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Abstract Sustainable pest management implies less pesticide
use and replacement by safe control alternatives. This requires
decision support for rational pest management. However, in
practice, successful decision making is dependent upon the
availability of integrated, high-quality information.
Computer-aided forecasting and related decision support sys-
tems make pest control more sustainable by avoiding unwant-
ed consequences of pesticide applications. Here, I review in-
tegrated pest management for web-based decision support
systems. The major points are the following: (1) Principles
of integrated pest management are compatible with sustain-
able agriculture. (2) Pest models serve as basis of decision
making because they offer means to predict the exact time of
pest phenological development and initiate management ac-
tions. Most models are climate driven. (3) New hardware
technology has permitted the registration of automatically re-
corded climatic data. This data can be combined with pest
models through logical operations and forecasting algorithms
to develop a software of pest management. (4) Dynamic web
interfaces can serve as decision support systems providing the
user with real-time pest warnings and recommendations for
management actions. (5) Ontology web programing and se-
mantic knowledge representations provide a way to classify
and describe agrodata to facilitate information sharing and

data exploitation over distributed systems. (6) Most available
pest management data is published on static web pages and,
thus, cannot be classified as decision support systems. Some
web-based decision support systems provide user-interactive
content and real-time pest forecasts and management support.
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1 Introduction

The intensification of agricultural production has led to an
increase in the use of energy influxes in order to support cur-
rent needs for food, fiber, and other products (Altieri 1987;
Altieri and Nicholls 2000). Especially, pest management relies
heavily upon the use of synthetic chemical compounds and
related energy influxes. In most cases, the use of nonselective
insecticides, and often without any rules, has caused a variety
of problems, including environmental degradation, insecticide
resistance, negative impacts on natural enemies, and safety for
pesticide applicators and the food supply. Fears about these
issues have increased the interest in the development of alter-
native means for pest control that causes trivial or no impact
on humans, natural enemies, and the environment (Higley
et al. 1986; Dent 1995; Cross and Dickler 1994; Boller et al.
2004). As a result, modern plant protection shifts in reaction to
the societal needs and progressively moves in the way of
integrated pest management (IPM) and integrated fruit pro-
duction (Altieri 1987; Cross and Dickler 1994; Altieri and
Nicholls 2000; Amano 2001; Lefebvre et al. 2015).

IPM is a decision-based procedure, involving the coordi-
nated use of multiple tactics for optimizing the control of
whole categories of pests in an ecologically and economically
sound manner. Lately, in 2009, these major IPM principles
have been outlined by the European Commission and the Eu-
ropean Parliament, giving priority to IPM principles and

ecologically safer methods, minimizing the undesirable side
effects and use of agrochemicals, to enhance the safeguards to
the environment and human health.

Yet, the vast majority of farmers is using empirical derived
pest control options, and in many cases, IPM programs are
mainly based on pest field monitoring and scheduled manage-
ment actions. Moreover, although pesticides should be used
on a need basis, if alternatives are either nonavailable or non-
effective, most IPM programs still rely heavily on them. Re-
cently, the use of biorational compounds, including
bioinsecticides, has increased in IPM (Damos 2013a). Never-
theless, all compounds are effective when applied only on
particular developmental stages of the target pest.

One additional issue for IPM is the development of reliable
decision tools are used which to define accurate application
times for pesticides as well as to provide information to select
among available control options (Damos and Savopoulou-
Soultani 2012). Actually, regardless of the available amount
of the novel chemical compounds, their choices in IMP are
evaluated based onmore than one criteria in which application
time is indispensable for their success. Therefore, the design
and implementation of web-based decision support systems,
to enhance IPM programs, makes possible the application of
information intensive decision making (Jonew et al. 2010).

For instance, manymillions of EU Integrated Fruit Produc-
tion Orchards that would have received accurate pesticide ap-
plication are not treated in precise times due to the lack of
formal pest information forecast and related decision support
systems. Additionally, several guidelines have been set to be
adopted by public or private cooperatives, certification sys-
tems, and authorities. However, to be applied on a regular
basis enables the accesses and exploitation of agronomical
information and data that can be mediated only through the
implementation of robust decision support systems (DSS).
Once established, such systems can be further used to model
agroecosystems and to provide decision at the farm level. This
may contribute to optimization of regional specific crop pro-
ductivity and ensure the rational utilization of innate resources
and rural sustainability.

Data exploitable in integrated crop production (ICP) and
IPM, which are often referred as sustainable crop production
and pest management, respectively, may contain different
types of agrodata. Particularly, they can include (1) weather
records such as temperature, relative humidity, and weather
output; (2) biological data, pest population data and disease
symptoms; (3) biophysical data such as plant-growing pheno-
logical stages; (4) geophysical data like season climate, soils,
terrain, and other characteristics; and (5) socioeconomic infor-
mation which often include farmer survey results and census
information, chemical registrations, residual levels of pesti-
cides, commodity prices, and so on (Waheed et al. 2003; Ab-
dullah and Hussain 2006). Yet such kind of information is
either not registered for particular areas of interest or
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decentralized and is locally stored in different institutes, gov-
ernments, and corporation. Furthermore, data are saved under
several formats, which do not permit interpretation, exploita-
tion, and availability (Damos and Karabatakis 2013).

Accessibility on information and survey data can be further
combined with information technology to develop simple
rule-based arrangements on specific agricultural research
areas such as plant protection, harvest yield, resource and
energy inputs management, and rural economic development
(Carlson and Headley 1987). Concerning IPM particularly,
information may include pest modeling results to be expanded
toward a “decision system” or “decision management tool,”
which employs a mixture of population and process models,
where appropriate/possible, to improve management action
(Damos and Karabatakis 2013).

Recently, the fast emergence of the world wide web (www)
has radically modified the room we share knowledge by re-
moving the barrier to publishing, accessing, and exploiting
data. The properties of the www combined with simple han-
dling of software may be applied to infer potential relevance to
users’ search queries through web applications. To date, this
functionality has been enabled by the generic, open, and ex-
tensible nature of the Internet, the www, and the rapid expan-
sion of smart phones (Jacobs and Walsh 2004; d’Aquin et al.
2008).

However, only in the last years, the same principles that
enabled the web of documents to flourish have been also ap-
plied to publish and manage agrodata. Additionally, using the
same framework, such data can be immediately translated to
agricultural practice through real-time smart web applications
(Damos and Karabatakis 2013). For instance, web-based pest
forecasting models and DSS are becoming popular, and it is
expected that the demand for such applications will increase
more in the future. Actually, decision support system may
become an absolute requirement for local, regional/area-wide,
as well as of international implementation of IPM systems
(Waheed et al. 2003). Figure 1 shows a simple ruled decision
finding process, which is based on temperature-driven phenol-
ogy models and is used as decision tool for precise timing of
pest management actions. Based on such processes, highly
developed countries have posted interactive web sites, which
include real-time weather and market information and geo-
graphical information-based systems (GIS) to provide farmers
real-time decision support in crop management (Bajwa et al.
2003; Prasad and Prabhabar 2012; and references). Neverthe-
less, web-based DSS structures, in general, use large amounts
of data, which may accrue from multidisciplinary sources.
These data are actually placed in a distributed cloud computer
environment and deliver the possibility to integrate to support
decision making.

In this context, the current work emphasizes on integrated
pest management and how it can be incorporated in the mod-
ular structure of web-based decision support systems. In

particular, this article goes over the application of real-time
pest forecasting systems through a literature review as basis,
researching some related and most representative cases.More-
over, since huge field datasets and pest models serve as basis
for decision making in IPM, one of the intentions is to identify
critical issues in pest model development and in their inclu-
sion into plant protection decision support systems. Especial-
ly, among the objectives were to interpret the role of IPM as an
element of sustainable agriculture and to outline the impor-
tance of pest models for plant protection and their utility for
target specificity to minimize side effects. Additionally, efforts
are made to give ways of transforming pest models into a
warning system, using simple logical operations and conven-
tions, and to identify the architecture of such systems as well
as the utility of knowledge-based organizations. At the last
sections, representative examples of web-based decision sup-
port systems are reviewed, while some challenges and con-
strains related to the development and deliverance of informa-
tion systems are also outlined. Finally, a brief account on the
vision of the future of decision support system is made and
how it may be affected by the farmer’s perspective and tech-
nological advances.

2 The significance of integrated pest management

for sustainable agriculture

Integrated pest management plays an essential role in sustain-
able agriculture, and in the next section, I provide a brief
account on the significance of IPM through a sustainable ag-
riculture perspective. Agricultural ecosystems, or
agroecosystems, are basic units of spatial and functional agri-
cultural activity, which include biotic and abiotic components
involved and their interactions (Altieri 1987; Dent 1995;

Fig. 1 Simple ruled decision finding process based on phenologymodels
and the importance of precise timing during plant protection. Providing
weather data outcome information pest emergence and infection rates,
based on pest and disease simulation models. In principle, the systems
deal with tables of raw information, often numerical, collated into sums or
averages, while the forecasting model uses these data to provide future
estimates of the variables of interest (e.g., population dynamics, disease
epidemiology)
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Altieri and Nicholls 2000; Zhang et al. 2008). Sustainability
rests on the principle that agricultural systems need tomeet the
present demands without comprising the ability of future gen-
erations to meet their own needs (Lichtfouse et al. 2009).
Traditionally, the productivity of agroecosystems relies heavi-
ly on the use of energy influxes, while the sustainability de-
pends on how agroecosystems are managed at the site scale as
easily as to the diversity, composition, and functioning of the
surrounding landscape and related energy influxes (Tilman
1999; Tilman et al. 2001). To date, the radical intensification
in crop production can be summarized as the result of the
following actions (Dent 1995; after modification):

& Progressive expansion of subject land
& The use of monoculture as a result of the development of

genetic uniform crops
& Growth of high-yielding varieties of cereal grains and dis-

tribution of hybridized seeds
& The increase in plant density
& The increase in all kinds of energy influxes such as syn-

thetic fertilizers and pesticides, expansion of irrigation in-
frastructure, and availability of water planning

& Specialization and mechanization
& Globalization and growth of international exchange in all

aspects, for instance, plant material, products, capital
& Improvement of agricultural science

Entirely the same, by depositing with a holistic view, the
process of intensification in crop production and the afore-
mentioned actions have also affected pest-plant communities
and their management. Hence, current crop production sys-
tems and plant protection guidelines in particular have
evolved from the contribution of whole sections of farming
and biological sciences (Dent 1995). Even so, most plant pro-
tection strategies are linked up to the traditional use of con-
ventional and nonselective insecticides. However, the use of
pesticides without restrictions is associated with a variety of
problems, including environmental degradation, insecticide
resistance, negative impacts on natural enemies, and safety
for pesticide applicators and the food supply (Cross and
Dickler 1994; Altieri and Nicholls 2000; Boller et al. 2004).
Concerns about these events have increased the interest in the
development of alternative means of pest control that cause
little or no impact on humans, beneficial organisms, and sen-
sitive ecosystems (Damos and Savopoulou-Soultani 2011).

Among the available alternative pest control strategies, IPM
has by far received the most attention as a comprehensive pest
management approach (Lewis et al. 1997). Historically, IPM
was introduced using the term integrated control by Barlet
(1956) and was further used by Stern et al. (1959), as a concept
which in principle is integrating the role of biological and other
control measures in complementary ways. Stern et al. (1959))
broadened the conceptual framework of IPM to embrace the

coordinated employment of all available biological, cultural,
and artificial practices (Van den Bosh and Stern 1969). In this
context, various authors have advocated the principle of
incorporating all available control methods and measures to
manage pests that are being chosen by environmental,
economic, and societal standards. Bajwa and Kogan (2002)
define IPM as a suitable agricultural approach and as a crop
protection/pest management system with implication for both
methodological and disciplinary integration in the socioeco-
nomic context of farming systems. Conceptually, themajor goal
of IPM is not to eradicate all pest populations but rather to
accept a tolerable pest density above the economic injury level.
The economic injury level is an essential concept for IPMwhich
integrates biology and economics and uses pesticides, or other
management actions, only when economic loss in anticipated.

Subsequently, the term IPM incorporates the full array of
pest management practices, which are adopted following cer-
tain criteria, included into a total systems approach that ideally
should involve all crop production objectives. To date, some
basic elements, which are considered for IPM, involve (Flint
and van den Bosch 1981; Lewis et al. 1997; Duggal and
Siddiqi 2008):

1. The use of practical decision tools such as monitoring,
forecasting models, and economic injury levels. If avail-
able, such tools are traditionally used manually to solve
pest problems based on determined need.

2. IPM calls for a multidisciplinary approach. This means
that all classes of pests and their relationships, as well as
their interaction with other species (e.g,. natural enemies),
host, and environments, are jointly considered seeking an
optimal and sustainable management policy. Additionally,
multidisciplinary management actions are progressively
integrated.

3. IPM recognizes the need to address not only ecological
but also economic and social concerns.

4. IPM takes into account the human factor as part of the
agroecosystem and not detached.

Figures 2 and 3 depict representative integrated peach pro-
duction orchards in Northern Greece. About 104,000 ha of
fruit crops are cultivated and stone fruits represent 76 % of
fruit production. In 2007, peach crop production was valued at
US $271 million, making Greece the fifth ranked country in
world peach production. Moreover, during the last years, the
implementation of integrated fruit production and IPM has not
only enhanced the sustainability of fruit production, but also
reduced pest management cost and facilitated the acceptance
of certified fruits in the markets.

Figure 4 is an example of a biointensive IPM strategy to
manage key pest threats. It conceptualizes in particular the
creation of integrated pest management and illustrates some
of the positive interactions with other pest management
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activities. The contribution of each activity is represented as a
ratio of the triangle. IPM promotes a more diversified ap-
proach, which will limit overreliance on any specific technol-
ogy and promotes greater reliance on exploiting living, self-
renewing processes in pest control, such as the action of nat-
ural enemies of pests. Agronomic measures include several
techniques and offer a balanced environment for biological
mediated soil fertility and sustainable events. Additionally,
the use of semiochemical and pheromones in particular
evokes the natural pest regulation and further down-energy
input. An essential step for the development and implementa-
tion of basic IPM program is to have knowledge on detailed
and comprehensive data on the life cycles of key pests and
how they interactedwith their environment. This is a challeng-
ing task considering that detailed data upon the key pest and
how it interacts with its environment is not always available
(Ehler 2006). This knowledge is further combined with the
utilization of these control methods that are selected among

several available economic and social factors to have the least
possible hazard to people and environmental-friendly means.

However, critical skills in picking out the best management
action are early pest information prediction in relation to ex-
pert knowledge of the behavior of the pest or pathogen in the
specific geographical region of interest. The ability to predict
population dynamics and disease development such as popu-
lation emergence, succession of stages, generations, and early
diagnosis is also critical. In this context, having effective
models, which can assume the evolution of a disease during
the season, is an important matter. These challenges are ad-
dressed by decision support systems, which among their aims
are to transfer research results immediately to the production
floor.

Yet, when it comes to translating IPM in a practice, it is
mainly based on pest field monitoring and relative threshold
establishment, in which most pesticides are used on a need
basis if alternatives are either nonavailable or nonefficient
(Flint and van den Bosch 1981; Nutter 2007; Damos et al.
2012). Unfortunately, a good deal of less stress is given to
understanding and promoting inherent strengths within sys-
tems to limit pest populations through the use of extension
and warning systems, and thus, most of this data cannot be
directly exploited due to the lack of real-time pest forecasting
systems. On the other hand, a rigid application of chemical
insecticides on a schedule basis may not always be either
necessary or effective, especially if the pest population is
low at the time of application. Moreover, in 2009, the EU
legislation upon sustainable usage of pesticides has been
changed radically, and consequently, the adoption of alterna-
tive control methods and the development of decision support
systems compatible with IPM are urgent demands. Addition-
ally, the increased legislative pressure on the member states
affects plant protection. However, it remains unclear how IPM
approaches and crop-specific management actions will be fi-
nally adopted, despite that IPM along with organic farming is
the only alternative for sustainable agriculture and less pesti-
cide use in the EU (Lefebvre et al. 2015).

Considering the increasing interest of biorational insecti-
cides where precise timing of treatments is extremely impor-
tant, weather-driven pest and disease forecasting algorithms
could be a useful tool for improving their efficacy in IPM and
assure fruit-related residual levels at safe intervals. Moreover,
the knowledge and technology gaps may affect actual imple-
mentation of IPM at the field level. Professionals in the agri-
cultural field, such as growers, extension agents, and re-
searchers, need a facility to predict region-specific pest popu-
lation emergence and provide decision support for manage-
ment actions.

Therefore, numerousmodeling researches are being carried
out, new results are discovered at the research institutions, and
they continue to accumulate in the form of reports and run
extensions. Yet, most of these findings and recommendations

Fig. 3 Typical integrated peach production orchard during the fruit
maturity stage in Northern Greece, Prefecture of Imathia—central
Macedonia and (photo: P. Damos)

Fig. 2 Typical integrated peach production orchard during the full bloom
stage suited in Northern Greece, Prefecture of Kozani—western
Macedonia (photo: P. Damos)
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do not reach the farmers at implementation level. That is be-
cause there is lack of proper channel between researchers and
farmers. The lack of proper decision support system to dis-
seminate timely, relevant farming advice has been observed as
a major roadblock for adopting precision agriculture
(McBratney et al. 2005). Nevertheless, within the fast prolif-
eration of the www usability, there is much effort bringing on
pest- and disease-related information for IPM.

Concluding, IPM decision support systems are an essential
component of sustainable agriculture since it provides an eco-
nomical and environmental sound pest management frame-
work, giving priority to ecologically safer methods, minimiz-
ing the undesirable side effects and the use of agrochemicals,
to enhance the safeguards to the environment and human
health.

3 What is the role of plant pest and disease models

for decision support?

Insects of economic significance and plant pathogenic fungi
represent the most important pest threats for crop production.
Both are poikilothermic and heterothermic organisms whose
development and growth varies considerably in relation to
ambient environmental temperature. Insect growth, for in-
stance, is strictly related to environmental temperature, and
these properties can be used for building models that simulate

insect development and succession of stages. The role of pest
population modeling for IPM is to aid in determining the
optimal control strategy for a given situation (Plant and Man-
gel 1987), and since pest population models are in the core of
almost each decision support system for pest management, we
will shortly outline their utility and conceptual framework.

The usefulness of pest and disease models in practical ac-
tivities such as performing forecasts and identifying warning
situations, as well as higher level activities such as gathering
biological data, is usually recognized; consider for instance
the earlier works of Coulson and Saunders (1987), Logan
et al. (1976), Logan and Weber (1989), and Visser et al.
(1994). Models have been also established for the description
of several pest population processes, including population
growth, pest immigration and range expansion, pest emer-
gence and seasonality as well as pest population per se (Cheke
and Tratalos 2007). However, only few of these model ap-
proaches have been transmuted into practical forecasting tools
and related decision support systems. Moreover, because am-
bient temperature regulates direct development, growth, and
reproduction, pest phenology forecasting is established by
simplified weather-driven models. However, there are also
other factors that may affect population dynamics and insect
voltinism, such as photoperiod, humidity, and nutrition as well
as crowding, or density and competition (Brown 1984;
Rousse et al. 2009). For plant disease epidemics, biotic factors
such as wet conditions, relative humidity, wind speed, and

Fig. 4 Conceptualized foundation of integrated pest management. The
triangle represents a biointensive IPM system in which the contribution
of each control tactic (cultural, biotechnical, biological, and chemical) is
presented with different colors and as a ratio of the expanse of the triangle
sector. Note that chemical measures are placed on the top of the triangle

and used only under specific criteria (i.e., DD degree-days, ET economic
threshold). Critical skills in selecting the best management action are the
use of decision tools which provide early pest information prediction
(Damos 2013b; after modification)
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host suitability are also influential (Teng 1985; Garret et al.
2011).

Nevertheless, here, I focus mostly in insect pests, and in
that respect, there are several pest population models that have
been developed (Damos and Savopoulou-Soultani 2012).
However, most models are based upon the same assumption,
which premises that although that development accelerates or
slows, according to prevailing temperatures, the final time
units to discharge a particular developmental event should
be perpetual. Ordinarily, favorable conditions for species’ de-
velopment, insect or fungi, are estimated prior under labora-
tory conditions, and these estimates are further utilized to sim-
ulate epidemiology under field conditions. Therefore, the use
of growth chamber studies, carried out under controlled con-
ditions, is a prerequisite since they provide a satisfying base
for understanding the effects of environmental factors on spe-
cies ontogeny and vital to estimate the species temperature
thresholds (Logan et al. 1976; Beck 1983; Damos and
Savopoulou-Soultani 2008, Ferguson et al. 2015).

Figure 5a shows the typical temperature effects on devel-
opmental time and Fig. 5b the two developmental rate models,
which can be linear or nonlinear. Such kinds of inverse regres-
sion, displayed in the above paradigm, are used most often to
define the vital for species development temperature thresh-
olds. The values of the lower, the optimum, and higher tem-
perature thresholds are a prerequisite for accurate modeling
and projection of pest dynamics. Yet it is noteworthy to say
that the most time-consuming step in the evolution of a model
is the aggregation of biological knowledge of species of
interest and relevant weather input parameters. In that
respect, it is noteworthy to cite Nietschke et al. (2009) who
created an insect development database, which includes de-
velopmental requirements for over 500 species to assist scien-
tists and field practitioners in the deployment of phenology
models.

The next step requires the application of population models
and species temperature thresholds to simulate actual pest
population dynamics under field conditions. There are various
methods and models (i.e., see Sharpe et al. 1977; Pruess 1983;
Wagner et al. 1984a; Kontodimas et al. 2004; Van der Have
2008; Damos and Savopoulou-Soultani 2012), but for the rea-
son of brevity, we will mention only the two most common
approaches applied in entomology: the physiological time
concept and empirical regressions between accumulated
degree-days and cumulative population emergence.

Physiological time is using developmental rate models,
which assume that rates are proportional to temperature, and
as amounts are integrals of rates, the amount of development
is the inbuilt of the temperature. The rate of development is
simulated as linear or nonlinear function of temperature along
a time axis and has units of temperature and time, which are
known as degree-days (Pajunen 1983). Significant models for
modeling the effects of variable temperatures on the

development of individual insects, within a given population,
may also deal with mean rate versus temperature relationships
(Wagner et al. 1984a) and distribution of development times
(Wagner et al. 1984b, 1985).

Empirical approaches, on the other hand, treat mean devel-
opmental times as dependent variables, which are regressed
over accumulated degree-days that serve as the independent
variable. Such models are usually based on nonlinear regres-
sion relationships. In their simplest form, for example, adult
emergence is regressed over accumulated degree-days above a
threshold. Hither, the moth capture data consist of the random
variable and temperature represents a deterministic quantity.
The Richards’ function, or the generalized logistic curve, is s-
shapedmathematical functions, which can be turned around to

Fig. 5 Typical responses and temperature effects on pests’
developmental time (i.e., arthropod pest) under laboratory conditions
and related linear and nonlinear developmental rate models.
Extrapolations of these models provide estimates of the lower and
upper developmental thresholds
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be consistent with the most conceivable variations of their
basic form. The shape of the curve described in Fig. 6, for
example, is a mutation on the original published curve of
Damos and Savopoulou-Soultani (2010) and can draw most
datasets with high accuracy. Empirical models are most useful
in predicting adult moth emergence and population peak and
are widespread due to simplicity for construction and evalua-
tion, while validation of models is using a variety of laborato-
ry and field experiments.

Fungal diseases, on the other hand, develop not simply in
close correlation to temperature but take also into account
more meteorological parameters, particularly relative humidi-
ty and moist condition (Perini and Susi 2004). The downy
mildew (Plasmopara viticola) for instance needs specific tem-
peratures and leaf wetness conditions for sporulation. Subse-
quently, the epidemic dynamics over time can be described
using growth models or disease progress curves (Agrios
2005). By applying similar mathematical tools, as in the in-
stance of insect phenology models, disease models are trained
to get data about the theoretical appearance and the quantity of
inoculum changes during the growth season. To date, the most
common monocyclic and polycyclic growth descriptions
growth include: monomolecular, exponential, logistic, and
Gompertz models (Nutter and Parker 1997; Xu 2006). In tem-
perate climates, environmental conditions are registered at
distinct time windows during the growth season and used to
run the models. By this manner, it becomes possible to predict
with quite a high precision the proper time when infections
may do appear (Fig. 6).More complex simulationmodels may
additional include the life cycle of the host crop, the feast of

the pest agents to distance crops as well as the influence of
several other biotic and abiotic factors (Andrade-Piedra et al.
2005; Kaundal et al. 2006; Cairns et al. 2008; Khaliq et al.
2014). Thus, pest forecasting is a fundamental step in creating
proper IPM programs (Van Maanen and Xu 2003).

Functionally, because temperature exerts the greatest influ-
ence among the climate variables, by directly affecting insect
phenology, most pest models are temperature driven. On the
other hand, plant disease models take into account more var-
iables such as wet conditions and relative humidity. Fungal
growth is strongly affected by environmental conditions, and
therefore in most cases, there is a time lag between infection
and appearance of visible symptoms (Magarey et al. 1991,
2007). For example, fungi spores germinate and cause infec-
tion only when they are kept at a certain period at favorable
temperatures and at same time must be continuously wet for
certain hours. Hence, plant disease forecasting models provide
output risk levels, which are helping the growers to assess the
risk of disease epidemics and to avoid unnecessary treatments
with fungicides (Pavan et al. 2010).

Concluding, accurate forecasting of pests is facilitated with
the use of climatic-driven models. These models offer a math-
ematical framework that helps to predict the development of
pest’s stages, or latent phases of diseases to define optimal
time windows to apply pesticides. Nevertheless, the next step
for a wider applicability and application of models under a
routine field condition basis is to use pest population models
across locations and real environments in an automatic man-
ner (Coulson and Saunders 1987). To address this challenge, it
is necessary to develop computer software programs, as de-
scribed below, to run the models and facilitate the practical
application by understanding population dynamics and dis-
semination of pest forecasts for timely pest management
decisions.

4 Data processing and forecasting algorithms:modus

operandi of computer-aided decision support

To exploit large datasets to be used as inputs for a certain
population model implies the development of algorithms,
which serve as a basis to develop computer programs to sim-
ulate pest phenology. This section describes in the conceptual
framework that can be generally followed for the development
of forecasting algorithms. The approach should be considered
as typical, although the given examples are those followed by
Damos and Karabatakis (2013). Actually, there are very few
published works that provide a robust framework and open-
source programs or algorithms that can be used ad hoc in
decision support systems (Higley et al. 1986; Bery 1995;
Don Wauchope et al. 2003).

Algorithms are computer programs that handle the data and
transform them into relevant and understandable information

Fig. 6 The shape of representative temperature-driven phenology
models which are regularly used to predict pest phenology (insect
emergence or disease growth). In the case of arthropods, pest
phenology models help to predict the timing of events in an organism’s
development using degree-days. Degree-days permit to predict
significant biological events such as the appearance of insect pests that
may occur during the growth season
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(Croft et al. 1980; Coulson and Saunders 1987). Database
management system software (DMSS) is traditionally used
for such purposes. The core of the software is a “prediction
algorithm,” which is a sequence of logical operations under
certain predefined rules. The algorithm then picks out the
suitable data entry among available information and stores
them in a local host. In a second step, the algorithm uses these
data as input for the pest model to simulate population projec-
tions and service warnings.

Thus, prediction algorithms refer to simple software that
allows a candidate phenology model to pick up those factors
most closely related to prediction and perform related forecast.
From a programmer’s standpoint, this implies the develop-
ment of a set of rules that precisely define a sequence of
operations in a specific order (Khaliq et al. 2014). The tech-
nological aspect of developing an algorithm involves usually
splitting the task into subtasks. These subtasks are at best

modular and perform subroutines having clearly defined
boundaries (Youen et al. 1996; Damos and Karabatakis
2013; Karabatakis and Damos 2013).

Figures 7 and 8 present the principal logical operations and
subroutines that are involved to perform a forecast for an
insect pest and plant disease, respectively. Figure 7 shows
the basic logical operations (flow diagram) of an insect phe-
nology model. The process model starts from overwintering
larval diapause termination and moth emergence until the
emergence of the first summer generation larvae and considers
the different insect stages of the first generation. Heat summa-
tions, SUM {DD}, are expressed as accumulated degree-days
according to a predefined heat summation function, F(x)=Y.
This function corresponds to a developmental rate model,
physiological or empirical, and is used to generate stage-
specific forecasts. Figure 8 depicts the basic logical operations
of an Oomycota fungal disease phenology model (Magarey

Fig. 7 Basic logical operations
(flow diagram) of the phenology
model simulating progress of an
insect pest population (i.e., Class:
Insecta). LTT lower
developmental threshold, HTT
higher developmental threshold,
SUM {DD}: accumulated
degree-days according to a
predefined heat summation
function, F(x)=Y: developmental
rate model; a, b, and c: threshold
values that predefine the
emergence of the first generation
of adults, larvae, and eggs,
respectively
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et al. 1991; after modification). The process model starts from
oospores until the appearance of symptoms. Note that the
process considers the distinctive stages of the primary infec-
tion cycle. Overwintering oospores progressively break dia-
pause and germinate under favorable weather conditions (tem-
perature and humidity), while the formed sporangia release
zoospores. If the conditions remain favorable, the zoospores
form germ tubes and infecting hyphae colonize the host tissue
and cause observable symptoms.

Typically, when the algorithm is associated with data
processing information, the values are interpreted from an
input source, written to an output device, and/or stored for
further processing. Next, subroutines are performed which
include the setup of “weather rules” as for example the
definition of temperature thresholds which serve as bound-
er to draw and store data. In a second step, the detailed
specific instructions are used to transform these weather
data into an exploitable model format. Most insect pest

models transform the mean temperatures to accumulated
degree-days and then use them to feed an empirical popu-
lation model. Finally, specified tasks are carried out such as
population projections and initiation of warnings. For the
needs of computer programming, the two forecasting algo-
rithms were created as functions, which served as small
programs, referenced by the larger final program of the
decision support system. Among the weather variables,
which affect mostly population phenology and disease ep-
idemiology, are temperature, relative humidity, rainfall,
and wet conditions. Based on the regional climate data, a
prediction algorithm can forecast the pest’s population oc-
curring during the growth season.

Concluding, improvements in hardware technology
have permitted the registration of automatically recorded
data and other pieces of data, which can be employed in
pest modeling. Improving simulation models that integrate
the dynamic effects of climate variables on pest population
can be automated through the development of algorithms
that serve as small computer programs. Usually, the algo-
rithm is represented with a form of diagrams, referred to as
flowchart, and then each logical operation is put up using
one kind of programming language. Furthermore, the algo-
rithm is providing a visual representation of theoretical
constructs, including interactions of the variables of inter-
est and actually consist of a conceptual model (Asher
1984). In its crude form, it is represented as a flowchart
diagram which treats the pest population as the dependent
variable and the weather variables as independent. The
arrows represent the hypothesized relationships between
variables leading from each determining variable to each
variable conditional on it. Critical values of parameters that
affect pest populations are established as rulers. If suitable
conditions for pest emergence or disease development oc-
cur, then the algorithm provides outputs, which can guide
decision making in IPM. To date, in contrast to manual
modeling, the use of algorithms is a more advanced, more
accurate, and realistic way of pest forecasting. In addition,
once the routines have been established, the model works
on its own and can be extended according to the needs by
including more datasets and rules. Hence, although simple
predictive models for pests and diseases have been pro-
duced during the last century, the development and wider
availability of personal computers resulted in the speedy
growth of computer-based examples to predict responses
of pest populations in relation to climate.

5 Interface of web-based decision support systems

Successfully supporting IPM decision making is critically de-
pendent upon the availability of integrated, high-quality infor-
mation, organized and delivered in a timely and well-read

Fig. 8 Basic logical operations (flow diagram) of phenology model
simulating development of fungal disease (i.e., Class: Oomycota) and
related infection risk warnings
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manner (Bajwa and Kogan 2000; Duggal and Siddiqi 2008;
Philomine et al. 2012). In the next paragraphs, I will describe
some instances on how forecasting algorithms can be merged
with information science toward the development of simple
forecasting systems.

The first step requires the use of DMSS, which incorpo-
rates the prediction algorithms and may be enlarged to a DSS.
This may include more variables and/or new improved popu-
lation models, which preferably perform operation through
the www and permit the improvement of existing algorithms
in future software updates. Moreover, DMSS may be utilized
to create tables of data, to construct user interface, to design
queries, and to print out the required summary reports
(Batchelor et al. 1989; Jones 1989; Zhang et al. 2008;
Kleinhenz and Rossberg 2008; Plénet et al. 2009).

Recently, semantic network interfaces such as Drupal
(https://www.drupal.org/) permit logical dynamic web
programming. The most common web programming
language is python, PHP 5.2, or higher and may serve as
online interface to configure the decision support system of
interest. This enables the use of climatic data processing and
prediction algorithms to transfer data to a central server in a
real-timemanner andmatching the frequency of updates to the
initial pest forecasting system design requirements (Strand
2000). At a second stage of the data processing, a forecasting
algorithm application handless the data and aggregates the raw
data into relevant and understandable information. In addition,
grounded on the end product, which is awaited from the deci-
sion system, input data are marked by specific attributes. The-
se attributes may include for instance hourly and/or daily data
registration and may be manipulated and programmed, under
diverse manners to meet specific objectives. In most cases, the
aim is to perform pest population simulations and projections
to provide the user with real-time warning and/or
recommendation-specific management actions.

In Damos and Karabatakis (2013), for instance, a web-
based decision support system has been developed for climat-
ic factors including region-specific average temperature, to
predict pest population phenology during the growth season.
The DSS particularly offers forecasts and related management
actions with peach and apple orchards, including warnings for
Anarsia lineatella Zeller damaging peach, the leaf roller
Adoxopyes orana Röslerstamm, and the oriental fruit moth
Grapholita molesta Busk. At a first step, the stored tempera-
ture data are evaluated on a daily basis whether they are in
between the species-specific temperature thresholds, and if so,
they are transformed to degree-days. This transformation is
performed according to a predefined nonlinear or logistic re-
gression function (Damos and Savopoulou-Soultani 2010,
2011). In a second step, the degree-day data are summated
and used as input for the phenology model that is used to
provide warnings of whether the species is higher than a
predefined population level. The pilot project is the IPM-

DSS RANTISMA.gr that is able to perform population pro-
jection either numerical and/or discretional by plotting the
cumulative emergence of the species for the particular region
of interest (Fig. 9). The software and the related web applica-
tion were launched on January 2012 (Damos and Karabatakis
2013). Functionality of the software can potentially extend
and mine weather data at any location through the www and
further store them for any use (i.e., crop, pest, and disease
modeling and forecasting). Currently, the above DSS passes
the evaluation phase and runs only for representative arthro-
pod pests, since the development of disease models may be
considered more complicated because they use climatic
models which take into account both temperature and wet-
ness. The wetness, or the wetting period, refers to the time
that a plant organ is exposed to liquid water constituting an
important factor in the disease development.

Despite efforts that have been made previously to provide
local forecasts, based on weather data, in most cases, the legal
transfer of automatic forecast system having wider applicabil-
ity stubs on the high costs of procurement, complexity, and
maintenance and/or on noncontinuous “feed” of the system
with weather information. However, grounded along the
above framework, IPM can be significantly amended by the
utilization of modern emergent information web technologies.
Such simple handling web-based DSS can be exploited by
extension agents, advisors, growers, and other clientele, pro-
viding forecast along with efficient decision support for man-
aging agricultural commodities. Actually, real-time forecast-
ing and decision-making systems provide rationale mean to
assist crop growers at the farm level in finding out whether
pesticides or other measures should be utilized.

6 Ontology web programming: the next generation

of web-based decision support?

Ontology is an explicit specification of conceptualization for
describing a particular knowledge domain using logical rela-
tions. In computer science, ontology web programing is a
formal way to classify and describe data taxonomies to facil-
itate knowledge information sharing over distributed systems
(Athanasiadis et al. 2009; Taye 2010 and references). Here, I
intend to provide a brief account on emergent web technology
for interlinking and classifying agrodata to be exploited by
DSS and in the IPM domain.

Ontology plays a major part in solving the problem of
interoperability between applications across different organi-
zations as for instance the exploitation of a huge quantity of
agroecological data, which are typically unclassified and
stored individually and/or fragmented on local server files.
Thus, the use of ontology web programing provides a shared
understanding and access on data for future manipulation and
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meta-analysis (Van Evert and Campbell 1994; Bajwa and
Kogan 2000).

Professionals in the agricultural field, such as growers, ex-
tension agents, and researchers, need a facility to organize and
locate pest-related information. For example, photographic
images, pesticide categories, and registrations are related to
their oeuvre, especially as the bulk of information continues
to increase. Nevertheless, current keyword-based information
retrieval in DSS and related information systems suffers from
relatively low precision and recall. Currently, the information,
which is received from web applications, is without any sen-
sible mean of representation in contrast to semantic, or ontol-
ogy-based, web applications which provide annotated data
that can be understood by machines. Thus, novel approaches
to information retrieval using ontologies in the agricultural
field may address the limitation of supporting users to find
proper information in keyword-based retrieval, by browsing
information associated with formal descriptions of the signi-
fications of words. This is referred as semantics and the rela-
tionships between different objects are made using ontology
web language (OWL) (Haverkort and Top 2010; Caracciolo
et al. 2012).

Currently, detailed usage of ontology web language is used
by applications that need to process conceptually the content
of information instead of just presenting information. The lan-
guage facilitates greater machine interpretability through web
browsers and supports the use of different data sources and
web programing schema, such as extensive markup language

(XML) and the resource description framework (RDF). The
resource description framework is a general method for con-
ceptual description of information and is based on class dia-
grams in the form of subject-predicate and object expressions.
In addition, it permits converting relational databases (RDBs)
to RDF data.

To date, other software systems offer access to the content
of relational databases and interlinking data through link dis-
covery frameworks for the web data. Such systems are the
program SILK and the RDF query language SPARQL
SERVICE.

The above technological tools combined with other ser-
vices can be used to offer a unified taxonomy that relates
different entities and attributes, in conditions of the ontology
as set by the World Wide Web Consortium (W3C) (Damos
et al. 2012; Damos 2013b).

Actually, the resource description framework introduces
the notion of a class. Formally, the class is a type of thing.
For instance, Farmer_1 and Farmer_2 are members of the
class Cooperatives. Thus, we define Farmers as a member
of the class type cooperatives. We can further proceed to
define subclasses, attributes, instances, and so on. For in-
stance, the classes insecticide, fungicide, and herbicide are
subclasses of the class Pesticides. The next step is to con-
struct ontologies for some cardinal datasets to facilitate
information retrieval. This is feasible after prior examina-
tion of data types and major data properties and to classify
those of similar topics.

Fig. 9 Web interface of the pilot web-based real-time integrated pest management decision support systems RANTISMA and related forecasts of pest
emergence (first and second generations—cumulative) in Northern Greece. Samples in the map indicate locations where forecast is running
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Stanford University has developed a free open-source soft-
ware ontology editor under the name Protégé. The editor of-
fers a knowledge-based framework to relate semantic entities
and for building intelligent systems on an easy handling envi-
ronment (http://protege.stanford.edu/). Hence, ontology is
composed of five basic modeling primitives, containing
concepts, relationships, instances, axioms, and functions,
while agricultural ontology is specified as a set of formal,
explicit specification of a shared conceptualization in
agricultural science (McRoberts et al. 2011; Cowell and
Smith 2010; Caracciolo et al. 2012). Therefore, it is
convenient to categorize first agronomy data according to
their attributes and fix categories of information. In
principle, each agricultural (pest and disease related) data
source can be sent to and/or retrieved on the network due to
a singular universal resource identifier (URI) (Damos 2013b).
The construction of a related pest ontology can be applied to
place and link digital objects which may be further utilized for
decision support. Information may include for instance pesti-
cides and chemical ingredients authorized for application,
prices of pesticides in relation to company, chemical ingredi-
ent and biodegradability, application mode and pest targeting
stage, pesticide per harvest period, information concerning life
cycle and type of damage, pest morphological characteristics
and disease symptoms, etc. (Coulson et al. 1989; Haverkort
and Top 2010; Damos 2013b). At a second stage, graph-based
ranking algorithms can be successfully employed in data sum-
marization, while several query expansion methods
(Chakrabarti et al. 1999) can resolve information limit on the
query based on the prior defined ontologies. These methods
are largely inspired by the PageRank algorithm, or manifold-
ranking algorithm, which is initially applied to the task of web
search and has been proven successful (Page et al. 1998).

Figure 10 shows the parts of a hybrid web-based pest fore-
casting and information system for IPM, which is using both
DMSS and related prediction algorithms (left position), as
good as the basic pest ontology (right position). Ideally, such
ontology is useful in linking huge datasets posted on the web
andmay serve as an information and decision tool for the plant
protection agencies to ease searching and browsing of pest
management-related information (Koenderink et al. 2005).
The ontology can describe the properties, or attributes, of
careful scientific defined concepts. For example, the attributes
may include specific properties of chemicals that are used in
IPM such as their properties including chemical class, type of
water formulations and environmental behavior, application
doses and lethal concentrations, mode of action, lethal con-
centrations, application type, monetary values, preharvest
type, and registration. Additionally, the ontology addresses
instances such as application type and time, pest target, spec-
trum, and side effects. Specific zoological vocabulary can be
employed to describe structural and biological attributes of the
selected pests. This kind of taxonomy may include

information on taxa, scientific and common names, colors,
stages, life cycle, number of generations, habits, reproductive
potential, vulnerable stage, and other data. However, most
available ontologies provide either domain vocabulary for se-
mantic interoperability of systems or deal with limited situa-
tions and are not scalable. Moreover, few scalable and distrib-
uted ontologies are available for the agriculture domain, but
they are component oriented, such as ePlant and eGadget, and
generate complexities in case of multiple service requirement
at a time (The Plant Ontology Consortium 2002;
Goumopoulos and Kameas 2009; Rehman and Shaikh 2011).

Evidently, at a high-level system view, the primary advan-
tage of using ontologies in DSS is that it permits synthesis
toward hybrid DSS in decision making, for example, commu-
nicating predictions and artifacts of ontologies in the form of
classified information, in which two or more aspects of the
same problem are taken into a balanced consideration at the
same time. Thus, as part of pest and disease forecasting, IPM
shows that there is vastly too much data for a human to com-
prehend at one time, and therefore, ontology-based DSS may
provide services to the direction of decision making rather than
to simple decision support. This may be feasible because con-
ceptually ontology web applications are based on artificial in-
telligence and provide information that can be interpreted by
computers providing solutions to certain combinations, instead
of just serving pages that are meant to be read by humans.

In summary, ontology web programing allows interopera-
bility, exchange, and sharing of pest-related data among cor-
porations and certification authorities and may permit the de-
velopment of smart web applications with lower reliance on
operator assessment. Additionally, it provides a unified way
for agrodata management and collaboration among expertise
and facilitates the implantation and evaluation of IPM systems
over large scales (i.e., prefecture, country, international level).

7 Instances of web-based decision support

for integrated pest management

Although simple predictive models have been produced dur-
ing the last century, the development and broader accessibility
of personal computers in the 1970s and 1980s (Coulson and
Saunders 1987; Higley et al. 1986) resulted in the rapid
growth of computer-based models to predict responses of in-
sects in relation to climate (Batchelor et al. 1989; Beck et al.
1989; Bange et al. 2004; Liao 2005; Hannon and Ruth 2009;
Orellana et al. 2011). Currently, several IPM-related databases
and model applications are placed on the web and can poten-
tially be utilized for information/data collection, distribution,
or data exchange (Bajwa and Kogan 2000; Huang et al. 2008,
Yelapure and Kulkarni 2012). In this section, we will refer to
some of their representatives.
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The preliminary analysis of the literature showed that most
IPM support systems and information are static, which means
that they are available on the www but in the form of static
web pages. Therefore, the information they contain is
delivered to the user exactly as stored, in contrast to
dynamic web pages, which are user interactive and provide a
service through a web application program. For instance, most
include electronic versions of informational brochures,
pesticide recommendations, fact sheets, reference guides,
and bibliographic references, while some of them use web
databases that include records of pest phenology, occurrence
and distribution, pest control recommendations, or pesticide
information. These are mostly used for information purposes
and the lack of any ontology and data classification, which
may allow a semantic inference. Hence, web sites with

information sheets cannot be classified as a decision support
system. Bajwa et al. (2003) provide a forum of a sample array
of data resources for IPM research, extension, teaching, and
learning, accessible because of the Internet.

Nevertheless, few dynamic and interactive decision sup-
port systems have been also developed for forecasting insect
and disease outbreaks, while customized web-based applica-
tions are likewise rising. An instance is the Pacific Northwest
IPM Weather Data and Degree-Days Website (http://www.
orst .edu/Dept/IPPC/wea/) and the Swiss Federal
Administration Forecasting tool SOPRA (http://www.sopra-
acw.admin.ch/e/info.php?Lang=e) (Samietz et al. 2008).
Such systems move beyond simple information retrieval and
IPM query expansion and support the users in the decision
management process. The SOPRA DSS uses time-varying

Fig. 10 Properties (architecture, functionality, and expendability) of a
hybrid web-based forecasting information system which is based on
both: real-time forecasting service and query expansion properties using
related pest ontologies and semantic computing. [SQL Structured Query
Language, designed for managing data held in a rational database
management system, OWL ontology web language, RDF resource
description framework, XML extensible markup language, Apache
HTTP Server: is the most popular world wide web open software server

working with wide variety of operating systems (i.e., Microsoft
Windows, Unix, Linux, etc.), PHP: hypertext processor (server-side
scripting language) for web development, JavaScript: client-side scripts
for web development; Ajax: web applications techniques that can send
data to, and retrieve data from, a server asynchronously (in the
background) without interfering with the display and behavior of the
existing page; jQuery: a fast, small, and feature-rich JavaScript library
with an easy-to-use application that works across a multitude of browsers]
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distributed delay phenological models and provides forecasts
for eight major insect pests of fruit orchards on regional scales
over Switzerland and Southern Germany (Samietz et al.
2008).Moreover, the system is able to compute the risk degree
related to scab disease infection, given the meteorological
values and the presence of ascospore ready to pass from the
first stage, the ascospore maturity, to the second and most
dangerous stage, which is the germination and penetration.

For complementary reasons, I will discuss next few more
pest DSS and which I consider every bit more representative,
while several other dynamics pest management DSS that are
available online are summarized in Table 1. For a thorough
literature review of different expert systemmethodologies and
applications in different fields of science, the reader should
refer to Liao (2005) and references given.

One of the earliest particular examples, for instance, in-
cludes the support scheme for forecasting the black bean aphid
(Aphis fabae) outbreaks in fields of spring-sown beans
(Knight and Cammel 1994). The system which provided in-
formation to the user on individual characteristics of the field
and crop, which are known to affect aphid colonization, such
as field shape, size, plant density, and the sowing date, was
used to adjust the area forecast for the specific field. The
system provided also a module for estimating the cost-
benefit of applying registered pesticides.

In the Netherlands, Dutch farmers have been also using
DSS from the late 1980s and early 1990s as an aid in the
control of pests. This started with EPIPRE and then weather-
related potato blight warning systems were developed such as
Prophy and Plant-Plus and GEWIS which predicted the effec-
tiveness of application times. The use of these systems result-
ed in more sustainable crop protection (Bouma 2004).

Another example is the decision support system developed
by the Australian cotton industry (CSIRO: Commonwealth
Scientific and Industrial Research Organization) in collabora-
tion with University ofWestern Sydney to reduce pesticide risk
associated with pest management (Hearn and Bange 2002).
Such systems take into account the regional forecast and addi-
tional information provided by the user to individual character-
istics of the field characteristics and contain modules of insec-
ticides that are made for use on spring beans and calculate the
economics of application (Knight and Cammel 1994).

Elliott et al. (2004)) have developed a web-based decision
system for the green bug (Schizaphis graminum) management
that is utilizing four modules: aphid identification, the eco-
nomic threshold calculator, insecticide selection, and natural
enemy identification. More recently, Backoulou et al. (2014)
have developed a web-based decision support system for man-
aging the economic importance panicle caterpillars in
Sorghum. The related decision support system calculates
the economic thresholds for this pest, and the related
expert system is based on a knowledge representation
model.

Enviro-weather decision support system This is a collabo-
rative project between the Michigan Climatological Resource
Program and the Michigan State University Integrated Pest
Management Program. The software goes through a world

wide web interface for weather-based instruments and serves
as sustainable weather-based information system that helps
users to make pest, plant production, and natural resource
management decisions in Michigan (available at http://pest.
ceris.purdue.edu/pests.php).

MyPest page—IPM pest and plant disease models and

forecasting This website brings together US weather data
and plant pest and disease models to serve many decision
support needs in agriculture. Presently, this website offers over
80-degree-day and 21-h weather-driven models serving many
IPM, regulatory, plant biosecurity, biological control, and con-
servation uses for the entire USA, with emphasis on IPM
needs of the western States (available at http://uspest.org/
wea/).

The UC-IPM online, state-wide integrated pest manage-

ment program The UC-IPM offers interactive tools and ex-
amples that can help farmers make pest management deci-
sions based on site conditions. The site additionally provides
information about managing pests, including the University of
California’s official guidelines for monitoring pests and using
pesticides and nonpesticide alternatives for managing insect,
mite, nematode, weed, and disease pests as well as other re-
lated data. One disadvantage is that the scheme cannot provide
individual results to specific pest problems. One additional
requirement is that the user must upload specific files and
sample data (available at http://www.ipm.ucdavis.edu/PMG/
crops-agriculture.html).

Norwegian agricultural network: pest forecasting The
system uses a network of 52 automated weather stations in
Norway and is operated by the Norwegian Crop Research
Institute. The primary destination of the network is to contract
the role of pesticides, resulting in better crops, at lower costs,
and in a more honest environment (available at http://www.
campbellsci.com/norwegian-network). Data from the stations
are used in forecasting models that seek to offer early warning
of conditions such as apple scab, potato late blight, cabbage
moth, cereal diseases, and turnip moth.

RANTISMA The real-time pest forecasting software and
IPM information system are a simple handling software,
which runs 24 h through the web and is available as 4G smart
phone application (Damos and Karabatakis 2013). The system
conducts weather data web mining and storage and performs
real-time pest forecasting for fruit orchards in distinct geo-
graphical regions distributed all over Greece. The registered
user has the option to be directly informed through e-mail and/
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Table 1 Representative pest management decision support systems and related pest population modeling applications available throughout the www

Acronym Main task, objectives, and services Institution/location Reference

CALEX CALEX is a user-friendly computer program that simulates
human problem solving behavior. Growers can use this
system to help manage crop production or predicts the
effects of any one decision on subsequent events. CALEX
contained plant and pest simulation model for the purpose
of pest diagnosis

University of California Goodell et al. (1990)

CARMA The Case-based Range Management Advisor (CARMA) is a
decision-support system for grasshopper infestation which
employs a variety of artificial intelligence (AI) techniques
to provide advice about the most environmentally and
economically effective responses to grasshopper
infestations.

USDA-APHIS-PPQ (Western
Region) and the University of
Wyoming

Branting et al. (1997),
Hastings et al. (2010)

CIPRA Computer Centre for Agricultural Pest Forecasting (CIPRA)
contains real-time weather-driven bioclimatic models for a
total of 35 pests (25 insects and 10 diseases), storage of
physiological disorders, and phenological models in 14
different crops.

Computer Centre for Agricultural
Pest Forecasting (CIPRA),
Canada

Bourgeois et al. (2008)

CLIMEX Although not strictly the CLIMEX software phenology
model uses some developmental requirements for risk
assessment

Australia Sutherst et al. (1991, 1999)

DYMEX The DYMEX package aims to help ecologists overcome the
computing difficulties associated with constructing
simulation models, allowing them to build mechanistic,
process-based models. DYMEX modeling software has
been extended to better support spatially explicit
simulations, including wind dispersal.

INRA Forest Zoology Unit
(http://www.hearne.com.au/
Software/DYMEX/News)

Stephens and Denter (2005),
Parry et al. (2011)

ECAMON Basic modeling platform which serves simulations and
phenology production of European corn borer over study
regions in the Czech Republic

Institute of Agro-systems and
Bioclimatology, Mendel
University of Agriculture and
Forestry Brno, Czech Republic

Trnka et al. (2007)

HEAPS The Helicoverpa armigera and H. punctigera Simulation
model (HEAPS) incorporates modules based on adult
movement, oviposition, development, survival, and host
phenology and estimates the population.

Australian Cotton Research
Institute

Dillon and Fitt (1990), Fitt
et al. (1995)

ILCYM Insect Life Cycle Modeling (ILCYM) software is a generic
open-source computer-aided tool, which facilitates the
development of phenology models and prediction of pest
activity in specific agroecologies.

Centro International de la Papa,
Integrated Crop Management
Division, Lima, Peru

Sporelder et al. (2009)

MORPH/
HIPO

MORPH includes a suite of predictive computer models for
use in fruit and vegetable crops. The software tool HIPPO
is described that allows biologists to produce models that
are biologically realistic without having to write complex
computer programs.

UK Horticulture Research
International

Phelps et al. (1999)

NAPPFAST Web-based plant pest forecast modeling system, which links
daily climate and historical weather data with biological
models to produce customized risk maps for phytosanitary
risk assessments.

North Carolina State University,
USA

Magarey et al. (2007)

NEWA The NEWA (Network for Environmental and Weather
Application) is a web-basedweather and pest reporting and
forecasting system. There are over 20 Massachusetts
locations that are reporting to this network performing
forecasts and alerts for insect and disease pests of fruits and
vegetables.

Cornell University, New York
State Integrated Pest
Management Program

http://www.newa.cornell.edu/

CAPS-PEST
TRACKER

The Cooperative Agricultural Pest Survey (CAPS) provides
landscape information based on survey data which is
available through the WWW to prevent the spread of pest

Plant Protection and Quarantine
Division of the USDA Animal
and Plant Inspection Services

http://pest.ceris.purdue.edu/

PRO_PLANT PRO_PLANT is a knowledge-based plant protection
advisory system which supports fungicide and growth-
regulator consultations for cereal and sugar beet
production. In addition it provides consultations on
insecticide usage in rape and herbicide usage in corn.

Department of Computer Science
in Agriculture at the University
of Munster (DCSA-UMG) and
Department for Plant
Protection, Seed testing and

Visser et al. (1994)
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or short message service, upon critical points in which the pest
population is higher than a particular threshold and proceeds
to particular applications-treatments. To boot, it may be enter-
ing the web interface, powered by Drupal and manual perform
queries and view pest population status.

The PRO_PLANT DSS The PRO_PLANT decision sup-
port system is considered as one of the most advanced
(Frahm et al. 1996; Johnen and Meier 2000). The decision
support system PRO_PLANT was developed in

Nordrhein-Westfalen (DE) to help farmers to reduce the
input of plant protection products. The system runs phe-
nological models for six major pests and takes into ac-
count the number of adult pests, weather-based forecast,
egg-laying periods, and larval development (Johnen et al.
2010; Johnen and von Richthofen 2011). Automatically
collected regional meteorological data are transferred via
the Internet and are used as an input source for the models
to provide pest forecasts. The DSS provides a basis for
treatment decisions and pesticide applications.

Table 1 (continued)

Acronym Main task, objectives, and services Institution/location Reference

Agriculture Research
(DPSAR)

RANTISMA RANTISMA (Real Agro-Net Topology and Insect Smart
Model Application) is a simple handling pilot software
which provides real-time pest forecasting through the
www for fruit orchards pest.

RANTISMA.gr Open Agro Data
research consortium/Greece

Damos and Karabatakis
(2013)

RICEPEST RICEPEST is a multipest system model simulating yield
losses due to several rice pests (sheath blight, brown spot,
sheath rot, bacterial leaf blight, stem borers, brown plant
hopper, defoliating insects, and weeds) under a range of
specific production situations of tropical Asia.

International Research Institute
(Philippines)

Willocquet et al. (2002)

SAIFA The SAIFA (Sistema de Alerta e Información Fitosanitaria
Andaluz) is a web-based phytosanitary information and
alert system for integrated production of olive cultivation.

Universidad de Almería,
Department of Computer
Science/Spain

Orellana et al. (2011)

SIMLEP Temperature-driven decision support system (SIMLEP DSS)
for regional forecasting of Colorado potato beetle
(Leptinotarsa decemplineata) which consists of two
modules. SIMLEP 1 is a regional forecasting model for the
first occurrence of hibernating beetles and the start of egg
laying. SIMLEP 3 is a field-specific model which forecasts
the occurrence of the developmental stages.

Central Institution for Decision
Support Systems and
Programmes in Crop
Protection/Germany, Austria,
western part of Poland

Jorg et al. (2007), Kleinhenz
and Rossberg (2008), Kos
et al. (2009)

SOYPEST SOYPEST is a web-based fuzzy expert system used to help
inexperienced farmers in pesticide use of their farms. The
first version of this system was introduced in 1995 in a
single-user form. The objective of SOYPEST is to provide
IPM decision support to the farmers through the Internet.
Later, the web-based fuzzy expert system is proposed in
the field of e-commerce.

Computer Science Department
Faculty of IT Universiti Utara
Malaysia, India

Saini et al. (1998, 2002)

SOPRA SOPRA is an hourly driven time delay distribution
phenological model, which is linked to a detailed web-
based decision support system which extends information
about the pest insects and registered plant protection
products.

Agroscope Changins-Wädenswil
Research Station ACW/
Switzerland and Bavaria
(Southern Germany)

Samietz et al. (2008)

FuzzyXPest FuzzyXPest is proposed to provide information to farmers
and researchers through the Internet using the fuzzy expert
system. This system has been verified by Malaysia
Agriculture Research & Development Institute.

Malaysia Agriculture Research &
Development Institute

Siraj and Nureize (2006)

UC-IPM
online

The UC (University of California) IPM offers interactive
tools and models that are used to make pest management
decisions based on local site conditions and using weather
models and degree-days.

University of California
Statewide IPM Program/USA

http://www.ipm.ucdavis.edu/

WIDDS The web-based intelligent disease diagnosis system
(WIDDS) is using the fuzzy logic approaches to provide
diagnosis particularly for oilseeds like soyabean,
groundnut rapeseeds, etc. which will help increase the
ability of the cultivators/extension workers/researchers in
decision making.

Soybean Research (ICAR) Kohle et al. (2011)
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Concluding, overall professionals in the agricultural do-
main, such as growers, extension agents, and researchers,
can be helped through the role of web-based decision support
systems in IPM. However, although most systems provide
forecasting models that predict the likelihood of a pest or
disease outbreak, each one has been developed to address
specific needs. Most pest management decision support sys-
tems are applying a conventional remote sensing of climatic
data, which is traditionally been used also in precision agri-
culture and can assist crop growers in determining when or if
pesticides are needed (Seem 2001).

Besides extending pest risk information, which is delivered
by most systems, some others provide intuitive images
representing epidemic risks and other information that may
facilitate dissemination and understanding of risks to guide
decision making on rational pest management (Fernandes
et al. 2011). Moreover, despite that in most cases the software
is freely accessible through the web, there are representatives
in which specific registration is demanded.

8 Challenges and constrains of decision support

systems

Apart from the formal description of the basic principles that
are practiced to incorporate pest and disease models into web-
based decision support systems for IPM, there are also some
challenges and constrains that are be worthy to be discussed.

Pest and disease models are brief mathematical descrip-
tions of data and per se have limited applicability. Still, easy
handling of computer scripts and associated software, which
runs the models, facilitates significantly the simulation of pop-
ulation dynamics and offers practical information outlets in
IPM (Prasad and Prabhakar 2012). Some of the cited web-
based IPM DSS has lab-derived predefined models and em-
ploys actual time set of input data and afterwards starts to
operate via web interface to provide the related information
services to the end user. Here, the algorithms play a significant
role since pest and disease knowledge is represented in the
form of logical operations. These simulations may be com-
prised in an information system and provide practical applica-
tion and mechanization of decision support, for example, to
forecast population dynamics and send warnings to farmers if
the pest reaches specific thresholds and to suggest manage-
ment activities. Moreover, such prediction schemes may be
extended to include more variables and information, such as
weather forecasts and economics, in order to select the most
cost-effective management actions (Strand 2000).

Nevertheless, there are also some concerns, either ecolog-
ical or technical, when developing, enforcing, and evaluating
the functionality of a DSS for praxis. Pest and disease moni-
toring data, along with complementary weather data, are still
crucial to validate the functionality of pest forecast models and

improve simulations and warnings for operational use. Most
of the earlier models, for instance, failed to get into consider-
ation the variation between individual insects in their rate of
maturation, which is responsible for the spread of activity of a
pest (Wagner et al. 1984a, b). This hindrance has been ac-
knowledged by earlier studies, and therefore, efforts have
been induced to count rates as random variables (Phelps
et al. 1993) instead of treating rate summation as a determin-
istic quantity. Other factors, which bias forecast prediction, are
that most species exhibit seasonal life cycles that include rest-
ing phase and are affected by other factors, which are seldom
taken into consideration. Resting phases are for instance dia-
pause or aestivation, while other factors may include self-
regulation and predation. Additionally, a restricted
temperature-driven model does not often go to reliable fore-
casts because of bias in databases due to ecological processes
such as short-range dispersal, overwintering behavior, coloni-
zation patterns, and age-specific mortality including inter- and
intraspecific competition. Nevertheless, if a DSS is proven
reliable after experimental evaluation, it provides a means of
accurate timing of pesticides and initiation of pest manage-
ment tactics, and computer-based technology may be utilized
to carry out an IPM plan.

Some other constraints are of technological nature, and
although several decision tools for pest management are
available (Norton and Mumford 1993), not all of them have
been translated into the routine decision-making systems,
which can justify the marginal costs of going forward to
maintain and updating the scheme. Another constraint in
the use of the referred DSS is the need to be combined with
real-time and often scarce, weather variables in a comple-
mentary and automatic manner. The problem may be even
more complicated especially that environmental variables
can be significantly different from one region to an adja-
cent one and that it is virtually impossible to store data
from all situations. The PRO_PLANT advisory system,
for example, although it has been intensively tested in the
period between 1991 and 1995 by plant protection advisors
and farmers all over Germany, its utilization in some Euro-
pean countries has posed some difficulties. This was most-
ly due to the lack of weather data, their availability in dif-
ferent formats, and the different law structures and regis-
tration about pesticides. Nevertheless, the system per se has
been successfully installed and used in many countries in
mainland Europe (Johnen et al. 2006) and it is now also
freely available to UK growers via the BeyerCrop science
website for pollen beetle management (Johnen et al. 2006;
Johnen and von Richthofen 2011).

In some cases, the required data are not only large in
amount but also come from multidisciplinary sources, and
the same situation exists for related decision support tools.
Such complexity along with emergent web engineering sci-
ences, which are using ontologies and artificial intelligence,
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brings challenges to the design and implantation of web-based
decision support systems (Zhang and Goddard 2007). Actual-
ly, the evolution, application, and operational testing of the
DSS are an interdisciplinary research theme, which requires
the integration of different methodologies to solving pest and
disease management problems at the field level and it contin-
uous advancement.

However, DSS or other web-related prediction schemes
have thorough information description useful for IPM.A com-
ponent of pest forecasting information may include biological,
environmental, economic, or other outputs to analyze the most
effective management actions, based on acceptable control
levels, sustainability, and further assessment of economic or
other risks (Strand 2000). Thus, DSS in IPM is a potential tool
for synthesizing the available bioeconomic information and
knowledge of popula t ion dynamics of pes t s in
agroecosystems and natural habitats.

Such kind of Internet and network-based applications in
agriculture have been much emphasized in the past decade
(Baharudin 2000) and may play an even more important role
in considering that most web applications are directly acces-
sible via 4G smart phones. For instance, the corn disease re-
mote diagnostic system is supported by a database containing
information for the identification of 63 diseases. The system
can be used as a diagnostic tool for farmers; it can also func-
tion as a tutorial system for students (Xinxing et al. 2012).
Furthermore, the widespread use of network interfaces with
PHP dynamic script solutions takes into account the design of
interactive user-friendly interfaces that accommodate both
producers in the subject as well as researchers.

On the other hand, the potential incorporation of machine-
readable knowledge capacities into specific databases like
MySQL in an IPM DSS permits to query expansion and se-
mantic inference. In this context, research and development in
knowledge acquisition of agrodatabases and related modeling
applications, using artificial intelligence to cluster and relate
data, is likewise rising (Prasad et al. 2006; Patil et al. 2009;
Zhang et al. 2008). In particular, ontology web programming
(OWL) and artificial intelligence (AI), available only during
the last years because of emergent web-3 technology, provide
new means of knowledge representation. Actually, OWL pro-
gramming is a breakthrough in computer science, and it is
anticipated that they will modify all current web applications,
including the attributes and use of decision support systems in
agriculture. Agricultural ontologies, or linked data, build the
use of objects and information. These objects may include
descriptive data, scientific names, icons, and their properties,
which are primarily applied for classification purposes and
semantic inference (Koenderink et al. 2005; Zheng et al.
2012; Sun et al. 2013). The most representative successful
model is probably the AGROVOC thesaurus (http://aims.
fao.org/standards/agrovoc/about). AGROVOC is a
controlled vocabulary, covering all regions of interest of the

Food and Agriculture Organization (FAO) of the United Na-
tions and the delegation of the European communities, includ-
ing food, nutrition, farming, fisheries, forestry, environment,
etc. It is published by FAO and edited by a community of
experts and the related Advanced Ontology Service (AOS)
project was endeavored (Soergel et al. 2004; Sini 2009). Thus,
for IPM DDS, the potentials to provide to the end user infor-
mation retrieval services work using cognitive approaches and
stress the knowledge in information bases as separate compo-
nents. This is a major advantage because additional changes in
knowledge and updates do not change the whole structure of
the system. Another advantage of such kind of DSS is reason-
ing capability; the system explains reasons for arriving at a
particular decision, a process that is closer to human cognitive
approaches for problem solving (Yelapure and Kulkarni
2012).

9 Vision of the future of decision support system

Since IPM involves the coordinate use of all available and
control tactics, the technological aspects of synthesis and
knowledge integration have been tried from many different
starting points in the past. For some earlier efforts in develop-
ing a decision support system in plant protection, for example,
refer to Coulson and Saunders (1987), Stone and Saarenma
(1988), Coulson et al. (1989), and Zalom and Strand (1990).
Most of these earlier works developed pest simulation pro-
grams that are in apposition to project actual pest population
dynamics useful for decisionmaking. Nevertheless, onlymore
recent technological advances provided a robust means of
computerized implementation of IPM.

Moreover, it is expected that emergent technologies in in-
formation science and population modeling will influence the
development and design of future DSS. Researchers have rec-
ognized that ontology web programing is one of the major
success stories of the third generation semantic web. Scientist
and national authorities around the world already value the
potentials and benefit that web-based decision support appli-
cations and services may bring in general in the agricultural
domain and in particular in pest management. Thus, we may
expect in the short future a more reusable and interoperable
fashion exchange of agrodata that will among others contrib-
ute to the development of easy handling of pest modeling and
extension applications.

We hold that technical issues, such as minimizing the re-
quirements for publishing data, the interoperability to data
consumers, and the increase in computer processing capacity,
are more likely to be overcome (Lokers et al. 2014). More-
over, there is also an issue concerning the availability of free
scientific measures data and free public services for decision
support systems. For instance, although there are several in-
stitutional web applications that provide farmers free support,
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there are also a comprehensive number of private DSS ser-
vices and it is expected that they will increase in the future.

For small cooperatives and producers, such applications
will strengthen the role of decision support for integrated pest
management. Expansion in the use of web-based applications
will result in decision support products and integrated pest
management services that are advantageous than those pro-
duced by autonomous and manual efforts. Decision support
systems used in the plant protection domain applications will
result in minimizing overhead costs such as telephone, print-
ing, and postal along with costs of unnecessary pesticide treat-
ments. Yet, traditional farmers take it hard to adopt even min-
imal cost web applications in plant protection because they are
most often not familiarized with current technologies
(Deraman and Shamsul Bahar 2000). Additionally, because
middle and older age farmers are reluctant to make changes
to their practices, which they are very comfortable doing, fu-
ture decision support systems should be probably adopted by
younger and more educated farmers (Dillon and Fitt 1990).

Another factor which may affect future adoption of DSS is
the bad perception for new technologies by farmers. Particu-
larly, low adoption of DSS may be related to the weak belief
on ensuring high yield of new technology (Chi and Yamada
2002). Especially for plant protection, it is important to eval-
uate the performance and field success of the pest manage-
ment decision support system to be further adopted. Actually,
the performance of several pest decision support systems has
not been fully evaluated to be broadly used. Although meteo-
rological datasets can now be provided in real time at very
high rates of up to once every few seconds, the accuracy of
data depends on the reliability of the installed measuring in-
struments of weather stations. On the other hand, population
processes are multifaceted and most pest models are oversim-
plifications, which often ignore other variables. Moreover,
most of the successful DSS are commercial and this makes
knowledge sharing difficult. Thus, besides the reliability of
the climatic input data and the function of simulation algo-
rithms, the degree of success with which the DSS accom-
plishes a task depends on the validity of the underlying pop-
ulation models as well as the correctness of their implementa-
tion. As a result, potential underutilization of some decision
support systems is likely due to both perception and technical
constraints that have not been addressed adequately during
development and implementation phases (Knight 1997; Gent
et al. 2011). Therefore, it is anticipated that the incorporation
of reliable IPM recommendations may be basic means to in-
crease the adoption of DSS by farmers. At the same time, any
DSS should be low cost, user friendly, and relevant to recent
IPM tools, to provide a set of real-time management options
that a farmer can apply (Nguyen et al. 2006). Thus, the role of
DSS in IPM will increase in the future, if it is reliable, has
suitable attributes, and reduces pest management costs.

From a technological standpoint, future decision support
systems may contain information of all crop management op-
tions toward precision farming and not only pest management.
For instance, farmers possess smart phones with the capability
to access the Internet through wireless connections and have
access to geographical information data (GIS), which possess
potential for several applications (Singh et al. 1993). The im-
plementation of such applications is accelerating, while re-
mote sensing and cloud computing provide additional means
to gather real-time precise field data. For instance, GIS data on
weather, land use, hydrography, soil, and pests can be cap-
tured in digital maps and combined with field data input col-
lections to create models not only for pest management but
also for crop, soil, and integrated fruit production system eval-
uation, to field and region-scale reports and schemes for pre-
cise decisions and advisories (Bregt 1997; Strickland et al.
1998).Moreover, as part of accurate pesticide timing, decision
support systems merged with GIS technologies may provide
information upon site-specific management of pests.

Finally, semantic knowledge representation tools that
emerge may create entirely new capabilities in decision sup-
port systems (Kamalak and Hemalatha 2012). The develop-
ment of agro-ontologies and application of related artificial
intelligence techniques may become an absolute demand for
local, regional, and area-wide management of multidimen-
sional agrodatabases and information retrieval.

10 Conclusion

Crop pest management is a highly challenging problem and
may yield potential losses of up to 50 % before harvest if not
handled timely. Thus, there is a need of extension warning
programs and the use of interdisciplinary technologies for sus-
tainable pest control. In this review, knowledge has been pro-
vided with different sources including published literature.
Efforts were made to understand the role of decision support
systems for integrated pest management and to describe the
basics that are practiced to incorporate pest and disease
models into IPM. Moreover, examples on how new web tech-
nologies, including ontology web programming, can be used
to develop a decision support system for integrated pest man-
agement are also presented. Instances of pest forecasting tool
and IPM decision support systems are also discussed to pop-
ularize the use of current computer-aided pest management
applications.

Since IPM traditionally is founded on a system approach
and involves low energy influxes, it provides a convenient
support for sustainable agriculture. Particularly, the appropri-
ate and optimal combination of control measures is required to
be applied in a rational manner to guarantee cost-effective and
environmental-friendly pest management (Bajwa and Kogan
2000). Due to imperfect and involved uncertainty of climate
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effects on pest population development, it is virtually impos-
sible to make predictions based only on monitoring and sam-
pling. Additionally, early plant disease growth is often char-
acterized by the absence of symptoms, which appear quite
later, in periods where crop damage is irreversible. As a result,
the development of decision support systems for pest manage-
ment is an absolute necessity, which will allow farmers to
apply in time various pest control actions. Additionally, once
a decision support system has been set up, it forms a basis to
be extended including most crop management actions such as
irrigation, fertilization, and so on.

However, the transition from manual-based toward
computer-aided decision support is a challenging task that is
mediated through the development of pest forecasting algo-
rithms. In its simplest form, they serve as small computer
programs, or software, which aim to combine climatic, thresh-
old pest developmental data and population models and to
initiate pest warnings through logical relations. The algo-
rithms that have been presented in the current work have been
developed to meet specific needs although can also serve as
typical instances. Forecasting algorithm, which runs through a
personal computer, can be merged with current web technol-
ogies toward the development of a dynamic forecasting appli-
cation or, preferably, toward a decision support system.

Since 1980, there has been increased interest in developing
forecastingmethods aswell as in promoting an effective warn-
ing system for pests and diseases. Nowadays, considering that
the www is the fasted growing medium, it is expected that
agrodata-fused information technology will play key roles in
sustainable agriculture and particularly in the automaticity of
real-time pest management, acquisition, and dissemination of
new knowledge and technology in IPM.

Ontology web programing is an emergent new technology
feasible due to the improvement of the overall framework and
potentials of the current www. The major principle of improv-
ing pest ontologies is to gather data together in a manner that
provides free accessibility and comprises potentials for several
applications. The development of ontologies results in the
dispersion of free information easy reachable and available
for individuals, companies, state authorities, research centers,
universities, and many other interested parties and comprises
potentials for broader data exploitation and rational economic
development.

However, it is essential to state that such novel technolo-
gies are accessible only during the last 5 years and because of
emergent web technologies. This is probably the main reason
why the classification of concepts for pest ontologies is rare.
One additional reason is that the development of decision
support systems for IPM, as well as related ontologies, is of
a multidisciplinary nature and such a task enables the collab-
oration of expertise from different scientific fields. Another
obstacle is to raise funds that can support not only the recruit-
ment of high-caliber researchers and experts but also to

support and evaluate the functionality of the system after its
completion.

Based on the literature review, there are several decision
support systems and pest forecasting applications that have
been developed. However, only few of them are truly decision
support systems by the sense that they provide user interaction
and operate daily on real time providing pest warnings and
related management options. Two of the earliest and most
successive examples are the forecasting tools SOPRA and
PRO_PLANT which move beyond simple IPM information
retrieval and support the users in the decision management
process. However, there are challenges concerning how these
systems may be extended to include more crop management
options toward precision farming and sustainable agriculture.

In addition, such success stories may serve as paradigms
for the development of national- and country-level deci-
sion support systems for other countries as well. However,
despite the fact that there have been several crop-specific
technical guidelines that have been developed, they cannot
be implemented due to the time-sensitive nature of most
management actions. Thus, available pest management op-
tions, although they provide a rigorous foundation for de-
velopment of sustainable utilization of pesticides in the
EU, are implemented only in those countries which oper-
ated such systems.

Consequently, indispensable for implementing IPM pro-
grams in reality is to furnish real-time data, which support pest
management advisors and farmers at the field level to success-
fully apply IPM tools and to maximize the potential of their
control activities. Moreover, pest knowledge exchange and
development of interlinked data networks can be performed
using current www infrastructures with relatively low costs.
Such structures may provide collaboration opportunities and
reduce time spent and redundant efforts for wide scale pest
management. Using standard web infrastructure makes it fea-
sible to further provide a decentralized but collaborative inter-
national (common) cloud environment for the development
and maintenance of information that can occur among distant
and dispersed developers and institutions.

It is believed that the interest on IPM decision support
systems as technological solution for sustainable pest manage-
ment will increase and be an absolute need for rational man-
agement agrosystems. Moreover, it is also anticipated that
future decision support system will be merged with
ontology-based knowledge representation to cope with huge
datasets to provide integrated robust decision support
solutions.

Acknowledgments The author would like to convey his thanks to the
editor and four anonymous reviewers for their valuable suggestions and
commentaries, which have improved the MS.

Web-based decision support systems for IPM 1367



References

Abdullah A, Hussain A (2006) Data mining a new pilot agriculture ex-
tension data warehouse. J Res Pract Inf Tech 38:229–249

Agrios GN (2005) Plant pathology, 5th edn. Elsevier, London
Altieri MA (1987) Agroecology: the scientific basis of alternative agri-

culture. Westview, New York, 185pp
Altieri MA, Nicholls C I (2000) Agroecology in action. Indigenous and

modern approaches to IPM in Latin America. ESPM Division of
Insect Biology, University of California, Berkeley, USA. http://
nature.berkeley.edu/~miguel-alt/indigenous_and_modern_
approaches.html. Accessed 18 May 2015

Amano H (2001) Species structure and abundance of invertebrate natural
enemies in sustainable agroecosystems. In: Shiyomi M, Koizumi H
(eds) Structure and function in agroecosystem design and manage-
ment. CRC, New York, pp 167–182

Andrade-Piedra J, Forbes G, Shtienberg D, Grünwald NJ, Chahón MG,
Taipe Vet al (2005) Qualification of plant disease simulation model:
performance of the LATEBLIGHT model across a broad range of
environments. Phytopathology 95:1412–1422. doi:10.1094/
PHYTO-95-1412

Asher, HB (1984) Causal modeling. Sage University paper series on
quantitative applications in the social sciences, 07-003. Sage,
Newbury Park

Athanasiadis IN, Rizzoli AE, Jansen S, Andersen E, Villa F (2009)
Ontology for seamless integration of agricultural data and models.
In: Sartori F, Sicilia MA, Manouselis N (eds) 3rd International con-
ference on metadata and semantics research (MTSR’09). Springer.
pp. 282–293

Backoulou GF, Elliott NC, Royer TA, McCornack BP, Giles KL,
Pendleton BB et al (2014) Web-based decision support system for
managing panicle caterpillars in sorghum. Crop Manage. doi:10.
2134/CM-2014-0020-MG

Baharudin SA (2000) Preservation of culture in an Internet
worked world. Rahim RA, John KJ (eds) Access, empower-
ment and governance in the information age. Building
Knowledge Societies Series, volume I: NITC (Malaysia)
Publ: 68–75

Bajwa WI, Kogan M (2000) Database management system for Internet
IPM information. In: Shenk M, Kogan M (eds) IPM in Oregon:
achievements and future directions. Oregon State University,
Corvallis, p 227

Bajwa WI, Kogan M (2002) Compendium of IPM definitions (CID)—
what is IPM and how is it defined in the worldwide literature? IPPC
Publication No. 998, Integrated Plant Protection Center (IPPC),
Oregon State University, Corvallis, OR 97331, USA

Bajwa WI, Coop L, Kogan M (2003) Pest management (IPM) and
Internet-based information delivery systems. Neotropical
En tomology 32 :373–383 . do i : 10 .1590 /S1519-566X
2003000300001

Bange MP, Deutshcer SA, Larsen et al (2004) A handheld decision sup-
port system to facilitate improved insect pest management in
Australian cotton systems. Comp Electron Agric 43:131–147. doi:
10.1016/j.compag.2003.12.003

Barlet BR (1956) Natural predators. Can selective insecticides help to
preserve biotic control? Agric Chem 11:42–44

Batchelor WD, McClendon RW, Adams DB, Jones JW (1989) Evolution
of SMARTSOY: an expert system for insect pest management. Agr
Syst 31:67–81

Beck SD (1983) Insect thermoperiodism. Ann Rev Entomol 28:91–108.
doi:10.1146/annurev.en.28.010183.000515

Beck HW, Jones P, Jones JW (1989) OYBUG: an expert system for
soybean insect pest management. Agric Syst 31:32–37. doi:10.
1016/0308-521X(89)90091-7

Bery JS (1995) Computer models in integrated pest management: a case
study of the grasshopper integrated pest management project. J
Agric Entomol 12:229–240

Boller EF, Avilla J, Jörg E, Malavolta C, Wijnands F, Esbjerg P (2004)
Integrated production: principles and technical guidelines, 3rd ed.
IOBC WPRS Bulletin, 27, pp 1–30

Bouma E (2004) Decision support systems used in the Netherlands for
reduction in the input of active substances in agriculture. EPPO Bull
33:461–466. doi:10.1111/j.1365-2338.2003.00680.x

Bourgeois G, Plouffe D, Chouinards G et al (2008) The apple CIPRA
network in Canada: using real-time weather information to forecast
apple phenology, insect diseases and physiological disorders. Acta
Horticult 803:29–34

Branting LK, Hastings JD, Lockwood JA (1997) Integrating cases and
models for prediction in biological systems. AI Appl 11:29–48

Bregt AK (1997) GIS support for precision agriculture: problems and
possibilities. Ciba Found Symp 210:1730179. doi:10.1002/
9780470515419.ch11

Brown JH (1984) On the relationship between abundance and distribution
of species. Am Nat 124:255–279

Cairns DM, Lafon CW, Andrew GB, Waldron JD, Tchakerian M,
Coulson RN (2008) Simulationmodeling as a tool for understanding
the landscape ecology of southern pine beetle infestation in southern
Appalachian forest. Geogr Compass 2(3):580–599. doi:10.1111/j.
1749-8198.2008.00098.x

Caracciolo C, StellatoA,MorshedA et al. (2012) The AGROVOC linked
dataset. Editors: Pasa; Hitzler, Kno.e.sis Centre: Wright State
University, Dayton, Ohio, USA; Krzysztof Janowics, University of
California, Santa Barbara, California, USA. http://www.semantic-
web-journal.net/system/files/swj274_1.pdf. Accessed 18 May 2015

Carlson GA, Headley JC (1987) Economic aspects of integrated pest
management threshold determination. Plant Dis 71:459–462

Chakrabarti S, van der Berg M, Dom B (1999) Focused crawling: a new
approach to topic-specific web resource discovery. Computer
Networks 31:1623–1640. doi:10.1016/S1389-1286(99)00052-3

Cheke R, Tratalos JA (2007) Migrations, patchiness and population pro-
cesses illustrated by two migrant pest. Bioscience 57:145–154. doi:
10.1641/B570209

Chi TTN, Yamada R (2002) Factors affecting farmers’ adoption of tech-
nologies in farming systems: a case study in OMon district, Can Tho
province, Mekong Delta. Omonicre 10:94–100. doi:10.5539/jas.
v4n2p139

Coulson RN, SaundersMC (1987) Computer-assisted decisionmaking as
applied to entomology. AnnRev Entomol 32:415–437. doi:10.1146/
annurev.en.32.010187.002215

Coulson N, Saounders C, Loh DK et al (1989) Knowledge systems en-
vironment for integrated pest management in forest landscapes: the
southern pine beetle. Bull Entomol Soc Am 34:26–32. doi:10.1093/
besa/35.2.26

Cowell L, Smith B (2010) Infectious disease ontology. In: Sintchenko V
(ed) Infectious disease informatics. Springer, New York, pp 373–
395

Croft BA, Michels MF, Rice RE (1980) Validation of a PETE timing
model for the oriental fruit moth in Michigan and central
California (Lepidoptera: Olethreutidae). Great Lakes Entomol 13:
211–217

Cross, Dickler (1994) Guidelines for integrated production of pome fruits
in Europe: IOBC technical guideline III. IOBC/WPRS Bull 17:1–8

Damos P (2013a) Current issues in integrated pest management of
Lepidoptera pest threats in industrial crop models. Nova Science,
New York, pp 45–86

Damos (2013b) Semantics and emergent web3 technologies: modern
challenges for integrated fruit production systems towards interna-
tionalization. Integrated protection of fruit crops. IOBC-WPRS Bull
91:133–142

1368 P. Damos

http://nature.berkeley.edu/%7Emiguel-alt/indigenous_and_modern_approaches.html
http://nature.berkeley.edu/%7Emiguel-alt/indigenous_and_modern_approaches.html
http://nature.berkeley.edu/%7Emiguel-alt/indigenous_and_modern_approaches.html
http://dx.doi.org/10.1094/PHYTO-95-1412
http://dx.doi.org/10.1094/PHYTO-95-1412
http://dx.doi.org/10.2134/CM-2014-0020-MG
http://dx.doi.org/10.2134/CM-2014-0020-MG
http://dx.doi.org/10.1590/S1519-566X2003000300001
http://dx.doi.org/10.1590/S1519-566X2003000300001
http://dx.doi.org/10.1016/j.compag.2003.12.003
http://dx.doi.org/10.1146/annurev.en.28.010183.000515
http://dx.doi.org/10.1016/0308-521X(89)90091-7
http://dx.doi.org/10.1016/0308-521X(89)90091-7
http://dx.doi.org/10.1111/j.1365-2338.2003.00680.x
http://dx.doi.org/10.1002/9780470515419.ch11
http://dx.doi.org/10.1002/9780470515419.ch11
http://dx.doi.org/10.1111/j.1749-8198.2008.00098.x
http://dx.doi.org/10.1111/j.1749-8198.2008.00098.x
http://www.semantic-web-journal.net/system/files/swj274_1.pdf
http://www.semantic-web-journal.net/system/files/swj274_1.pdf
http://dx.doi.org/10.1016/S1389-1286(99)00052-3
http://dx.doi.org/10.1641/B570209
http://dx.doi.org/10.5539/jas.v4n2p139
http://dx.doi.org/10.5539/jas.v4n2p139
http://dx.doi.org/10.1146/annurev.en.32.010187.002215
http://dx.doi.org/10.1146/annurev.en.32.010187.002215
http://dx.doi.org/10.1093/besa/35.2.26
http://dx.doi.org/10.1093/besa/35.2.26


Damos P, Karabatakis S (2013) Real time pest modelling through the
world wide web: decision making from theory to praxis. Integ
Protec fruit crops IOBC-WPRS Bull 91:253–258

Damos P, Savopoulou-Soultani M (2008) Temperature dependent bio-
nomics and modeling of Anarsia lineatella in the laboratory. J Eco
Entomol 101:1557–1567. doi:10.1603/0022-0493(2008)101
[1557:TBAMOA]2.0.CO;2

Damos P, Savopoulou-Soultani M (2010) Development and statistical
evaluation of models in forecasting major lepidopterous peach pest
complex for integrated pest management programs. Crop Prot 29:
1190–1199. doi:10.1016/j.cropro.2010.06.022

Damos P, Savopoulou-Soultani M (2011) Microlepidoptera of economic
significance in fruit production: challenges, constrains and future
perspectives for integrated pest management. In: Caterruccio R
(ed) Moths: types, ecological significance and control methods.
Nova Science, New York, pp 75–113

Damos P, Savopoulou-Soultani M (2012) Temperature-driven models for
insect development and vital thermal requirements. Psyche. doi:10.
1155/2012/123405

Damos P, Oikonomou M, Bratsas Ch, Antoniou I (2012) Agrosemantics
knowledge representation via open linked data (OLD) cloud: a case
study in integrated crop production. Proceedings of ESDO Mibes
Congr., 25–27, Mai 2012, pp 106–118 (abstract in Greek) ISBN:
978-960-9510-05-9.

d’Aquin M et al (2008) Toward a new generation of semantic web appli-
cations. IEEE Intell Syst 23:20–28. doi:10.1109/MIS.2008.54

Dent D (1995) Integrated pest management. Chapman and Hall, London,
1994

Deraman AB, Shamsul Bahar AK (2000) Bringing the farming commu-
nity into the Internet age: a case study. Inf Sci 3:5–10

Dillon ML, Fitt GP (1990) HEAPS: a regional model of Heliothis popu-
lation dynamics. In: Proceedings of the Fifth Australian Cotton

Conference, 8–9 August, Broadbeach, Queensland, Australia.
Australian Cotton Grower’s Research Association, Australia, pp.
337–344

Don Wauchope R, Ahuja LR, Arnold JG, Bigner R, Lowrance R, van
Genuchten MT et al (2003) Software for pest-management science:
computer models and databases from the United States Department
of Agriculture-Agricultural Research Service. Pest Man Sci 59:691–
698. doi:10.1002/ps.682

Duggal N, Siddiqi Z (2008) Providing decision making analytical tools to
IPM managers through we based: electronic pest monitoring, and
pesticide use reporting system. In: Robinson WH, Bajomi D (eds)
Proceedings of the sixth international conference on urban pests,
2008 Printed by OOK-Press Kft., H-8200 Veszprém, Pápai út 37/
a, Hungary.

Ehler LE (2006) Integrated pest management (IPM): definition, historical
development and implementation, and other IPM. Pest Manag Sci
62:787–789. doi:10.1002/ps.1247

Elliott NC, Royer TA, Giles KX, Kindler SD, Porter DR, Elliott DT,
Waits DA (2004) Aweb-based decision support system for manag-
ing greenbugs in wheat. Crop Manag. doi:10.1094/CM-2004-1006-
01-MG

Ferguson AW, Nevard LM, Clark SJ, Cook SM (2015) Temperature-
activity relationships in Meligethes aeneus: implications for pest
management. Pest Manag Sci 71:459–466. doi:10.1002/ps.3860

Fernandes JMCF, PavanW, Sanhueza RM (2011) SISALERT—a generic
web-based plant disease forecasting system. In: Salampasis M,
Matopoulos A (eds) Proceedings of the international conference
on information and communication technologies for sustainable
agri-production and environment (HAICTA 2011), Skiathos, 8–11
September, 2011

Fitt GP, DillonML, Hamilton JG (1995) Spatial dynamics ofHelicoverpa
populations in Australia: simulation modeling and empirical studies
of adult movement. Comp Elect Agric 13:177–192. doi:10.1016/
0168-1699(95)00024-X

Flint ML, van den Bosch R (1981) Introduction to integrated pest man-
agement. Plenum, New York

Frahm J, Volk T, Johnen A (1996) Development of the PRO_PLANT
decision-support system for plant protection in cereals, sugarbeet
and rape. EPPO Bull 26:609–622. doi:10.1111/j.1365-2338.1996.
tb01504.x

Garret KA, Forbes GA, Savary S, Skelsey P, Sparks AH, Valvida C et al
(2011) Complexity in climate change impacts: an analytical frame-
work for analysis of effects mediated by plant disease. Plant Pathol
60:15–30. doi:10.1111/j.1365-3059.2010.02409.x

Gent DH, De Wolf E, Pethybridge SJ (2011) Perceptions of risk, risk
aversion, and barriers to adoption of decision support systems and
integrated pest management: an introduction. Phytopathology 101:
640–643. doi:10.1094/PHYTO-04-10-0124

Goodell PB, Richerd EP, Thomos A, Kerby (1990) CALEX/cotton: an
integrated expert system for cotton production and management.
Calif Agric 44:18–21

Goumopoulos Ch., Kameas A D (2009) An ontology-driven system ar-
chitecture for precision agriculture applications. Int. J. Metadata,
Semantics and Ontologies 4:72–84. doi: 10.1504/IJMSO.2009.
026256

Hannon B, Ruth M (2009) Dynamic modeling of diseases and pests.
Springer, New York. doi:10.1007/978-0-387-09560-8

Hastings JD, Latchininsky AV, Schellb SP (2010) CARMA: scalability
with approximate-model-based adaptation. In: Yang A, Voinov A,
Rizzoli, Filatova T (eds) International congress on environmental
modelling and software modelling for environment’s sake, fifth bi-
ennial meeting, Ottawa, Canada David A. Swayne, Wanhong http://
www.iemss.org/iemss2010/index.php?n=Main.Proceedings.
Accessed 18 May 2015

Haverkort AJ, Top JL (2010) The potato ontology: delimitation of the
domain, modelling concepts, and prospects of performance. Potato
Res 54:119–136. doi:10.1007/s11540-010-9184-8

Hearn AB, Bange MP (2002) SIRATAC and CottonLOGIC: persevering
with DSSs in the Australian cotton industry. Agr Sys 74:27–56

Higley LG, Pedigo LP, Ostlie KR (1986) DEGDAY: a program for cal-
culating degree-days, and assumptions behind the degree-day ap-
proach. Environ Entomol 15:999–1016. doi:10.1093/ee/15.5.999

Huang Y, Lan Y, Westbrook JK, Hoffman WC (2008) Remote sensing
and GIS applications for precision area-wide pest management: im-
plications for homeland security. Geospat Tech Homel Secur 94:
241–255. doi:10.1007/978-1-4020-8507-9_12

Jacobs I, Walsh N (2004) Architecture of the world wide web, volume
one—W3C recommendation. http://www.w3.org/TR/webarch/.
Accessed 18 May 2015

Johnen A, Meier H (2000) Aweather-based decision support system for
managing oilseed rape pests. Proceedings of the British Crop
Protection Conference, Pest and Diseases, Brighton, November
2002, pp13-16

Johnen A, von Richthofen JS (2011) The decision-support system
proPlant expert: a computer-based tool for integrated pest manage-
ment used in Europe. Bull IOBC/WPRS 96:99–105

Johnen A, Williams IH, Ferguson AW, Büchs W, Klukowski Z, Luik A,
Nilsson C, Ulber B (2006) MASTER: validation of existing pheno-
logical models of the proPlant DSS for key pests in winter oilseed
rape in different climatic areas in Europe and prospects for IPM.
International symposium on integrated pest management in oilseed
rape. Göttingen, Germany. BCPC, Hampshire http://toc.
proceedings.com/00287webtoc.pdf. Accessed May 2018

Johnen A,Williams IH, Nilsson C, Klukowski Z, Luik A, Ulber B (2010)
The proPlant decision support system: phenological models for the
major pests of oilseed rape and their key parasitoids in Europe. In:
Williams IH (ed) Biocontrol-based integrated management of oil-
seed rape pests. Springer, Dordrecht, pp 381–403

Jones JW (1989) Integrating models with expert systems and data bases
for decision making. In: Weiss A (ed) Climate & agriculture—

Web-based decision support systems for IPM 1369

http://dx.doi.org/10.1603/0022-0493(2008)101%20%5B1557:TBAMOA%5D2.0.CO;2
http://dx.doi.org/10.1603/0022-0493(2008)101%20%5B1557:TBAMOA%5D2.0.CO;2
http://dx.doi.org/10.1016/j.cropro.2010.06.022
http://dx.doi.org/10.1155/2012/123405
http://dx.doi.org/10.1155/2012/123405
http://dx.doi.org/10.1109/MIS.2008.54
http://dx.doi.org/10.1002/ps.682
http://dx.doi.org/10.1002/ps.1247
http://dx.doi.org/10.1094/CM-2004-1006-01-MG
http://dx.doi.org/10.1094/CM-2004-1006-01-MG
http://dx.doi.org/10.1002/ps.3860
http://dx.doi.org/10.1016/0168-1699(95)00024-X
http://dx.doi.org/10.1016/0168-1699(95)00024-X
http://dx.doi.org/10.1111/j.1365-2338.1996.tb01504.x
http://dx.doi.org/10.1111/j.1365-2338.1996.tb01504.x
http://dx.doi.org/10.1111/j.1365-3059.2010.02409.x
http://dx.doi.org/10.1094/PHYTO-04-10-0124
http://dx.doi.org/10.1504/IJMSO.2009.026256
http://dx.doi.org/10.1504/IJMSO.2009.026256
http://dx.doi.org/10.1007/978-0-387-09560-8
http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings
http://www.iemss.org/iemss2010/index.php?n=Main.Proceedings
http://dx.doi.org/10.1007/s11540-010-9184-8
http://dx.doi.org/10.1093/ee/15.5.999
http://dx.doi.org/10.1007/978-1-4020-8507-9_12
http://www.w3.org/TR/webarch/
http://toc.proceedings.com/00287webtoc.pdf
http://toc.proceedings.com/00287webtoc.pdf


system approaches to decision making, Charleston Sc 5–7
March 1989, pp 194–211

Jonew VP, Brunner JF, Grove GG, Petit B, Tangen GV, Jones WE (2010)
Aweb based decision support system to enhance IPM programs in
Washington tree fruit. Pest Manag Sci 66:587–595. doi:10.1002/ps.
1913

Jorg E, Racca P, Preib U et al (2007) Control of Colorado potato beetle
with the SIMPLEP decision support system. EPPO Bull 37:353–
358

Kamalak P, Hemalatha K (2012)AgroGenius: an emergent expert system
for querying agricultural clarification using data mining technique.
Res Invent Int J Eng Sci 1:34–39

Karabatakis S, Damos P (2013) Supporting integrated pest management
using open data networks and information technology through the
world wide web. In: Plant-insect ecosystems (P-IE) section sympo-
sium: global community-driven linked data for integrated pest man-
agement, pest risk analysis and biodiversity conservation through
the world wide web. ESA 60th Annual meeting, Nov 11–14,
Knoxville Tennessee, USA

Kaundal R, Kapoor AS, Raghava GPS (2006) Machine learning tech-
niques in disease forecasting: a case study on rice blast prediction.
BMC Bioinformatics. doi:10.1186/1471-2105-7-485

Khaliq A, Javed M, Sohail M, Sagheer (2014) Environmental effects on
insects and their population dynamics. J Entomol Zool Stud 2:1–17

Kleinhenz B, Rossberg D (2008) Structure and development of decision-
support systems and their use by the State Plant Protection Services
in Germany. EPPO Bull 30:93–97. doi:10.1111/j.1365-2338.2000.
tb00858.x

Knight JD (1997) The role of decision support systems in integrated crop
production. Agric Ecosyst Environ 64:157–163

Knight JD, CammelME (1994) A decision support system for forecasting
infestations of the black bean aphid, Aphis fabae Scop., on spring-
sown field beans, Vicia faba. Comp Electr 10:269–279. doi:10.
1016/0168-1699(94)90046-9

Koenderink NJJR, Top JL, Van Vliet LJ (2005) Expert-based ontology
construction: a case study in horticulture. In: Proceedings of 16th
international workshop on database and expert systems applications
(DEXA’05), 2005. doi: 10.1109/DEXA.2005.87 DOI:10.1109/
DEXA.2005.87#blank

Kohle S, Kamal R, Saini HS, Gupta GK (2011) Aweb-based intelligent
disease-diagnosis system using a new fuzzy-logic based approach
for drawing the inferences in crops. J Comp Electron Agric 76:16–
27. doi:10.1016/j.compag.2011.01.002

Kontodimas DC, Eliopoulos PA, Stathas GJ, Economou LP (2004)
Comparative temperature-dependent development of Nephus

includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera:
Coccinellidae) preying on Planococcus citri (Risso) (Homoptera:
Pseudo-coccidae): evaluation of a linear and various non-linear
models using specific criteria. Environ Entomol 33:1–11. doi:10.
1603/0046-225X-33.1.1

Kos K, Tschope B, Jorg E, Trdan S (2009) Testing the suitability of
SIMLEP decision support system for the protection of potato
against Colorado potato beetle (Leptinotarsa decemplineata

[Say], Coleoptera, Chrysomelidae) in Slovenia. Act Agric Slov
93:93–014

Lefebvre M, Langrel SRH, Gomez-y-Paloma S (2015) Incentives
and policies for integrated pest management in Europe: a
review. Agron Sustain Dev 35:27–45. doi:10.1007/s13593-
014-0237-2

Lewis WJ, van Lentern JC, Phatak SC, Tumlinson JH (1997) A total
system approach to sustainable pest management. PNAS 94:
12243–12248

Liao SH (2005) Expert system methodologies and applications—a de-
cade review from 1995 to 2004. Expert Syst Appl 28:93–103. doi:
10.1016/j.eswa.2004.08.003

Lichtfouse E, Navarrete M, Debaeke P et al (2009) Agronomy for sus-
tainable agriculture. A review. Agron Sustain Dev 29:1–6. doi:10.
1051/agro:2008054

Logan JA, Weber LA (1989) Population model design system (PMDS):
user’s guide. Department of Entomology, Virginia Polytechnic
Institute and State University, Blackburg, Virginia.

Logan JA, Wollkind DJ, Hoyt SC, Tanigoshi LK (1976) An analytic
model for description of temperature dependent rate phenomena in
arthropods. Environ Entomol 5:1133–1140. doi:10.1093/ee/5.6.
1133

Lokers R, Konstantopoulos S, Stellato A, Knapen R, Janssen S (2014)
Design innovative linked open data and semantic technologies for
agro-environmental modeling. In: Ames DP, Quinn NWT, Rizzoli
AE (eds) Proceedings of the 7th international congress on environ-
mental modelling and software 2014, June 15–19, San Diego,
California, USA. ISBN: 978-88-9035-744-2

Magarey PA, Wachtel MF, Weir PC, Seem RC (1991) A computer-based
simulator for rationale management of grapevine downy mildew
Plasmopara viticola. Plant Prot Q 6:29–33

Magarey RD, Fowler GA, Borchedt DM et al (2007) NAPPFAST: an
Internet system for the weather based mapping of plant pathogens.
Plant Dis 91:365–345. doi:10.1094/PDIS-91-4-0336

McBratney A, Whelan B, Ancev T, Bouma J (2005) Future directions of
precision agriculture. Precis Agric 1:7–23. doi:10.1007/s11119-005-
0681-8

McRoberts N, Hall C, Madden LV, Hughes G (2011) Perceptions of
disease risk: from social construction of subjective judgments to
rational decision making. Phytopathology 101:654–665. doi:10.
1094/PHYTO-04-10-0126

Nguyen NC, Wegener M, Russel I (2006) Decision support systems in
Australian agriculture: state of the art and future development.
AFBM J 4:15–21

Nietschke BS, Magarey RD, Borchert DM et al (2009) A developmental
database to support insect phenology models. Crop Prot 26:1444–
1448

Norton GA, Mumford JD (1993) Decision tools for pest management.
CAB International, Oxford

Nutter FW (2007) The role of plant disease epidemiology in developing
successful integrated disease management programs. In: Clancio A,
Mukerji G (eds) General concepts in integrated pest and disease
management. Springer, Dordrecht, pp 45–79

Nutter FW, Parker JK (1997) Fitting disease progress curves using EPI-
MODEL. In: Francl L, Neher D (eds) Exercises in plant disease
epidemiology. APS, St. Paul, pp 24–28

Orellana FJ, Del Sargado J, Del Águila IM (2011) SAIFA: a web-based
system for integrated production of olive cultivation. Comput
Electron Agric 78:231–237. doi:10.1016/j.compag.2011.07.014

Page L, Brin S, Motwani R, Winograd T (1998) The PageRank citation
ranking: bringing order to the web. Technical report, Stanford
University, Stanford, CA. Congress on Modeling and Simulation,
Perth, Australia, 12–16 December 2011

Pajunen VI (1983) The use of physiological time in the analysis of insect
stage-frequency data. Oikos 40:161–165

Parry HR, Aurambout JP, Kriticos DJ (2011) Having your cake
and eating it: a modeling framework to combine process-
based population dynamics and dispersal simulation. In:
19th international congress on modelling and simulation,
Perth, Australia, 12–16 December

Patil SS, Dhandra BV, Angadi UB, Shankar AG, Joshi N (2009) Web
based expert system for diagnosis of micronutrients’ deficiencies in
crops. In: Proceedings of the World Congress on Engineering and
Computer Science 2009 Vol I WCECS 2009, October 20–22, 2009,
San Francisco, USA, http://www.iaeng.org/publication/
WCECS2009/WCECS2009_pp266-268.pdf. Accessed 18
May 2015

1370 P. Damos

http://dx.doi.org/10.1002/ps.1913
http://dx.doi.org/10.1002/ps.1913
http://dx.doi.org/10.1186/1471-2105-7-485
http://dx.doi.org/10.1111/j.1365-2338.2000.tb00858.x
http://dx.doi.org/10.1111/j.1365-2338.2000.tb00858.x
http://dx.doi.org/10.1016/0168-1699(94)90046-9
http://dx.doi.org/10.1016/0168-1699(94)90046-9
http://dx.doi.org/10.1109/DEXA.2005.87
http://dx.doi.org/10.1109/DEXA.2005.87%23blank
http://dx.doi.org/10.1109/DEXA.2005.87%23blank
http://dx.doi.org/10.1016/j.compag.2011.01.002
http://dx.doi.org/10.1603/0046-225X-33.1.1
http://dx.doi.org/10.1603/0046-225X-33.1.1
http://dx.doi.org/10.1007/s13593-014-0237-2
http://dx.doi.org/10.1007/s13593-014-0237-2
http://dx.doi.org/10.1016/j.eswa.2004.08.003
http://dx.doi.org/10.1051/agro:2008054
http://dx.doi.org/10.1051/agro:2008054
http://dx.doi.org/10.1093/ee/5.6.1133
http://dx.doi.org/10.1093/ee/5.6.1133
http://dx.doi.org/10.1094/PDIS-91-4-0336
http://dx.doi.org/10.1007/s11119-005-0681-8
http://dx.doi.org/10.1007/s11119-005-0681-8
http://dx.doi.org/10.1094/PHYTO-04-10-0126
http://dx.doi.org/10.1094/PHYTO-04-10-0126
http://dx.doi.org/10.1016/j.compag.2011.07.014
http://www.iaeng.org/publication/WCECS2009/WCECS2009_pp266-268.pdf
http://www.iaeng.org/publication/WCECS2009/WCECS2009_pp266-268.pdf


Pavan W, Fraisse CW, Peres NA (2010) Development of a web-based
disease forecasting system for strawberries. Comput Electron Agric
75:169–175. doi:10.1016/j.compag.2010.10.013

Perini A, Susi A (2004) Developing a decision support system for inte-
grated production in agriculture. Envir Mod Soft 19:821–829. doi:
10.1016/j.envsoft.2003.03.001 DOI:10.1016%2Fj.envsoft.2003.03.
001

Phelps K, Collier RH, Reader RJ, Finch S (1993) Monte Carlo simulation
method for forecasting the timing of pest insect attacks. Crop Prot
12:335–341. doi:10.1016/0261-2194(93)90075-T

Phelps K, Reader RJ, Hinde CJ (1999) HIPPO—flexible software for the
construction, integration and distribution of biologically realistic
models. Asp Appl Biol 55:81–88

Philomine R, Tauro CJM, Ganesan N (2012) Design and development of
fuzzy expert system for integrated disease management in finger
millets. IJCA 56:31–36. doi:10.5120/8857-2815

Plant RE, Mangel M (1987) Modeling and simulation in agricultural pest
management. SIAM Rev 29:235–236. doi:10.1137/1029043

Plénet D, Giauque P, Navarro et al (2009) Using on-field data to develop
the EFI information system to characterise agronomic productivity
and labour efficiency in peach (Prunus persica L. Batsch) orchards
in France. Agric Syst 100(1–3):1–10. doi:10.1016/j.agsy.2008.11.
002

Prasad GY, Prabhakar M (2012) In: Abrol DP, Shankar U (eds) Integrated
pest management: principles and practice. CAB International

Prasad R, Ranjan KR, Sinha AK (2006) AMRAPALIKA: an expert sys-
tem for the diagnosis of pests, diseases, disorders in Indian mango.
KBS 19:9–21

Pruess KP (1983) Day-degree methods for pest management. Environ
Entomol 12:613–619. doi:10.1093/ee/12.3.613

Rehman A, Shaikh ZA (2011) ONTAgri: scalable service oriented agri-
culture ontology for precision farming. ABE 1–2:411–413

Rousse P, Gourdon F, Roubaud M, Chiroleu F, Quilici S (2009) Biotic
and abiotic factors affecting the flight activity ofFopius arisanus, an
egg-pupal parasitoid of fruit fly pests. Environ Entomol 38:896–903

Saini HS, Kamal R, Sharman AN (1998) SOYPEST: an EXpert system
for insect pest management in soybean crop. CSI Communications,
April, pp 21–24

Saini HS, Kamal R, Sharma AN (2002) Web based fuzzy expert system
for integrated pest management in soybean. Int J Inf Technol 8:55–
74

Samietz J, Graff B, Höhn H et al (2008) SOPRA: phenology modeling of
major orchard pests—from biological basis to decision support.
Acta Horticult 803:35–42

Seem R (2001) Plant disease forecasting in the era of information tech-
nology. In: Plant disease forecast: information technology in plant
pathology. Kyongju, Republic of Korea

Sharpe PJH, Curry GL, DeMichele DW, Cole CL (1977) Distribution
model of organism development times. J Theor Biol 66:21–38.
doi:10.1016/0022-5193(77)90309-5

Singh U, Brink JE, Thornton PK, Christianson CB (1993) Linking crop
models with geographic information system to assist decision mak-
ing: a prototype for the Indian semiarid tropics. International
Fertilizer Development Center, Muscle Shoals, Alabama, USA.
Paper series - IFDC P-19.39 p.

Sini M (2009) Semantic technologies at FAO. Agricultural information
management standards, International Society for Knowledge
Organization (ISKO), 3 April 2009

Siraj F, Nureize A (2006) Integrated pest management system using fuzzy
expert system, In: Proceedings of knowledge management interna-
tional conference & exhibition (KMICE), Malaysia (2006), pp 169–
176

Soergel D, Lauser B, Liang A, Fisseha F, Keizer J, Katz S (2004)
Reengineering thesauri for new applications: the AGROVOC exam-
ple, J Dig Info vol. 4. http://www.fao.org/3/a-af234e.pdf. Accessed
18 May 2015

Sporelder M, Simon R, Gonzales JC et al (2009) Ilcm—insect life cycle
modeling: a software package for developing temperature based
insect phenology models with applications for regional and global
risk assessments and mapping. International Potato Centre, Lima

Stephens AEA, Denter PR (2005) Thrips palmi-potential survival and
population growth in New Zealand. N Z Plant Prot 58:24–30

Stern VM, Smith RF, van den Bosch R, Hagen KS (1959) The integrated
control concept. Hilgardia 29:81–101. doi:10.3733/hilg.
v29n02p081

Stone ND, Saarenma H (1988) Expert systems and IPM: an overview.
71–87. In: Cavalloro, R, Deluchi C (eds) Proceedings of the
Parasitis 88 Congress, Spain. October 25–28, 1988.

Strand JF (2000) Some agrometeorological aspects of pest and disease
management for the 21st century. Agric For Meteorol 103:73–82.
doi:10.1016/S0168-1923(00)00119-2

Strickland RM, Ess DR, Parson SD (1998) Precision farming and preci-
sion pest management: the power of new crop production technol-
ogies. J Nematol 30:431–435

Sun J, Li S, Zhang L, Liu L, Zhao H, Yang J (2013) Ontology construc-
tion in tea pest domain. Linked data Knowl Graph 406:228–234

Sutherst RW, Maywald GF, Russell BL (1991) From CLIMEX to PESK
Y, a generic expert system for pest risk assessment. OEPP Bull 21:
595–608

Sutherst RW, Maywald GF, Yonow T, Stevens PM (1999) CLIMEX:
predicting the effects of climate on plants and animals. CSIRO,
Collingwood, p 88

Taye MM (2010) Understanding semantic web and ontologies: theory
and applications. J Comp 2:182–191

Teng PS (1985) A comparison of simulation approaches to epidemic
modeling. Annu Rev Plant Physiol Plant Mol Biol 23:351–379.
doi:10.1146/annurev.py.23.090185.002031

The Plant Ontology Consortium (2002) The Plant Ontology Consortium
and plant ontologies. Comp Funct Genom 3:137–142. doi:10.1002/
cfg.154 DOI:10.1002%2Fcfg.154#pmc_ext

Tilman D (1999) Global environmental impacts of agricultural expan-
sion: the need for sustainable and efficient practices. PNAS 96:
5995–6000. doi:10.1073/pnas.96.11.5995

Tilman D, Fargione J, Wolff B et al (2001) Forecasting agriculturally
driven global environmental change. Science 292:281–284. doi:
10.1126/science.1057544

Trnka M, Muska F, Semaradova D et al (2007) European corn borer life
stage model: regional estimates of pest development and spatial
distribution under present and future climate. Ecol Model 207:61–
84. doi:10.10165/j.ecolmodel.2007.04.014

Van den Bosh R, Stern VM (1969). The effect of harvesting practices on
insect populations in alfalfa. In: Komarek R (ed) Proc. Tall Timbers
Conf. on Ecol. Anim. Contr. Habitat Manag 1: 47–54

Van der Have TM (2008) Slaves to the Eyring equation?: temperature
dependence of life-history characters in developing ectotherms.
Dissertation, Department of Environmental Sciences, Resource
Ecology Group, Wageningen University, The Netherlands, 2008.

Van Evert FK, Campbell GS (1994) Cropsyst—a collection of object-
oriented simulation-models of agricultural systems. Agron J 86:
325–331. doi:10.2134/agronj1994.00021962008600020022x

Van Maanen A, Xu M (2003) Modeling plant disease epidemics. Eur J
Plant Pathol 109:669–682

Visser U, Voges U, Streit U (1994). Integration of AI-, database- and
telecommunication-techniques for the plant protection expert sys-
tem PRO PLANT (1994). In: Industrial and engineering applica-
tions of artificial intelligence and expert systems, vol 7 of
International Conference of IEA/AIE, 367–374. Gordon and
Breach Science Publisher, NJ, 1994

Wagner TL, Wu HI, Sharpe PJH, Schoolfield RM, Coulson RN (1984a)
Modelling insect development rates: a literature review application
of a biophysical model. Ann Entomol Soc Am 77:208–225. doi:10.
1093/aesa/77.2.208

Web-based decision support systems for IPM 1371

http://dx.doi.org/10.1016/j.compag.2010.10.013
http://dx.doi.org/10.1016/j.envsoft.2003.03.001%20DOI:10.1016/j.envsoft.2003.03.001
http://dx.doi.org/10.1016/j.envsoft.2003.03.001%20DOI:10.1016/j.envsoft.2003.03.001
http://dx.doi.org/10.1016/0261-2194(93)90075-T
http://dx.doi.org/10.5120/8857-2815
http://dx.doi.org/10.1137/1029043
http://dx.doi.org/10.1016/j.agsy.2008.11.002
http://dx.doi.org/10.1016/j.agsy.2008.11.002
http://dx.doi.org/10.1093/ee/12.3.613
http://dx.doi.org/10.1016/0022-5193(77)90309-5
http://dx.doi.org/10.3733/hilg.v29n02p081
http://dx.doi.org/10.3733/hilg.v29n02p081
http://dx.doi.org/10.1016/S0168-1923(00)00119-2
http://dx.doi.org/10.1146/annurev.py.23.090185.002031
http://dx.doi.org/10.1002/cfg.154%20DOI:10.1002/cfg.154%23pmc_ext
http://dx.doi.org/10.1002/cfg.154%20DOI:10.1002/cfg.154%23pmc_ext
http://dx.doi.org/10.1073/pnas.96.11.5995
http://dx.doi.org/10.1126/science.1057544
http://dx.doi.org/10.10165/j.ecolmodel.2007.04.014
http://dx.doi.org/10.2134/agronj1994.00021962008600020022x
http://dx.doi.org/10.1093/aesa/77.2.208
http://dx.doi.org/10.1093/aesa/77.2.208


Wagner TL, Wu HI, Sharpe PJH, Coulson RN (1984b) Modelling distri-
butions of insect development time: a literature review and applica-
tion of the Weibull function. Ann Entomol Soc Am 77:475–487.
doi:10.1093/aesa/77.5.475

Wagner TL, Wu HI, Feldman RM, Sharpe PJH, Coulson RN (1985)
Multiple-cohort approach for simulating development of insect pop-
ulations under variable temperatures. Ann Entomol Soc Amer 78:
691–704. doi:10.1093/aesa/78.6.691

Waheed IB, Coop L, Kogan M (2003) Integrated pest manage-
ment and internet-based delivery systems. Neotrop Entomol
32:373–83

Willocquet L, Savary S, Fernandez L et al (2002) Structure and
validation of RICEPEST, a production situation-driven, crop
growth model simulating rice yield response to multiple pest
injuries for tropical Asia. Ecol Mod 153:247–268. doi:10.
1016/S0304-3800(02)00014-5

Xinxing L, Zhang L, Fu Z et al (2012) The corn disease remote diagnostic
system in China. J Food Agric Environ 10:617–620

Xu X (2006) Modeling and interpreting disease progress in time. In:
Cooke BM, Jones DG, Kayge B (eds) The epidemiology of plant
diseases. Springer, Dordrecht, pp 215–238

Yelapure SJ, Kulkarni RV (2012) Literature review on expert system in
agriculture. Int J Comp Sci Inf Tech 3:5086–5089

Youen J, TwengströmE, SigvaldR (1996)Calibration and verification of risk
algorithms using logistic regression. Eur J Plant Pathol 102:847–854

Zalom F, Strand J (1990) Alternatives to targeted pesticides: the DANR
database. Calif Agric 44:16–20. doi:10.3733/ca.v044n04p16

Zhang S, Goddard S (2007) A software architecture and framework for
web-based distributed decision support systems. DSS 43:1133–
1150. doi:10.1016/j.dss.2005.06.001

Zhang W, Ricketts TH, Kremen C et al (2008) Ecosystem services and
dis-services to agriculture. Ecol Econ 64:253–260. doi:10.1016/j.
ecolecon.2007.02.024

Zheng Y, Qian P, Li Z (2012) Construction of the ontology-based agri-
cultural knowledge management system. J Int Agric 11:700–709.
doi:10.1016/S2095-3119(12)60059-8

1372 P. Damos

http://dx.doi.org/10.1093/aesa/77.5.475
http://dx.doi.org/10.1093/aesa/78.6.691
http://dx.doi.org/10.1016/S0304-3800(02)00014-5
http://dx.doi.org/10.1016/S0304-3800(02)00014-5
http://dx.doi.org/10.3733/ca.v044n04p16
http://dx.doi.org/10.1016/j.dss.2005.06.001
http://dx.doi.org/10.1016/j.ecolecon.2007.02.024
http://dx.doi.org/10.1016/j.ecolecon.2007.02.024
http://dx.doi.org/10.1016/S2095-3119(12)60059-8

	Modular structure of web-based decision support systems for integrated pest management. A review
	Abstract
	Introduction
	The significance of integrated pest management for sustainable agriculture
	What is the role of plant pest and disease models for decision support?
	Data processing and forecasting algorithms: modus operandi of computer-aided decision support
	Interface of web-based decision support systems
	Ontology web programming: the next generation of web-based decision support?
	Instances of web-based decision support for integrated pest management
	Challenges and constrains of decision support systems
	Vision of the future of decision support system
	Conclusion
	References


