LTS. The communication between P and Q
is synchronous. The semantics of a composite LTS can
be found in [16]. Consistency of a system is defined
on the state of every process. The initial system state
is always consistent, denoted by con(s0, s̄0). Executing
an unobservable action in P or Q does not violate the
consistency of the system; see Formulas (2) and (3).

con(s, s̄) ∧ s
τ
→ s′

con(s′, s̄)
(2)

con(s, s̄) ∧ s̄
τ
→ s̄′

con(s, s̄′)
(3)

If each process takes a transition with the same label
in the opposite direction, consistency is preserved; see
Formulas (4) and (5). For the rest of this article, we
use symbols ? and ! to denote actions “reading” and
“writing” of a given message, respectively.

con(s, s̄) ∧ s
!l
→ s′ ∧ s̄

?l
→ s̄′

con(s′, s̄′)
(4)

S0

S1

S2
S3

SUT

S0

S1

S2
S3

Peer

?a

!b !c

!a

?b ?c

Fig. 3. The state spaces of the processes in a system.

Each state of the SUT corresponds to a unique peer state.

con(si, s̄i), i ∈ {0, 1, 2, 3}.

con(s, s̄) ∧ s
?l
→ s′ ∧ s̄

!l
→ s̄′

con(s′, s̄′)
(5)

Given con(s, s̄), we say that state s corresponds to state
s̄, and s̄ is a corresponding state of s. The state spaces
of an SUT and a peer are shown in Figure 3. Label ?a
refers to a read action of the SUT that receives message
a from the peer. Labels !b and !c represent write actions
that send messages b and c, respectively. The system
starts from the consistent initial state (s0, s̄0). The SUT
reads message a written by the peer, so the system state
moves to (s1, s̄1). After that the SUT encounters a non-
deterministic choice to write either b or c. Suppose that
it writes b, the system goes to state (s2, s̄2). In a normal
execution, the system terminates at this point since there
is no transition left. However, if the SUT is run by a
model checker, it may be backtracked to state s1 to
continue the search on an alternative path. In this case,
the system is temporarily in state (s1, s̄2), which is not
consistent. This state represents a situation where the
peer has received message b, although the SUT has never
sent it. Assuming reliable communication, the system
never reaches an inconsistent state in a normal execution
without external state manipulation. We therefore do not
want to verify the system in such an impossible state.
In this article, several approaches to avoid inconsistent
states are presented.

3.4 Trace Convergence

A software model checker may report a false negative if
it does not explore every possible state of the system.
This is the case when a single networked process is
verified by a model checker, leaving other processes
executed normally by the host platform. Figure 4 shows
a system of which a model checker may not find the
error state, resulting in a false negative. The system starts
from the initial state (s0, s̄0). The SUT has two possible
actions to choose from: τ and ?a. If the model checker
selects action τ first, the system will pass state (s1, s̄0),
without state change in the peer. In the next step, the
SUT writes “0”, and the system stays at state (s3, s̄4).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 6

S0

S3

S4

SUT

S0

S1

S2

Peer

?a

?b

!a

!b

τ

?a

{τ, ?}

{?}

{}

S1 S2

!0

{!0} {!0}

!0

S3

?0

S4

?0

!a

Fig. 4. A system that would cause a model checker to

report a false negative. The symbols within braces show

possible choices.

Finally, the SUT reads an input (?a) from the peer. Note
that although the state space shows two possible paths,
the model checker has no choice other than reading.
The model checker cannot perceive the state space in
way presented in the figure and cannot control external
input. The system moves to state (s4, s̄3). At this point,
the model checker backtracks the SUT to state s0 since
it still has an untaken choice remaining (?a). Assuming
the presence of a mechanism to recover consistency, the
system moves back to state (s0, s̄0). This time the SUT
takes action ?a, so the system moves to state (s2, s̄1)
and continues to state (s3, s̄2). However, a typical model
checker1 does not continue the search, because state s3
has no remaining path. Any error state beyond this point
remains undetected. However, the SUT can reach the
error state if it does not take action τ before action ?a.
The model checker therefore fails to reject the system
that contains a reachable error state.

For example, a program may behave in a way de-
scribed in Figure 4 if its progress is triggered by either
timeout or an input. The program code is as follows.

m = 0

while (!timeout && m == 0) {

if (input.isAvailable())

m = input.read()

}

out.write(“0”)

m = input.read()

assert m != ’b’

The program waits until timeout is reached or an
input is available. If it receives an input, e.g. label ?a,
before the time is over, it will continue immediately. If
the timeout expires, the program, receiving no input,
continues to state s1 (label τ ). The program therefore
eventually moves to the state where it reads again and
may fail because of a particular input.

1. On the other hand, stateless model checkers would explore both s4

and the error state, visiting state s3 twice.

S0

[]

S1

[]

S4

[?a]

SUT

S0

S1

S2

Peer

?a

?b

!a

!b

τ

?a

{τ, ?}

{?}

{}

S2

[?a]

{?}
S3

[]

τ τ

S3

[?a]

{τ} {τ}

Fig. 5. The SUT state space augmented with the history

of observable actions.

The false negative in this situation is caused by two
event traces with different messages leading to the same
SUT state. We call this phenomenon trace convergence.
Formally, trace convergence is a situation where there
exist two distinct states s, s′ and two distinct event

traces 〈l1, . . . , ln〉, 〈l′1, . . . , l
′
n〉 such that s

l1,...,ln
−→ s′ and

s
l′
1
,...,l′

n−→ s′. The destination state of two event traces may
correspond to multiple peer states, which probably emit
different input traces for the SUT. In Figure 4, state s3 is
reached by two event traces with a null message (τ ) and
?a, so it corresponds to both states s̄0 and s̄1. The model
checker cannot explore both possibilities since they are
represented by the same state in the SUT state space.

To avoid the problem caused by trace convergence,
one may augment each SUT state with message history.
By doing this, the state in question is broken into two
or more distinct states, depending on the number of
traces converging. Figure 5 shows the SUT state space
augmented with history actions. Trace convergence is
eliminated since state s3 is split into two distinct states,
so the model checker can detect the error state. Note
that we omit two transitions in Figure 5: the one labeled
?b from state s3[] and another one labeled ?a from state
s3 [?a]. These transitions never occur in normal execution
and do not need to be explored. History augmentation,
however, does not guarantee verification will terminate.
Since a state space may contain a loop that performs
at least one observable action, the history length is
unbounded, resulting in an infinite number of states.
Furthermore, a false negative may still be produced if
the peer is not I/O deterministic. The SUT may not en-
counter every possible output from the peer in this case.
As a result, model checking, without knowing every
possible value of peer outputs, cannot guarantee being
free of false negatives and termination of verification.

3.5 Peer Restart and Replay

A mechanism to maintain the consistency of a dis-
tributed system is necessary for verifying a single pro-
cess. One possible method is restarting the peer process



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 7

S0

S1 S2

!a

?0

!b

?0

S3 S4

S5 S6

?1,?2 ?1,?2!c !d

Fig. 6. The non-deterministic LTS of a peer.

when the SUT has been backtracked [13]. Since reversible
execution is not possible in a normal environment,
restarting may be the only way to backtrack. In the
LTS, the peer will be in the initial state again. From
this state, the mechanism must “replay” an interaction
with the peer in a way that the peer moves to a state
corresponding to the SUT state. The interaction includes
both reading and writing messages. In the example
shown in Figure 3, when the SUT backtracks to state
s1, the peer is restarted from state s̄0. To move the peer
to corresponding state s̄1, the mechanism, on behalf of
the SUT, must read message a (label ?a) from the peer.
A path to a corresponding state may contain label τ ,
an unobservable action. A mechanism that only controls
the peer state via communication cannot force such
actions to occur. We assume that the peer spontaneously
performs action τ if necessary.

The problem of handling unobservable actions im-
poses a restriction on a peer process. If the LTS rep-
resenting the peer is non-deterministic, replaying inter-
actions does not guarantee that the peer will stay in a
corresponding state. The LTS of such a peer is shown
in Figure 6. Let the corresponding state be s̄3; it is not
possible to force the peer to move to the corresponding
state for certain. Although message ’0’ can be replayed
to the peer so it can execute action ?0, the peer has a
non-deterministic choice at state s̄0. If it takes the path
to state s̄2 at this point, it never reaches the destination
state. Non-determinism as shown here includes random-
ization, thread scheduling, etc.

3.6 State Capture

The root cause of the restriction described in Section 3.5
is that the corresponding peer state of each SUT state
is not preserved. The previous approach relies on the
fact that the same communication trace leads to the
same state. This assumption does not hold for some
applications.

A more powerful method is to capture the correspond-
ing state so that the peer in that state can be restored
later. In practice, this can be done by checkpointing
technology [17], which takes a snapshot of a controlled

process and stores it in permanent storage. This snapshot
contains sufficient information to create the process in
a specific state. For each state (s, s′) the system moves
on, the snapshot of state s′ is stored. When the SUT
backtracks to state s, the snapshot of state s′ is loaded to
create the peer in that state instead of restarting the peer
from the beginning. The system is then in a consistent
state again. Note that this method differs from model
checking the entire system in the sense that the non-
determinism inside the peer process is not considered.
The number of states to be explored, therefore, has
the same order of magnitude, even if the state capture
method is applied.

The peer LTS in Figure 6 shows state s̄3, which follows
a non-deterministic choice. If we want to restore the
peer to state s̄3, this implies that the system has visited
consistent system state (s, s̄3) before, for some SUT state
s. The snapshot of state s̄3 is therefore available.

Compared to model checking the whole system, our
approach using state capture is still modular and differs
in the sense that non-determinism within the peer is
not controlled. Since we only capture peer states en-
countered by the SUT, the number of captured states is
bounded by the number of SUT states. In other words,
some peer states may not be captured.

This technique does not guarantee the absence of false
negatives. Only a part of the peer state space participates
in verification, so the SUT may not receive all possible
outputs. The peer in Figure 6 may never visit state s̄4
during verification, so the SUT never receives input b. If
a peer output trace that is not used in the verification
causes a failure in the SUT, the verification tool fails to
detect the fault.

An example of such failures consists of a peer that
produces a rare, yet possible, output. Some modern
computer systems allow for the possibility of leap sec-
onds, which sometimes add one second after midnight,
resulting in time 23:59:60 [18]. Indeed, leap seconds have
caused problems with the Linux Kernel as recently as
June 30/July 1, 2012 [19]. Leap seconds can be consid-
ered a non-deterministic event from the point of view of
the SUT. This input is rarely emitted, so the state capture
approach would only consider usual inputs. The model
checker would miss the cases where the SUT fails due
to the unusual but possible input. Incomplete knowledge
about the peer output prevents the elimination of false
negatives.

3.7 Summary

Model checking of a single process of a distributed sys-
tem requires state synchronization between the SUT and
its peer after backtracking. Synchronization ensures that
the SUT and peer processes are always in a consistent
state. This section has shown two techniques for state
synchronization. The first one is to restart the peer from
the beginning and interact with the peer in a way that
leads it to a given corresponding state. Another way



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 8

I/O Cache Peer

out

in

Model Checker

SUT

out

in

Fig. 7. The I/O cache is an intermediary between an SUT

and a peer.

is to capture the peer state in a snapshot to restore
the peer in a specific state later. The former is simpler
to implement but is less powerful than the latter in
the sense that it requires I/O determinism of the peer.
Nevertheless, even with the more powerful approach
of capturing states, single-process model checking may
not discover all possible failures in the SUT because
non-determinism in peer processes (which may result in
different behavior) is not controlled.

4 CACHE-BASED MODEL CHECKING

When model checking an SUT that communicates with a
peer process, it is necessary that communication between
the SUT and the peer is synchronized after backtracking.
Section 3.5 has presented an approach that restarts the
peer and replays the event trace to keep the peer in
a consistent state. However, the overhead caused by
restarting may be intolerable in practice. Implemented
naively, the peer has to be restarted every time the model
checker backtracks the SUT.

Cache-based model checking optimizes state synchro-
nization, storing observed communication traces in a
cache [13]. The cache reuses information from previous
communication traces if possible. By doing this, the
number of peer restarts is greatly reduced since the
cache, given sufficient information, can interact with
the SUT despite the peer in an inconsistent state. This
technique significantly improves performance.

4.1 Mechanisms

In this article, the term “request” refers to a message sent
from an SUT to a peer while the “response” refers to a
message sent from a peer to an SUT. A cache stores a
request message and a response message in pair. We call it
the I/O cache, because it records the network input and
output of each process. The I/O cache plays a role of an
intermediary that intercepts every message between two
processes, as shown in Figure 7. It also supplies input to
both processes when necessary.

When the SUT sends a request message that is not in
the cache, the I/O cache stores this message in a data
structure and forwards it to the peer. After a specific
amount of time, the I/O cache polls the peer for a
response. If there is no response, the I/O cache assumes
that the current request is incomplete. The peer would
need more requests to produce a response. If a response
comes back, the cache will associate the pending incom-
plete requests, if any, and the latest request with the
response. The association of requests and a response

S0

!a !b

S1 S3

S2 S4

?1 ?2

SUT

S0

?a ?b

S1 S5

S2 S6

!1 !2

S3

?b

S4

!3

Peer

Fig. 8. LTS representing an SUT and a peer that must be

restarted during verification

in the I/O cache is called a cache entry. The observed
(cached) response is taken as the earliest response that
corresponds to a given request [12]. Other schedules
with later responses are automatically generated by Java
PathFinder; also see Section 5.

A list of cache entries represents a partial commu-
nication trace between two processes. An SUT with
deterministic output still produces the same trace after
backtracking. Rather than restarting the peer, the I/O
cache uses the information from previous traces to in-
teract with the SUT. The method avoids restarting the
peer and improves the performance of verification. Note
that the I/O cache cannot decide if the peer is going to
produce a response for the current request. The peer is
assumed to send a response within a certain amount of
time or not at all. If this assumption fails, the delayed
response message may mix up with the next response
message. The resulting cache entry corresponds to a real
system execution but does not take into account the
possibility of a faster peer response; this may result in a
false negative.

While responses for a previously seen request can be
taken from the cache, the peer has to be restarted when
the SUT sends a different message trace after backtrack-
ing. Suppose that we have an SUT and a peer modeled
by the LTS in Figure 8. When the SUT sends request ’a’,
the I/O cache polls for response ’1’ and creates cache
entry 〈a, 1〉. After backtracking, the SUT sends request
’b’. The I/O cache restarts the peer and sends message
’b’ to the peer, resulting in cache entry 〈b, 2〉. Note that if
the I/O cache did not restart the peer before sending a
new message trace, it would get response ’3’ for request
’b’, which was incorrect.

The I/O cache also keeps track of the state of the SUT
so that it can supply correct input. Each state of the SUT
corresponds to positions in the input and output traces,
so the I/O cache has a pair of state pointers that point



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 9

1 

a

2 

b

[Request Array]

[Response Array]

0

req_ptr

res_ptr

Fig. 9. The data structure of the linear cache.

to a communication trace. A pair of state pointers is
composed of a request pointer and a response pointer. The
request and response pointers refer to the last message
that the SUT has sent and received, respectively. These
pointers are moved according to the state of the SUT.
When the SUT is backtracked by a model checker, the
state pointers are reverted to the corresponding posi-
tions.

The I/O cache can be implemented as two variants:
linear cache and branching cache.

4.2 Linear Cache

A linear cache [12] models communication data using
a pair of arrays. Two arrays, called a request array and
a response array, store request messages and response
messages, respectively. Figure 9 shows a representation
of the linear cache for a system where request 1 elicits
response a, and a subsequent request 〈0, 2〉 elicits b.

A cache entry is a pair of contiguous elements in the
request array and an element in the response array. Fig-
ure 9 displays two cache entries. The first one contains
pair (〈1〉 , a), and another one contains pair (〈0, 2〉 , b).
The state pointers move along both arrays. A pair of
array indices represents state pointers. The state pointers
in Figure 9 are denoted by (2, 1). This is a state where the
request is incomplete, so the SUT cannot read response
b until request 2 is sent. Every SUT state associates with
a pair of state pointers [12].

The linear cache requires that the SUT produce deter-
ministic output, as defined in Section 3.1. If this property
does not hold, the SUT may emit multiple output traces
under different schedules. The linear cache cannot store
multiple communication traces because of its linear data
structure. Some applications produce non-deterministic
output such as a dynamic web server that includes a
visitor count in the output. Such applications cannot
be verified by the linear cache. For cases the SUT only
produces one output trace, the linear cache can interact
with the SUT without restarting the peer at all, after it
has captured a complete communication trace.

4.3 Branching Cache

The restriction of the linear cache can be relaxed by
changing the linear data structure to a tree structure [13].
Branches in the tree store multiple communication
traces. Figure 10 shows the tree structure used in the
branching cache. Every non-root node in the tree is

ROOT(0)

1

a

b

req_ptr

res_ptr

0

2 3

c

(1)

(2)

(3)

(4)

(5)

(6)

(7)

req. node

res. node

(node id)

cache entry

Fig. 10. The data structure of the branching cache.

classified into either a request node or a response node. A
request node can have either one or more request child
nodes, or one response node, but not both. A response
node can only have one or more request child nodes. We
wrap each response message, which may contain mul-
tiple characters, in a single response node. A group of
contiguous request nodes represents a complete request
message. The following response node, if any, represents
the associated response message. A cache entry, therefore,
contains the group of contiguous request nodes and a
response node.

The branching cache must restart a peer when it
receives a new output trace from an SUT. Since the
branching cache has not yet seen the new output trace, it
does not know the corresponding response. The running
peer, which is not in a corresponding state, is terminated.
A new peer instance is started and supplied with the
new output trace. The branching cache polls the peer for
a response and stores this information in a new branch
in the same way. Figure 10 shows two output traces of
an SUT: 〈1, 0, 2〉 and 〈1, 0, 3〉. The peer is restarted once
to handle the second output trace. In general, if the SUT
produces n distinct output traces, the number of peer
restarts is n− 1.

4.4 Limitations

The branching cache is more powerful than the linear
cache in the sense that it supports SUT with non-
deterministic output. However, it cannot guarantee that
the new instance of the peer will behave in the same
way as the original peer would due to the limitation of
the peer-restart approach described in Section 3.5. The
capabilities of both types of cache shown in this section
are displayed in Figure 11. The linear cache supports
applications with both an SUT and a peer being I/O
deterministic. The branching cache extends the coverage
to I/O non-deterministic SUT, because it stores multiple
communication traces.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 10

SUT

Peer

Deterministic Non-deterministic

D
e
te
rm

in
is
ti
c

N
o
n
-d
e
te
rm

in
is
ti
c

Branching

Cache
Linear

Cache

Fig. 11. Application classes in terms of I/O determinism

supported by the linear cache and the branching cache.

The I/O cache assumes that a peer sends a response,
if any, within a certain amount of time. Without prior
knowledge of the protocol and peer behavior, this pro-
vides the best approximation of the peer response. If
a peer is slow, one would need a raise of the waiting
time to prevent false matching. Note that incomplete
responses still represent valid communication traces, as
a network can be slow; however, they respond a subset
of all possible communication traces, ignoring the cases
with low latency.

5 IMPLEMENTATION USING JAVA PATHFINDER

Java PathFinder (JPF) is a model checker that executes
Java bytecode [6], [20]. It is equipped with a custom
Java virtual machine (JVM) [21] for running Java bytecode.
This custom JVM is written in Java and operates on top
of a host JVM. It is capable of rolling back the state of
a running Java program so that JPF can re-execute the
program along other execution paths. Multiple execu-
tion paths are generated from several sources of non-
determinism in the program such as thread scheduling
and choice generators modeling a possible range of
data values. If JPF finds a state that violates a specified
property, it will report an error trace showing execution
from the initial state to the error state. The user can refer
to the error trace to track down and fix the program
fault. By default, JPF uses depth-first search to explore the
program state space.

We implemented cache-based model checking pre-
sented in Section 4 as the software model checker exten-
sion called net-iocache [8] on top of JPF. This extension
can be downloaded from [22]. JPF explores the program
state space while the extension works as an I/O interface
to external peer processes for an SUT. Every message
transferred between the SUT and peers is monitored by
the I/O cache. The I/O cache emulates peer behavior
by supplying the SUT with cached messages whenever
possible.

A Java program creates a ServerSocket instance to
accept a connection at a specified port from another

JPF-layer JVM

Host JVM

Model Class

Native Peer Class

propagate

Fig. 12. Method call propagation between virtual ma-

chines.

process. On the other hand, another Java program can
make a connection by creating a Socket instance with a
destination address and port number. When a connection
has been established, a process can send a message to
another process by writing the message into the output
stream associated with the connection. Similarly, the
process reads a message from the input stream. The
read operation is blocking: thread execution is blocked
until an incoming message is available or the connection
is closed. The write operation is non-blocking; thread
execution continues without waiting for another process
to receive the data, as the message is stored in a buffer
on the destination host. However, the I/O cache blocks
JPF internally until a response message arrives or the
timeout expires. This small timeout is not visible to the
SUT as JPF itself is blocked, preventing any other SUT
threads from executing. This communication mechanism
can be mapped to our formalization presented in Sec-
tion 3.3, where the communication between two LTS is
synchronous.

5.1 Extension Mechanisms

JPF has been designed to encourage extensions. An ex-
tension may add new functionality to the model checker.
JPF provides three extension mechanisms: choice genera-
tors, listeners, and Model Java Interface (MJI) [23]. Listeners
and MJI are briefly described as follows.

Listeners allow extensions to observe events occurring
inside JPF during execution. A listener tracks the state
space search by listening to events that are emitted when
JPF starts a search, forwards to a new state, backtracks,
and finishes the search.

The Model Java Interface (MJI) allows users to run a
certain piece of code on the host JVM, rather than the
custom JVM. This mechanism becomes useful in several
situations. For example, a piece of code that is not subject
to verification does not require the JPF state-tracking
function. Running the code on the host JVM causes JPF
to execute it atomically, omitting unnecessary decisions
in the state space. This can be done by propagating the
call to the host JVM level, as shown in Figure 12. MJI
is also essential in implementing classes that are not
subject to backtracking, such as cache contents. When
backtracking, JPF only reverts the program state tracked
by the JPF virtual machine. The program data on the
host JVM remains intact.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 11

Host JVM

Native Peer classes

JPF
SUT

Listener
I/O

Cache
Model classes notifies

JPF-layer JVM

Fig. 13. Design of net-iocache.

The Java memory model allows violation of sequential
consistency [24]. However, JPF, by default, only supports
interleaving semantics. Faults caused by instruction re-
ordering (due to optimization) may result in false neg-
atives. Sequential consistency can be guaranteed if a
system is free of data races. Java RaceFinder (JRF) [25] is
a JPF extension that detects data races in multithreaded
programs. One may use this tool to ascertain data race
freeness before analyzing a system further.

5.2 Project net-iocache

We develop the JPF extension net-iocache [22], which
supports verification of distributed systems, based on
cache-based model checking. The branching I/O cache
is used as the data structure to store communication
traces. The design is shown in Figure 13. Every com-
ponent runs on a host JVM except for the SUT. The SUT
communicates over the network using the standard Java
API; model classes intercept the library calls and relay
communication to the I/O cache.

The I/O cache keeps track of state changes in JPF,
in order to properly respond to the SUT while the
program state space is being explored. This is imple-
mented by registering two listener to JPF: one that
notifies the I/O cache when a state transition takes
place and one that collects verification information as
JPF makes progress. State changes are captured by
three events: stateAdvanced, stateBacktracked,
and stateRestored.

JPF itself (the core module) does not support the
Java network library, so package java.net cannot be
executed. We provide a replacement for that library and
its internal (native) code using the Model Java Interface.
For each missing class, we create a model class and a
native peer class [23]. The model class stores information
associated with the SUT state while the native peer
class performs actual I/O tasks such as writing and
reading. The model class can selectively delegate calls to
certain methods to the corresponding native peer class,
as shown in Figure 12.

Two model classes for stream objects, CacheLayer-
Input/OutputStream, allow the I/O cache to control
input/output messages of SUT. Figure 14 shows an
overview of the communication between the com-
ponents in a verification system. These stream ob-
jects interact with the SUT in the same way that

the actual peer would. The model class for class
Socket returns these custom stream objects when
requested by the SUT. Every message written via
CacheLayerOutputStream is redirected to the I/O
cache instead of the peer. Similarly, the SUT reads mes-
sages via CacheLayerInputStream, which the I/O
cache fills input into, rather than the real peer. The
I/O cache holds standard sockets including standard
input/output streams connected to the peer. Note that
these model classes are ready to use; testers do not have
to write any models before verification. This is not the
case for NetStub, which requires testers to write a model
for a specific peer process.

6 APPLICATION OF CHECKPOINTING TOOLS

The I/O cache described so far supports I/O determinis-
tic SUTs (using the linear cache) or I/O non-deterministic
SUTs (using the branching cache) communicating with
deterministic peers. A peer is restarted if SUT behavior
diverges (in the branching cache).

However, the peer restart method discussed in Sec-
tion 3.5 does not support peers that produce non-
deterministic output. A new instance of the peer may
not be in the same state that a previous instance was
in, even after replaying the same communication trace
to the same program, due to non-determinism. Taking a
snapshot of the corresponding peer state for each SUT
state overcomes the problem of peer non-determinism.
To implement this idea, checkpointing technology comes
into use, although it cannot handle non-determinism
in thread scheduling, as mentioned in Section 3.6. This
section introduces how to apply a checkpointing tool to
software model checking.

6.1 Process Checkpointing

Process checkpointing [14] is a technique to create a snap-
shot of one or more processes. The snapshot is usually
called a checkpoint. A checkpoint is typically stored as a
file and can be loaded later to restore the subject in a
certain state. The restored processes continue running
from where they were suspended as if they had not
stopped running.

Most virtualization tools [26], [27], [28] such as Kernel-
based Virtual Machine (KVM) provide basic checkpoint-
ing functions: save and restore. However, virtualization
consumes a large amount of system resources since the
subject of checkpointing is an entire operating system.
Creating a checkpoint by these tools may take a consider-
able amount of time even for a small peer process. On the
other hand, virtualization tools are powerful execution
environments since they usually preserve the state of the
operating system. This functionality may be required by
some peer programs.

Checkpointing at process level is more scalable, be-
cause the overhead of handling unrelated OS processes
is eliminated. MultiThreaded CheckPointing (MTCP) [17],
a process-level checkpointing tool, can be used to



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 12

JPF I/O Cache Peer
Instrumented

Sockets
Standard
Sockets

CacheLayer

OutputStream

CacheLayer

InputStream

OutputStream

InputStream

Fig. 14. Communication between components in a verification system.

TABLE 1

Comparison of KVM, MTCP, and DMTCP.

Properties Checkpointing Tools
KVM MTCP DMTCP

Virtualization OS single-process group of
level processes
Disk images reversible irreversible irreversible
Process info preserved not preserved preserved
Port numbers preserved not preserved not preserved

create snapshots of a peer if the peer is a single-
process program. Distributed MultiThreaded CheckPointing
(DMTCP) [29] is an extended version of MTCP that man-
ages a group of processes connected by network connec-
tions or parent-child relations. This tool can be used to
create a checkpoint of multiple peer processes execut-
ing simultaneously. The net-iocache project currently
employs DMTCP as the checkpointing environment to
support peers emitting non-deterministic output. The
tool is briefly explained in Section 6.5.

Table 1 summarizes important properties of the tools.
Each of them controls target systems at different levels.
Only KVM can preserve changes on a file system since
the entire operating system is checkpointed. MTCP does
not include information about process (/proc) in a
checkpoint. As a result, peers may find that their process
identifiers change from time to time. Finally, MTCP and
DMTCP only bind a listening socket to the same port
number after restoring a checkpoint. Local port numbers
used by a process may change.

Each tool is different in the capability of supporting
verification, as shown in Table 1. One should use a
tool based on their systems to be verified. In our work,
we chose DMTCP in our implementation since it is
sufficiently powerful for most systems in general.

6.2 Integration with Software Verification

Checkpointing introduces another method to synchro-
nize a peer with an SUT. Model checkers save SUT
states in order to backtrack it to any previously visited
point in the state space. A checkpointing tool can do the
same with peer processes. When the SUT backtracks to
a previous state, the checkpointing tool restores the peer
process by the checkpoint of the corresponding state,
instead of restarting the peer from the beginning. In
the extreme case, we may create a peer checkpoint for
each SUT state. In practice, the peer does not have to
be checkpointed as often as the SUT. Some checkpoints

can be omitted under certain conditions. Optimizations
taking advantage of this fact are discussed in Section 6.4.

Process checkpointing tools also allow monitoring of
the system that is executed. Monitoring can capture
non-determinism in peers. Such non-determinism can be
divided into two types: thread scheduling and external
input. Thread scheduling is controlled by the operating
system. We only observe one peer execution for each
input and do not control the schedule of peer processes.
Hence, we assume peer output of each communication
channel is independent of thread scheduling. This as-
sumption is reasonable since programmers expect this
property in most cases. Other tools can verify this prop-
erty; see Section 8.

A peer process may receive input both externally and
internally from several sources during execution. The
input from an SUT is explicit. If the peer produces the
same outgoing trace for each incoming trace from the
SUT, we call that its output I/O deterministic, as defined
in Section 3.1. Peers with non-deterministic output also
take implicit input into account during computation. The
sources of such input are the facilities provided by the
operating system on which the peer is running such
as system time, the file system, peripheral devices, etc.
Some special files serve as random number generators
such as /dev/random and /dev/urandom in Unix-like
operating systems. Non-deterministic input from such
files has an effect on the peer output. Implicit input can
be detected by inspecting peer’s calls to certain functions
that take external input. This inspection lets us know
when non-determinism occurs in a peer.

Although the checkpointing tool provides a simple
framework to control the peer state, it comes at a price.
Saving and restoring a peer state are expensive oper-
ations since they involve I/O operations. Furthermore,
if the checkpointing tool saves the peer state at every
transition, the overhead from checkpointing will grow
with the size of the state space. The scalability of such
verification systems is difficult to maintain.

6.3 Hybrid Approach

In a hybrid approach, the I/O cache can be combined
with the checkpointing tool to reduce the overhead of
checkpointing. The I/O cache stores request and re-
sponse messages while the peer process executes under
the control of the checkpointing tool. A peer checkpoint
is created every time the SUT reaches a new state.
However, when the SUT is backtracked, we do not



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 13

SUT
Checkpointing Tool

Peer
I/O CacheModel Checker

Fig. 15. The configuration of the hybrid approach.

necessarily need to recover the corresponding peer state
from a checkpoint. The I/O cache can supply data to
the SUT for any previously observed requests. In other
words, if the response message for the current output
trace of the SUT is in the I/O cache, the I/O cache uses
this message to interact with the SUT. No checkpoint
is loaded in such cases. Checkpoint recovery only takes
place when the SUT produces a hitherto unseen output
trace. In this case, an appropriate checkpoint must be
restored, as in the pure checkpointing approach.

The hybrid approach greatly reduces the overhead
since with caching, the number of checkpoint restarts de-
pends on the number of distinct output traces of the SUT,
rather than the size of the state space. Figure 15 shows
the configuration of the hybrid approach. The I/O cache
is between the model checker and the checkpointing tool.
It is also responsible for controlling the checkpointing
tool to save/restore the peer process.

6.4 Checkpointing Strategies

The number of checkpoints can be reduced since not
all of them are essential [8]. The concept of logical
checkpoints is introduced to perform this optimization.
A logical checkpoint corresponds to the state of a peer
program at a given time. For each SUT state, there is
a logical peer checkpoint. Therefore, we can build a
state space of logical checkpoints similar to the state
space of the SUT. However, logical checkpoints are not
always backed by an actual (physical) data structure. In
contrast to this, physical checkpoints are real and contain
sufficient information for restoring a peer in a specific
state. The two types of checkpoints form a structure,
shown in Figure 16, similar to the SUT state space. A
checkpointing strategy defines how to maintain the balance
of the checkpoint creation overhead with the possibility
of restoring a previous state directly. It decides whether
to create a physical checkpoint over the corresponding
logical checkpoint. For example, we could reasonably
assume that the peer does not change its state if the
SUT does not interact with it during a state transition.
Thus, peer checkpointing could be skipped after such
a transition. Figure 16 shows the checkpoint space of a
peer where some checkpoints are omitted. Since the peer
does not change state, logical checkpoints are equivalent
to the latest physical checkpoint of their ancestor states.
According to Figure 16, checkpoint C0 is equivalent to
other three checkpoints C1, C4, and C5. By this assump-
tion, physical checkpoint Ci is created only if the SUT
state transition to Si involves communication with the
peer. This strategy is called io-only.

S0

1

2 3

4

65

C

S S

S S S S

0

C C C2 3 6C5

C1 C4

SUT Peer

No communication

Logical

checkpoint

Fig. 16. The state space of a SUT and the checkpoint

space of a peer.

Some checkpoints are essential in maintaining con-
sistency of cached data. The checkpointing tool must
sufficiently create checkpoints of the peer such that the
SUT observes exactly one input trace for each output
trace. The I/O cache requires that peers produce deter-
ministic output. Consider a case where a peer produces
multiple outcomes according to the transition system
shown in Figure 6 (Section 3). The peer may produce
a different output (‘a’ or ‘b’) in each run, although it
receives the same request ‘0’. Suppose that the peer emits
‘a’ for the first request and ‘c’ for the second request.
As a result, the I/O cache contains two entries at this
point: (〈0〉 , a) and (〈1〉 , c). The SUT is backtracked and
produces a diverging trace (‘02’). If a peer checkpoint at
state s̄1 or s̄3 does not exist, the peer will be restarted
from the beginning. During a second execution, the peer
then possibly returns message ‘b’ instead, which does
not match the first cache entry, as shown in Figure 17.
The I/O cache may either abort, or use the existing
response ‘a’ after this point. If execution continues, the
peer instance may return ‘d’ for the second request. The
new cache entry to be added is (〈2〉 , d). Clearly, the I/O
cache now contains an impossible input trace since the
peer never returns ‘ad’, according to its LTS shown in
Figure 6. Note that the same problem occurs, even if
the I/O cache uses response ‘b’. The fact that the I/O
cache cannot contain complete information about peer
responses prevents us from perfectly emulating the peer
behavior. Such a non-deterministic peer may cause a
false positive in model checking by supplying an input
trace that never happens in the real system.

This situation can be avoided by creating a checkpoint
after each execution of non-deterministic instructions.
In Figure 6, a non-deterministic instruction is executed
during the transition from s̄0 to either s̄1 or s̄2. The peer
therefore is checkpointed at state s̄1 or s̄2, depending
on which is selected in the first run. The outcome of
the non-deterministic decision is recorded in the check-
point, so the non-deterministic decision will not be made
again; therefore, the peer output sent to the SUT is
consistent. The checkpoints created by this condition
form the smallest set of checkpoints required to support
non-deterministic peers. The checkpointing strategy that
only creates a checkpoint after a peer non-deterministic
instruction is called nd-only.

Peer restart may also be considered a checkpointing



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 14

ROOT

0

a

1 2

c d

b

?

Fig. 17. Inconsistency in the cache data structure.

SUT

Peer

Deterministic Non-deterministic

D
e

te
rm

in
is

ti
c

N
o

n
-d

e
te

rm
in

is
ti

c

Cache + Checkpointing

Branching

Cache
Linear

Cache

Fig. 18. Application classes supported by each approach.

strategy where no checkpoint is created. This strategy
does not support non-deterministic peers, as discussed
in Section 3.5.

With checkpointing support, the cache-based model
checking can verify every class of applications shown
in Figure 18. Although some restrictions apply (see
Sections 3.4 and 3.6), this technique is useful for finding
faults in the implementation of distributed systems.

6.5 Underlying Mechanisms

To be used for cache-based model checking, a check-
pointing tool must provide some essential features. One
of them is to recover communication channels among
peer processes when a checkpoint has been loaded. The
checkpointing tool may establish a new connection be-
hind the scene and assign a new socket descriptor to the
process that had owned the connection. This operation
is done transparently, so the peer process does not have
to do anything special before using the connection after
state recovery.

Another feature that we have mentioned is a capabil-
ity of detecting non-deterministic operations inside the
peer process. Although most checkpointing tools do not
provide this feature, we can write a set of wrappers
of functions that cause non-deterministic results. These

DMTCP

JPF Proxy
C
a
c
h
e

Wrapper Functions

Peer info

Command

Result (+ FD)

Command Channel

Log Channel

SUT

Peer

Peer

Peer

Fig. 19. The proxy process represents the SUT inside the

DMTCP environment. The I/O cache has two communi-

cation channels connected to DMTCP.

wrappers, when invoked, must notify the verification
system so that it creates the checkpoint of the current
peer state. In this paper, we use the checkpointing tool
called DMTCP in our implementation.

DMTCP is a checkpointing tool for a group of pro-
cesses. All processes are executed in a special environ-
ment where a number of standard functions are wrapped
in order to gain information for creating system check-
points. Each process in a group is called a node. If a node
creates a new process by a fork-family function, the
child process will also become a node in the same group.
DMTCP saves the entire state of the process group in-
cluding connections among the internal processes when
receiving the checkpoint command. Similarly, it restarts
all processes in a group from a given checkpoint when
receiving the restart command.

The SUT state is controlled by JPF while the peer
state is controlled by DMTCP. Since the SUT is not a
process in the group, the connection between the SUT
and peers is not subject to checkpointing. As a result,
the lifetime of the connection is over when the I/O
cache kills the group of peers before loading a new one
from a checkpoint. When restarting, the I/O cache must
restore this connection so that the SUT and peer can
communicate with each other again.

A proxy process makes the connection recovery prob-
lem simpler by letting DMTCP manage all connections
between the SUT and peers [8]. It represents the SUT
in the DMTCP environment and works similar to other
nodes in the group as shown in Figure 19. When the
SUT opens or closes a connection, the I/O cache sends
the corresponding command to the proxy process. The
proxy performs the requested operation and sends the
result back to the I/O cache. Some operations such as
accept return a file descriptor that represents a socket.
The I/O cache uses the file descriptor it receives to
directly communicate with the peer.

DMTCP provides a set of wrapper functions that
collects necessary information for checkpointing before
calling the real version of the functions. The wrapped
functions include both standard C libraries and system
calls. In a similar way, we add a wrapper for each func-
tion that may cause non-deterministic behavior. When
one of these wrappers detects non-determinism, it sends
a notification to the I/O cache via the log channel shown



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 15

in Figure 19. The I/O cache therefore knows that the
current peer state is essential and must be captured in
a checkpoint. This mechanism is used in every check-
pointing strategy described in Section 6.4.

7 EXPERIMENTS

The previous sections have shown several approaches
to the verification of a single process in a distributed
application using the I/O cache: caching with a linear or
a branching data structure, and a hybrid approach with a
checkpointing tool. Each approach supports a different
class of applications, as shown in Figure 18. The I/O
cache with checkpointing, although the most powerful,
comes with the expense of overhead in the checkpoint-
ing operations. The overhead is reduced by applying a
checkpointing strategy, which selectively takes snapshots
of peer processes. The performance of each approach is
measured and presented in this section. Experiments are
set up to compare the time spent in the verification of
several distributed applications. The experiments on the
checkpointing cache are further divided based on the
checkpointing strategy to show how the performance is
affected.

7.1 Experimental Environment

Every experiment is run on an 8-core Mac Pro
workstation with 24 GB of physical memory, running
Ubuntu 10.10. Although distributed systems are subjects
for the experiment, we do not have to run them on
multiple machines. All processes are run in a single
machine in order to prevent network latency from af-
fecting the experimental results. In practice, a tester
would prefer to do the same thing if possible. The time
limit for each case is set to one hour. JPF (jpf-core
module) revision 679 and DMTCP 1.2.4 are used in
the experiment.2 JPF is configured to detect three types
of faults: assertion violations, deadlocks, and uncaught
exceptions. Our JPF extension net-iocache works in two
modes: normal mode and checkpointing mode. The nor-
mal mode natively runs a peer process on a host OS and
uses the I/O cache to emulate the peer behavior when-
ever possible. The checkpointing mode starts a peer in
DMTCP, together with a proxy process (see Section 6.5).
The I/O cache is still used to capture communication
traces to reduce overhead in this mode, as described in
Section 6.4. Currently, DMTCP is not fully compatible
with the Java Virtual Machine, so we use the peers
written in C for the experiment run in the checkpointing
mode. Table 2 shows the list of applications used in the
experiments, including processes verified by JPF (SUT)
and environmental processes (peers). Some processes
have non-deterministic version for the experiments that
demonstrate support for non-determinism in the output.

2. A snapshot of the sources can be found at http://staff.aist.go.jp/
c.artho/tse/.

7.2 Results

The experimental result of applications composed of
deterministic SUTs and deterministic peers is shown
in Table 3.3 Two data structures, linear and branching
cache, are compared in this experiment. The number of
states explored by JPF increases as the system becomes
more complex due to the number of threads increasing.
The SUTs used in this experiment do not produce any
non-deterministic outputs, so the branching cache is not
strictly necessary. We show that the minor difference in
time spent can only be seen in large test cases. This
shows that the branching cache adds a very small com-
putational cost to the verification system, while being
able to handle non-deterministic SUTs.

The second set of our experiments is performed on
applications with non-deterministic SUTs. The branching
cache and the hybrid approach with DMTCP were used
to verify these applications. We further arrange the
experiment of the hybrid approach into three config-
urations based on the checkpointing strategy. Table 4
shows the experimental results. Although the check-
pointing approach is not necessary for deterministic
peers, this experiment shows that its performance is
usually comparable to the cache-based approach, given
a good checkpointing strategy.

Table 5 shows experimental results on the applications
with non-determinism in both the SUT and the peer.
Only the hybrid checkpointing approach is applicable
in this experiment. Three checkpointing strategies are
compared. The all strategy creates a checkpoint for every
SUT state and is used as a baseline for our study.
According to the result, the io-only and nd-only strategies
greatly reduce the number of checkpoints generated
during verification.

7.3 Discussion

The branching cache shows performance comparable to
the linear cache despite additional complexity in the data
structure. Therefore, it is useful for all cases where all
peers are I/O deterministic.

Systems where peers are I/O non-deterministic re-
quire the use of the hybrid checkpointing approach.
Given an efficient checkpointing strategy, the overhead
introduced by checkpointing is minor. Tables 4 and 5
show that checkpoint-based model checking with JPF
and DMTCP can verify more than two million states in
less than 30 minutes.

The performance of the checkpointing approach with
the nd-only strategy is not much different from the
branching cache approach since it only creates a check-
point if necessary. It also provides support for non-
deterministic peers, making it more powerful. The io-only
strategy is usually slower than nd-only, because it creates

3. The version of caches used in these experiments is newer than
the version used in our previous publications [8], [13]. However, all
versions share a common code base.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 16

TABLE 2

The list of applications in the experiments and descriptions.

Application Description
SUT Peer

Alphabet client Alphabet server The alphabet client contains producer and consumer threads. Each producer thread creates a
connection and sends a specified number of messages to the alphabet server; each message
consists of a number n followed by a newline character. The client consumer threads read
incoming messages. The non-deterministic version of the client randomly selects one of two
patterns of request messages to send to the server.
The server creates a thread for serving each incoming connection, which returns the nth letter
of the Latin alphabet followed by a newline character. The non-deterministic version of the
server randomly sends either an uppercase or lowercase nth letter for each message n.

Alphabet server Alphabet client

HTTP client HTTP server The HTTP client requests a page from a server via HTTP. It generates a number of worker
threads to request multiple documents in parallel. Each worker thread creates a connection
to the HTTP server. The non-deterministic version of the client randomly requests one out of
two given pages.
The HTTP server creates a thread for serving each incoming connection. The server is written
in Java and processes basic HTTP requests. The non-deterministic version of the server attaches
a visitor counter to the output. The client, therefore, may receive a different content depending
on the counter, although requesting the same page.

HTTP server HTTP client

HTTP client thttpd [30] thttpd is a lightweight HTTP server written in C. This application is used in the experiment
with DMTCP.

Time client Time server The time client creates a specified number of threads. Each thread creates a connection to
the time server. A client thread fails if it encounters a leap second. This failure may not be
detected by the branching I/O cache, causing a false negative (see Section 3.6).
The time server is a single-threaded program. It returns the current time when accepting a
connection, without an explicit request message from the client. The non-deterministic version
of the time server may return time with a leap second.

TABLE 3

The experimental results of deterministic SUT and deterministic peers.

SUT Peer #conn #msg time (mm:ss) #states
linear branching

Alphabet client Alphabet server 2 2 0:01 0:01 755
2 3 0:01 0:01 930
2 4 0:01 0:01 1,113
3 2 0:08 0:08 13,015
3 3 0:09 0:09 16,522
3 4 0:10 0:10 20,037
4 2 2:14 2:14 250,652
4 3 2:32 2:32 329,299
4 4 2:48 2:50 407,954
5 2 47:42 47:51 4,849,344

Alphabet server Alphabet client 2 2 0:01 0:01 53
2 3 0:01 0:01 61
2 4 0:01 0:01 69
3 2 0:01 0:01 337
3 3 0:01 0:01 481
3 4 0:01 0:01 655
4 2 0:03 0:03 2,512
4 3 0:05 0:05 4,483
4 4 0:06 0:06 7,340
5 2 0:14 0:15 17,714
5 3 0:30 0:30 39,114
5 4 0:55 0:56 76,124

HTTP client HTTP server 2 1 0:03 0:04 892
3 1 1:26 1:36 10,948
4 1 > 1h > 1h −

HTTP server HTTP client 2 1 0:01 0:01 241
3 1 0:04 0:04 2,448
4 1 0:41 0:44 28,666

Time client Time server 2 1 0:01 0:01 139
3 1 0:03 0:03 2,145
4 1 1:42 2:17 95,898
5 1 > 1h > 1h −



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 17

TABLE 4

The experimental results of non-deterministic SUT and deterministic peers.

SUT Peer #conn #msg time (mm:ss) [#checkpoints] #states
branching checkpointing

all io-only nd-only

ND alphabet client Alphabet server 2 2 0:02 6:47 [1,018] 0:08 [6] 0:06 [1] 2,326
3 0:06 46:31 [7,002] 0:16 [11] 0:12 [1] 9,945
4 0:18 > 1h 0:38 [21] 0:29 [1] 43,960

3 2 0:37 > 1h 0:47 [10] 0:42 [1] 73,574
3 4:26 − 4:51 [19] 4:44 [1] 623,437
4 36:25 − 38:11 [37] 38:10 [1] 5,507,260

4 2 21:30 − 22:13 [14] 22:07 [1] 2,425,706
3 > 1h − − − −

ND alphabet server Alphabet client 2 2 0:01 0:53 [114] 0:09 [6] 0:07 [1] 120
3 0:02 1:16 [156] 0:13 [11] 0:09 [1] 160
4 0:02 1:31 [196] 0:17 [15] 0:12 [1] 200
5 0:04 1:53 [236] 0:24 [19] 0:14 [1] 240

3 2 0:03 10:14 [1,460] 0:14 [11] 0:12 [1] 1,464
3 0:04 12:02 [1,716] 0:20 [17] 0:17 [1] 1,720
4 0:06 27:14 [3,908] 0:27 [23] 0:22 [1] 3,912
5 0:11 38:30 [5,552] 0:33 [29] 0:28 [1] 5,556

4 2 0:11 > 1h 0:22 [15] 0:23 [1] 15,692
3 0:19 − 0:41 [23] 0:39 [1] 34,036
4 0:34 − 1:01 [31] 0:59 [1] 62,732
5 0:53 − 1:28 [39] 1:28 [1] 104,108

5 2 1:27 − 1:46 [19] 1:46 [1] 157,355
3 3:50 − 4:26 [29] 4:20 [1] 427,127
4 8:52 − 9:20 [39] 9:19 [1] 949,523
5 16:38 − 17:49 [49] 17.44 [1] 1,849,343

HTTP client HTTP server 2 1 0:06 12:27 [1,867] 0:11 [5] 0:10 [3] 1,867
3 1 8:44 > 1h 8:54 [7] 8:52 [4] 78,248

HTTP server HTTP client 2 1 0:01 0:11 [9] 0:08 [3] 0:06 [1] 267
3 1 0:07 0:36 [31] 0:19 [5] 0:18 [1] 3,366
4 1 1:21 2:55 [71] 2:13 [7] 2:13 [1] 48,518
5 1 24:32 37:29 [137] 36:06 [9] 36:04 [1] 780,557

TABLE 5

The experimental results of applications whose peers are non-deterministic.

SUT Peer #conn #msg time (mm:ss) [#checkpoints] #states
checkpointing

all io-only nd-only

ND alphabet server ND alphabet client 2 2 0:51 [114] 0:10 [9] 0:10 [8] 120
3 1:10 [156] 0:15 [14] 0:14 [13] 160
4 1:28 [196] 0:18 [18] 0:18 [17] 200
5 1:47 [236] 0:22 [22] 0:21 [21] 240

3 2 9:52 [1,460] 0:16 [15] 0:15 [13] 1,464
3 17:11 [2,544] 0:21 [21] 0:21 [19] 2,548
4 26:15 [3,908] 0:29 [27] 0:28 [25] 3,912
5 37:21 [5,552] 0:35 [33] 0:34 [31] 5,556

4 2 > 1h 0:27 [21] 0:27 [18] 15,692
3 − 0:43 [29] 0:42 [26] 34,036
4 − 1:03 [37] 1:02 [34] 62,732
5 − 1:34 [45] 1:32 [42] 104,108

5 2 − 1:48 [27] 1:48 [22] 157,355
3 − 4:31 [37] 4:22 [33] 427,127
4 − 9:24 [47] 9:24 [43] 949,523
5 − 17:57 [57] 17:52 [53] 1,849,343

ND alphabet client ND alphabet server 2 2 6:47 [1,018] 0:08 [6] 0:08 [4] 2,326
3 46:39 [7,002] 0:16 [12] 0:14 [7] 9,945
4 > 1h 0:40 [24] 0:34 [13] 43,960

3 2 > 1h 0:46 [10] 0:45 [6] 73,574
3 − 4:55 [20] 4:49 [11] 623,437
4 − 38:20 [40] 38:07 [21] 5,507,260

4 2 − 22:26 [14] 22:01 [8] 2,425,706



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 18

more checkpoints. However, it would be more advan-
tageous if the peer took a long time between I/O op-
erations. In this case the io-only strategy would prevent
re-execution of expensive computations between I/O op-
erations. The all strategy excessively creates checkpoints
and gives poor performance, so the strategy itself is not
practically useful but included as a baseline for reference.

7.4 Case Studies

The cache-based model checking approach was used in
various case studies. Notable applications are (1) jget, a
parallelizable download client, (2) a test tool to check if
WebDAV (a parallel authoring system) is set up correctly,
and (3) JSch, a graphical front end to ssh and scp.
These case studies show the practical usefulness of our
work; the last case study shows a scenario in which
checkpointing technology is needed.

In our first case study we confirmed several flaws in
jget [12]. One defect related to concurrency may prevent
a download from completing normally. Likewise, the
WebDAV test client has a defect that causes it to crash
instead of a shutting down gracefully on a timeout [31].

Our most recent case study found a fault in ScpTo [8].
ScpTo is an example program in the Java Secure Channel
(JSch) package [32], which copies a local file to a remote
host via a secure channel. ScpTo contained code that
was not supported by JPF such as GUI and a cryp-
tographic library, so we had to abstract some part of
ScpTo before running it in the verification system. This
program was used as a client, which interacted with an
ssh server in our experiment. Both programs produced
non-deterministic outputs due to the process of building
a secret shared key [33]. Cache-based model checking
with DMTCP found a race condition that caused an error
in this system. The main thread and a worker thread in
ScpTo were not properly synchronized, so there was a
case where the main thread could not access an essential
data produced by the worker thread, resulting in an
exception.

8 RELATED WORK

Model checking automates the correctness proof of a
system specification by computing the reachable states
of a system [4]. Most model checkers take a specification
in their own domain-specific language as input [34],
[35]. In addition to labelled transition system with in-
put/output [16], distributed systems are often modelled
by a process algebra called π-calculus [36]. PIPER [37]
takes another approach to define a type system using
Calculus of Communicating Systems (CCS) processes,
and SPIN [34] is used to show a relationship between
CCS processes.

More recently, model checkers verifying software code
have become more prevalent. These software model
checkers either verify application code directly [6], [38],
[39], [40], [41], or use automatic program abstraction [5],
[42], [43] or information collected at run-time [44], [45]

to generate a model of the program or its behavior.
Manual model construction is not necessary, and thus
no modeling language is used as an input language.

The remainder of this section presents software model-
checking techniques used in the verification of dis-
tributed systems. The verification of distributed sys-
tems is not straightforward. One of the challenges is
to systematically control interactions and interleavings
between processes. Some widely used software model
checkers are not capable of manipulating multiple pro-
cesses directly. Several techniques have been devised to
address this shortcoming.

8.1 Scrapbook

This approach implements a model checker for multi-
process systems on top of a virtualized environment [46],
where the entire system state can be captured into a
checkpoint. The tool called ScrapBook, an extension of
User-mode Linux [47], can be used as a building block
for implement such a model checker. It adds the check-
pointing functionality to User-mode Linux. A model
checker can use this function to save the system state
when the SUT progresses, and restore the corresponding
system state when the SUT backtracks. The downside
of the multi-process model checker is that the SUT is
suspended by gdb [48]. Therefore, breakpoints must
be set manually by a user in advance, discouraging
automation. Furthermore, the size of each checkpoint is
very large as it contains the information of the entire
operating system. Because of this, the size of applica-
tions that can be verified is very limited. Other than
the purpose of model checking, SBUML is intended to
be applied in intrusion detection and sandboxing for
network security. This work predates our attempt to use
virtualization technology for software verification.

8.2 Centralization

A solution that can use single-process model checkers
for distributed systems, is to transform every process to
a thread and combine the transformed software into a
single process. This process can then be verified by a
single-process model checker like Java PathFinder [10],
[11]. This approach is called centralization. The product of
the transformation is a centralized process. The centralized
process starts all threads converted from the original pro-
cesses. The threads are running in parallel in the model
checker, simulating multiple processes executing concur-
rently. An model library is also provided to simulate
inter-process communication by inter-thread communi-
cation. While centralization is a generic solution, the
centralized process is usually too complex to be explored
exhaustively, since the interleaving among centralized
processes increases the state space considerably [12].

8.3 NetStub

Another way to deal with multiple processes is to create
a model of the environment that is compatible with the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 19

model checker. NetStub is a framework that helps testers
in building the model for verification [9]. It separates
the behavior of distributed systems from the behavior
of the network by replacing the Java network library
with stub classes. The stub classes simulate the network
behavior in order to verify a single process. NetStub
models a network by a simple module in order to reduce
the size of the state space and focus on the internal
function of the system. This approach requires some
effort to model the environment, especially when precise
behavior is needed for verification. Therefore, it is not
fully automated.

8.4 CHESS

Alternatives to software model checking are provided by
approaches that discard full state space exploration in
principle, and attempt to find defects by a partial analy-
sis instead. CHESS [49] is a runtime verification tool that
finds faults caused by concurrency. It takes a complete
control over thread scheduling and asynchronous events
of that program. In other words, all thread interleaving
is managed by the tool.

CHESS enhances software testing by executing a test
case repeatedly to find concurrent failures. The program
state space is gradually covered until the tool reaches
the specified number of runs. CHESS applies several
techniques to reduce the number of thread schedules
in consideration. First, it bounds the number of pre-
emptions when it enumerates thread schedules. The
idea behind is that most concurrency bugs happen with
only a few preemptions [50]. The verification technique
that runs a system under many thread schedules was
earlier adopted by VeriSoft [39]. CHESS further bounds
the search scope by only inserting preemptions into
code regions of interest, excluding base libraries that
are assumed to be thread-safe. This tool is effective in
finding bugs during development, although it does not
cover every possible program behavior like software
model checkers do.

9 CONCLUSION AND FUTURE WORK

Distributed systems are complex, owing to their non-
deterministic elements such as the interleaving between
processes and threads. Faults in such systems are hard
to detect and reproduce. Software model checking is
a powerful technique to find faults in a concurrent
system by exploring every possible execution path of
the system. Most model checkers that directly verify
the implementation of a system only support a single
process at a time. This article has presented a number of
approaches that verify a single process (the SUT), which
communicates with other peer processes.

The key problem in the verification of networked soft-
ware is that the state of the SUT is reverted (backtracked)
by a model checker during verification, but the states
of the peers are not. A synchronization mechanism is
needed to maintain the consistency of the system. Two

approaches have been presented: peer restart and peer
state capture. The former restarts the peer from the
beginning and replays a communication trace to recover
system consistency. The peer state capture approach
takes a snapshot of the peer in each state and stores it
in a checkpoint. The checkpoint can be used to restore
the peer in the state corresponding to the SUT.

To improve the performance of verification, cache-
based model checking has been presented. It makes use
of a cache for capturing communication traces between
the SUT and its peers. The cache uses this information to
interact with the SUT after state backtracking whenever
possible. This reduces the number of peer restart or
checkpoint restoration actions, depending on the syn-
chronization approach. Cache-based model checking can
be implemented on both synchronization mechanisms.
More optimization is possible by omitting unnecessary
checkpoints. A checkpointing strategy gives a condition
on when to create checkpoints.

Cache-based model checking is implemented as an
extension of Java PathFinder (JPF), a Java model checker.
A number of model classes for the network library
has been written to support network communication
between processes. DMTCP is used as a checkpointing
tool that captures the states of peer processes. This tech-
nique has succeeded in verifying a variety of distributed
applications.

The current cache-based approach is limited to ap-
plications in a client-server architecture. Each process
must take either the role of a client or a server, but not
both. This assumption does not hold for peer-to-peer
(P2P) applications, which maintain many connections
at a time, and where the order of messages usually
affects their behavior. Another restriction is the fact that
the cache-based approach may miss faults in an SUT
that exhibits trace convergence, and for peers where the
output depends on internal non-determinism that cannot
be seen or controlled by our tool. As our approach only
takes the SUT state, not peer states, into account, it does
not check how the SUT responds to every input trace
from peers.

Future work includes extending the capabilities of our
approach and applying cache-based model checking to
other application architectures such as P2P. Another pos-
sible improvement is to use a model checker for running
peers as well as SUT so that low-level non-determinism
such as thread scheduling is in control. By doing this,
we could analyze the peer behaviors in more detail and
selectively perform the ones that potentially reveal faults
in the SUT. Scalability limitations may require heuristics
to lead the verification to where a fault is likely to occur.
Future work also includes studying such heuristics.

ACKNOWLEDGMENTS

This work was supported by kaken-hi grants 23240003
and 23300004. The authors would like to thank Eric Pla-
ton, Richard Potter, and Franz Weitl for their comments
on the paper.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 20

REFERENCES

[1] S. Ghosh, Distributed Systems: an Algorithmic Approach. Boston:
Twayne Publishers, 2006.

[2] A. Tanenbaum, Modern operating systems. Prentice-Hall, 1992.
[3] G. J. Myers, The art of software testing. New York : Wiley, 1979.
[4] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,

1999.
[5] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Software

verification with BLAST,” 2003.
[6] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda, “Model

checking programs,” Automated Software Engineering Journal,
vol. 10, no. 2, pp. 203–232, 2003.

[7] Y. Yang, X. Chen, G. Gopalakrishnan, and R. Kirby, “Efficient
stateful dynamic partial order reduction,” in Model Checking
Software, ser. Lecture Notes in Computer Science, K. Havelund,
R. Majumdar, and J. Palsberg, Eds. Springer Berlin / Heidelberg,
2008, vol. 5156, pp. 288–305.

[8] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “Model checking distributed systems by combining
caching and process checkpointing,” in Proc. 2011 IEEE/ACM Int.
Conf. on Automated Software Engineering (ASE 2011), 2011.

[9] E. D. Barlas and T. Bultan, “NetStub: A framework for verification
of distributed Java applications,” in Automated Software Engineer-
ing Conf., Georgia, USA, 2007, pp. 24–33.

[10] S. D. Stoller and Y. A. Liu, “Transformations for model checking
distributed Java programs,” in SPIN ’01: Proc. 8th international
SPIN workshop on Model checking of software. NY, USA: Springer-
Verlag New York, Inc., 2001, pp. 192–199.

[11] C. Artho and P. Garoche, “Accurate centralization for apply-
ing model checking on networked applications,” in Proc. 2006
IEEE/ACM Int. Conf. on Automated Software Engineering (ASE 2006),
Tokyo, Japan, 2006, pp. 177–188.

[12] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe, “Ef-
ficient model checking of networked applications,” in Proc.
TOOLS EUROPE 2008, ser. LNBIP, vol. 19. Zurich, Switzerland:
Springer, 2008, pp. 22–40.

[13] C. Artho, W. Leungwattanakit, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “Cache-based model checking of networked applica-
tions: From linear to branching time,” in Proc. 2009 IEEE/ACM Int.
Conf. on Automated Software Engineering (ASE 2009). Washington,
DC, USA: IEEE Computer Society, November 2009, pp. 447–458.

[14] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing sys-
tems,” ACM Comput. Surv., vol. 34, pp. 375–408, September 2002.

[15] T. Ball and S. K. Rajamani, “The SLAM toolkit,” in 13th Int. Conf.
on Computer Aided Verification (CAV 2001), ser. LNCS, vol. 2102.
Paris, France: Springer, 2001, pp. 260–264.

[16] J. Tretmans, “Model based testing with labelled transition sys-
tems,” in Formal Methods and Testing (FORTEST 2008), ser. Lecture
Notes in Computer Science, vol. 4949. Springer, 2008, pp. 1–38.

[17] M. Rieker and J. Ansel, “Transparent user-level checkpointing
for the native POSIX thread library for Linux,” in Proc. of The
2006 International Conference on Parallel and Distributed Processing
Techniques and Applications, 2006, pp. 492–498.

[18] P.-H. Kamp, “The one-second war,” Commun. ACM, vol. 54, pp.
44–48, May 2011.

[19] J. Stultz, “Potential fix for leapsecond caused futex issue,” 2012.
[Online]. Available: https://lkml.org/lkml/2012/7/1/203

[20] K. Havelund and T. Pressburger, “Model checking Java programs
using Java PathFinder,” International Journal on Software Tools for
Technology Transfer, vol. 2, no. 4, pp. 366–381, 2000.

[21] T. Lindholm and F. Yellin, Java Virtual Machine Specification,
2nd ed. Prentice Hall PTR, 1999.

[22] W. Leungwattanakit and C. Artho, Project net-iocache, 2012.
[Online]. Available: http://babelfish.arc.nasa.gov/trac/jpf/wiki/
projects/net-iocache

[23] NASA Ames Research Center, JPF Developer Guide, 2012.
[Online]. Available: http://babelfish.arc.nasa.gov/trac/jpf/wiki/
devel/start

[24] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language
Specification, Third ed. Addison-Wesley, 2005.

[25] K. Kim, T. Yavuz-Kahveci, and B. Sanders, “JRF-E: using model
checking to give advice on eliminating memory model-related
bugs,” Automated Software Engineering, vol. 19, no. 4, pp. 491–530,
2012.

[26] Red Hat, Inc., “KVM,” http://www.linux-kvm.org.

[27] “OpenVZ documentation,” http://wiki.openvz.org.
[28] Oracle, “Virtualbox,” http://www.virtualbox.org/.
[29] J. Ansel, K. Arya, and G. Cooperman, “DMTCP: transparent

checkpointing for cluster computations and the desktop,” in
Proc. 2009 IEEE International Symposium on Parallel & Distributed
Processing. Washington, DC, USA: IEEE Computer Society, 2009,
pp. 1–12.

[30] ACME Laboratories, “thttpd - tiny/turbo/throttling HTTP
server,” http://www.acme.com/software/thttpd/.

[31] W. Leungwattanakit, C. Artho, M. Hagiya, Y. Tanabe, and M. Ya-
mamoto, “Verifying networked programs using a model checker
extension,” in ICSE Companion proceedings, Vancouver, Canada,
2009, pp. 409–410.

[32] JCraft, Inc., “JSch - Java Secure Channel,” http://www.jcraft.
com/jsch/.

[33] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. 22, no. 6, pp. 644–654,
November 1976.

[34] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, September 2003.

[35] K. G. Larsen, P. Pettersson, and W. Yi, “UPPAAL in a nutshell.”
STTT, pp. 134–152, 1997.

[36] R. Milner, J. Parrow, and D. Walker, “A calculus of mobile
processes, i,” Information and computation, vol. 100, no. 1, pp. 1–40,
1992.

[37] S. Chaki, S. K. Rajamani, and J. Rehof, “Types as models: model
checking message-passing programs,” SIGPLAN Not., vol. 37,
no. 1, pp. 45–57, Jan. 2002.

[38] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and
B. Zweimuller, “JNuke: Efficient dynamic analysis for Java,” in
Proc. 16th Int. Conf. on Computer Aided Verification (CAV 2004), ser.
Lecture Notes in Computer Science, R. Alur and D. Peled, Eds.,
vol. 3114. Springer, 2004, pp. 462–465.

[39] P. Godefroid, “Software model checking: The VeriSoft approach,”
Form. Methods Syst. Des., vol. 26, no. 2, pp. 77–101, 2005.

[40] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L. Dill,
“CMC: A Pragmatic Approach to Model Checking Real Code,”
in Proc. Fifth Symposium on Operating Systems Design and Imple-
mentation, Dec. 2002.

[41] Y. Yang, X. Chen, and G. Gopalakrishnan, “Inspect: A runtime
model checker for multithreaded C programs,” University of
Utah, USA, Tech. Rep., 2008.

[42] T. Ball and S. K. Rajamani, “Automatically validating temporal
safety properties of interfaces,” in Proceedings of the 8th interna-
tional SPIN workshop on Model checking of software, ser. SPIN ’01.
New York, NY, USA: Springer-Verlag New York, Inc., 2001, pp.
103–122.

[43] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,
and H. Zheng, “Bandera: extracting finite-state models from java
source code,” in Software Engineering, 2000. Proceedings of the 2000
International Conference on, 2000, pp. 439 –448.

[44] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang, “Prac-
tical software model checking via dynamic interface reduction,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: ACM,
2011, pp. 265–278.

[45] Z. Qi, L. Liu, A. Liang, H. Wang, and Y. Chen, “An online
model checking tool for safety and liveness bugs,” in Parallel
and Distributed Systems, 2008. ICPADS ’08. 14th IEEE International
Conference on, dec. 2008, pp. 493–500.

[46] Y. Nakagawa, R. Potter, M. Yamamoto, M. Hagiya, and K. Kato,
“Model checking of multi-process applications using SBUML and
GDB,” in Workshop on Dependable Software: Tools and Methods,
Yokohama, Japan, 2005, pp. 215–220.

[47] J. Dike, User Mode Linux. Prentice Hall PTR, 2006.
[48] R. Stallman, R. Pesch, and S. Shebs, Debugging with GDB : the

GNU source-level debugger, 9th ed. Boston, MA : Free Software
Foundation, 2002.

[49] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu, “Finding and reproducing heisenbugs in concurrent
programs,” in Proc. 8th USENIX conference on Operating systems
design and implementation (OSDI 2008). Berkeley, CA, USA:
USENIX Association, 2008, pp. 267–280.

[50] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: a
comprehensive study on real world concurrency bug characteris-
tics,” SIGPLAN Not., vol. 43, no. 3, pp. 329–339, Mar. 2008.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 4X, NO. 1X, JANUARY 2014 21

Watcharin Leungwattanakit received the MSc
and PhD degrees from the University of Tokyo
in 2008 and 2011, respectively. He was a post-
doctoral researcher at the University of Tokyo
and Chiba University in 2012. Currently, he is
a senior technical consultant at VenTek Interna-
tional (Thailand). His interests include software
model checking, testing, and enterprise search
technologies.

Cyrille Artho ’s main interests are software ver-
ification and software engineering. In his Mas-
ter’s thesis, he compared different approaches
for finding faults in multi-threaded programs.
Later in his Ph.D. thesis, he continued his search
for such defects, earning his Doctorate at ETH
Zurich. During that research, he spent two sum-
mers at the Computational Sciences Division of
the NASA Ames Research Center. After grad-
uation he worked at NII, Tokyo, for two years,
and then moved to AIST. He currently holds the

position of Senior Researcher at AIST Amagasaki, Japan. His most
recent work covers the analysis of networked systems, using software
model checking and test case generation.

Masami Hagiya received MSc from Department
of Information Science, University of Tokyo in
1982, and PhD from Research Institute for Math-
ematical Sciences, Kyoto University in 1988. He
is currently a professor in Computer Science,
University of Tokyo. With background in formal
logic, he is interested in analysis, verification and
synthesis of computational models in general.
He has been working on formal verification of
computing systems, recently on model check-
ing of networked software by extending Java

PathFinder. He also has been interested in applying computational
models to biological and molecular systems. Beginning with research on
DNA computing, he has been leading research on molecular computing
and DNA nanotechnology in Japan, and one of his current research
projects is on molecular robotics. Finally, he is also working on IT
education at the levels of high school and university general education
with the hope of raising IT literacy of the Japanese society.

Yoshinori Tanabe received the MSc degree in
Mathematics from Tsukuba University in 1987.
After working for Fujitsu and other companies
for about ten years, he received the PhD degree
in Information Science And Technology from
the University of Tokyo in 2008. He is currenty
Research Professor at the National Institute of
Informatics, Tokyo, and interested in software
verification.

Mitsuharu Yamamoto received the MSc and
PhD degrees from the University of Tokyo in
1996 and 2003, respectively. He is an associate
professor in the Department of Mathematics and
Informatics at Chiba University. His research in-
terests include formal verification, model check-
ing, and theorem proving.

Koichi Takahashi received his B.S.and M.S. de-
grees in mathematics from Nagoya University in
1986 and 1988, and Ph.D. degree in information
science from the University of Tokyo in 2002.
Since 1988 he has worked at the Electrotech-
nical Laboratory (currently the National Institute
of Advanced Industrial Science and Technol-
ogy). His research interests include theoretical
verifications.


