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Modular structure of brain 
functional networks: breaking the 
resolution limit by Surprise
Carlo Nicolini1,2 & Angelo Bifone2

The modular organization of brain networks has been widely investigated using graph theoretical 

approaches. Recently, it has been demonstrated that graph partitioning methods based on the 

maximization of global fitness functions, like Newman’s Modularity, suffer from a resolution limit, 
as they fail to detect modules that are smaller than a scale determined by the size of the entire 

network. Here we explore the effects of this limitation on the study of brain connectivity networks. 
We demonstrate that the resolution limit prevents detection of important details of the brain modular 

structure, thus hampering the ability to appreciate differences between networks and to assess 
the topological roles of nodes. We show that Surprise, a recently proposed fitness function based 
on probability theory, does not suffer from these limitations. Surprise maximization in brain co-
activation and functional connectivity resting state networks reveals the presence of a rich structure of 

heterogeneously distributed modules, and differences in networks’ partitions that are undetectable by 
resolution-limited methods. Moreover, Surprise leads to a more accurate identification of the network’s 
connector hubs, the elements that integrate the brain modules into a cohesive structure.

�e brain is o�en represented as a network of interconnected, dynamically interacting elements1. Cognitive pro-
cesses are thought to result from the integration of neuronal processing distributed across these complex net-
works at di�erent temporal and spatial scales2. Hence, comprehension of the organizational principles of brain 
networks may provide a key to understand the interplay between functional segregation and integration, and 
ultimately the emergence of cognition and adaptive behaviors.

Neuroimaging methods provide a powerful means to study the brain structural and functional architecture. 
Indeed, neuroimaging data can be naturally represented as networks, or graphs, with image voxels or anatomi-
cally de�ned regions corresponding to the nodes, and a measure of similarity or connectedness between nodes 
representing the edges. By way of example, correlations between spatially remote changes in the BOLD signal 
measured by Magnetic Resonance Imaging have been used to de�ne the strength of functional connectivity 
between di�erent brain regions3. Similarly, white matter �bers interconnecting di�erent brain regions can be 
traced by Di�usion Tensor Imaging to build the brain structural connectivity network4. �e application of graph 
theoretical methods to the analysis of neuroimaging data has provided important insights into the topological 
organization of the central nervous system, and is attracting increasing attention as a general and powerful frame-
work to analyze brain connectivity networks1.

Of particular interest is the study of the modular structure of brain networks, i.e. the presence of subsets, 
or clusters, of nodes that are more densely connected among themselves than to nodes in other modules5. �is 
concept originated in the study of social relationships and is sometimes referred to as “community detection”6. 
In the context of neuronal networks, communities can be interpreted as functionally or structurally segregated 
modules7,8, a feature that is thought to confer robustness and adaptivity to the overall brain network5.

Several methods have been proposed to resolve the community structure of complex networks6,9. Many of 
these methods involve the de�nition of a quality function that assigns positive or negative scores to edges con-
necting nodes within or outside the same community, and heuristics to �nd the optimal partition of the network 
that maximize this �tness function. �e most popular approach is Newman’s “Modularity maximization” and 
variations thereof10. Following the �rst demonstration by11, partitioning of brain networks using Modularity has 
been widely applied to assess the brain modular structure. A few, large modules, including the Default Mode 
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Network, the central network, occipital and frontoparietal networks have been observed with remarkable con-
sistency across subjects and studies5,12.

Despite its popularity and merits, Newman’s approach presents some important limitations. Already at an 
early stage, Modularity-based methods were shown to su�er from a resolution limit, as they fail to identify mod-
ules that are smaller than a scale that depends on the size of the overall network13. As a consequence, even unam-
biguously de�ned modules, like complete sub-graphs or cliques, may be unduly merged into larger communities 
when they are too small compared to the size of the network. Subsequent work by various groups has shown 
that the resolution limit is quite pervasive9,14–17, and a�ects, to a di�erent extent, many other methods, includ-
ing Reichardt and Bornholdt’s18, Arenas and Gomez’19, Ronhovde and Nussinov’s20, Rosvall and Bergstrom’s 
(Infomap)17,21 and others.

Fixes have been proposed to circumvent the resolution limit, including the introduction of a tunable parame-
ter that enables analysis of the network at an adjustable resolution level18,22,23. However, this requires prior knowl-
edge of the expected size of the communities for the tuning of the resolution parameter. Moreover, it has been 
shown that an adjustable resolution parameter may reduce the tendency to merge small clusters, but only at the 
cost of unduly splitting large clusters16. Adjustment of the resolution parameter is an attempt to balance these two 
biases, but multiresolution methods fail to recover community structures comprising heterogeneous distributions 
of cluster sizes16.

However, real-world networks are characterized by the coexistence of clusters of very di�erent sizes, and no 
single parameter can adapt to the variety of network topologies observed in nature. Hence, the resolution limit 
may represent a critical shortcoming for the study of brain networks and is likely to have a�ected many of the 
studies reported in the literature.

Here, we explore the use of Surprise, a recently proposed �tness measure grounded in probability theory, for 
the study of brain functional networks. Surprise has been shown to outperform other metrics in the detection of 
small communities24–26, but the extent to which it is a�ected by the resolution limit is unclear. We show that, for 
graphs of the typical kind and size encountered in the study of brain connectivity, Surprise does not su�er from 
the limitations of Newman’s Modularity, and behaves as a resolution-limit-free �tness function.

Application of Surprise maximization to the partition of diverse brain connectivity networks reveals rich 
modular structures that comprise modules of heterogeneous sizes, including large, distributed clusters, and func-
tionally segregated clusters of nodes that are very small compared to the size of the graph. We discuss the impor-
tant implications of these �ndings for the identi�cation of brain structures responsible for the integration of 
brain connectivity, and argue that current models of the brain modular architecture based on graph theoretical 
approaches may have su�ered from the shortcomings of the resolution limit and should be revisited.

Theory
Notation and definitions. Let G =  (V, E) be an unweighted, undirected graph, with n nodes and m edges 
and p pairs of vertices. A clustering ζ of G is a partitioning of V into disjoint sets of vertices ζ ⊆ V

i
 which we call 

communities. Each community consists of ni vertices, mi edges and pi pairs of vertices. �e number of total intr-
acluster edges mζ and intracluster pairs pζ are respectively the sum of mi and pi over all communities.

If we take a graph  drawn uniformly at random from all possible graphs with the same vertex set V and 
exactly m edges, the probability that  has at least mζ intracluster edges and pζ intracluster pairs is given by the 
inverse cumulative hypergeometric distribution:
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Equation 1 corresponds to an urn model without reinsertion, where S is the probability of extracting at least 
mζ white balls out of m trials from an urn containing pζ white balls and p −  pζ black balls. For a clustering ζ, the 
function S, from Surprise, computes the probability to observe in an uniform random graph at least as many 
internal edges and pairs as in . Intuitively, the lower S(ζ), the better the clustering. It’s worth noting that S is the 
p-value of a Fisher exact-test assessing how con�dently one should reject the null hypothesis that the intracluster 
density mζ/pζ is the same as the graph density m/p. Optimal partitions with respect to S are those with the highest 
number of intracluster edges and the smallest number of intracluster pairs. Due to numerical precision problems 
in the evaluation of large binomial coe�cients, ζ ζ( ) = − ( )Ŝ Slog

10
 is o�en taken as measure of quality of the 

partition, with higher values corresponding to better clustering. Di�erent authors27,28, refer to S as Surprise, 
whereas others24,25 use Ŝ. Herea�er we stick to the notation of 24, where Surprise is indicated as Ŝ. Hence, in this 
notation, the optimal partition of a graph is the one that maximizes Ŝ.

The resolution limit and Surprise. Fortunato and Barthelemy13 �rst detected the resolution limit studying 
the performance of Newman’s Modularity as a community detection method applied to a graph G with m edges 
consisting of three subgraphs G0, G1, G2 where Gi =  (Vi, Ei), with |V(Gi)| =  ni and |E(Gi)| =  mi (Fig. 1A). �e con-
nections between the components are represented by m01, m02, m12, respectively. While G1 and G2 are modules by 
construction, G0 may consist of many communities.

To illustrate the resolution limit, Fortunato and Barthelemy calculated the values of Modularity Q in two 
di�erent cases: in partition α, G1 and G2 were considered as distinct communities, while in partition β they were 
merged into the same module; the partition of G0 was arbitrary and identical in both cases. As G1 and G2 are two 
di�erent modules by construction, Qα is expected to be larger than Qβ in all cases. However, it was shown that Qβ 
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can exceed Qα when the number of internal edges m1 and m2 is small compared with the total number of edges 
in the graph m, thus preventing detection of small communities even when they are complete graphs or cliques. 
Subsequently, other authors have extended this analysis showing that the resolution limit a�ects a number of 
other community detection algorithms, and suggesting that the problem may be quite generally related with the 
use of non-local �tness functions9,14–16.

�e resolution limit �rst highlighted by Fortunato and Barthelemy may be particularly critical for the analy-
sis of brain connectivity networks. By way of example, certain functional processes, like color vision, have been 
described as anatomically localized29, while others, like working memory, have been proposed to involve more 
globally integrated processing systems30. Hence, we may expect the brain modular structure to comprise hetero-
geneously distributed communities.

Whether the relatively uniform modular structure of brain connectivity, highlighted by Newman’s Modularity 
and other community detection methods in many studies, re�ects the true architecture of the brain organization 
or is the result of the resolution limit is still unclear. Hierarchical approaches have shown that large modules can 
be further subdivided, indicating that connectivity networks show structure at di�erent spatial scales31. However, 
these �ndings do not provide information on the optimal partition of the network, i.e. the optimal cut through 
the dendrogram representing connectivity at the di�erent scales. To this end, an optimization method that does 
not su�er from the resolution limit would be needed.

Unfortunately, the resolution limit appears to be an intrinsic feature of many methods that optimize global 
quality functions, and there appears to be “a narrow scope to resolution-limit-free methods”14. Surprise has 
been shown to outperform other network partitioning methods in the detection of small features within large 
graphs, but the extent to which it su�ers from the resolution limit is unknown24–26. As pointed out by24, while 
Modularity-based methods de�ne a community as a region with an unexpectedly high density of links with 
respect to the global characteristics of the network, Surprise weights the number of actual intracluster edges 
against the maximum number of links given the nodes in the clusters. Hence, Surprise is able to discriminate local 
subnetworks whose internal density is close to that of a clique independently of their size. In the following, we 
assess the extent to which the resolution limit may a�ect Surprise.

Firstly, we have directly compared Newman’s Modularity and Surprise in the example of Fortunato and 
Barthelemy. For the sake of illustration, we have de�ned G1 and G2 as two identical cliques of 5 nodes connected 

Figure 1. Analysis of the onset of the resolution limit for Modularity and Surprise in a model graph (A) 
consisting of two cliques, G1 and G2, and a size-varying components G0. �e red line indicates the partition 
α, with G1 and G2 as di�erent modules, and the blue line the partition β, with G1 and G2 merged into a single 
module. �e graph (B) shows the di�erence in Modularity for increasing number of edges in G0. �e same is 
shown in (C) for Surprise.
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to G0 by a single edge (m01 =  1, m02 =  1), and to each other by m12 edges. G0 was de�ned as a clique of variable size 
with a number of edges ranging from 45 to 2775. We then computed the numerical di�erence of the quality func-
tions Modularity and Surprise for the two partitions α (red) and β (blue) as in Fig. 1A and plotted ∆ Q =  Qα −  Qβ 
and ∆ S =  Sα −  Sβ as a function of the number of edges m0 in the G0 clique. �ese plots are shown in Fig. 1B,C.

�e onset of the resolution limit occurs when ∆ Q or ∆ S change sign and become negative for increasing val-
ues of m0. For m12 =  1, i.e. when the two cliques G1 and G2 were connected by only one edge (red curve), Q showed 
this sign inversion for m0 ≈  200 (Fig. 1B). With increasing number of intercluster edges m12, the resolution limit 
appeared for smaller values of m0, eventually leading to ∆ Q values that were always negative, i.e. the two cliques 
G1 and G2 were always merged by Modularity optimization.

Figure 1C shows that Surprise does not su�er from the resolution limit in this speci�c case. Indeed, ∆ S 
was always positive and grew monotonically with increasing m0. Hence, the two cliques G1 and G2 were always 
resolved by Surprise as separate communities independently of the network size, and also in the presence of 
some “fuzziness”, i.e. when m12 >  1 and the two cliques were connected by more than one edge. In order to assess 
whether this behavior re�ects a general property of Surprise, or is incidental to this particular example, we have 
also studied a generalization of Fortunato and Barthelemy’s model.

Traag et al.14 proposed a rigorous de�nition of resolution-limit-free graph partitioning. A quality function is 
resolution-limit-free if, given an optimal partition ζ of a graph G, any subpartition ζi is also optimal for the graph 
induced by the nodes in ζi. In other words, each community of the optimal partition is not split by optimization 
of the quality function applied to the subgraph induced by the nodes in the community. Hence, each community 
does not depend on the rest of the network and is both locally and globally optimal.

An important consequence of this de�nition is that a resolution-limit-free method will never depend on the 
size of the network to merge cliques in a graph comprising r cliques of n nodes connected in a ring structure as 
in Fig. 2A.

�is observation prompted us to explore the behavior of Ŝ in the ring of cliques model graph, as an extension 
of Fortunato and Barthelemy’s model. Surprise optimization can be seen as a multiobjective optimization prob-
lem where one seeks to minimize the intracluster pairs while maximizing the number of intracluster edges. With 
increasing graph size, the computational problem of calculating Ŝ for every possible partition becomes rapidly 

Figure 2. Behavior of Surprise for di�erent partitions of a ring of cliques (A) of varying size. n denotes the 
number of nodes in each clique, and r the number of cliques in the graph. (B) shows the Pareto frontier for 
various values of n and r. �e black circle corresponds to the optimal partition by Surprise. (C) shows the value 
of Surprise for each point of the Pareto frontier. �e peak value corresponds to the optimal partition where each 
clique of the ring represents a separate module.
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intractable (maximization of S is NP hard)28. However, as pointed out by Fleck et al.28, the S-optimal clustering 
must be Pareto optimal with respect to minimizing pζ and maximizing mζ, i.e. any further improvement in one of 
the two variables must occur at the expense of the other.

To delineate the Pareto frontier in the (mζ, pζ) space for the ring of cliques, we solved m integer linear pro-
grams where we sought to minimize pζ while keeping mζ equal to a constant k, with k ranging from 0 (trivial 
partition where every vertex is a community) to m (trivial partition with all vertices in the same community). 
Linear programs were solved using the Python interfaces of Gurobi 5.7.3 on Linux (Gurobi Optimizer Version 
5.7, Gurobi Optimization, Inc., Houston, Texas, United States).

Figure 2B shows the Pareto frontier for a ring of cliques where we independently varied the number of cliques r  
and the number of nodes n in every clique. Interestingly, Ŝ increased monotonically along the Pareto frontier with 
increasing pζ (Fig. 2C), until it reached its optimum, indicated by black circles in the Pareto frontier, for the par-
tition that identi�ed each clique as a separate community. Importantly, in the range of parameters we have inves-
tigated, Surprise optimization never merged cliques in the ring of cliques, independently of the size of the graph, 
and behaved as a Traag’s resolution-limit free method. While it is likely that this property is quite general and can 
be extended to every ring of cliques, an analytical demonstration is hampered by the non-additivity of the 
Surprise function. Nonetheless, the size of the graphs we have explored numerically is quite typical of 
brain-connectivity networks and we feel encouraged to apply Surprise maximization to the study of the commu-
nity structure of the brain.

Methods
Surprise maximization. Community detection is a NP-hard problem, and heuristics have to be developed 
for the optimization of quality functions for relatively large networks. In their original paper, Aldecoa et al.24 
applied metaheuristics, involving the evaluation of S for partitions resulting from seven di�erent community 
detection methods, each of those maximizing di�erent quality functions. Here, we sought direct maximization 
of Surprise by exploiting FAGSO32, an agglomerative optimization algorithm that builds on a variation of the 
Kruskal algorithm for minimum spanning tree33. �e �rst step of this method consists in ranking the edges in the 
graph in decreasing order by the Jaccard index of the neighbors of their two endpoints vertices. An union-�nd 
data structure is used to hold the community structure throughout the computation. At the beginning, each com-
munity consists only of one vertex. �en, starting from the edge with the highest Jaccard index at the top of the 
list, the endpoints are attributed to the same community by disjoint-set union if this operation leads to a strictly 
better Surprise and if they do not belong already in the same community. �is step is repeated for all edges and 
the �nal community structure is returned in the disjoint-set. �is method �nds partitions with high Surprise and 
it is deterministic, unless two edges with the same Jaccard index are found. In this case, ties are broken at random. 
�e detailed pseudocode of this algorithm is reported in the Supplementary Materials section, the code in C+ + , 
Python and GNU Octave is available upon request.

Benchmark brain networks. We assessed the performance of Surprise maximization in the detection of 
the community structure of two benchmark brain networks. All coordinate data and functional metadata were 
taken from the BrainMap database34,35, processed by Crossley et al.36 and made available to the scienti�c commu-
nity as reference networks through the public Brain Connectivity Toolbox37. Ethical statements are present in the 
original references by the groups who performed the experiments.

The first network represents the coactivation of brain regions as obtained from a meta-analysis of 1641 
task-related fMRI or PET studies36. Meta-analyses have been useful in estimating the frequency with which two 
brain regions are consistently activated across di�erent tasks and are an indication of the behavior of the brain 
during activity. Jaccard similarity, i.e. the number of studies activating both regions divided by the number of 
studies activating either one of them, was used as index to evaluate strength of the coactivation of 638 parcellated 
brain regions. More details on the construction of the network are available in36.

�e second network that we considered is a resting state functional connectivity network obtained from 
correlations between time series of fMRI signals, from a group study of 27 healthy subjects. �e resting state 
network was built using the same set of 638 regions and thresholded to have the same number of edges as in 
the coactivation study. Both networks have been previously studied using Modularity-based algorithms and 
node-classi�cation methods36.

Due to its de�nition in terms of binomial coe�cients, Surprise can be computed for integer values of its 
parameters. We have therefore binarized the two adjacency matrices retaining an equal number of edges for both 
networks. While the binarization process discards information contained in the edge weights, a judicious choice 
of threshold can ensure robust decomposition of the network5,38. We have checked this statement by percola-
tion analysis, a natural and non-arbitrary method to derive binary graphs from continuous adjacency matrices. 
Speci�cally, we have studied the size of the largest connected component of the coactivation and resting state 
networks removing iteratively the smallest weight edges.

�is analysis, shown in Figure S1 of the Supplementary Materials, revealed the presence of percolation-like 
transitions, whereby the largest component of the network drops in jumps with increasing binarization threshold. 
For the coactivation and the resting state networks we found that the thresholds adopted by36 of 0.015576 and 
0.600, respectively, are above the �rst jump in the size of the largest connected components and maintain network 
connectedness while ensuring that the networks are su�ciently sparse and possess the same number of edges. 
Hence, we adopted these thresholds for network’s binarization. Analysis of the structures of networks obtained 
by a range of thresholds around these values showed stable solutions, with Normalized Mutual Information close 
between partitions close to 1, and a stable number of communities (Figures S2 and S3 in the Supplementary 
Information).
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Results and Discussions
Figure 3 shows a direct comparison of the partitions obtained by Modularity and by Surprise maximization for 
the coactivation and resting state networks. �e four panels display the adjacency matrices of the two networks, 
with their vertices rearranged by their module membership.

By Newman’s decomposition, the resting state and coactivation brain networks present a modular structure 
with four large modules that have been anatomically labeled as occipital, central, frontoparietal and Default Mode 
networks36 (demarcated by a red line in Fig. 3). �ese partitions are highly similar (Rand Index 0.78), despite the 
di�erent neurofunctional bases of the two networks39 and comprise modules that are relatively uniform in terms 
of number of nodes and number of edges within each module.

�e partitions obtained by Surprise maximization for the two networks are shown in Fig. 3B,D. Surprise found 
51 communities, = .Ŝ 8969 24, for the resting state network, and 28 communities, = .Ŝ 5725 65 for the coactiva-
tion network. �ese modules are delimited by blue lines that show the wide distribution in size of the compo-
nents, ranging from communities with 119 nodes and 4586 edges down to singletons. �e size distributions of the 
modules are di�erent for the two networks, with a more rapid drop and a fatter tail in the coactivation network 
compared with the resting state network.

�e complete list of communities, with anatomical labels and stereotaxic coordinates for all nodes40–42, as 
well as the density and number of nodes of each community found by Modularity and Surprise optimization, are 
reported in a tabular form in the Supplementary Materials (Tables S1–S4).

Analysis by Surprise suggests that the modular structure of resting state functional connectivity brain 
networks comprises modules of very different sizes, in sharp contrast with previous studies that have used 
resolution-limited functions like Newman’s Modularity (see5 for a review). To emphasize this point, we have also 
partitioned the coactivation and resting state networks using Infomap21 and a multiscale version of Modularity 
with an adjustable resolution parameter18 provided by the Brain Connectivity Toolbox37. Interestingly, increasing 
the resolution parameter results in a larger number of smaller communities that are however characterized by a 
relatively homogenous size distribution, a result of the intrinsic scale built into these methods (results shown in 
the Supplementary Material, Figure S4). Additionally, we have made a quantitative comparison between the par-
tions obtained by Surprise, Infomap and the Reichardt and Bornholdt’s method18 by calculating the Normalized 
Mutual Information between the resulting community structures (Tables S6 and S7 in the Supplementary 

Figure 3. Modular structure of the coactivation and resting state networks under Modularity and Surprise 
maximization. �e node indexes have been reordered by membership to highlight the modules, which are 
demarcated by a red line, for Modularity, or a blue line, for Surprise. Modularity maximization identi�es only 
four, large modules, consistent with previous analysis of these data-sets. Surprise reveals a much �ner and 
complex modular structure.
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Material). Despite the fact that these methods retrieve a few more modules that Newman Modularity, they fail to 
capture the heterogeneous distribution of clusters revealed by Surprise.

In order to assess the signi�cance in neurofunctional terms of the �ner partitions obtained by Surprise, we 
show the node distribution as an overlay of the MNI brain atlas template for the 10 largest modules of the resting 
state network in Fig. 4. �e communities highlighted by Surprise show a correspondence with some well known 
functional networks previously identi�ed by multivariate analysis (e.g. Independent Component Analysis) of 
functional MRI data43–46, and with well de�ned, segregated anatomical or functional districts.

�e largest communities of the resting state network correspond to the primary sensorimotor cortex47, pri-
mary visual and extra-striate visual network, fronto-parietal lateralized networks39 as well as the so-called default 
mode network (DMN)43,48. �e attentional frontoparietal networks (FPAN)49 were detected as two separate, later-
alized subnetworks, in agreement with46 although other studies have identi�ed a single, bilateral FPAN50.

Smaller networks, like the executive control and auditory networks44,51 were also resolved by Surprise, as well 
as subcortical structures, like the hippocampal and thalamic formations52,53. Interestingly, the thalamic nuclei 
appear as one tight community, despite the fact that they are structurally unconnected, in keeping with the idea 
that functional connectivity does not necessarily require the presence of strong structural links.

�e more accurate partition a�orded by Surprise may enable identi�cation of di�erences in the modular 
structures of networks that cannot be appreciated with a resolution limited method. By way of example, we have 
compared the partitions of the resting state and coactivation networks (Fig. 5). Indeed, these networks are of a dif-
ferent nature, the former representing intrasubject baseline �uctuations in the brain’s resting state, and the latter 
the responses to a variety of di�erent tasks across subjects. However, Newman’s Modularity �nds similar parti-
tions for these two networks, with 4 large modules each. Conversely, under Surprise maximization, the partition 
of the resting state network shows many more small communities comprising less than 5 nodes (32 in total) com-
pared with the coactivation one (only 11). Moreover, certain communities of the resting state network appeared 
to be split into smaller modules in the coactivation matrix. By way of example, the cuneus and the lingual and 
pericalcarine gyri were part of the occipital visual module in the resting state, but not in the coactivation network, 
where they formed a separate community (�rst row of Fig. 5). Similarly, the precuneus and medial parts of the 
postcentral girus were identi�ed as an independent community in the coactivation network, while they were part 
of the broad somatosensory network in the resting state connectivity graph54 (second row of Fig. 5). Interestingly, 
the Broca area, indicated as Module 11 in Fig. 5, was separated from the auditory network in the coactivation 
network, and identi�ed as a small, but anatomically and functionally distinct, community. Conversely, other 
communities were split in the resting state but not in the coactivation network. �e executive and attentional con-
trol networks were merged into a large community in the coactivation network, while they were separated under 
resting state conditions, including a subdivision of the le� and right fronto-parietal networks (third row of Fig. 5).

While the resting state and coactivation networks appeared to possess virtually identical modular structures 
under Newman’s analysis, they showed functionally and anatomically relevant di�erences when analyzed by 
Surprise maximization, with a Normalized Mutual Information between the partitions of the two networks of 
0.5922. Indeed, Modularity tends to assign small communities to larger structures even when they correspond 
to tightly knit modules, thus concealing di�erences in the graphs’ modular structures that involve aggregation or 
disaggregation of smaller clusters. It is conceivable that the detrimental e�ects arising from the resolution limit 
may have a�ected previous studies comparing di�erent populations5. Surprise may o�er a sharper tool to detect 
alterations of brain connectivity induced, for example, by psychiatric or neurological conditions, thus enabling 
the exploration of novel markers of brain disease.

Besides the exploration of functional and anatomical segregation, understanding the modular structure of 
brain networks is critical for the interpretation and classi�cation of the roles played by the nodes within the 
network structure55. Highly connected nodes, or hub nodes, are particularly important for their topological 

Figure 4. �e ten largest modules found by Surprise in the resting state network overlaid on an MRI brain 
template. �e module indexes are ordered by decreasing size. �e modules are named a�er corresponding 
functional networks previously identi�ed by multivariate analysis of resting state fMRI data.
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centrality, and function as integrators. Hubs that primarily connect to nodes within the same module are dubbed 
“provincial hubs”, and nodes that connect di�erent modules are referred to as “connector hubs”. �e former are 
thought to be responsible for the formation and stability of the modules, while the latter ensure integration of the 
activity of the di�erent modules. Obviously, interpretation of the hub’s role relies on the correct identi�cation of 
the optimal network partition, and may be strongly a�ected by the resolution limit.

Here, we have performed a hub’s role analysis for the resting state and coactivation networks under Modularity 
and Surprise maximization. To this end, we have adopted Guimera’ and Amaral classi�cation scheme56, whereby 
nodes are classi�ed by their within-community degree z (a measure of how well connected a node is to other 
nodes in the same community) and their participation coe�cient P, a parameter that is 0 for nodes with purely 
intra-module connections and 1 for nodes whose links project primarily to other modules.

Figure 6A,B show the di�erent positioning of high-degree nodes in the Guimera’ and Amaral plot for the 
coactivation and resting state networks partitioned using Newman’s approach and Surprise maximization. In 
this scheme, provincial hubs are high-degree nodes that score high z and low P values (R5 region); conversely, 
connector hubs are characterized by larger P values (regions on the right-hand side of the plot).

A �ner partition in smaller communities may be expected to determine an overall increase in participation 
coe�cient and decrease in within-community degree. However, the heterogeneous partitions obtaind by Surprise 
maximization resulted in non-trivial changes in the Guimera’ and Amaral classi�cation. By way of example, we 
discuss in greater detail two regions whose roles are very di�erent in the two partitions, to highlight the e�ects of 
the resolution limit.

Nodes that belong in the hippocampal formation show a large within-module coe�cient, and appear as 
provincial hubs (region R5 of Fig. 6) under Modularity optimization. However, their participation coe�cient 
increases 6-fold in the partition by Surprise, which reveals a role as connectors for these nodes, with widespread 
projections to many other modules across the brain, including the module 3, 6, 8, 5, 2, corresponding to the 
DMN, the amygdala and parahippocampal formation, the temporal inferior gyrus, the cuneus and lingual gyrus, 
and the visual cortex, respectively. �is �nding is in agreement with the idea that the hippocampus acts as “net-
work convergence zone”, as it receives polysensory input from distributed association areas in the neocortex57.

Interestingly, the right shi� in the Guimera-Amaral plot is less pronounced for the nodes in the posterior part 
of the hippocampus (Fig. 7). A di�erential classi�cation of the anterior and posterior hippocampus is consistent 
with the hypothesis of a functional di�erentiation of this structure58, with the posterior hippocampus mostly 
involved in memory and cognition, and the anterior hippocampus playing a role in the processing of stress, 
emotion and a�ect59. Moreover, studies in animal models have shown di�erential organization of the e�erent 
connections of the hippocampal formation60, consistent with di�erent functions for the anterior and posterior 
hippocampus.

Figure 5. Comparison of selected modules in the partition obtained by Surprise in the resting state and 
coactivation networks. �e indexes are inversely ranked according to the size of the modules in their respective 
networks.
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Similar rightward shi�s for nodes and hubs were observed in the resting state network, and reported in Fig. 6. 
However, increases in participation coe�cients are by no means the only di�erences in the classi�cation of nodes 
obtained by Surprise maximization. A prominent example is the precuneus (PC) (Fig. 6B, blue dots) that shows 
a high participation coe�cient in both partitions by Modularity and Surprise, but a much higher within-module 
degree under Surprise maximization.

Indeed, the nodes comprised in the precuneus intrinsically possess high inter-cluster connectivity, but are dis-
tributed among the four modules found by Modularity. In the partition by Surprise they are grouped together, and 
this precuneal module as a whole plays a connector’s role integrating di�erent communities (Fig. 8), a hypothesis 
that is consistent with the precuneus supporting a wide spectrum of highly integrated tasks, from visuo-spatial 
imagery to episodic memory retrieval and self-processing operations61.

In summary, partition by Surprise maximization results in very di�erent distributions of participation coe�-
cients and within-module degree compared to Modularity. �ese di�erences are not uniform across nodes, and 
arise from the limited ability of Modularity to identify small modules. Finer partition by Surprise reveals very 
di�erent roles for some key brain areas, and suggests that a systematic reanalysis of the topological roles of brain 
nodes and hubs may be in order.

Limitations. A potential limitation of Surprise is related to its de�nition in terms of discrete probability dis-
tributions. �is makes Surprise suited for the study of binarized networks. While the topological backbones of 

Figure 6. Classi�cation of representative nodes according to their intra- and intermodule connections for the 
resting state (A) and coactivation (B) networks. Empty circles and full circles indicate the position of each node 
in the Guimera’ and Amaral’s plot a�er partition by Modularity or Surprise, respectively. An overall increase in 
the participation coe�cient, a measure of the intermodule connectivity, is observed for the Surprise partition 
relative to the Modularity partition. To avoid cluttering of the graph, we only reported those nodes with a degree 
higher than the average within a Standard Deviation, and whose classi�cation is di�erent in the two partitions. 
�e abbreviations of the brain regions corresponding to the nodes are reported in the Supplementary material, 
Table S5.
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the networks we have investigated appear quite robust against removal of lowest-weight edges and binarization, 
as shown by our percolation and stability analyses (Supplementary Information, Figures S1, S2, and S3), an exten-
sion to weighted networks would be desirable. A recent observation26 on the relation between Surprise and the 
relative entropy between two probability distributions suggests that an asymptotical expansion of Surprise may 
overcome this limitation, and enable application of Surprise maximization to weighted networks as well.

�e superior resolution a�orded by Surprise may make it more vulnerable than other methods to noise and 
experimental errors. Indeed, occasional mis-assignments of nodes due to noise-induced changes in edge distri-
bution are likely to a�ect small modules, comprising only a few nodes, more than large ones. Hence, experimental 
uncertainty also limits resolution, and a resolution-limit-free method would not necessarily improve the quality 
of the partition in a scenario dominated by noise.

To ascertain whether this is the case for the co-activation and resting state networks investigated here, we have 
simulated the e�ects of experimental errors by injecting noise into the distributions of weights prior to the binari-
zation procedure, thus introducing variability in the connectivity structure of the resulting binary networks. We set 
levels of noise su�cient to perturb up to 10% of the edges of the �nal binary network. Using this procedure, for each 
level of noise we generated ten di�erent graphs, and applied the Surprise Maximization algorithm to each of them. 
We found that the partitions of these graphs were highly consistent with those of the original networks (Fig. S5  
in the Supplementary Information). We should also stress that there is no constraint in the FAGSO algorithm 
imposing inter-hemispherical symmetry of the partition. Nevertheless, we observed homotopic correspondence 
in the community structure, and a close resemblance with established neurofunctional circuits (Figs 4 and 5). 
Taken together, simulations of the e�ects of noise and qualitative considerations on the neurofunctional signi�-
cance of the modules identi�ed by Surprise corroborate the idea that experimental error is not the predominant 
factor in the networks investigated in this paper.

A �nal and important point we should highlight is that Surprise maximization, in the implementation we 
have used here, does not allow for overlapping communities. Other methods have been applied to investigate this 
aspect in brain networks62,63. However, a recent comparative analysis of graph partitioning algorithms on a vari-
ety of benchmark networks9 has shown that these methods are also prone to merging overlapping communities, 
with relatively modest performance in recovering heterogeneous cluster distributions planted in model networks.

Figure 7. Top panel: classi�cation of all the hippocampal nodes according to the Guimera’ and Amaral’s 
scheme for the coactivation network. Empty circles and full circles indicate the position of each node a�er 
partition by Modularity or Surprise, respectively. Bottom panel: anatomical positions of the nodes in the 
hippocampal formation, colored by Surprise community membership. �e increase in participation coe�cient 
upon partition by Surprise is more pronounced for nodes in the anterior part of hippocampus, with an antero-
posterior gradient.
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Despite these potential limitations, the resolution-limit-free behavior of Surprise makes it an excellent tool 
to explore and to overcome the e�ects of the resolution limit in the modular structure of brain connectivity 
networks.

Conclusions
In conclusion, we have shown that Surprise, a recently proposed �tness function for graph partitioning, behaves 
like a resolution-limit-free function. We have applied Surprise maximization to study the modular structures of 
two di�erent brain networks. Surprise maximization resulted in partitions comprising communities of widely 
distributed sizes, consistent with the idea that small and large modules coexist in brain networks. Moreover, the 
�ner partition a�orded by Surprise made it possible to appreciate di�erences in the modular structures of diverse 
brain networks that were undetected by resolution limited methods like Newman’s Modularity. Finally, the use of 
Surprise revealed the deleterious e�ects of the resolution limit in the classi�cation of nodal roles. Altogether, these 
results indicate that the resolution limit may have substantially a�ected many of the analyses of brain connectivity 
networks reported in the literature, and call for a revisitation of some of the conclusions and models that have 
relied on Modularity maximization or similarly resolution-limited algorithms. Surprise appears as a promising 
alternative method that appeals to the intuition that tightly-knit clusters of nodes represent legitimate structural 
or functional modules independently of their size.
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