
Journal of Artificial Intelligence Research 69 (2020) 963–1021 Submitted 05/2020; published 11/2020

Modular Structures and Atomic Decomposition in Ontologies

Chiara Del Vescovo chiara.delvescovo@bbc.co.uk

British Broadcasting Corporation
Data Management Team, Platform Data
MediaCityUK, Salford, M50 2BH, UK

Matthew Horridge matthew.horridge@stanford.edu

Stanford Center for Biomedical Informatics Research
Stanford University
California, 94305, USA

Bijan Parsia bijan.parsia@manchester.ac.uk

Uli Sattler uli.sattler@manchester.ac.uk

School of Computer Science
University of Manchester
Manchester M13 9PL, UK

Thomas Schneider thomas.schneider@uni-bremen.de

Fachbereich 3 Mathematik/Informatik
Universität Bremen
Postfach 330 440, 28334 Bremen, Germany

Haoruo Zhao haoruo.zhao@manchester.ac.uk

School of Computer Science

University of Manchester

Manchester M13 9PL, UK

Abstract

With the growth of ontologies used in diverse application areas, the need for module
extraction and modularisation techniques has risen. The notion of the modular structure
of an ontology, which comprises a suitable set of base modules together with their logical
dependencies, has the potential to help users and developers in comprehending, sharing,
and maintaining an ontology. We have developed a new modular structure, called atomic
decomposition (AD), which is based on modules that provide strong logical properties,
such as locality-based modules. In this article, we present the theoretical foundations of
AD, review its logical and computational properties, discuss its suitability as a modular
structure, and report on an experimental evaluation of AD. In addition, we discuss the
concept of a modular structure in ontology engineering and provide a survey of existing
decomposition approaches.

1. Introduction

In artificial intelligence, knowledge representation is a prominent research topic that employs
logic-based formalisms to make machines able to memorise, access, and process knowledge.
In the past decades, the term ontology began to be widely used to denote a computer-
processable description of the knowledge about a domain of interest, its concepts, and their
interrelations. A major class of ontology languages is based on description logics, for short
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DLs (Baader, Calvanese, McGuinness, Nardi, & Patel-Schneider, 2007), which generally are
decidable fragments of first-order logic. Hence, an ontology can be viewed as a finite set
of first-order formulas, called axioms. In particular, DLs provide the logical basis for the
popular web ontology language OWL (Horrocks, Patel-Schneider, & van Harmelen, 2003;
Cuenca Grau, Horrocks, Motik, Parsia, Patel-Schneider, & Sattler, 2008), which is a renowned
standard (World Wide Web Consortium, 2012).

Ontologies are used in manifold applications in areas such as knowledge representation
and management, the semantic web, biology, medicine, linguistics, and economics (Poli,
Healy, & Kameas, 2010), where they define unambiguous vocabularies, represent background
knowledge, and facilitate knowledge sharing and integration. Particularly in medicine, large
and comprehensive ontologies have been developed, prominent examples being SNOMED CT,
the Systematized Nomenclature of Medicine—Clinical Terms (Spackman, Campbell, & Côté,
1997) containing over 400,000 logical axioms, and NCIT, the National Cancer Institute’s
Thesaurus (Golbeck, Fragoso, Hartel, Hendler, Oberthaler, & Parsia, 2003) with more than
200,000 logical axioms. Both these ontologies cover a wide range of subjects, such as diseases,
symptoms, operations, treatments, devices and drugs.

Large ontologies pose serious challenges not only to the best optimised reasoners, but to all
constituents of the ontology development process, such as navigation, editing, comprehension,
and debugging. In addition, large ontologies are simply too broad for many purposes: for
example, a user might be interested only in one medical speciality, say cardiology. It is
therefore desirable to design specific applications, such as diagnostic decision support for
cardiologists, in a way that they focus only on the relevant part of the ontology. For this
reason, and following the design principle separation of concerns borrowed from modular
programming, strong efforts have been made to develop, maintain, and release ontologies
organised into a modular structure, that is, a decomposition of an ontology into coherent
fragments that may, or may not, loosely interact in a well-defined, meaningful way.

Module extraction and modularisation for ontologies have received great attention in
recent years, in both theory and practice (Stuckenschmidt, Parent, & Spaccapietra, 2009).
A-priori approaches aim at imposing a modular structure on an ontology to foster its modular
development (Bao, Voutsadakis, Slutzki, & Honavar, 2009; Serafini & Tamilin, 2009; Cuenca
Grau, Parsia, & Sirin, 2009), while a-posteriori approaches provide techniques for module
extraction and modularisation of existing monolithic ontologies (see, e.g., Cuenca Grau,
Parsia, Sirin, & Kalyanpur, 2006; Konev, Lutz, Walther, & Wolter, 2008; Cuenca Grau,
Horrocks, Kazakov, & Sattler, 2009; Konev, Lutz, Ponomaryov, & Wolter, 2010).1 The
scenario described above and many similar ones clearly require a-posteriori approaches,
simply because large ontologies currently exist in a monolithic, i.e., non-modular form. The
a-posteriori approaches usually solve one of two tasks: GetOne, i.e., the extraction of a single
module, or GetAll, i.e., the extraction of all modules or, more economically, the computation
of the modular structure of an ontology, which comprises a representative subset of all
modules together with their logical interactions. This modular structure has the potential
to help users better understand the ontology, to aid ontology engineers in collaboratively
developing it, and to optimise tool support, such as (incremental) reasoning. In this article,

1. Throughout this article, we use the term ‘module’ in a strict sense, assuming that a module provides
logical guarantees such as coverage, i.e., the preservation of entailments over a given signature (Ghilardi,
Lutz, & Wolter, 2006; Konev, Lutz, Walther, & Wolter, 2009).
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we are concerned with a-posteriori approaches of the GetAll category, i.e, the computation of
the modular structure of a monolithic ontology.

The search for a semantically grounded modular structure can be traced back to the
1980s, when the fundamental concepts of update and belief revision of a logical theory were
investigated (Alchóurron, Gärdenfors, & Makinson, 1985). In the classical belief revision
task, the input is a theory, given by a finite set of axioms (formulas in propositional logic),
and an update: a single axiom that is possibly inconsistent with the theory. The goal is to
modify the theory such that the inconsistency is resolved, and to add the update. In this
context, the following natural question arises: which part of the theory is affected by the
update? Parikh (1999) defined the notion of a signature decomposition for a logical theory,
which partitions the signature (i.e., the non-logical vocabulary) of the theory and thereby
induces a partition of the theory into signature-disjoint parts. The last condition guarantees
that parts which do not share terms with the update can remain unchanged. Intuitively, the
parts can be regarded as distinct, independent ‘topics’ of the theory.

Signature decomposition was refined by Konev et al. (2010) for OWL ontologies, triggered
by the observation that certain terms occur in many axioms of an ontology, thus prohibiting a
decomposition into signature-disjoint parts. For example, the role (binary relation) hasPart
is typically used to define concepts belonging to various topics, such as anatomy, substances,
vehicles, events. Konev et al.’s approach allows to treat terms like hasPart as logical symbols
by manually grouping them into a separate signature ∆, and to then decompose the remainder
of the theory’s signature, coining the name signature ∆-decomposition for this technique.

Both approaches decompose the signature and not the ontology itself. They induce
a decomposition of the ontology’s axioms, but that decomposition is of limited value as
a modular structure: (1) due to the signature disjointness, there is no (Parikh) or very
little (Konev et al.) logical connection between the parts; hence the strict requirement
of signature disjointness leads to rather shallow modular structures; (2) the parts are not
necessarily subsets of the input ontology, i.e., rewriting of axioms is allowed and even required;
(3) algorithms for computing the signature decomposition and its ontology decomposition
are restricted to rather inexpressive logics (i.e., DL-Lite and EL) but can still lead to an
exponential number of parts compared to the size of the input ontology (Konev et al., 2010).

An approach to decomposing the ontology itself was introduced by Cuenca Grau et al.
(2006); it consists in computing the finest possible E-connection (Kutz, Lutz, Wolter, &
Zakharyaschev, 2004) that is equivalent to the input ontology O (under certain assumptions).
The result is a partition of the axioms of O with links between them, and an assignment of the
terms in O to the parts of the partition. These parts are not necessarily signature-disjoint,
but they have models of a certain shape: the extensions of any two terms assigned to
distinct parts are disjoint, which nicely captures the intuition of distinct ‘topics’ and the
logical interactions between those, in the sense that the set of terms assigned to one part
constitutes the topic of that part and the links indicate that the knowledge in O about one
topic depends on knowledge in O about other topics. While this decomposition approach
does not suffer from problems (2) and (3) described above, it still does not always yield
a useful modular structure because certain modelling patterns allow only coarse-grained,
‘topic-unaware’ decompositions.

In the search for a modular structure that does not suffer from the previously encountered
problems, we (Parsia & Schneider, 2010) started to investigate locality-based modules, for
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short LBMs (Cuenca Grau, Horrocks, Kazakov, & Sattler, 2008) as a possible basis for a
fine-grained, well-connected, and easily computable modular structure. We chose LBMs
because they provide strong logical guarantees and can be computed efficiently. The most
important logical guarantee is coverage: given an ontology and a user-selected set of terms Σ,
called a seed signature, an LBM for Σ preserves all the ontology’s entailments formulated in Σ.
The seed signature can thus be seen as determining a specific ‘topic’, and the corresponding
LBM ‘covers’ the ontology for this topic (but, in general, not for any different topic). LBMs
share coverage with other module notions, but unlike those, the syntactic variants of LBMs
can be computed efficiently in logics up to the DL underlying OWL.

The extraction of an LBM given Σ is a typical instance of the task GetOne. In order to use
LBMs in GetAll, the most naïve approach would be to extract modules for all possible seed
signatures. This is clearly unfeasible because the number of seed signatures is exponential
in the size of the input ontology, and so is the number of modules: even though modules
for distinct seed signatures often coincide, the exponential behaviour cannot be avoided in
existing ontologies (Parsia & Schneider, 2010). It is hard to see how a ‘modular structure’ of
exponential size could help with any task that is complicated for medium-to-large ontologies.

In order to obtain a useful modular structure despite these observations, we can distinguish
fake modules—i.e., those that are simply unions of other modules—from genuine ones. As we
have shown (Del Vescovo, Parsia, Sattler, & Schneider, 2011), there are only linearly many
genuine modules, and they can be computed efficiently. While genuine modules can still
overlap, they induce a partition of the input ontology together with a dependency relation
between the parts, in a natural way. The resulting decomposition, as well as the overall
technique, is called atomic decomposition (AD); in previous work we laid its theoretical
foundations (Del Vescovo, Parsia, Sattler, & Schneider, 2011) and discussed some aspects of
its usefulness in practice (Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, & Winget,
2011).

This article gives a detailed account of AD and compares it with the preceding approaches
to obtaining a modular structure. Its main contributions consist of

(Section 3) a qualitative analysis of the modular structures obtained by the previously
described approaches, preceded by a discussion of the concept of a modular structure
in ontology engineering and of the properties that a ‘good’ modular structure should
have;

(Section 4) a detailed presentation of the theoretical foundations of AD, extending our
previous work (Del Vescovo, Parsia, Sattler, & Schneider, 2011) with a discussion of
the modular structure induced by AD and with comments on using module notions
other than LBMs as the basis of AD;

(Section 5) an experimental evaluation of AD, updating our previous empirical study
(Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, & Winget, 2011) with a
representative up-to-date ontology corpus, and a corrected implementation.

In addition, we define the basic concepts around modules in Section 2 and conclude in
Section 6.

This work is an extension to earlier work on atomic decomposition and modular structures
of ontologies by some of the same authors: decompositions using E-connections were described
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and investigated by Cuenca Grau et al. (2009), and Cuenca Grau, Parsia, and Sirin (2006);
Del Vescovo, Parsia, Sattler, and Schneider (2011) laid the theoretical foundations of ADs;
Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and Winget (2011) described an early
analysis of the structure of ADs of existing ontologies; Klinov, Del Vescovo, and Schneider
(2012) discussed an approach to persist the AD; Del Vescovo’s dissertation (2013) discussed
both the theoretical foundations and early experimental evaluation of ADs, but both have
been significantly advanced in this paper. In particular, Section 2 and 5 are new, and
Sections 3 and 4 have been completely reworked.

2. Preliminaries

We assume the reader to be familiar with description logic, in particular to have a good
understanding of the description logics ALC or SROIQ (Baader, Horrocks, Lutz, & Sattler,
2017; Horrocks, Kutz, & Sattler, 2006) including their syntax and semantics, ontologies,
interpretations and models, and entailment relation. In this section, we only fix the core
notations of description logics and repeat some well-established key notions around module
extraction (Ghilardi et al., 2006; Konev et al., 2009; Kontchakov, Pulina, Sattler, Schneider,
Selmer, Wolter, & Zakharyaschev, 2009; Cuenca Grau et al., 2009).

2.1 Conservative Extensions, Inseparability, and Modules

We start with the basic definitions underlying most logic-based notions of modules. Let O
denote an ontology, i.e., a finite set of axioms. An axiom can be a general concept inclusion,
a role inclusion, a concept assertion or a role assertion. We use NC for a set of concept names
and NR a set of role names. A signature is a set Σ ⊆ NC ∪ NR of terms. Given a concept,
role, axiom, or ontology X, the set of all terms occurring in X is called the signature of X,
and denoted by X̃.

We use SOL for second-order logic, and use L for a description logic or a subset of SOL.
For an interpretation I and an ontology O, we write I |= O if I is a model of O, and we use
I|Σ to denote the restriction of I to the signature Σ. The consequence relation of SOL and
standard DLs is known to be monotonic, i.e., extending an ontology with additional axioms
preserves its previous consequences.

Definition 2.1 (Ghilardi et al., 2006; Konev et al., 2009). Let O be an L-ontology,M⊆ O,
and Σ a signature. We say that

1. O is a deductive Σ-conservative extension (Σ-dCE ) ofM w.r.t. L if, for all L-axioms
α with α̃ ⊆ Σ, it holds that M |= α if and only if O |= α;

2. O is a model Σ-conservative extension (Σ-mCE ) of M if {I|Σ | I |= M} =
{J |Σ | J |= O};

3. M is a mCE-based (dCE-based) module for Σ of O (w.r.t. L) if O is a Σ-mCE (Σ-dCE)
ofM (w.r.t. L);

4. If M is a dCE-based module for Σ w.r.t. L, we also say that M covers or provides
coverage to O for Σ.
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Since M ⊆ O, the monotonicity of L implies that the ‘only if’ direction of Point 1 in
Definition 2.1 holds trivially. Furthermore, for a description logic or subset of SOL L, every
mCE-based module is also a dCE-based module w.r.t. L; the converse is not necessarily the
case unless L is equally expressive as SOL.

In order to abstract from the requirement that M is a subset of O, the notion of an
inseparability relation has been introduced.

Definition 2.2 (Konev et al., 2009). Let L be a logic, O1 and O2 two L-ontologies, and Σ
a signature. We say that

1. O1 and O2 are model inseparable w.r.t. Σ, written O1 ≡
mCE
Σ O2, if {I|Σ | I |= O1} =

{I|Σ | I |= O2};

2. O1 and O2 are deductively inseparable w.r.t. Σ in L, written O1 ≡
dCE-L
Σ O2, if, for all

L-axioms η over Σ, we have that O1 |= η if and only if O2 |= η.

The equivalence relations ≡R
Σ are defined upon the notion R ∈ {mCE, dCE-L}, and R is

called an inseparability relation. Whenever L is clear from the context, we will omit it.

Please note that other notions of inseparability relations can be defined (Konev et al.,
2009; Sattler, Schneider, & Zakharyaschev, 2009; Kontchakov, Wolter, & Zakharyaschev,
2010), though for the purposes of this paper we will consider only the inseparability relations
R ∈ {mCE, dCE-L}.

The following property of monotonicity is of crucial importance for the inseparability relations
just defined, and will have a deep impact on the properties of modules of interest in this
paper.

Definition 2.3 (Kontchakov et al., 2009). An inseparability relation R is called monotonic
if, for all ontologies O1,O2 and O3 and each signature Σ, it satisfies the following conditions.

(Msig) if O1 ≡
R
Σ O2, then O1 ≡

R
Σ′ O2 for each Σ′ ⊆ Σ;

(Maxs) if O1 ⊆ O2 ⊆ O3 and O1 ≡
R
Σ O3, then O1 ≡

R
Σ O2.

The inseparability relation R = mCE is monotonic, which is an easy consequence of the
monotonicity of SOL. Analogously, for every monotonic DL L, R = dCE-L is monotonic.

Inseparability relations induce modules, while abstracting away from the above restriction to
mCE and dCE, from a concrete language L, and from the requirement M⊆ O:

Definition 2.4. Let R be an inseparability relation, M and O two ontologies, and Σ a
signature. We call M

1. an RΣ-module of O ifM≡R
Σ O;

2. a self-contained RΣ-module of O ifM≡R
Σ∪M̃

O;

3. a depleting RΣ-module of O if O \M ≡R
Σ∪M̃

∅.
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M is called a minimal (self-contained, depleting) RΣ-module of O if M, but no proper
subset of M, is a (self-contained, depleting) RΣ-module of O.

Definition 2.4 is a generalisation of the original definition by Kontchakov et al. (2009),
which additionally assumed M ⊆ O. We have dropped this assumption because some of
the decomposition approaches introduced later will induce modules that are, in general, not
subsets of the input ontologies. However, the notion of a minimal module will be used in
this article only in connection with modules that are subsets.

To ease notation, we will omit the symbol Σ from the notion R of an inseparability
relation whenever the specific signature Σ is irrelevant.

2.2 Computational Issues: a Summary

Unfortunately, deciding whether a fragment M of an ontology O is an RΣ-module for
R ∈ {mCE, dCE-L}, and thus the computation of a module, is computationally hard except
for very lightweight ontology languages: while mCEs can be decided in PTime for acyclic ELI
ontologies (Konev et al., 2008), they are decidable and coNExp-hard for some fragments of
DL-Lite (Kontchakov et al., 2010), and undecidable already for general EL ontologies (Lutz &
Wolter, 2010) and acyclicALC ontologies (Konev, Lutz, Walther, & Wolter, 2013). Restricting
the signature Σ to contain only concept names may lower the complexity somewhat or regain
decidability for EL and ALC, see Konev et al.’s Table 1 (2013).

The computational behaviour of dCEs is slightly better but still prohibitive: deciding dCEs
is ExpTime-complete for EL (Lutz & Wolter, 2010), 2ExpTime-complete for ALC (Ghilardi
et al., 2006) and ALCQI (Lutz, Walther, & Wolter, 2007), and undecidable already for
ALCQIO (Lutz et al., 2007) and thus for SROIQ.

In face of the high computational complexity of identifying modules in general, various
lines of research have been pursued which either restrict the ontology language, or provide
useful approximations; the next subsection provides an overview.

2.3 Existing Module Notions

Specialised methods have been developed for inexpressive DLs; the MEX approach (Konev
et al., 2008) extracts, under certain conditions, minimal self-contained and depleting modules
from acyclic ELI terminologies in polynomial time; the method described by Kontchakov
et al. (2009) does the same for DL-Lite ontologies, whereas the AMEX approach (Gatens,
Konev, & Wolter, 2014) describes a closely related method for acyclic ALCQI terminologies.

Approximation methods have been designed for DLs as expressive as SROIQ: the family
of locality-based modules, for short LBMs (Cuenca Grau et al., 2008) are self-contained,
depleting modules which are possibly non-minimal, i.e., may contain axioms that are not
relevant to preserve entailments over the given seed signature Σ or the module’s signature.
There are various flavours of locality-based modules: there are syntactic-⊥ and semantic-∅
modules as well as syntactic-⊤ and semantic-∆ ones, as well as their nested version like
the syntactic-⊤⊥∗ module and more. For various expressive description logics, syntactic
locality-based modules can be extracted in polynomial time (Cuenca Grau et al., 2008).

In more recent work, the notion of (syntactic) locality has been extended in at least two
directions by introducing interesting data structures which, for a given ontology, represent
relevant dependencies between terms and underlie the process of extracting a module. The
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first such extension uses (hyper)graphs to describe dependencies between signatures of sets of
axioms, i.e., seed signatures of modules. This approach and the resulting reachability-based
modules (RBMs) have been developed by Suntisrivaraporn (2008) and extended to SRIQ
and SROIQ by Nortjé, Britz, and Meyer (2013). Similarly to LBMs, RBMs come in three
flavours ⊥, ⊤, and ⊤⊥∗. While, for ontologies in a certain normal form, ⊥-RBMs coincide
with ⊥-LBMs, the other two variants are usually subsets of the corresponding LBM variant
and are neither self-contained nor depleting; however, all variants are robust under a number
of interesting operations such as vocabulary restrictions and extensions (Nortjé et al., 2013).
Furthermore, a different hypergraph representation and the same normal form have been
used by Martín-Recuerda and Walther (2014) to compute ⊥-LBMs more efficiently.

The second extension of locality-based modules represents dependencies between terms
in a datalog program. This approach, developed by Armas Romero, Kaminski, Cuenca Grau,
and Horrocks (2016) for DLs up to SROIQ, provides a whole ‘suite’ of module notions
covering a wide range of inseparability relations. Some of these notions have been shown to be
depleting and self-contained, and to satisfy further useful properties, such as the preservation
of justifications (Armas Romero et al., 2016).

Projection and subsumption modules (Chen, Ludwig, & Walther, 2018; Chen, Ludwig,
Ma, & Walther, 2019b) differ from the above mentioned kinds of modules in that they aim at
preserving specific kinds of entailments (over a signature) rather than all entailments, and at
minimality. Deductive modules (Koopmann & Chen, 2020), in contrast, aim at preserving all
entailments in a given language and signature, and even all justifications for these entailments;
they are computed using uniform interpolation and thus use only the terms from the specified
signature.

In some sense orthogonal to the module notions discussed so far, E-connections (Kutz
et al., 2004) give rise to another notion of self-contained modules, which will be discussed in
more detail in Section 3.3.3.

As a result, we have various notions of modules with different properties, and various
algorithms to extract these: some run in polynomial time, some only work on input ontologies
of a restricted form but ensure minimality, some work on SROIQ ontologies but do not
guarantee minimality. In general, these properties are mostly incompatible: a module notion
that guarantees minimality can usually not guarantee uniqueness, depletingness, or self-
containedness. In addition to the theoretical work, various studies have investigated how
the choice of a module notion affects the relative size of modules in practice (Konev et al.,
2008; Kontchakov et al., 2009; Del Vescovo, Klinov, Parsia, Sattler, Schneider, & Tsarkov,
2013; Nortjé et al., 2013; Gatens et al., 2014; Chen et al., 2018, 2019b; Koopmann & Chen,
2020), and indeed it turns out that locality-based modules are often larger than other kinds
of modules. Algorithms for extracting AMEX modules, LBMs, RBMs, and DBMs have
been implemented in various tools, such as AMEX, the OWL API, CEL, and PrisM; links are
provided in the original articles.

All module notions discussed so far are based on the requirement that a module of an
ontology O be a subset of O. However, in this article we also discuss modules in a broader
sense, i.e., ontologies obtained by rewriting (parts of) O. The signature decomposition
approaches discussed in Sections 3.3.1 and 3.3.2 implicitly yield such modules, whose existence
is ensured by certain interpolation properties of the underlying logic (Konev et al., 2010).
In particular, uniform interpolants (UIs) can be used to yield (non-subset) modules with
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very similar logical guarantees, including Σ-inseparability. UIs have been studied widely
for DLs of various expressivity (e.g., by ten Cate, Conradie, Marx, & Venema, 2006; Wang,
Wang, Topor, Pan, & Antoniou, 2009b; Lutz & Wolter, 2011; Lutz, Seylan, & Wolter, 2012;
Nikitina & Rudolph, 2014; Koopmann & Schmidt, 2014, 2015) and are closely related to
(in fact, they are the dual notion of) forgetting (Reiter & Lin, 1994; Lang, Liberatore, &
Marquis, 2003; Eiter, Ianni, Schindlauer, Tompits, & Wang, 2006; Konev, Walther, & Wolter,
2009; Wang, Wang, Topor, Pan, & Antoniou, 2009a; Zhao & Schmidt, 2017, 2018b; Chen,
Alghamdi, Schmidt, Walther, & Gao, 2019a).

The signature decomposition approaches discussed in Sections 3.3.1 and 3.3.2 are related
to UIs, but we are not aware of any work that addresses the computation of modules from
a signature decomposition directly. All other decomposition approaches discussed in this
article are concerned with modules that are subsets of the input ontology. Furthermore, the
precise relationship between module-specific properties and UIs/forgetting-based modules are
not yet known, except for the insight that module extraction can be used as an optimisation
to forgetting (Chen et al., 2019a). For this reason, a further discussion of UIs is beyond the
scope of this article.

2.4 General Remarks

In the following sections, we will focus mainly on description logics, and mainly on logics
without nominals: this is due to the fact that nominals are rather ill-behaved in general—for
example, they lead to the loss of nice model properties such as the tree model property and
the property that models are closed under disjoint union—which causes serious problems for
module extraction.

As indicated above, we consider module notions where each module is a subset of the
ontology, and module notions where this is not necessarily the case. Please note that the
former preserves the integrity of axioms, which is important for some applications, e.g., where
axioms are annotated with their provenance. This preservation comes, however, at a cost:
it is well known that the TBox O = {Ci ⊑ D | 1 ≤ i ≤ n} is equivalent to its singleton
counterpart O′ = {⊤ ⊑

d
1≤i≤n ¬Ci ⊔D}, yet O has 2n subsets all of which are ⊥-locality

based modules, whereas O′ only has two subsets, ∅ and itself, and thus at most two subset
modules. Hence subset-based module notions are syntax dependent, i.e., equivalent ontologies
may lead to different, non-equivalent modules.

3. Qualitative Analysis of Existing Modular Structures

In this section we discuss the concept of modular structure in ontology engineering, in
particular the properties that a ‘good’ modular structure of an ontology should have so
that it supports various knowledge engineering tasks. We start with a general discussion of
these points in analogy to software engineering. Then we focus on the modular structure of
ontologies, where some interesting problems arise from the fact that entailments behave like
side effects that are difficult to control. Finally, we discuss existing approaches to modular
structures and their behaviour with respect to the above mentioned properties.
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3.1 Core Concepts in Modular Engineering

Before looking at modular design in knowledge engineering, we discuss modularity in software
design to clarify relevant concepts. In software engineering, the decomposition of pieces of
code into suitable modules has been studied since the late 1960s. Parnas (1972) recommends
the use of functional modules, i.e., modules incorporating a function, rather than sequential
modules, i.e., modules determined by the temporal sequence of actions to perform. These
modules are combined via interacting with the modules’ interfaces, i.e., their input and output
parameters. This allows for a separation of concerns where distinct modules implement
distinct, independent functionalities. The system obtained is then independent of the specific
implementation ‘inside’ each of its modules; in other words, a module has a functional core
which is (relatively) independent of other parts of the code. Nowadays this property is called
encapsulation. A closely related concept is that of information hiding : not only is the system
agnostic as to how a given module implements its functionality, it also cannot affect this
implementation. That is, the module’s functionality is protected from changes outside the
module, and the rest of the system knows of the module’s interface only. Furthermore, a
good module should implement one functionality rather than several independent ones; thus
a good module has a high cohesion, with all its parts being strongly related. A system with
a module of low cohesion can usually be improved by splitting this module into several ones.
Consequently, modules need to be able to contain (or import) others, which naturally leads
to a dependency structure between modules: module A depends on module B if A imports
B or requires B’s presence via some other mechanism to function correctly.

The advantages of a good modular design are clear: a module is usually a small part of the
whole (software) system, and thus easier to work with; different people can work on different
modules independently and only need to agree on changes to interfaces or functionality; and
modules can be reused, i.e., used in different software systems.

The main focus in software engineering was placed on the mechanisms to realise encap-
sulation and specify/work with interfaces, on methodologies to build systems in a suitable
modular way where modules are of suitable size and structure, in particular of a hierarchical
or nested structure, and on reusability of existing modules. There has been some work
on automated support for code refactoring, in particular for refactoring ‘spaghetti code’
(monolithic code) into suitable modules, and state-of-the-art IDEs provide this kind of tool
support. This support, however, usually leaves existing classes intact and only moves these
into other packages, i.e., it starts from an existing modular structure and rearranges it
without introducing new modules or merging modules.

In logic-based knowledge engineering, a modular design has potentially the same benefits
as in software engineering, so we are discussing the concepts developed for modular software
systems in the context of ontology engineering. For modules of ontologies, various properties
have been introduced in the literature (Cuenca Grau et al., 2009; Konev et al., 2009;
Kontchakov et al., 2009), see Section 2.1. We now relate these to those developed for modular
software systems.

First, throughout this paper, we focus on the problem of refactoring a given ontology into
a suitable set of modules, i.e., on the problem of automatically turning a monolithic ‘spaghetti-
code’ ontology into one that exhibits a good modular structure. One of the problems here is
that an ontology itself exhibits very little structure: instead of variables, functions, classes,
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methods, loops, or function calls, we only have a set of axioms, without an order, in which
terms (co-)occur. In addition, there are many ways to rewrite axioms into equivalent ones
and change the cooccurrence relation between terms, e.g., A ⊑ (B ⊓ C) is equivalent to
A ⊑ B, A ⊑ C. As we have seen in Section 2.2, the extraction of a single minimal module
for a given signature is a complex problem which may not even be computable, depending on
the exact properties of the desired module and the underlying logic. The task of computing
a suitable range of modules for a given ontology is even more difficult but will be at the
heart of the envisaged refactoring support; thus its complexity needs to be considered.

Second, let us discuss the notion of a module’s interface: from the above understanding
of an interface as a set of parameters that ensures encapsulation, an obvious candidate for
an interface of an ontology module is the set of terms Σ such thatM is RΣ-inseparable from
O. In this case, M encapsulates the full functionality of O regarding terms from Σ. There
are, however, two problems with this idea. Firstly, this interface would not be unique.

Example 3.1. Consider the following ontology O:

α : A ⊑ B ⊓ (C ⊔D) β : C ⊑ D γ : B ⊑ D

Then, M = {α, β} preserves all entailments over both Σ1 = {A,B} and Σ2 = {A,C,D},
and so it would make sense to consider Σ1 and/or Σ2 as interfaces forM. However,M does
not preserve all entailments over Σ1 ∪ Σ2; e.g., the entailment B ⊑ D is lost.

Secondly, we would need to record, or reconstruct, for each module, the sets of terms
it covers: this would either lead to a more complex structure (of sets of axioms with their
interfaces) or be computationally costly. As an alternative, we can require modules to
be self-contained, i.e., to cover all the terms they mention. In Example 3.1, the smallest
self-contained subset of O that preserves all entailments over Σ1 is O itself.

The notion of modules with explicit interfaces has been discussed in the literature (Bao
et al., 2009; Cuenca Grau et al., 2009; Serafini & Tamilin, 2009); here, we will concentrate
on self-contained modules since, to the best of our knowledge, there is no logically sound
approach to decomposing or refactoring ontologies that yields explicit interfaces.

Coverage guarantees that, for a given signature, we can use its module instead of the
whole ontology because the module preserves all entailments over this signature. That is,
coverage is closely related to encapsulation: a covering module does not rely on external
information to fulfil its functionality.

Modules being depleting is also closely related to encapsulation: modules providing (only)
coverage are called weak modules by Konev et al. (2008) because coverage alone does not
guarantee encapsulation: it can happen that the same logical consequences of a module M
are entailed also by O \M, as described in the following example.

Example 3.2. Consider the following ontology.

Sea = { ∃hasFin.⊤ ⊑ Fish,

Dolphin ⊑ ∃hasCaudalFin.⊤,

hasCaudalFin ⊑ hasFin } ∪ Dolphin, where

Dolphin = { Dolphin ⊑ Fish,

Mammal ⊑ ¬Fish,

Dolphin ⊑ Mammal }
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Clearly, the ontology Dolphin is a logical module of the ontology Sea for the signature
Σ = {Dolphin}, and thus preserves the entailment η : Dolphin ⊑ ⊥. Now consider that we
want to repair this unsatisfiability: we remove the axiom α : Dolphin ⊑ Fish from Dolphin to
yield Dolphin′ and Dolphin′ no longer entails η. However, replacing Dolphin with Dolphin′ in
Sea results in an ontology that still entails η, i.e., our ‘modular’ repair did not work globally.
This is due to the fact that Dolphin is not a depleting module and thus does not encapsulate
all our knowledge about Dolphins.

The definition of a depleting module would need to be adapted for cases where a module
M is not a subset of O: we would need to define an alternative to the extraction of a module,
i.e., to O \M, via a suitable rewriting mechanism.

Self-containment, which has already been mentioned above, guarantees that all terms
in a module are equal, regardless of whether they are in the seed signature of this module
or not. Given the above observations regarding a module’s interface, a module needs to be
self-contained to ensure that all its terms can reasonably be used as its interface. In other
words, if a module is not self-contained, then it is only functional with respect to its seed
signature, but possibly not for other terms.

Finally, it is not hard to see that modules—in particular when they are subsets of an
ontology—can contain other modules, and thus may form a nested structure. One module
containing another one can be seen as the former depending on the latter, and thus this
containment relation induces a natural dependency relation between modules. Alternatively,
in case where modules are subsets of an ontology, we can consider the partition induced by
such nested modules. This partition consists of a set of ‘atoms’ that we can combine to form
our original set of modules. In OWL, we can store each atom as an OWL document and
combine our modules via suitable ‘imports’ statements. There is a direct one-to-one relation
between this imports relation and the above mentioned dependency relation.

Next, we discuss two notions from software engineering that are more difficult to transfer
to ontology modules. Cohesion is a notion that depends on what we mean by a module’s parts
and their relatedness. For ontology modules, we could say that a module is of low cohesion
if it contains axioms that are not strongly related. While it is difficult to define precisely
what strong (logical) relatedness means, it is possible to illustrate some extreme cases. For
example, the weakest relatedness possible occurs between modules sharing neither axioms
nor terms. But even if two axiom-disjoint modules share signature to some extent, they may
still be widely unrelated, e.g., when the shared terms are only top-level concepts. Even two
modules sharing axioms may be widely unrelated, e.g., when they share only tautologies.
Consequently, it is reasonable to consider the union of two axiom- and term-disjoint modules
to be of very low cohesion, and the union of two substantially different (for example, axiom-
but not term-disjoint) modules to be of low cohesion.

Regarding information hiding, we first note that, if modules are mere sets of axioms, we
have no way to specify which terms are ‘private’ to a module; see above the discussion of
interfaces. Hence in this setting, there can be no true support for information hiding. We can
still ask, however, whether terms from a module are used safely in the rest of the ontology,
i.e., whether they are only used (but not changed) or whether their meaning is changed in
axioms outside the module.

The following example shows how information hiding or safe usage of terms can be tricky.
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Example 3.3. Let us consider the following ontology.

Dolphin′ = { Dolphin ⊑ (∃hasPart.CaudalFin),

Fish ⊑ Vertebrate }

Now suppose we now want to add Dolphin′ to our own ontology Fish:

Fish = { Fin ⊑ (∀hasPart−.Fish),

CaudalFin ⊑ Fin }

Looking only at the signature and observing that our Fish ontology does not relate terms
from Dolphin′ with each other, it might seem that the Fish ontology uses the terms from
Dolphin′ in a safe way. However, taking the logical interactions into account, it turns out
that Dolphin′ ∪ Fish |= Dolphin ⊑ Fish, i.e., adding Dolphin′ to Fish causes new entailments
over the signature of Dolphin′, and thus Fish does not use the terms from Dolphin′ safely.

Fortunately, inseparability can also be used to formulate safety: given an inseparability
relation R, we can say that O can safely use M if O ≡R

M̃
∅, i.e., if O does not know anything

about the terms in M (Jiménez-Ruiz et al., 2008).

3.2 Core Notions of Modular Ontology Structures

Motivated by the discussion in the previous section, we will briefly summarise the core
notions related to modular structures of ontologies.

In what follows, we use R for an inseparability relation and say that an R-module M
of an ontology O is an ontology that is R-inseparable w.r.t. M̃ from O. In other words,
M is self-contained, but not necessarily a subset of O, i.e., a module can be obtained by
rewriting some axioms in O: for example, one could split an axiom A ⊑ B1 ⊓B2 ∈ O into
two axioms/modules A ⊑ Bi ∈Mi. Also, depending on the module notion, there does not
have to be a seed signature Σ that determines M. If there is a seed signature, then different
seed signatures Σ′ 6= Σ may lead to the same module, which is then said to cover both these
signatures, as well as M̃ given thatM is self-contained.

As discussed in Section 2, various notions of modules fall into this category, including
any form of semantic or syntactic locality-based modules, MEX modules, or nested modules
like the ⊤⊥∗ module.

Let O be an ontology and x a module notion, which can be understood as a function
that assigns an RΣ-module MΣ ⊆ O to every signature Σ, for a fixed inseparability relation
R. We call MΣ the x-Σ-module of O; it does not need to be the smallest RΣ-module of
O. Ideally, there is an algorithm for computing MΣ given Σ and O (see, e.g., Cuenca Grau
et al., 2008; Konev et al., 2008).

A modular structure for x of O is a pair (G,→) where G is a set of modules of O and→ is
a binary dependency relation between elements of G. A modular structure is also associated
with a module generation mechanism that describes how to generate, for a given signature Σ
the x-Σ-module M of O from (G,→).

The simplest form of the dependency relation is the subset relation—and this is also
the one taken in all notions of modular structures discussed in this paper. In this case, and
where modules are subsets of the ontology, G gives rise to a partition of O into atoms where
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each module is a (disjoint) union of atoms. The module generation mechanism can be rather
simple, for example, by taking the union of all those Mi ∈ G with M̃i ∩ Σ 6= ∅. It could
also be a complex mechanism, with the extreme being the computation of the x-Σ-module
from scratch.

We call the modules in G basic modules, and those x-modules that are not basic derived.
As discussed earlier, the basic modules should be of high cohesion and are thus likely to be

small; thus modular structures should tend to have a high granularity. Given that the basic
modules should form a reasonable basis for all x-modules, we expect G to be minimal, i.e.,
to contain only those modules that cannot be derived via the module generation mechanism.

3.3 Existing Approaches to Determining the Modular Structure

In this subsection we describe three existing approaches to specifying the modular structure
of an ontology that provide logical guarantees such as coverage. These approaches are
Parikh’s signature splitting (Parikh, 1999), signature ∆-decomposition (Konev et al., 2010),
and decomposition based on E-connections (Cuenca Grau et al., 2006). All these approaches
consist in computing a partition of either the ontology (i.e., its set of logical axioms) or
the ontology’s signature (i.e., the set of all entities occurring in it). The last two of these
approaches additionally include a non-trivial dependency relation between the modules.
We will also discuss a fourth approach, namely an early attempt at identifying a modular
structure based on all x-Σ-modules of an ontology (Parsia & Schneider, 2010) for a given
module notion x, which has eventually led us to the notion of atomic decomposition as
described in Section 4.

We describe each of these approaches and discuss some examples; then we discuss its
relevant properties: the properties of the (basic and derived) modules, the cohesion of the
basic modules, the dependency relation and thus granularity of the structure, the module
generation mechanism, and the computational properties of identifying a modular structure.
We also discuss how the different approaches relate to each other.

3.3.1 Parikh’s Signature Splitting

The logical formalisation of this first notion of modular structure was introduced by Parikh
(1999) in the context of belief revision. Its application scenario can be described generally
as follows. One wants to revise an ontology2 O by adding a new piece of knowledge that
contradicts (some entailment of) O. Parikh’s splitting approach is intended to address the
following question: to identify contradictions, do we have to check the new knowledge against
all of O, or can we make use of some kind of safety guarantee that allows us not to touch
those parts that are irrelevant for this new finding? The approach is based on the simple
observation that, under certain conditions, two logical formulas (or axioms of an ontology)
that have disjoint signatures cannot logically interact with each other. Consequently, if O
can be split into signature-disjoint parts, these parts do not logically interact with each other,
and not all parts are relevant for freshly added knowledge. Parikh devises a principled way
to perform such a splitting.

2. Parikh’s original definition applies to logical theories in SOL. It should be clear that we can continue to
use the notion of an ontology instead.
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Definition 3.4 (Parikh, 1999). Let L be a fragment of SOL, O an ontology in L, and
{Σ1, . . . ,Σn} a partition of Õ. We say that Σ1, . . . ,Σn split O in L if there are ontologies
O1, . . . ,On in L with Õi = Σi, i ≤ n, whose union is logically equivalent3 to O. We then
call {Σ1, . . . ,Σn} an O-splitting and O1, . . . ,On a realisation of {Σ1, . . . ,Σn}.

Clearly, every ontology O has at least one O-splitting, {Õ}. In general and if no further
assumptions are made, any O can have several splittings. However, in SOL there is always a
unique finest O-splitting: the component-wise intersection of two splittings is finer and has
again a realisation; the latter is not guaranteed in all fragments of SOL, see also the discussion
in Section 3.3.2. More precisely, a splitting {Σ1, . . . ,Σn} refines a splitting {Π1, . . . ,Πm} if
both are distinct and every Πi is the union of one or more Σj . For example, {Σ1,Σ2,Σ3,Σ4}
refines {Σ1 ∪ Σ2 ∪ Σ3,Σ4}. A finest O-splitting is an O-splitting that refines every other
O-splitting.

Theorem 3.5 (Parikh, 1999). Every ontology O has a unique finest O-splitting in SOL.

Modules and their properties. In Parikh’s splitting approach, a logical module of O
is an ontology O1 such that the signature partition {Õ1, Õ \ Õ1} splits O. We call the Oi

from Definition 3.4 the Parikh modules of O and their collection {O1, . . . ,On} the Parikh
modularisation of O. It has to be pointed out that the Oi are not required to be subsets
of O. Furthermore, they have to be considered modulo logical equivalence, which we do
from here on. Since Parikh’s original work is focusing on SOL, any ontology (finite set of
formulae) can be equivalently expressed by a single formula. Hence, it may be the case that
the set O is a singleton, but Parikh’s splitting is non-trivial.

Example 3.6. Let us consider the singleton ontology:

One = {⊤ ⊑ (¬A1 ⊔B1) ⊓ (¬A2 ⊔B2) ⊓ · · · ⊓ (¬An ⊔Bn)}

One can be rewritten into the logically equivalent ontology

All = {A1 ⊑ B1, A2 ⊑ B2, . . . , An ⊑ Bn}

Hence, the signature partition Σ1 = {A1, B1}, . . . , Σn = {An, Bn} splits One.

It is easy to see that every Parikh module Oi of an ontology O provides coverage and is
self-contained : this immediately follows from Definition 3.4: Õi is disjoint from the signatures
of the remaining Oj , and the union of all Oj is logically equivalent to O. In general, the Oi

are not depleting because they are not necessarily subsets of O; see the remark in Section 3.1.
To discuss cohesion, we use two simple example ontologies.

Example 3.7. Let us consider the following ontology.4

Tree = { Tree ⊑ ∃isMadeFrom.Seed,

Seed ⊑ ∃isMadeFrom.Fruit,

Fruit ⊑ ∃isMadeFrom.Flower,

Flower ⊑ ∃isMadeFrom.Branch,

Branch ⊑ ∃isMadeFrom.Tree,

Mountain ⊑ ∃isMadeFrom.Soil }

3. In the following, we use equivalent for logically equivalent, i.e., for having the same models.
4. This ontology is an adaptation and translation into DL of some fragments from the Italian song Ci vuole

un fiore (It requires a flower), by G. Rodari, L. Enriquez, and S. Endrigo.
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Parikh’s splitting consists of a single part containing all the terms in Tree. However, there is a
clear logical difference between the set of terms Σ1 = {Tree, Seed, Fruit, Flower, Branch}
and the set Σ2 = {Mountain, Soil}: by interpreting Tree as the empty set, all the other
terms in Σ1 are unsatisfiable, whilst there is no constraint in the interpretation of the terms
in Σ2. Similarly, by interpreting Soil as the empty set we get that Mountain is unsatisfiable,
whilst there is no constraint in the interpretation of the terms in Σ1. However, we cannot
separate these two sets because they share the term isMadeFrom, so that Tree cannot be
rewritten as the union of two signature-disjoint ontologies.

Example 3.7 shows that the induced notion of cohesion is rather loose. Indeed, two terms
A and B belong to the same module if there is an arbitrarily long sequence of intermediate
terms {Ai | i ≤ n, n ∈ N} such that A interacts (in the model-theoretic sense described above)
with A0, Ai interacts with Ai+1 for all i ∈ {0, . . . n}, and An interacts with B. However, A
and B may still not directly interact with each other; see the following example.

Example 3.8. Let us consider the family Zigzag of ontologies, defined by

Zigzagn = {A1 ⊑ B1, A2 ⊑ B1, A2 ⊑ B2, . . . , An ⊑ Bn, An+1 ⊑ Bn},

with the following graphical representation.

A1

B1

A2

B2

A3 An

Bn

An+1

. . .⊑ ⊑ ⊑ ⊑ ⊑ ⊑ ⊑ ⊑

For n ≥ 1, the concepts A1 and An+1 are completely unrelated since Zigzagn has only
trivial entailments over the signature {A1, An+1}. However, A1 and An+1 still belong to the
same Parikh module.

Regarding information hiding, we note that, under certain circumstances,5 distinct Parikh
modules are completely unrelated, i.e., they share neither axioms nor terms. As a consequence,
we can take the union of different modules and this will not affect the meaning of any terms
described in any of them, and thus they can always import/be imported safely.

Modular structure and its properties. Thanks to Theorem 3.5, we can define a modular
structure of an ontology O as follows: the basic modules are those Oi that determine the
finest O-splitting; the derived modules are their unions. The latter coincide with the Parikh
modules; hence the basic modules are indeed representative of all Parikh modules. The module
generation mechanism is simple: given an ontology O with the basic modules O1, . . . ,On

and a signature Σ, the Parikh-Σ-module of O is the union of all Oi with Õi ∩ Σ 6= ∅.
There is no logical interaction between any two distinct basic modules because of their

disjoint signatures. Hence the dependency relation is empty (i.e., the dependency graph
consists of n isolated nodes). Furthermore, the granularity of the modular structure varies in
the same way as the cohesion of its modules does, see the examples above.

Computational properties. Parikh’s work (1999) does not study computational prop-
erties of signature decomposition or of computing a module. However, some insights can
be transferred from the analysis of signature ∆-decompositions (Konev et al., 2010), which
generalise Parikh splittings and are discussed in the following subsection.

5. This is true for propositional logic and all DLs where models are preserved under disjoint unions, i.e., for
the SHIQ family or DLs without nominals.
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3.3.2 Signature ∆-Decomposition

The modules induced by the finest O-splitting in Parikh’s approach have proved to be too
coarse-grained for both Tree and Zigzagn: both ontologies have only one module that contains
all axioms although, intuitively, each ontology consists of several independent fragments.
Consequently, Parikh splittings may suffer from low cohesion. This problem can be overcome
by imposing that any (part of an) ontology is coherent if its signature cannot be decomposed
into disjoint subsets by discarding some special, common terms. These common terms can be
distinctive for the whole domain underlying the knowledge represented in the ontology, but
they can be used in different contexts, thereby representing substantially different logical
relations. In Example 3.7, isMadeFrom is such a special term: it is obviously distinctive for
the whole domain, but it is used in two different contexts—one related with plants and the
other with landforms.

Ponomaryov (2008) has proposed and formalised this idea by introducing signature ∆-
decompositions. The approach has been further investigated by Konev et al. (2010). Its main
difference compared to Parikh’s O-splittings consists in considering an additional signature
∆ that comprises the “special, common terms” and treating all these terms as if they were
logical symbols. That is, the signature of an ontology O (originally: a finite set of SOL
formulas) is decomposed into disjoint sub-signatures Σi, such that there exist ontologies Oi

over the signatures Σi ∪∆ whose union is equivalent to O.

Definition 3.9 (Konev et al., 2010). Let L be a fragment of SOL, O an ontology in L, and
∆ ⊆ Õ. A partition Σ1, . . . ,Σn of Õ \∆ is called a signature ∆-decomposition of O in L if
there are ontologies O1, . . . ,On in L such that

• Õi ⊆ Σi ∪∆ for i = 1, . . . , n and

• O1 ∪ . . . ∪ On ≡ O.

O1, . . . ,On is called an L-realisation of Σ1, . . . ,Σn for O.

In SOL a signature ∆-decomposition always exists and, as in Parikh’s approach, is unique.

Theorem 3.10 (Konev et al., 2010). Every ontology O has a unique finest ∆-decomposition
of O in SOL.

As in Parikh’s approach, the main reason for Theorem 3.10 being true is the fact that,
given two distinct ∆-decompositions, one can always construct a finer partition by intersecting
their components pairwise. In SOL, that partition always has a realisation and is thus a
∆-decomposition; this need not be the case in fragments of SOL.

Even though there is always a unique finest ∆-decomposition in SOL, the ontologies
realizing it need not be uniquely determined, even modulo logical equivalence, since different
realisations can spread O’s knowledge about ∆ in different ways across the Ois. To reflect
the intuition that ∆ is a set of “special, common terms”, Konev et al. introduce realisations
O1, . . . ,On for O where each Oi includes complete knowledge about the terms from ∆, i.e.,
Oi ≡∆ Oj and Oi ≡∆ O in L for all i, j ≤ n. We call these realisations ∆-encapsulating.
Konev et al. prove that being ∆-encapsulating is a sufficient condition for the uniqueness of
realisations for many fragments L of SOL, including several DLs.
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Definition 3.11 (Konev et al., 2010). A fragment L of SOL has unique decomposition
realisations (UDR) if, for all consistent L-ontologies O, all ∆-decompositions Σ1, . . . ,Σn of
O, and all ∆-encapsulating L-realisations O1, . . . ,On and O′

1, . . . ,O
′
n of Σ1, . . . ,Σn for O,

we have Oi ≡ O
′
i for all i ≤ n.

UDR thus guarantees that two realisations of the same ∆-decomposition are identical up
to logical equivalence; the underlying decomposition does not need to be a finest or the finest.
Konev et al. establish the parallel interpolation property (PIP)6 as a sufficient condition for
UDR which additionally ensures the existence of a unique finest ∆-decomposition in L.

Theorem 3.12 (Konev et al., 2010). Let L be a fragment of SOL with PIP. Then the
following hold.

(1) L-decompositions coincide with SOL-decompositions.

(2) L has UDR.

In particular, every L-ontology O has a unique finest ∆-decomposition in L.

Remark 3.13 (Konev et al., 2010). A number of DLs have PIP, including EL, ELH, ALC,
ALCI, ALCQ, ALCQI. However, PIP fails already for the extension of ALC with role
inclusions, and neither is (1) known for this DL. Although PIP can be restored for expressive
DLs with role inclusions by including all role and individual names in ∆, this would not
allow for the conclusion that they have UDR.

Modules and their properties. Analogously to Parikh’s modules, we have to consider
the Oi that realise a ∆-decomposition Σ1, . . . ,Σn of O modulo logical difference. The Oi

need not be modules: although the Σi are pairwise disjoint, the Oi can logically interact via
∆; hence they no longer encapsulate the knowledge about ‘their’ Σi, unlike Parikh modules:

Example 3.14. Let O = {A ⊑ B, B ⊑ B′, B ⊑ ¬B′}. If we take ∆ = {B}, then {A}, {B′} is
a ∆-decomposition, realised by O1,O2 with O1 = {A ⊑ B} and O2 = {B ⊑ B′, B ⊑ ¬B′}.
This realisation is not ∆-encapsulating because B ⊑ ⊥ is entailed by O2, but not by O1.
Hence O1 is not a logical module: O |= A ⊑ ⊥, but O1 6|= A ⊑ ⊥. If we replace O1 with
O′

1 = O1 ∪ {B ⊑ ⊥}, then O′
1,O2 is a ∆-encapsulating realisation.

∆-encapsulating L-realisations ensure that all information about ∆ is accessible in each
single Oi. Consequently, if L has UDR, then the Oi of a ∆-encapsulating L-realisation are
logical modules of O (Konev et al., 2010). It is reasonable to consider an additional module
O∆ with Õ∆ = ∆ and O∆ ≡

dCE
∆ O, if it exists, and assume w.l.o.g. that O∆ is contained in

all Oi. In Example 3.14, a natural such O∆ would be {B ⊑ ⊥}. In case O ≡dCE
∆ ∅, we have

O∆ = ∅.
We call the Oi and O∆ the ∆-modules, and their collection {O∆,O1, . . . ,On} the ∆-

modularisation of O. Like Parikh modules, the Oi are not necessarily subsets of O.
It has been observed by Konev et al. that, given UDR, each Oi provides coverage for Σi

and is even self-contained. By definition, O∆ too provides coverage for ∆ and is self-contained.

6. For a detailed introduction and discussion of PIP as a property of a logic L, we refer the reader to Konev
et al. (2010).
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In general, the Oi and O∆ are not depleting because they are not necessarily subsets of O;
see the remark in Section 3.1.

To measure cohesion, we revisit the ontologies from Examples 3.7 and 3.8.

Example 3.15. Consider the Zigzagn family of ontologies from Example 3.8 for n ≥ 3.
If we choose ∆ = {Ai} with 2 ≤ i ≤ n, then the ∆-decomposition obtained consists
of two parts: {A1, . . . , Ai−1, B1, . . . , Bi−1} and {Ai+1, . . . , An+1, Bi, . . . , Bn}. Similarly, if
∆ = {Bi} with 1 ≤ i ≤ n, the corresponding ∆-decomposition is {A1, . . . , Ai, B1, . . . , Bi−1}
and {Ai+1, . . . , An+1, Bi+1, . . . , Bn}.

If we analyse all these cases, we notice that, for all i ∈ {1, . . . , n} the terms Ai and Bi

are always either in the same part, or in related parts. The same happens for the terms Ai+1

and Bi. In contrast with this situation, all the other pairs of terms can be separated by a
suitable choice of ∆, so it is clear that the logical relation between these pairs is looser than
the one between the pairs listed before. Hence, the ∆-decomposition reveals stronger logical
relations between the terms of an ontology.

Example 3.16. Consider the ontology Tree from Example 3.7. For ∆ = {isMadeFrom} we get
the decomposition Σ1 = {Tree, Seed, Fruit, Flower, Branch} and Σ2 = {Mountain, Soil}.
It captures exactly the desired logical relation as described in Example 3.7.

Modular structure and its properties. Analogously to Parikh’s approach, the modular
structure can be based on a ∆-encapsulating L-realisation of the finest ∆-decomposition
O1, . . . ,On, plus the additional O∆, if it exists. In order for modules to be uniquely
determined, we assume that L has PIP, although this is not a small restriction, given
Remark 3.13. The basic ∆-modules are the Oi and O∆; the derived modules are their
unions. As in Parikh’s approach, ∆-modules and derived modules coincide, and the module
generation mechanism is the same.

Because all modules contain O∆, they logically interact with each other unless O ≡dCE
∆ ∅.

However, since theOi are ∆-inseparable and the Σi are pairwise disjoint, the only dependencies
are between the Oi and the O∆, if it exists. More precisely, each Oi depends on O∆, but not
vice versa. The dependency graph is thus a tree of depth 1 and width n, or it consists of n
isolated nodes.

The choice of ∆ strongly affects the granularity of the decomposition: In the extreme
case ∆ = Õ, the set Õ \∆ is empty and thus has only the empty partition.7 We exclude this
pathological case from the subsequent considerations. On the other extreme, if O ≡dCE

∆ ∅
(including the case ∆ = ∅), then the unique finest ∆-decomposition coincides with the unique
finest Parikh splitting, except for the additional O∆ in its realisation. It seems reasonable
to expect the following behaviour of the unique finest ∆-decomposition: (i) it is at least as
fine as the unique finest Parikh splitting and (ii), which implies (i), the number of its parts
increases monotonically with ∆. While this expected behaviour can be observed in Example
3.17, it does not occur in general, as Example 3.18 shows.

Example 3.17. The ∆-decomposition from Example 3.16 is finer than the Parikh splitting. If
we increase ∆ to, e.g., ∆′ = {isMadeFrom, Tree, Fruit}, then the ∆-decomposition becomes
even finer: Σ1 = {Seed}, Σ2 = {Flower, Branch}, and Σ3 = {Mountain, Soil}.

7. Note that partitions are usually defined to consist of non-empty parts.
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Example 3.18. Let O consist of two signature-disjoint axioms, such as O = {A1 ⊑ B1, A2 ⊑
B2}. Then the unique finest Parikh splitting is Σ1,Σ2 with Σi = {Ai, Bi}, i = 1, 2, realised by
O1,O2 with Oi = {Ai ⊑ Bi}, i = 1, 2. Also, Σ1,Σ2 is the unique finest ∆-decomposition for
∆ = ∅ and for ∆ = {A1} (or any other singleton ∆). If we increase ∆ to ∆′ = {A1, B1}, then
the part Σ1 vanishes and Σ2 remains, i.e., we get the singleton ∆′-decomposition consisting
of Σ2, realised by O2 (and O∆ = O1).

Hence, ∆-decompositions are incomparable with Parikh splittings in general. In particular,
because Property (ii) above fails, the selection of a suitable ∆ in practice is non-trivial and
constitutes the major challenge for ∆-decomposing an ontology. Konev et al. (2010) “do
not expect signature decompositions to be a push-button technique, but rather envision
an iterative and interactive process of understanding and improving the structure of an
ontology, where the designer repeatedly chooses sets ∆ and analyses the impact on the
resulting decomposition”. Hence, this method does not produce any stable, intrinsic modular
structure—at least, we do not yet have conditions to ensure such a property.

Computational properties. Konev et al. (2010) analysed the computability of signature
∆-decompositions for those languages that have PIP. In particular, finding the finest ∆-
decomposition is polynomial in DL-Lite, and in EL with further constraints (either ∆ = ∅
or O is role-acyclic, i.e., O has no entailments of the form C ⊑ ∃r1. · · · ∃rn.C where C is an
EL-concept, the ri are role names, and n ≥ 1); ExpTime-complete in ALC,ALCI,ALCQ
or ALCQI, and in ALCH or ALCHI under the condition that ∆ contains all role names
from Õ. For languages without PIP the existence of a finest ∆-decomposition, and thus of a
modular structure as described above, is not guaranteed.

3.3.3 Decomposition Based on E-Connections

An orthogonal approach to decomposing an ontology into modules aims at identifying distinct
subdomains present in an ontology, and making explicit how the ontology describes entities
from one subdomain in terms of entities of others. For example, a medical ontology might
deal with the non-overlapping subdomains of anatomy, diseases, and drugs, referring to
anatomy concepts in order to define diseases and to concepts from both anatomy and diseases
to define drugs.

In order to model non-overlapping subdomains and the logical interactions between them,
the notion of an E-connection has been defined (Kutz, Wolter, & Zakharyaschev, 2002; Kutz
et al., 2004). E-connections are based on a principled approach to combining several logics.
To ensure that the combined formalism is computationally well-behaved, the constituent
logics are required to fall under the general notion of an abstract description system (ADS),
introduced by Baader, Lutz, Sturm, and Wolter (2002) to study fusions of logics. The
semantics of fusions is designed to merge the involved interpretation subdomains, whereas
that of E-connection keeps them separate. ADSs include most of the commonly used DLs,
but also modal and (propositional) temporal logics.

In the special case of DLs, an E-connection is a set of ontologies—its parts—that are
semantically interconnected via link properties (LPs).8 The intuitive idea is that every part

8. Differently from our presentation of the other formalisms for decomposition, we omit here the formal
definition of E-connections since it is rather lengthy; we refer the interested reader to the literature
(Baader et al., 2002; Cuenca Grau et al., 2006).
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covers a separate domain, and LPs allow to transfer information between these domains in
the sense indicated above. More precisely, concepts from one application domain (e.g., in a
medical ontology, certain drugs) can be defined in terms of concepts from other domains (e.g.,
certain diseases and body parts). To capture this intuition, the semantics of E-connections is
based on DL interpretations whose domains consist of pairwise disjoint subdomains. Given an
E-connection O with the parts O1, . . . ,On, each Oi is associated with one of the subdomains;
each concept name or individual in O is associated with one Oi and interpreted within the
respective subdomain; the same holds for some of the role names in O; each of the remaining
role names in O becomes a LP that is associated with a pair (Oi,Oj) and interpreted as a
binary relation between the respective subdomains. In the above example, three subdomains
are needed, and the extensions of, e.g., the concept name BodyPart and the role name
hasLocation are restricted to the anatomy subdomain. In contrast, the LP affects is
interpreted as a binary relation that links the disease subdomain with the anatomy one.

Cuenca Grau et al. (2006) describe a procedure for decomposing an ontology into an E-
connection. This procedure yields a partition of the set of an ontology’s axioms, together with
connections between the parts, modelled as link properties. Despite being nondeterministic,
the procedure yields the unique finest partition of the input ontology that is an E-connection
(where ‘refines’ and ‘finest’ are defined in the beginning of Section 3.3.1). Not every such
partition is equivalent to the original ontology under the E-connection semantics. In order to
guarantee this kind of equivalence between the input and output ontology, it is necessary to
assume that the input ontology is safe, which means that the satisfaction of its axioms does
not depend on the existence of domain elements that do not participate in extensions of
concept, role, or individual names. This notion is also known as domain independence in the
database context (Abiteboul, Hull, & Vianu, 1995). For example, the axiom α = ¬A ⊑ B is
not safe because, if a model I of α is extended by a domain element that does not occur in
the extension of A or B, then α ceases to be satisfied.

Example 3.19. Consider the (safe) example ontology Koala2 given in Figure 1, created in the
spirit of the toy ontology Koala.9 Figure 2 provides the finest partition into an equivalent
E-connection. The nodes are labelled with the axioms contained in them, together with an
informal name summarising their contents. The edges are labelled with the respective LP.

The E-connection in Figure 2 comprises of two connected components: an isolated part
containing only axiom α14 and the remainder of the ontology, decomposed into 5 parts. The
largest part consists of the 6 axioms describing animals and their subconcepts, and the ranges
of the hasHabitat and hasGender relations. These axioms cannot be further separated
because of the fundamental property of E-connections to be ‘closed under subconcepts’: e.g.,
due to the axiom Marsupial ⊑ Animal, both concept names Marsupial and Animal must be
associated with the same part and so must the respective axioms α3 and α4. The remaining
parts of this component contain the axioms describing habitats (including forests), climate,
vegetation, and genders. The edges and their respective LPs capture the logical interaction
between the axioms in the ontology in an intuitive way: animals are described in terms of
their habitat and gender; habitats are described in terms of their climate and vegetation;
climate and vegetation affect each other. Finally, the isolated part correctly represents the
fact that α14 does not logically interact with the remainder of the ontology.

9. http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
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Koala2 = { α1: Koala ⊑ Marsupial ⊓ ∃ hasHabitat.DryEucalyptForest,
α2: Quokka ⊑ Marsupial,
α3: Marsupial ⊑ Animal,
α4: Animal ⊑ ∃ hasGender.⊤ ⊓ ∃ hasHabitat.⊤,
α5: ⊤ ⊑ ∀ hasHabitat.Habitat,
α6: ⊤ ⊑ ∀ hasGender.Gender,
α7: DryEucalyptForest ⊑ Forest,
α8: Forest ⊑ Habitat,
α9: Habitat ⊑ ∃ hasClimate.Climate ⊓ ∃ hasVegetation.Vegetation,
α10: Climate ⊑ ∃ controls.Vegetation,
α11: Vegetation ⊑ ∃ dependsOn.Climate,
α12: Gender(female),
α13: Gender(male),
α14: Continent(australia) }

Figure 1: Toy ontology Koala2.
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Figure 2: E-connection resulting from partitioning the ontology Koala2.

In general, every E-connection O = (O1, . . . ,On) of an ontology O induces a directed
graph GO—called the E-connection graph—whose nodes are the Oi and whose edges are
determined by the LPs. An edge from Oi to Oj indicates that Oi imports vocabulary from
Oj , i.e., the meaning of the concepts in Oi depends on that in Oj . Based on this ‘imports’
relation, the Oi can be divided into three types:

• light/red: parts with outgoing edges (‘importing parts’),

• medium/blue: parts with incoming but no outgoing edges (‘imported parts’), and

• dark/green: isolated parts (they indicate subdomains unrelated to the rest of the
ontology and could be maintained in a separate ontology).

Unlike the two approaches described previously, decomposition based on E-connections
splits the set of the input ontology’s axioms. As a consequence, two equivalent ontologies
may have different E-connections, as we can see in the next example.

Example 3.20. Consider the ontology O = {A1 ⊑ B1, A2 ⊑ B2}: its E-connection has two
parts with a single axiom each. Now O is equivalent to O′ = {⊤ ⊑ (¬A1⊔B1)⊓ (¬A2⊔B2)}
whose E-connection only has a single part, O′ itself.

Although we can associate a partition of the signature of an ontology with an E-connection,
different parts of an E-connection can share terms, i.e., the set of terms associated with a
part is only a subset of its signature; we will discuss this in the following. Furthermore, the
process of partitioning is completely automatic.
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Modules and their properties. A single part of an E-connection is not necessarily
logically closed: its outgoing LPs point to parts on which it logically depends. In the initial
example, the ‘drugs’ part depends on the other two, and the ‘diseases’ part depends on the
‘anatomy’ part. The modules of an E-connection are thus obtained by following the logical
dependencies, modelled by the LPs. More precisely, in an E-connection O = (O1, . . . ,On)
of an ontology O, each sub-collection (Oi1 , . . . ,Oim) of its parts determines an E-module
Mi1,...,in , which is the union of all the Oij and all Oℓ that are reachable from some Oij in
GO (if nominals occur, then predecessors in GO need to be added).

Koala2 (Figure 2) has 13 E-modules: (1) Gender, (2) Climate∪Vegetation, (3) Habitat∪
Climate ∪ Vegetation, (4) the union of 1 and 2 with Animal, (5) australia, and (6–13)
any union of two or more of 1–5.

Cuenca Grau et al. (2006) show that all E-modules provide coverage and are self-contained.
The property of being depleting is not discussed; however, every E-module Mi determined
by a single part Oi is shown to satisfy additional, similar encapsulation properties:

(i) For every concept name A associated with Oi, the module Mi entails the same
subsumptions A ⊑ B and B ⊑ A as O, where B is an arbitrary concept name from O.

(ii) O does not entail any subsumptions between concept names occurring in Mi and
concept names not occurring in Mi.

Unlike in the previous two approaches, all Oi, and thus all modules, are subsets of O.
Even though every concept and role name is associated with exactly one Oi (or one pair),
the signatures of the Oi are typically not disjoint.

The cohesion of an E-module can vary greatly from ontology to ontology. Due to
conditions (i) and (ii), the size of the partition and thus the number of basic modules
is bounded by the number of top-level concepts in the original ontology.10 Consequently,
E-modules of some ontologies combine axioms that are related not logically but because they
involve sub-concepts of the same (generic) top-level concept.

Modular structure and its properties. The basic modules are those E-modules Mi

that are determined by a single part Oi; the derived modules are their unions. As in
the previous two approaches, E-modules Mi1,...,in and derived modules coincide, and the
generation mechanism is the same.

The edges of the E-connection graph GO induce a dependency relation between the parts
Oi of the partition: if there is a path from Oi to Oj in GO, then the following property holds.

For every basic module Mk, if Oi ⊆Mk, then Oj ⊆Mk.

In other words, the axioms in Oi logically depend on the axioms in Oj because the former
need the latter to form modules that encapsulate knowledge—but not necessarily vice versa.

Dependencies between the parts imply inclusions between basic modules: if Oi,Oj are
part of a cycle, then Mi =Mj ; if there is a path from Oi to Oj but not vice versa, then
Mj (Mi; otherwiseMi,Mj are orthogonal (but not necessarily disjoint). In the case of
Koala2 (Figure 2) the modules determined by Climate and Vegetation coincide, and are
strictly contained in the module for Habitat.

10. The same holds with respect to the bottom-level concepts, but their number is usually much larger.
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E-connections capture a further type of logical dependency between their modules: the
overlapping of two distinct Mi,Mj . In this case, the two modules share one or more parts
Ok. This is represented in GO by the Ok being reachable from both Oi and Oj .

The granularity of the modular structure induced by an E-connection can vary greatly from
ontology to ontology, see the observations related to cohesion above. As a consequence, some
ontologies do not decompose well into an E-connection due to certain modelling practices:

Example 3.21. Robert Stevens’ ontology Periodic,11 which describes the elements of the
periodic table and their properties, has a single top-level concept DomainEntity. Thus the
finest E-connection consists of a single node containing all axioms, although the domain
modelled by Periodic is naturally partitioned and the ontology expresses this separation.

Example 3.22. The finest E-connection for each of the ontologies Tree and Zigzagn from
Examples 3.7 and 3.8 consists of a single node, too (for all n). The reason for Tree is that all
axioms share the role isMadeFrom, and among the first five axioms, each two consecutive
axioms share a concept, which prevents the role isMadeFrom from being an LP. The reason
for Zigzagn is that for each i ∈ {1, . . . , n}, both Ai and Bi belong to the same part since
Zigzagn |= Ai ⊑ Bi. The same holds for Ai+1 and Bi.

The other extreme is possible, too: it is easy to compose ontologies where every node
in the E-connection graph consists of exactly one axiom. Furthermore, E-connections are
incomparable in terms of granularity with Parikh splittings:

Example 3.23. Revisit the ontologies O and O′ from Example 3.20: both the finest Parikh
splitting and the finest E-connection of O have two parts, one for each axiom. The equivalent
ontology O′ cannot be split by E-connections, but the finest Parikh splitting remains the
same. The reason is that every part of an E-connection must be a subset of the original
ontology, whereas a realisation of a Parikh splitting does not need to consist of subsets.

However, if one considers a restricted variant of Parikh splittings that admits only
realisations that partition the original ontology O, then the finest Parikh splitting of O
always yields an E-connection: since the n parts of its realisation are pairwise signature-
disjoint and subsets of O, they constitute an E-connection with n isolated parts. Consequently,
the finest E-connection is at least as fine as the finest Parikh splitting (in this variant).

Computational properties. The finest E-connection for a given ontology O in DLs up to
SHOIQ can be computed using Cuenca Grau et al.’s (2006) algorithm in time polynomial
in the size of O. This algorithm only guarantees structural compatibility of the resulting E-
connection with O and not logical equivalence under the E-connection semantics (see above).
The safety check can be performed in polynomial time as a preprocessing step. Altogether
every safe SHOIQ ontology can be partitioned into a finest logically equivalent E-connection
in polynomial time. Jongebloed and Schneider (2018) give a linear-time algorithm for the
same task in DLs up to SROIQ. They have also extended the safety check to SROIQ
minus the universal role, and argued why the latter is a strict boundary to the safety check.
In the meantime, a prototype has been implemented and tested in Jongebloed’s Master’s
thesis (2020). The performance turns out to be outstanding, but most of the observed
E-connections are discouragingly coarse-grained. Additional heuristics are needed to find out
whether this approach is useful at all.

11. http://www.cs.man.ac.uk/~stevensr/ontology/periodic.zip
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3.3.4 Early Attempts to Identify a Modular Structure for Σ-Modules

The extraction of a module M for a given signature Σ from an ontology O is a well-studied
task, see Section 2 (Konev et al., 2008, 2009; Cuenca Grau et al., 2009; Sattler et al., 2009).
RΣ-modules, for a fixed inseparability relation R, are designed to preserve the entailments
(if R is defined deductively) or the models (if R is defined model-theoretically) over a given
signature Σ and, because of self-containment, over the signature M̃ ofM itself. However,
M does not guarantee to preserve any entailments between the terms in Σ ∪ M̃ and the
remaining terms in O; it therefore does not capture any information on the logical relationship
between the terms inM and those outside. This observation makes the determination of the
‘signature of interest’ Σ more difficult than one might expect, and as long as a user is unsure
about the signature to specify, the ability to extract a single module is of little help to them.

As a simple (abstract) example, suppose an ontology user or engineer wants to extract
from an ontology O a module M that captures how a concept name A is described in O,
but they do not know which other terms in O are related to A. The most obvious choice for
a signature Σ that determines M would be Σ = {A}. However, for most ‘sound’ ontologies,
M = ∅ will be a module for Σ because the only interesting non-tautologous entailments
that can be formulated using only A are A ⊑ ⊥ and ⊤ ⊑ A—and they are both unlikely to
follow from O (they mean that A is unsatisfiable w.r.t. O or a top-level concept). Indeed,
if we consider the ontology Tree from Example 3.7 and are interested in the concept name
Tree, then the empty ontology is a module of Tree for Σ. One might argue that existing
module-extraction approaches for expressive ontology languages, including locality-based
modules, do not guarantee to generate a minimal module. However, it would certainly not
help to try and rely on modules containing ‘a bit more’ than they should. In the case of Tree,
the ⊤⊥∗-module for Σ is indeed empty.

If we want to support our ontology user/editor in finding a module (for A) that is
appropriate for their needs, we could try providing them with a list of all possible modules
of O (containing) to choose from. However, this naïve approach is infeasible as O may have
exponentially many modules:

Example 3.24. Let us consider the ontology All = {A1 ⊑ B1, A2 ⊑ B2, . . . , An ⊑ Bn}.
Then every subset of All is a ⊤⊥∗-module for some signature Σ ⊆ Ãll.

One might hope that the exponential behaviour observed for this artificial ontology does
not tend to occur for ‘real-life’ ontologies. This hope was had by Parsia and Schneider (2010),
who attempted to compute a modular structure for an ontology based on the set of all its
RΣ-modules, based on a fixed inseparability relation R and module extraction approach x
(in particular, locality-based modules). Before coming back to these early attempts, we will
first discuss the resulting modular structures and the requirements to the module notion x.

Modules and their properties. We consider an inseparability relation R and a module
notion x which, for every O and Σ, yields an RΣ-module x-mod(Σ,O) for Σ in O that is

(M0) self-contained,

(M1) uniquely determined, and

(M2) a subset of O.
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Property (M0) is advisable given the discussion about self-containment and interfaces in
Section 3.1, and (M1) and (M2) reflect the fact that module extraction approaches are to be
used, which typically yield uniquely determined subsets.12 It should be noted that coverage
is provided by RΣ-modules by definition; we do not require that they are depleting.

The module notion x does not need to have been designed with a notion of a modular
structure or basic and derived modules in mind. As a prominent example for x, we will often
refer to locality-based modules (Section 2) throughout this section, in particular ⊤⊥∗-modules:
they comprise perhaps the most widely known language-independent and computationally
well-behaved module notion, and they are readily usable via the OWL API.

As explained in the last paragraph of Section 2, all module notions satisfying (M2)
are necessarily syntax dependent, i.e., two equivalent ontologies can lead to two different,
non-equivalent modules for the same seed signature and thus to different modular structures.

Example 3.25. Consider the ontology O = {A1 ⊑ A2, A2 ⊑ A3, A3 ⊑ A4} and let
Σ1 = {A1, A2}, Σ2 = {A3, A4}, and Mi = x-mod(Σi,O) for i = 1, 2. If x is ⊤⊥∗, then
M1 = ⊤⊥

∗-mod(Σ1,O) = {A1 ⊑ A2} andM2 = ⊤⊥
∗-mod(Σ2,O) = {A3 ⊑ A4}. However,

M =M1 ∪M2 is not a module: its signature contains both A2 and A3, but M does not
contain the second axiom, thus violating self-containment.

Hence, if we were to define the derived modules to be exactly those that are the union of
two basic modules, then (a) the distinction between basic and derived modules would be
arbitrary and unintuitive (there could be very large basic modules containing derived modules),
and (b) ‘union’ as a derivation mechanism would not be meaningful for inseparability relations
such as mCE and dCE because it sometimes produces a module and sometimes it does not.

The last problem could be repaired by considering the following derivation mechanism:
given modules M1, . . . ,Mn of an ontology O, the module derived from M1, . . . ,Mn is
x-mod(Σ,O) where Σ is the union of the signatures of theMi. One could then define derived
modules to be exactly those that can be obtained this way; all other modules would be basic.
However, this choice is unintuitive, too: (a) determining whether a module M is basic or
derived would be highly complex because one would have to check M against every union
over a subset {M1, . . . ,Mn} of the set of all modules; (b) an ontology O could have a chain
M1 ⊆ · · · ⊆ Mn of basic modules, e.g., when the signatures of O’s axioms are monotonously
increasing w.r.t. the subset relation.

Cohesion may vary greatly, depending on the module notion x. In the worst case, x
can be such that x-mod(Σ,O) = O for every signature Σ. Then obviously the only module
O is of the lowest possible cohesion; see, e.g., the discussion in the previous subsection
where Tree did not decompose. In the best case, take x to be the minimal RΣ-module for
every Σ.13 Then the basic modules are of very high cohesion: two axioms occurring in a
⊆-minimal moduleM are strongly related in a logical sense because separating them is likely
to compromise entailments over the signature covered by M.

Modular structure and its properties. In order to obtain a modular structure from a
family of x-modules, we denote with Fx(O) the set of all x-modules in O. When no ambiguity
may arise, we drop x and write F(O). We set G = Fx(O) and → to be the set inclusion

12. The so-called projection and subsumption modules (Chen et al., 2018, 2019b) are not unique, thus do not
satisfy (M1) and are therefore not further discussed here.

13. In this case, we need to use a suitable notion of minimality to ensure uniqueness (M1).
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relation ⊆. Under certain assumptions to the module notion x, this dependency relation can
be represented by the complete join-semilattice whose 1-element is O, whose 0-element is
the module for Σ = ∅,14 and where the join of any two modules M1 and M2 is the smallest
module containing both M1 andM2. For the latter to be well-defined, we need to require
two additional properties.

(M3) The function x-mod(·, ·) is monotonic in the first argument, i.e., if Σ ⊆ Σ′, then
x-mod(Σ,O) ⊆ x-mod(Σ′,O).

(M4) For all x-modules M of O, it holds that M = x-mod(M̃,O).

Property (M4) is the ‘operational’ variant of the assumption that RΣ-modules are self-
contained, as discussed at the beginning of Section 3.2. Although x-modules do not need to
be minimal, (M4) ensures thatM covers O for its own signature but not more. Interestingly,
(M4) does not follow from self-containment and depletingness of x-modules (see Def. 2.4) since
the module extraction function x-mod(·, ·) could add different ‘extraneous’ axioms depending
on the first parameter. All known variants of locality-based modules (whether syntactic or
semantic, top or bottom, nested or unnested), however, satisfy (M0)–(M4) (Konev et al.,
2009; Sattler et al., 2009).

If the module notion x satisfies properties (M1)–(M4), then for all modules M1,M2

of O there is a unique ⊆-minimal x-module of O that contains both M1,M2, namely
x-mod(M̃1 ∪ M̃2,O).

Unlike in the previous approaches, G does not partition the input ontology; the modules
in G typically overlap.

The granularity can vary greatly depending on the module notion x and the ontology O,
analogously to the variability of cohesion: if x generates only large modules from O, then
the resulting modular structure (Fx(O),⊆) will be coarse-grained; if x generates smaller
modules, then the granularity of (Fx(O),⊆) will be finer.

Computational properties. As already seen in Example 3.24, every subset of an ontology
O may be an x-module for some signature. Thus, even when x-modules can be computed
efficiently (as is the case for MEX or locality-based modules), the size of the modular structure
is exponential in the worst case. Our previous study (Parsia & Schneider, 2010) shows that
the situation is not significantly different for existing ontologies: the experiment on a number
of well-designed and sufficiently diverse ontologies shows that (a) the number of modules is
so large that a complete extraction is possible only for ontologies with up to ≈ 50 axioms;
and (b) for a fixed ontology, the number of modules extracted from a sub-ontology grows
exponentially with the size of the sub-ontology. The latter suggests that the number of
modules of an ontology indeed grows exponentially with the size of the ontology.

Even attempts to reduce the prohibitively large set of R-modules to a reasonable subset
did not help: we observed (Parsia & Schneider, 2010) that a large proportion of the modules
is of distinctively low cohesion, called ‘fake’, but the number of the remaining ‘genuine’
modules still exhibits an exponential growth, too. A ‘fake’ module falls apart into smaller
modules which are logically independent because their signatures are (almost) disjoint—a
predecessor variant of the notion of genuine and fake modules introduced in Section 4.

14. Note that the module mod(∅,O) is not necessarily empty. For example, the axiom A ⊔ ¬B ⊑ A ⊓ ¬B is
neither ⊥- nor ⊤-local w.r.t. any signature.
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4. Atomic Decomposition

In the previous section, we have seen a variety of existing approaches to decompose an
ontology resulting in different kinds of modular structures with different properties—all of
which provide strong logical guarantees. None of these approaches, however, results in a
modular structure that would be suitable for modular ontology engineering, i.e., one that has
a suitable number of basic modules with strong cohesion, a dependency relation which allows
us to work with modules of a varying granularity, a suitable module generation mechanism,
and whose computation is of acceptable complexity.

In this section, we assume we have fixed a notion of modules where each module is unique
for a given seed signature, a subset of the ontology, and depleting. We introduce a new
modular structure based on the notion of a genuine module, i.e., a module that cannot be
decomposed into smaller modules. In this sense, genuine modules are the basic modules of
our structure and of all derived modules.

The new modular structure will be based on two fundamental notions: (a) an atom of
the input ontology O is a maximal subset of axioms that are never separated by any module
of O. Consequently, O’s atoms partition O into highly cohesive subsets, and the number of
atoms is bounded by the number of O’s axioms. (b) The dependency relation between atoms
of O captures a further kind of cohesion and allows for a natural definition of basic modules
of O. We will see that both the set of atoms and the dependency relation can be computed
in quadratic time with a linear number of calls to a subroutine extracting x-modules.

Before we define these new terms, we clarify the requirements to the underlying module
notion x.

4.1 Requirements

From now on, we fix a monotonic inseparability relation R and a module notion x which,
for any given ontology O and signature Σ, yields an RΣ-module x-mod(Σ,O). The function
x-mod(·, ·) must satisfy the following properties; the first five have already been fixed in
Section 3.3.4, but we repeat them for readability.

(M0) x-mod(Σ,O) is a self-contained RΣ-module of O.

(M1) x-mod(Σ,O) is uniquely determined.

(M2) x-mod(Σ,O) is a subset of O.

(M3) The function x-mod(·, ·) is monotonic in the first argument.

(M4) For all x-modules M of O, it holds that M = x-mod(M̃,O).

(M5) For all α ∈ O: if α ∈ x-mod(Σ,O) for some Σ ⊆ Õ, then α ∈ x-mod(α̃,O).

Properties (M1)–(M5) are necessary for the soundness of the technical development in this
section, and they ensure that the AD of a given ontology can be computed efficiently, see
Section 4.3.3. In contrast, Property (M0) is not necessary from a strict technical point of
view, but we consider it an essential requirement to a meaningful module notion; see the
discussion on self-containment and interfaces in Section 3.1. In this connection, it should be
noted that x-modules are not required to be depleting.
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Property (M5) is a technical subtlety to ensure that any axiom α that occurs in some
module of O also occurs in the module for its own signature; see the proof of Lemma 4.11.
For example, if α = A ⊑ A ⊔B and α ∈ x-mod({A,B,C},O), then α ∈ x-mod({A,B},O).
Although (M5) speaks about all possible axioms α, it is not a strong restriction for module
notions x that are depleting—in this case, (M5) is relevant only for axioms α that are
tautologies modulo R and their own signature, i.e., {α} ≡R

α̃ ∅: all other α occur in x-mod(α̃,O)
anyway, due to depletingness and monotonicity of R.15

Properties (M0)–(M5) are satisfied by locality-based and MEX modules; the suitability
of the remaining module notions mentioned in Section 2.3 is discussed in Section 4.5. It
is not hard to see, however, that some module notions based on implication inseparability
(Konev et al., 2009; Armas Romero et al., 2016) do not satisfy (M5). All of the following
definitions and theoretical results apply to any module notion x with these properties. Only
‘soft’ parameters such as cohesion and granularity, as well as computational properties depend
on the choice of x. We will get back to this last observation in Section 4.4; in the meantime
we will often omit x when no confusion can arise.

We continue to use the notion Fx(O) = {x-mod(Σ,O) | Σ ⊆ Õ} from Section 3.3.4 and
write F(O) when x is clear from the context or we do not have a specific x in mind.

4.2 Atoms, Dependency, and the Atomic Decomposition

Atoms are defined via the equivalence relation ∼O, which captures that axioms always
co-occur in modules.

Definition 4.1. Let O be an ontology and α, β ∈ O. Then α ∼O β if, for all M ∈ F(O),
we have α ∈M if and only if β ∈M.

It is immediate that ∼O is indeed an equivalence relation.
Atoms are maximal subsets of axioms that are not separated by any module.

Definition 4.2. The atoms of an ontology O are the equivalence classes of ∼O. The set of
atoms of O is denoted by A(O).

We denote atoms by a, b, . . . The following observation is immediate.

Observation 4.3. For every ontology O, the following hold.

1. A(O) is a partition of O.

2. #A(O) ≤ #O (i.e., the number of atoms is bounded by the number of axioms in O).

3. Every module M∈ F(O) is a disjoint union of atoms.

While every module of O is partitioned into one or several atoms, it is not necessarily
the case that every axiom occurs in some module. By (M5), these are exactly those α with
α /∈ x-mod(α̃,O), which is the case, e.g., for some tautologies. We can think of such axioms
α as obvious tautologies.16 If O contains such axioms, then by definition they constitute

15. In fact, a weaker variant of depletingness already suffices, namely O \M ≡R
Σ ∅. This requirement follows

from depletingness as in Definition 2.4 and monotonicity of R.
16. Strictly speaking, the term “tautologies” is only justified if x-modules are depleting; see the remarks

on (M5) in Section 4.1.
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a single atom, which we call t; otherwise t is empty and thus not an atom. To make the
following considerations more readable, and without loss of generality, we assume that t = ∅;
we can always employ a preprocessing step that identifies t and removes it from O, resulting
in an ontology O′ with O′ ≡R

Õ
O.

Next, we define a binary relation � between atoms that captures the dependencies
between atoms in terms of co-occurrence in modules: if a � b, then every module that
contains a must contain b too.

Definition 4.4. Let a, b be atoms of an ontology O. We say that a depends on b (written
a � b or b � a) if, for everyM∈ F(O), a ⊆M implies b ⊆M. The relation � is called the
dependency relation of O.

The relation � is obviously a partial order: reflexivity and transitivity are immediate,
and antisymmetry follows from the observation that, if both a � b and b � a hold, then
α ∼O β for all axioms α ∈ a and β ∈ b; consequently a = b.

As usual, we use ≻ for the strict partial order underlying �, i.e., a ≻ b if a � b and a 6= b.
Since (A(O),≻) is a strict poset (partially ordered set), we can represent it by means of a
Hasse diagram. Furthermore, we can make use of the standard notions of a principal ideal17

and an antichain:

Definition 4.5. Let O be an ontology.

1. The poset (A(O),≻) is called the atomic decomposition (AD) of O.

2. The principal ideal of an atom a ∈ A(O) is the set ↓a :=
⋃
{b | a � b}.

3. An antichain of atoms is a set B ⊆ A(O) such that a � b for any two distinct a, b ∈ B.

In case the module notion matters, we will explicitly mention x and speak of the x-atomic
decomposition of O, for short x-AD, denoted by (Ax(O),≻x) .

Example 4.6. Let us consider the Dog ontology defined as follows.

Dog = { α1 : Poodle ⊑ Dog ⊓ ∃hasCoat.Curly,

α2 : Dog ⊑ Mammal ⊓ ∃hasPart.Tail,

α3 : Mammal ⊑ Animal ⊓ ∃hasPart.Hair }

The three ‘popular’ notions of locality ⊥,⊤, and ⊤⊥∗ give rise to the following sets of
x-modules.

F⊥(Dog) = {∅, {α3}, {α2, α3},Dog}

F⊤(Dog) = {∅, {α1}, {α1, α2}, Dog}

F⊤⊥∗

(Dog) = {∅, {α1}, {α2}, {α3}, {α1, α2}, {α2, α3},Dog}

In each of the three corresponding x-ADs, the atoms are {α1}, {α2}, and {α3}. The
dependency relations differ and are given by the Hasse diagrams in Figure 3.

In the ⊥-AD, the principal ideal of {α1} is ↓{α1} = {α1, α2, α3}; in the other two ADs,
we have ↓{α1} = {α1}. In the ⊤⊥∗-AD, the three atoms form an antichain of size 3; the
other ADs have singleton antichains only.
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α1

α2

α3

α3

α2

α1

α1 α2 α3

Figure 3: ⊥-, ⊤-, and ⊤⊥∗-AD of the Dog ontology. Arrows represent the ≻ relation.

We can see that both in the ⊥-AD and in the ⊤-AD all atoms are comparable. This is in
contrast with the ⊤⊥∗-AD, which is totally disconnected since each atom is incomparable
with any other atom. Please note that not every ‘dependency-closed’ set of atoms forms a
module: for example, {α1, α3} is not a ⊤⊥∗-module (the smallest module containing both
α1 and α3 is the whole ontology). We see that the ⊥-AD shows the dependence of axioms
related to more specific concepts (e.g., Poodle) on axioms related to more general concepts
(e.g., Mammal). Dually, the ⊤-AD shows the dependence of axioms related to more general
concepts on axioms related to more specific concepts. The ⊤⊥∗-AD, instead, shows none of
these dependencies. To sum up, the ⊥- and the ⊤-AD reveal a subsumption-preserving kind
of dependence, whilst the ⊤⊥∗-AD shows a finer notion of independence than those revealed
by the other kinds of ADs. We will further investigate this phenomenon in Subsection 4.3.2.

In general, the ⊥- and ⊤-ADs of an ontology and its E-connection are pairwise incompa-
rable in terms of granularity: typically, some ⊤-AD atoms are unions of ⊥-AD atoms, but
there can be ⊥-AD atoms that overlap with several ⊤-AD atoms; see the following example.

Example 4.7. The ⊥-AD of the ontology Koala2 (from Figure 1) consists of 11 atoms in 1
connected component and is displayed in Figure 4a (solid lines only). The nodes are labelled
with their axioms αi, together with an informal description of the contents—in this case the
terms described by the axioms. Arrows represent the ‘depends on’ relation ≻.

The ⊥-AD yields a very fine-grained decomposition of Koala2 since most atoms consist of
one axiom only. For example, it is intuitive that the atoms describing Forest and Habitat

are separated: the topic of forests depends on the topic of habitats (because of α8) but not
vice versa. To additionally capture the ontology’s knowledge about animals, its knowledge
about the hasHabitat relation (α5) has to be included.

In the case of Koala2, the ⊤⊥∗-AD happens to coincide with the ⊥-AD, and the ⊤-AD
consists of only 5 atoms in 2 connected components. It is superimposed on the ⊥-AD in
Figure 4 a (dashed lines). Except for the splitting of the bottom-most atom, the ⊤-AD is
a coarsening of the ⊥-AD, and all dependencies are reversed. This effect is caused by the
property of ⊤-modules being ‘closed under subconcepts’, while ⊥-modules are ‘closed under
superconcepts’ (Cuenca Grau et al., 2008).

Figure 4b shows the E-connection of Koala2 (from Figure 2) superimposed on the ⊥-AD.
It divides the two bottom-most atoms and is otherwise a coarsening of the ⊥-AD that is
orthogonal to the ⊤-AD. The reasons for the coarseness of the E-connection have been
discussed in Example 3.19.

17. Throughout this paper, we use the term (principal) ideal for the downwards closed subset of a partially
ordered set (generated by a single element); alternative terms are lower sets, down set, etc.
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Figure 4: ⊥-AD of the ontology Koala2 (solid lines) with a) the ⊤-AD superimposed (dashed
lines) and b) the finest E-connection superimposed. Arrows in ADs represent the ≻ relation.

Unlike the ⊤-AD and the E-connection, the ⊥-AD does not separate axiom α14 from α12

and α13. This is an unintended consequence of the properties of ⊥-modules: the concept
assertions α12–α14 are part of every ⊥-module because concept assertions are never ⊥-local,
regardless of the signature Σ. Had the continent Australia been modelled as a concept, α14

would have formed a separate isolated atom because no other axiom refers to the terms
Continent and australia. Modelling the genders ‘female’ and ‘male’ as concepts would
have no such effect because axioms α12 and α13 share the concept Gender with each other
and the remaining ontology.

Altogether, Example 4.7 shows that ⊥-AD, ⊤-AD and decompositions based on E-
connections are pairwise incomparable. We will examine the relationship between the three
main notions of ADs based on syntactic locality more systematically in Section 4.5.

The following observation is an immediate consequence of Definition 4.4: modules are
downwards closed under the dependency relation �.

Lemma 4.8. If an atom a ⊆M and a � b, then b ⊆M.

4.3 Properties of the Atomic Decomposition

We will discuss relevant properties of the atomic decomposition and its relation to modules,
and start with a formal definition of genuine modules. We remind the reader that we have
fixed a module notion x with the properties stated in Section 4.1. For the sake of convenience,
we will omit x when referring to the set F(O) of all modules of an ontology O, its atom set
A(O), or the module mod(Σ,O) for a signature Σ. We continue to assume that t = ∅ (i.e.,
every axiom occurs in some module).
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Definition 4.9. Given an ontology O, we say that a module M ∈ F(O) is fake if there are
n ≥ 2 modules M1, . . . ,Mn ∈ F(O) such that

• M =M1 ∪ . . . ∪Mn and

• Mi *Mj for each i 6= j.

A module is called genuine if it is not fake. The set of all genuine modules is written G(O).

Definition 4.9 captures the requirement formulated in Section 4.1: a module is genuine if it
is not just the union of two or more other modules that are incomparable w.r.t. set inclusion.
The distinction between genuine and fake modules is legitimated by the observation that
fake modules are less cohesive and thus less representative than genuine modules.

Example 4.10. For an illustration, consider the following simple Person ontology.

{ α1 : Vegetarian ⊑ Person, α2 : Student ⊑ Person, α3 : Person ⊑ Animal }

Every subset of Person is a module for its own signature. In particular, the singleton modules
are genuine and separate the three axioms from each other, capturing the intuition that the
three axioms touch on separate topics: vegetarians, students, and animals. Consequently, the
concepts Vegetarian, Student, and Animal can be interpreted independently; if the ontology
were to be extended, additional knowledge for each of the three topics could be added to
the respective module. All three modules depend on the concept Person, which mirrors the
customary situation of modules with common dependencies in software engineering. The
remaining, larger modules of Person are fake and have a different status—they decompose
into the smaller modules and are thus less cohesive and less representative than those.

Next we develop a 1-1 correspondence between genuine modules and atoms.

4.3.1 Atoms vs. Genuine Modules

We start our investigation by considering modules for seed signatures of individual axioms in
an ontology: clearly, an ontology gives rise to only a linear number of such seed signatures.
In the following observations and results, we consider an arbitrary ontology O. For any
axiom α ∈ O, let Mα := mod(α̃,O). We call Mα an axiom module. We will first show that
axiom modules play a major role among all modules, which we will then exploit in order to
compute all genuine modules.

Lemma 4.11. For every atom a ∈ A(O) and every axiom α ∈ a, we have that Mα is the
smallest module of O that contains a.

Proof. Let a ∈ A(O) and α ∈ a. We first show that a ⊆ Mα. Since we have adopted the
assumption that t = ∅, there is some module M = mod(Σ,O) that contains α. Property
(M5) implies α ∈ mod(α̃,O).

To show that Mα is minimal with a ⊆Mα, consider any module M = mod(Σ,O) of O
with a ⊆M. Then we have

Mα = mod(α̃,O) ⊆ mod(M̃ ∪ α̃,O) = mod(M̃,O) =M,

where the inclusion is due to monotonicity (M3), the subsequent equality follows from α̃ ⊆ M̃
(since α ∈ a ⊆M), and the last equality is due to (M4).
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Analogously to axiom modules, we can define the notion of an atom module: given
a ∈ A(O), let Ma := mod(ã,O). Interestingly, axiom and atom modules coincide, which
easily follows from Lemmas 4.8 and 4.11, the definition of atoms andMα, and (M3) and (M4):

Corollary 4.12. For all atoms a, b ∈ A(O), the following hold.

1. Ma =Mα for every axiom α ∈ a.

2. a depends on all the atoms contained in Ma \ a.

3. a � b if and only if Ma ⊇Mb.

4. For every axiom β ∈ O, we have that β ∈ a if and only if Mβ =Ma .

5. For all axioms α, β ∈ O, we have that Mα =Mβ if and only if there is an atom b

such that {α, β} ⊆ b.

6. We have that a = {α | Mα =Ma}.

Clearly, the set of all modules F(O) of an ontology O determines the AD (A(O),≻) of O.
We now provide an argument that, vice versa, the AD is a representation of the (genuine)
modules of O. We start by considering the principal ideal ↓a of an atom a ∈ A(O) (Def. 4.5).

Theorem 4.13. For each atom a ∈ A(O), ↓a =Ma .

Proof. For the ‘⊆’ direction, observe that a ⊆Mα =Ma for some (any) axiom α ∈ a, due to
Lemma 4.11 and Corollary 4.12, Point 1. Thus, by the definition of the dependency relation,
we have ↓a ⊆Ma. The ‘⊇’ direction follows from Corollary 4.12, Point 2.

As an immediate consequence of Corollary 4.12 and Theorem 4.13, there is a 1-1 corre-
spondence between axiom modules and atoms:

Corollary 4.14. For every module M the following are equivalent.

1. M is an axiom module.

2. M is an atom module.

3. There is an atom a ⊆M such that M = ↓a.

Given the AD of O, we can thus easily identify each axiom moduleMα by first identifying
its atom, i.e., by finding a with α ∈ a, and then taking ↓a. Next, we show that each module
can be ‘assembled’ from atoms; we will come back to this in Section 4.4.

Lemma 4.15. Every module M is the union of principal ideals of atoms from an antichain
in A(O), i.e., there is an antichain {a1, . . . , an} ⊆ A(O) such that

M =
n⋃

i=1

↓ai .

Proof. By Observation 4.3, every module M is a disjoint finite union of atoms {a | a ⊆M}.
Let a1, . . . , ak be all maximal elements among those atoms. Then, clearly, {a1, . . . , ak} is an
antichain, and M =

⋃k
i=1 ↓ai follows with Lemma 4.8.
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Lemma 4.15 says that each module M has a unique decomposition into incomparable
principal ideals. In this sense, we can say that the set of axiom modules forms a base for the
set F(O) for all modules of O. In Definition 4.9 we have already introduced the set G(O) of
genuine modules as a base for all modules of O. Next, we see that these two notions coincide,
i.e., there is a 1-1 correspondence between genuine modules and axiom modules.

Theorem 4.16. A module is an axiom module if and only if it is a genuine module.

Proof. Due to Corollary 4.14, it suffices to show that a module is a principal ideal if and
only if it is a genuine module.

For the ‘only if’ direction, assume to the contrary that M is principal ideal ↓a for some
atom a and thatM is fake. Then by Definition 4.9 there are n ≥ 2 pairwise ⊆-incomparable
modules M1, . . . ,Mn with M =M1 ∪ · · · ∪Mn and w.l.o.g. a ⊆ M1. Since M = ↓a, all
atoms in M2 depend on a. Since by Observation 4.3, M2 is the union of certain atoms
andM1 is closed under the dependency relation (Lemma 4.8), we obtain M2 ⊆M1, which
contradicts the incomparability of M1 andM2.

For the ‘if’ direction, we show the contrapositive. Assume that M is not a principal
ideal. Due to Lemma 4.15, M =

⋃n
i=1 ↓ai for an antichain {a1, . . . an} ⊆ A(O). Since M is

not a principal ideal, we must have n ≥ 2; since the ai form an antichain, the modules ↓ai
are pairwise ⊆-incomparable. Hence M is fake.

The following is a summary of all our findings and an extension of Corollary 4.14.

Corollary 4.17. There is a 1-1 correspondence between atoms and genuine modules. In
particular, for every module M the following are equivalent.

1. M is a genuine module.

2. M is an axiom module.

3. M is an atom module.

4. There is an atom a ⊆M such that M = ↓a.

The relations between genuine modules, atoms, and axiom modules captured in Theo-
rem 4.16 and Corollary 4.17 will be exploited in Section 4.3.3 for the efficient computation of
all genuine modules of an ontology.

We saw in Lemma 4.15 that each module is the union of the principal ideals of a suitable
set of atoms. However, not all unions of principal ideals are modules:

Example 4.18. Consider the following ontology Girl and its ⊥-AD.

Girl = {α1 : Female ⊑ Person,

α2 : Child ⊑ Person,

α3 : Female ⊓ Child ⊑ Girl }

α3

α1 α2

The union of the principal ideals {α1} and {α2} is not a module since it includes both terms
Female, Child and thus needs to include the axiom α3 too (since α3 is not ⊥-local w.r.t. any
signature containing Female, Child).
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4.3.2 Chains of Conservative Extensions

The dependency relation between (the atoms of) genuine modules has some interesting
consequences for the models of these modules, which we will discuss next.

We continue to assume that we have fixed a monotonic inseparability relation R (Def. 2.3)
and a corresponding module notion x with the properties (M0)–(M5) listed in Section 4.1.
We will omit both R and x unless we need to distinguish certain choices for them explicitly.

Imagine a scenario where an ontology engineer Alice has an ontology O1 and an ontology
O2 to be added to O1: for example, Alice has built O1 and now wants to extend it with O2

she found in a repository and which covers some important aspects of her domain. Another
example is where Alice has been using O1 for a while and now Bob suggests to extend it with
O2. A third example is where O1 is empty and Alice considers reusing O2 for her application.

In all three scenarios, it is reasonable to require that O1 ∪ O2 conservatively extends
O1, i.e., that O1 ≡

R
Õ1

O1 ∪ O2 for a suitable inseparability relation R. For example, if

R = dCE, then the conservativity requirement means that all entailments of the extended
ontology formulated in Õ1 already follow from O1; hence Alice can safely restrict her
attention to O1 when she is interested only in the ‘topic’ of O1. Similarly, if R = mCE, then
{I|

Õ1
| I |= O1} = {J |Õ1

| J |= O1 ∪ O2}; thus Alice can assume that her extension of O1

preserves the models of O1 modulo its signature.
Now assume that O2 is large and Alice wants to divide the extension into ‘digestible’

parts. If O2 contains, say, 100 axioms and Alice looks at the (unordered) set O1 ∪ O2, then
she will have a hard time to comprehend the changes and their logical effects. Instead, she
may want to spread the extension over several steps: O1 ∪ O

k
2 where Ok

2 contains the first k
axioms of O2, then O1 ∪ O

2k
2 with the next k axioms, etc., up to O1 ∪ O2. It is reasonable

to expect that many small steps are preferable over few large steps; e.g., 50 steps of 2 added
axioms each are easier to comprehend than 2 steps of 50 added axioms each, provided that
these 50 steps of 2 axioms come in a helpful order. We have already seen that an order where
the newly added axioms conservatively extend those already considered is such a helpful
order. The following definition captures these insights.

Definition 4.19. Let R be an inseparability relation. An R-chain of CEs is a finite sequence
of ontologies (O1, . . . ,Om) such that Oi ( Oi+1 and Oi ≡

R
Õi

Oi+1 for every i < m.

The AD (of the ontologyO resulting from all extensions) provides us with a straightforward
mechanism for identifying chains of CEs:

Proposition 4.20. Let O be an ontology and a1 ≻ · · · ≻ am a chain of atoms. Then
(↓am, . . . , ↓a1) is a chain of CEs.

Proof. Let i < m. Then ↓ai+1 ( ↓ai is obvious from the definition of PIs and ≻. Furthermore,
we have ↓ai+1 =Mai+1

due to Theorem 4.13; hence ↓ai+1 ≡
↓̃ai+1

O. Since ↓ai+1 ⊆ ↓ai ⊆ O

and R is monotonic, we also have ↓ai+1 ≡
↓̃ai+1

↓ai.

We can even use the AD to identify maximal chains of CEs according to Proposition 4.20
in the following sense. Consider two atoms a1 ≺ a2 ∈ A(O) such that there is no atom
a3 ∈ A(O) with a1 ≺ a3 ≺ a2, and let Mi = ↓ai be the corresponding genuine modules
in G(O). Since a1 ≺ a2, Proposition 4.20 ensures that M1 can be extended with the
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axioms in M2 \M1 safely. Moreover, since there is no genuine module M3 ∈ G(O) with
M1 (M3 (M2, this extension is minimal (relative to the module notion x), i.e., there is no
reasonable alternative way to perform this extension in two stages. This observation shows
that these chains of CEs identified via the AD are of maximal length (and thus correspond
to minimal additions), as required in the above scenario.

Example 4.21. Figure 5 a) shows again the ⊥-AD of the Koala2 ontology (from Figures 1
and 4), with atoms numbered a, b, . . . , k; the longest chain of CEs induced by the AD is of
size 7 and highlighted in the picture: (k, j, i, e, d, c, a). As observed above, this chain implies a
suitable order for reading the axioms in Koala2, which consists of the 8 steps in Figure 5 b).

If the AD is based on locality, then the corresponding inseparability relation R is model
conservativity; hence the induced axiom reading order can be used to build a model of the
decomposed ontology strictly incrementally, i.e., without having to backtrack or reconsider
the interpretation of terms. Someone who wants to understand (a part of) an ontology can
construct a mental image (i.e., a model) incrementally following this reading order.

a)

α1

α3

α2

α7

α8

α9

α10
α11

α4

α5 α6

α12
α13
α14

a b

c

d

e f

g

h

i

j k

b)

Step Axioms Atoms Comments

1 {α12, α13, α14} k

2 {α10, α11} j

3 {α9} i

4 {α5} e

5 {α4, α6} d, f d ≻ f

6 {α3} c

7 {α1, α7, α8} a, g, h a ≻ g ≻ h

8 {α2} b

Figure 5: a) ⊥-AD of Koala2 (repeated from Figure 4) with longest chain of CEs; b) reading
order implied by this chain.

4.3.3 Computational Properties

The results described in the previous sections, in particular Theorem 4.16 (stating the 1-1
correspondence between axiom modules and genuine modules) suggest that computing an
AD is indeed feasible: provided that module extraction is in polynomial time (e.g., for MEX
and syntactic locality based modules), it is not hard to see how to design a polynomial
algorithm for the computation of the AD. We now present and discuss such an algorithm.

A naïve algorithm for the computation can be designed to run in time quadratic in the
number of axioms in the ontology using module extraction as an oracle by

• extracting, for each axiom, its axiom module and then

• pairwise comparing all axiom modules to determine atoms and the dependency relation.
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The second step is quadratic in the number of axioms and requires a record of modules of
all axioms; this is clearly infeasible for large ontologies and suboptimal for ontologies with
atoms of non-trivial size.

In Algorithm 1 we give the pseudocode of an algorithm for the computation of the AD
that interleaves the above two points by using so-called key axioms for which to record
modules, and by ensuring that, for each genuine module/each atom, exactly one key axiom
is identified.

Algorithm 1: Algorithm for computing the AD of an ontology.

input :An ontology O; a function x-mod(·, ·) satisfying (M0)–(M5)
output :The set G(O) of genuine modules; the poset of atoms (A(O),≻);

a set of key axioms KeyAxs

KeyAxs ← ∅
TauAtom ← ∅

F1 foreach α ∈ O do #Compute key axioms, modules & atoms
M Module(α) ← x-mod(α̃,O)

if α /∈ Module(α) then #Is α an obvious tautology?
TauAtom ← TauAtom ∪ {α}

else #If not,
new ← true #is there a key axiom β withMα =Mβ?
foreach β ∈ KeyAxs do

if Module(α) = Module(β) then #If yes, add α to β’s atom
Atom(β) ← Atom(β) ∪ {α}
new ← false

if new = true then #If not, make α key
KeyAxs ← KeyAxs ∪ {α}
Atom(α) ← {α} #and start assembling its atom

dep ← ∅ #Compute dependency via key axioms
F2 foreach α ∈ KeyAxs do

foreach β ∈ KeyAxs do
if β ∈ Module(α) then

dep ← dep ∪ {(Atom(β),Atom(α))}

Atoms ← {Atom(α) | α ∈ KeyAxs} #Prepare output
GenMods ← {Module(α) | α ∈ KeyAxs}
return [GenMods; (Atoms, dep); KeyAxs]

The algorithm starts with an empty set TauAtom to record the obvious tautologies in
the atom t, and with an empty set KeyAxs to record key axioms. It then iterates through all
axioms in the ontology, extracts the module for each axiom in turn and, step by step, extends
the set of key axioms and builds a record of their modules and atoms. To this end, when it
considers an α ∈ O, it computes its axiom module Module(α) =Mα. If α /∈ Module(α), then
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α is added to TauAtom (see the remarks after Observation 4.3). Otherwise, the algorithm
checks whether we already have a key axiom β ∈ KeyAxs with the same module. If yes, α is
simply added to that axiom’s atom and we are done with considering α. Otherwise, we add
α to the set of key axioms KeyAxs and initialise α’s atom with {α}. Finally, we compute the
dependency relation by comparing all key axioms with all (key) axiom modules.

The correctness of this algorithm is an immediate consequence of the following observa-
tions: Corollary 4.12.4 (⇒) implies that creating a new atom {α} for each new key axiom α is
correct, i.e., α does not belong into the atom of an existing key axiom. Corollary 4.12.4 (⇐)
implies that adding axioms to the atoms of existing key axioms in case their modules coincide
is correct. Then, upon termination, each axiom has been either added to TauAtom, made a
key axiom and added to its own atom, or added to the atom of a key axiom; hence we have
partitioned the input ontology into correct atoms. Finally, Lemma 4.11 and Corollary 4.12.3
ensure that the dependency relation between atoms is computed correctly.

Next, we analyse the complexity of the algorithm. Let n be the number of axioms of O.
The algorithm iterates through all n axioms and extracts for each an axiom module. In the
ith iteration, and in case this axiom module is non-empty, it will also compare it with at
most i− 1 modules of key axioms. Hence the ‘foreach’ loop F1 in Algorithm 1 is quadratic
in n with n calls to the module extraction oracle (and this can be optimised further in case
there are several axioms with the same signature). The subsequent loop F2 is quadratic
in the number of key axioms, and thus at most quadratic in n. Overall, this results in a
polynomial time algorithm provided that module extraction is polynomial. The fewer atoms
there are in an ontology, the fewer key axioms are considered, and hence the closer we get to
a linear runtime.

So far, we have treated the module extractor as an oracle. Next, we consider a concrete
example, namely the algorithm for the extraction of (non-nested) syntactic locality-based
modules as described by Tsarkov (2012), which runs in time that is linear in the size of an
ontology. More precisely, to extract one module for a given signature, Tsarkov’s module
extraction considers each axiom α at most α̃ times, and thus runs in

∑
α∈O |α̃| steps. When

used for module extraction in line M of Algorithm 1, this will thus result in a runtime of
n(
∑

α∈O |α̃|+ n) + n2. Now we can make one of two assumptions:

1. each axiom in O involves at most c terms, for some constant c. In this case, the runtime
of Algorithm 1 is quadratic in the number of axioms in the ontology.

2. the number of terms in axioms is unbounded. In this case and for m the maximal
number of terms per axiom in O, Algorithm 1 runs in time n2m and thus quadratic in
the size of the ontology.

Algorithm 1 can be further optimised as described by Tsarkov (2012): if Mα contains an
axiom β 6= α then we know that Mβ ⊆ Mα, hence we only need to check the axioms in
Mα when extracting Mβ. This optimisation, however, does not change the asymptotic
complexity.

In Section 5 we evaluate the feasibility of computing the AD in practice.
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4.4 Atomic Decomposition as a Modular Structure

In this section, we discuss the Atomic Decomposition as a modular structure, considering
the same properties as in our discussions of other modular structures in Section 3. Again, we
assume we have fixed a module notion x that satisfies (M0)–(M5), for example semantic or
syntactic locality (see Section 4.1), and omit x if it is clear from the context.

Modules and their properties. In this setting, genuine modules play the role of basic
modules: any other x-module is a (not necessarily disjoint) union of genuine modules, see
Lemma 4.15 and Corollary 4.17. Since genuine modules inherit the properties from the
module notion x they are based on, they are usually not minimal in size, i.e., if one is after
a module to cover all entailments over a given signature, there is usually a smaller module
than one based on locality. On the other hand, they enjoy other, useful properties such as
being self-contained and depleting, see the discussion in Sections 2.3 and 3.1.

As observed in Section 3.3.4, the cohesion of modules depends on the choice of x: for
locality-based and MEX modules, cohesion can be said to be good since axioms in the same
M = x-mod(Σ,O) are likely to be the cause of some entailments over M̃, i.e., if M is split
into two parts, there are likely to be axioms entailed byM that are not entailed by either of
these parts.

As a consequence of Theorem 4.16, there are only linearly many genuine modules, and thus
they yield a basis of possibly reasonable size—especially when compared to that described
for locality based modules earlier, see Section 3.3.4.

Modular structure and its properties. In the Atomic Decomposition, the dependency
relation ≻ on atoms provides us indeed with a dependency relation ≻ on (genuine) modules,
see Lemma 4.8. As seen in Section 4.3.2, for ADs based on locality, ≻ captures model-
theoretic dependencies that can be exploited for specific tasks such as determining a suitable
reading order of axioms in an ontology together with an order on terms for incremental
model construction; see also the remarks at the end of Section 4.3.2.

In contrast to ∆-decompositions, basic modules of the AD can refine each other and thus
we have modules at varying levels of granularity, possibly with overlap, to reflect different
aspects of a given ontology.

In contrast to the decomposition based on E-connections, an element of a model of a
given ontology can be an instance of concepts from the signature of different basic modules,
e.g., we can have an instance b of Animal, Marsupial, and Koala, and each of the three
concept names is in the (seed) signature of different atoms. This is illustrated in Figure 4.

Of course, and similar to what we have explained in Section 3.3.4, the granularity and
cohesion of the AD depends on the module notion x and the modelling style of the ontology:
if x generates only few, large modules from O, then the resulting atomic decomposition will
be coarse-grained and some modules will have low cohesion; if x generates smaller modules,
then the granularity will be finer and cohesion higher.

The generation mechanism for ADs poses an interesting problem: given the AD (A(O),≻)
of O and a seed signature Σ, the only known mechanism to obtain mod(Σ,O) is to compute
it from scratch, i.e., from O; see Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, and
Winget (2011) or Del Vescovo (2013) for a discussion on how labels on atoms could be used to
optimise the computation of mod(Σ,O) in a variety of scenarios. We illustrate the difficulties
via a simple example: consider (A(O),≻) with three atoms a0 ≻ a1 and a0 ≻ a2 and
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Σ = ã1 ∪ ã2. The AD carries no information as to whether (i) mod(Σ,O) = ↓a1 ∪ ↓a2 6= ↓a0
or (ii) mod(Σ,O) = ↓a0. In case (i), Σ leads to a fake module which requires additional terms
from ã0 to result in a genuine module. For example, consider the ⊥-AD and a1 = {A ⊑ B},
a2 = {X ⊑ Y }, and a0 = {C ⊓ A ⊓ X ⊑ ∃R.(B ⊓ Y )}. Then Σ = {A,B,X, Y } and
mod(Σ,O) = a1 ∪ a2 is fake, whereas mod(Σ ∪ {C},O) = ↓a0 = O is genuine, i.e., C is the
‘required additional term’. In case (ii), the terms in Σ ‘pull in’ all terms in ã0 and thus lead
to a genuine module ↓a0. We obtain such a case by dropping “C ⊓ ” from the axiom in a0.

Computational Properties As seen in Section 4.3.3, we can compute the AD of an
ontology O in time polynomial in the size of O modulo a subroutine for module extraction
and, under modest assumptions w.r.t. the complexity of that subroutine, in quadratic time.
In Section 5, we investigate the feasibility of computing the AD for existing ontologies.

4.5 AD for Particular Module Notions

In this subsection, we summarise observations relevant for the empirical evaluation of the
atomic decomposition based on different notions of locality in the next section. We also discuss
other notions of modules and how they can be used as the basis for atomic decompositions;
in particular we discuss reachability- and datalog-based modules and MEX modules.

4.5.1 AD for Locality-Based Modules

There is a strong relationship between the ADs based on the three main notions of syntactic
locality, which generalises the observation made in Figure 4:

• Atoms of the ⊥- and ⊤-AD are unions of one or more atoms of the ⊤⊥∗-AD (Prop. 4.22).

• The dependency relation of the ⊤⊥∗-AD is a refinement of the dependency relations of
the ⊥- and ⊤-ADs; it contains additional edges only between ⊤⊥∗-atoms that are part
of the same ⊥-atom, or ⊤-atom, respectively (Proposition 4.23).

In the following, we fix an ontology O. Given an axiom α ∈ O, we writeM∗
α,M⊥

α , andM⊤
α

for the axiom module Mα w.r.t. to ⊤⊥∗-, ⊥-, or ⊤-locality, respectively.

Proposition 4.22. For every ⊤⊥∗-atom a, there is a ⊥-atom b and a ⊤-atom c with a ⊆ b

and a ⊆ c.

Proof. We prove only the ⊥-case; the ⊤-case is analogous. Let a be a ⊤⊥∗-atom. From the
definitions of atoms, axiom modules, and ⊤⊥∗-modules it follows that a ⊆ M∗

α ⊆ M
⊥
α for

every α ∈ a. Now consider two arbitrary axioms α, β ∈ a. SinceM⊥
α is the smallest ⊥-module

containing α (Lemma 4.11) and β ∈ a ⊆M⊥
α , every ⊥-module containing α contains β too.

Since α, β were chosen arbitrarily, we also have that every ⊥-module containing β contains
α too. Hence any two axioms from a occur in the same ⊥-atom, the desired b.

Proposition 4.23. Let a1, a2 be ⊤⊥∗-atoms with a1 ≻ a2, and let b1, b2 (c1, c2) be the
⊥-atoms (⊤-atoms) containing a1 and a2. Then b1 = b2 or b1 ≻ b2, and c1 = c2 or c1 ≻ c2.

Proof. Again, we prove only the ⊥-case. Let α ∈ a1 and β ∈ a2. From the definition of
⊤⊥∗-modules, we get M∗

α ⊆ M
⊥
α . Since a1 ≻ a2, we have β ∈ M⊥

α . Now since M⊥
β is the

smallest ⊥-module containing β (Lemma 4.11), it follows that M⊥
β ⊆ M

⊥
α . Now Points 1

and 3 of Corollary 4.12 imply b1 = b2 in case M⊥
β =M⊥

α and b1 ≻ b2 otherwise.
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4.5.2 AD for MEX Modules

The situation for MEX modules (Konev et al., 2008) is similar to that of locality-based
modules: MEX modules satisfy Properties (M0)–(M5) and are thus suitable as a base for
the AD. However, we are not aware of any study of MEX-based AD.

4.5.3 AD for Reachability-Based Modules

Reachability-based modules (RBMs) violate (M0) in general (Nortjé et al., 2013), which
means that RBMs do not have a meaningful interface, see Section 3.1. Furthermore, it
remains to be examined whether they satisfy (M5), and even if this turns out to be the case,
then the RBM-based AD would still be incomparable to the AD based on the previously
mentioned module notions because the hypergraph-based procedure relies on the ontology
being in a specific normal form. This normal form has been developed for expressive DLs, in
particular SRIQ and SROIQ, together with a transformation from an arbitrary SROIQ
ontology O into an ontology O′ in normal form that is a model-conservative extension w.r.t.
Õ (Nortjé et al., 2013). To the best of our knowledge, it is unclear how the AD of O′ relates
to the AD of O: it is obvious that the AD of O′ may be far more fine-grained than the AD
of O, but the exact nature of this relationship remains open.

4.5.4 AD for Modules Based on Datalog Reasoning

It is also natural to ask whether AD can be based on the suite of module notions introduced
by Armas Romero et al. (2016) and described in Section 2.3—from now on called datalog-
based modules (DBMs) for short. Although DBMs generalise locality-based modules, we
are aware of only very recent, unpublished work on deploying DBMs for AD (Nolte, 2020).
This deployment is not straightforward since it has to identify which DBM variants satisfy
all Properties (M0)–(M5). For example, (M5) is problematic for DBM variants based on
implication inseparability (Konev et al., 2009; Armas Romero et al., 2016). Moreover, DBMs
rely on a strong form of normalisation for SROIQ different from that for RBMs. Armas
Romero et al. show that a module for a SROIQ ontology O can be recovered from one such
module of the normalisation O′ of O; however, in order to guarantee that this module is
uniquely determined (M1), a closer analysis of suitable denormalisation functions is required.

5. Experimental Evaluation

In this section, we complement the conceptual and theoretical contributions from the
previous sections with an empirical study. For this purpose, we use an implementation of the
decomposition algorithm described in Algorithm 1 using syntactic locality-based modules
(⊥, ⊤, and ⊤⊥∗), run it on a suitable corpus of ontologies, and evaluate the feasibility of this
algorithm as well as the structure and granularity of the resulting ADs.

5.1 Experimental Setting

Corpus To build our corpus, we started with the snapshot of the NCBO BioPortal ontology
repository18 by Matentzoglu and Parsia (2017), which contains 438 ontologies. In a first step,

18. https://bioportal.bioontology.org/
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we removed all ABox axioms (concept and role assertions) from these 438 ontologies: since
our re-use and reading scenarios are aimed at the TBox part of an ontology, we want to
understand how the AD behaves on TBoxes. From the resulting ontologies, we removed, in a
second step, 18 empty ontologies (i.e., these were ontologies that consisted of ABox axioms
only) plus a further 69 ontologies that were not in OWL 2 DL (i.e., they were strictly in
OWL 2 Full for a variety of reasons). This left us with a corpus of 351 ontologies.

Table 1 shows the number of TBox axioms in the ontologies of our corpus (‘size’) and the
length of these ontologies. The length of an ontology is the number of characters needed to
write it down in DL notation, where every term, logical operator, and quantified role counts
as one character, and inclusion/equivalence symbols do not count; e.g., the axiom A ⊑ ∃R.B
has length 3; for details see (Del Vescovo, 2013, page 24). We show percentiles to illustrate
the range of ontologies in our corpus: for any given n and measure m, the percentile Pn is
the highest m(O) among the n% ontologies Oi with the lowest m(Oi); in particular, P50 is
also known as the median and P100 as the maximum.

Mean StdDev P50 P90 P95 P99 P100

Size 27,806 136,675 1,076 16,347 107,829 806,772 1,700,233

Length 72,425 375,019 2,558 39,325 259,576 1,695,510 4,798,793

Table 1: A summary of our corpus of 351 ontologies. The 50th (median), 75th, 90th, 99th
and 100th (maximum) percentiles are shown for the size (i.e. number of axioms) and for the
length (i.e., sum of length of axioms) of ontologies.

In Figure 6, we show the OWL 2 profiles that the ontologies in our corpus fall into:
while this is only an indication of their logical richness, we notice that roughly 49% of our
ontologies (171) do not belong to any profile (i.e., are strictly in OWL 2 DL), and that 20%
(69) are in all profiles, i.e., these are very close to atomic concept and role hierarchies.

DL 171

EL QL

RL

44 44

694 5

7

7

Figure 6: The spread of OWL profiles across the corpus of 351 ontologies.

Compared to the corpus used by Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider,
and Winget (2011), we notice that our corpus has more than twice the number of ontologies,
and also many more larger ones.

Implementation We evaluate the implementation of Algorithm 1 that is part of the
OWL API, namely the one available via Maven Central (maven.org) with an artifactId of
owlapi-tools. We use OWL API Version 5.1.11 to compute ⊥-, ⊤-, and ⊤⊥∗-AD.

All experiments have been performed on Intel(R) Core(TM) i7-6700HQ CPU 2.60GHz
RAM 8GB, running Java version 1.8 JDK with an initial heap size of 1 GB and a maximal
heap size of 8 GB. Time is measured in CPU time.

1005



Del Vescovo, Horridge, Parsia, Sattler, Schneider, & Zhao

5.2 Feasibility

Regarding feasibility, we are interested in answering the following three questions:

1. Can we decompose all ontologies within a reasonable timeout?

2. How long does it take to decompose an ontology?

3. How does the size of an ontology affect the time needed for decomposing it?

To answer these questions, we ran the AD implementation on all ontologies in our corpus
and recorded the CPU time required. The answer to the first question is ‘no’: 10 ontologies
could not be decomposed due to a timeout. We set 6 hours as the timeout for computing
each kind of AD, i.e., we used a total timeout of 18 hours for all three kinds of AD. If the
ontology cannot be decomposed within 6 hours for at least one kind of AD, we say that this
ontology could not be decomposed due to a timeout. In Table 2, we list these 10 ontologies,
their characteristics, and the kind of AD whose computation timed out. We note that all 10
ontologies are large, i.e., have over 100k axioms, and that 6 of them are in EL plus possibly
other profiles. Given the nature of the AD algorithm (see Algorithm 1) and module extraction
algorithms, it is clear that ‘logical richness’ should not have an effect on AD computation
performance: even in QL, a single axiom can involve many terms. As we will see next, there
are various ontologies that are of similar or larger size and still decomposable. Among the 10
ontologies that could not be decomposed, there are 7 ontologies that can be decomposed by
at least one kind of AD computation. From now on, we will ignore all these 10 ontologies
and consider only the 341 completely decomposable ontologies.

Ontology Size Length Profiles Failed AD

gaz 806,772 2,410,202 EL All

ncbitaxon 847,755 1,695,510 QL, EL, RL ⊤⊥∗, ⊥

cco 282,683 565,366 QL, EL, RL ⊤⊥∗, ⊤

chebi 233,439 538,100 DL ⊤

dron 874,945 2,655,978 DL ⊤⊥∗, ⊥

pxo 1,700,233 4,798,793 EL All

reto 942,005 2,673,774 QL, EL All

dinto 173,859 515,994 DL ⊤⊥∗, ⊥

ftc 145,425 461,319 EL ⊤

biomodels 439,240 1,138,365 DL ⊤⊥∗, ⊤

Table 2: The size (the number of TBox axioms) of ontologies that are not decomposable
(all due to time-out of 18 hours), their length, profiles of those ontologies that could not be
decomposed, and the decompositions that failed (e.g. for gaz, the computation of all (three)
kinds of AD failed).

Table 3 shows the CPU time (in seconds) required for computing all three kinds of AD
for the 341 decomposable ontologies from the corpus. We see that half of our ontologies take
less than 1 second to decompose, 95% take under 2 minutes, and 99% take under 1 hour.
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CPU time (seconds)
AD type Mean StdDev P50 P90 P95 P99 P100

⊥-AD 92.51 676.76 0.11 8.67 55.66 1,919.22 9,066.98

⊤⊥∗-AD 134.10 998.71 0.16 14.44 72.11 3,034.89 13,764.84

⊤-AD 201.04 1,743.97 0.13 17.75 94.36 1,443.83 18,388.84

Table 3: A summary of the CPU time required for computing the ADs of the 341 decomposable
ontologies in our corpus. All time are shown in seconds. Pn represents the maximum time
for the nth percentile.

To understand how ontology size affects decomposition time, consider Figure 7: it shows
scatter plots of the times for computing the three kinds of AD against ontology size, i.e., each
point in each plot represents one of the 341 decomposable ontologies from our corpus, its size
(x-axis) and the time it took for the computations of the AD in question (y-axis). All axes
are scaled logarithmically. These plots show that the respective ADs can be computed in less
than a second for almost all ontologies with up to 1,000 axioms. For the larger ontologies
with up to 432,805 TBox axioms, computing the ⊥-AD, ⊤⊥∗-AD and ⊤-AD requires up to
9,066 seconds (≈ 2.51h), 13,764 seconds (≈ 3.82h) and 18,388 seconds (≈ 5.11h) respectively.
The differences between the three kinds of AD are modest, but we can we can see from
the shape of the scatter plots that the computation of the ⊤-AD is often faster than that
of the ⊥-AD. This can be explained by the fact that the computation of a ⊤-module is
likely to be faster than that of a ⊥-module which, in turn, is due to the following facts: the
signature of ⊤-modules is ‘closed under subconcepts’, whereas that of ⊥-modules is ‘closed
under superconcepts’ (see Page 993); usually far more concepts are in the lower portion of
the concept hierarchy than in the higher one; the locality-based module extraction algorithm
involves an outer loop that extends the signature to terms from axioms that were found to
be non-local w.r.t. the current signature, and which is thus likely to take longer to include
the (longer) chain of superconcepts than the shorter chains of subconcepts. Since this effect
does not occur for all ontologies, the point cloud in Figure 7 c is wider and sparser than the
ones in Figure 7 a and b, but all three have the same height (for some very large ontologies
the ⊤-AD requires even more time than the ⊥-AD).

The plots in Figure 7 seem to indicate a linear growth of the computation time with
respect to the ontology size, but the logarithmic scales used can be misleading. Table 4 shows
trendlines and confidence intervals of the CPU time for computing the three kinds of AD. We
conclude that the computation times for ⊥-AD and ⊤⊥∗-AD grow quadratically with the size
of the ontology with a high confidence (R2 = 96% and R2 = 93%, respectively), acceptable
margins (roughly 1.2 minutes and 3.1 minutes, respectively),19 and tiny coefficients of n2;
hence we could call these two behaviours ‘almost linear’. We also notice, however, that the
confidence of linear trendlines results in a low confidence, and we checked that using cubic
trendline functions do not affect them. Unsurprisingly, the confidence for the ⊤-AD is rather
low and does not improve by choosing polynomials of higher degree: computation times
simply vary too widely.

19. Roughly speaking, the confidence interval describes the area above and below the trendline into which
other computations will fall with a probability of 95%.

1007



Del Vescovo, Horridge, Parsia, Sattler, Schneider, & Zhao

1660

T
im

e 
in

 s

0.01

0.1

1

10

100

1,000

10,000

100,000

Ontology size (number of TBox axioms)

10 10
0

1,
00

0

10
,0
00

10
0,
00

0

1,
00

0,
00

0

0.01

0.1

1

10

100

1,000

10,000

100,000

Ontology size (number of TBox axioms)

10 10
0

1,
00

0

10
,0
00

10
0,
00

0

1,
00

0,
00

0

0.01

0.1

1

10

100

1,000

10,000

100,000

Ontology size (number of TBox axioms)

10 10
0

1,
00

0

10
,0
00

10
0,
00

0

1,
00

0,
00

0

(a) ⊥-AD (b) ⊤⊥∗-AD (c) ⊤-AD

Figure 7: Plots of the runtime of AD computation against ontology size.

AD type Degree R
2 Trendline function 95% CI

⊥-AD 2 0.96 3.88 · 10−8n2 + 4.11 · 10−3n− 8.43 [20.68, 164.34]
1 0.86 1.64 · 10−2n− 66.39

⊤⊥∗-AD 2 0.93 6.06 · 10−8n2 + 4.49 · 10−3n− 4.71 [15.89, 386.15]
1 0.82 2.36 · 10−2n− 95.12

⊤-AD 2 0.33 −1.34 · 10−7n2 + 6.03 · 10−2n− 164.60 [28.09, 240.10]
1 0.16 1.81 · 10−2n+ 35.29

Table 4: A summary of the trendline functions, their determination coefficient (R2) and the
95% confidence interval (CI) of CPU time required for computing the AD against ontology
size for the 341 ontologies in our corpus.

5.3 Analysis of the Structure

To understand the stucture of the different ADs, we aim at answering the following questions:

1. How many atoms do ADs have? I.e., how fine-grained is the AD?

2. How large are atoms in the AD?

3. How many incomparable (w.r.t. the dependency relation) atoms do ADs have?

4. How much structure does the AD induce? I.e., how often do we find ADs with large
and/or incomparable atoms?

As in the previous section, all experiments are run on our corpus of 341 decomposable
ontologies, as described in Section 5.1.

To answer Question 1, Figure 8 shows scatter plots of the number of atoms in each of
the three kinds of AD against ontology size, i.e., each point in each diagram represents an
ontology from the corpus and its size (x-axis) and the number of atoms in its AD (y-axis).
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Figure 8: Plots of the number of atoms against ontology size.

All axes are, again, scaled logarithmically; the diagonal line marks the ‘ratio 1’ case, i.e.,
the extreme case with one atom per axiom. The ⊥-AD (Figure 8 a) is very fine-grained,
with many ontologies having ratio 1 or nearby, but there are also outliers, e.g., an ontology
with 476 axioms and only 6 atoms. The ⊤⊥∗-AD (Figure 8 b) is even more fine-grained:
more points lie on the ‘ratio 1’ line, and most other points are closer, except for the outliers.
The granularity of the ⊤-AD (Figure 8 c) is quite different: it is more varied and more
coarse-grained than the other two cases, i.e., there are only 3 ontologies (all of them small)
with a ratio close to 1, and almost all other ontologies have at least twice as many axioms as
atoms.20 Moreover, 27 ontologies have a single ⊤-atom, shown by the points on the x-axis.

Atom Size
AD type Mean StdDev P50 P90 P95 P99 P100

⊥-AD 1 10 1 3 4 6 13,064

⊤⊥∗-AD 1 9 1 2 3 5 13,064

⊤-AD 17 1,201 2 9 15 60 382,519

Table 5: A summary of the all atom size of the 341 ontologies in our corpus. Pn represents
the maximum time for the nth percentile.

To answer Question 2, we consider how the size of atoms varies across the ontologies in
our corpus, see Table 5. For this table, we count the number of axioms in each atom in the
ADs of our ontologies, regardless of the ontology it is a part of. For ⊥-AD and ⊤⊥∗-AD,
almost all atoms are singletons: 71.67% (for ⊥-AD) and 87.76% (for ⊤⊥∗-AD) of atoms in
this corpus have only 1 axiom. Additionally, 99% of atoms have at most 6 axioms (6 for
⊥-AD and 5 for ⊤⊥∗-AD). For ⊤-AD, atoms tend to be larger than for ⊥-AD and ⊤⊥∗-AD.
Still, 99% atoms have no more than 60 axioms. There are, however, some very large atoms:
the ⊤-AD yields an atom with 382,519 axioms.

20. This does not imply that we have few singleton atoms: the spread of axioms across atoms may be uneven.
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Figure 9: Plots of maximal atom size against ontology size.

Finally, Figure 9 shows scatter plots of the size of the maximal atom in each of the three
kinds of AD against ontology size, i.e., each point in each diagram represents an ontology
from our corpus and its size (x-axis) and the size of the maximal atom in its AD (y-axis).
All axes are, again, scaled logarithmically. For ⊥-AD and ⊤⊥∗-AD, the maximal atom size
varies quite a bit; i.e., some ontologies have only small atoms (ontologies depicted on the
x-axis have only singleton atoms), others have some medium-sized atoms, and others have a
huge atom (ontologies on the diagonal have a single atom containing all axioms). As we have
noticed when we considered the number of atoms in Figure 8 a and b, our corpus contains a
non-trivial number of ontologies with only singleton atoms (depicted as points on the x-axis
here). The ⊤-AD behaves quite differently to the other two kinds of AD since here, most
ADs have a very large atom, and about a third of ontologies (29.6%) have an atom that
contains almost all axioms of the ontology (at least 95%).

Hence the answer to Question 2 is that, for ⊥-AD and ⊤⊥∗-AD, the size of the largest
atoms varies considerably but almost all atoms are tiny, whereas for ⊤-AD, most ontologies
have at least one rather large atom.

To answer Question 3, we consider antichains of atoms in A(O), and use Width(O) to
denote their maximal length. Computing maximal antichains is a known hard problem, and
we use Dilworth’s theorem (2009) and the Hopcroft–Karp algorithm (1973) to do so.21

Figure 10 shows scatter plots of the width against the size of ontologies in our corpus.22

We find that all three kinds of AD often lead to very wide decompositions. In fact, comparing
the width with the number of atoms, we notice that, for most of our ontologies, more than
half of their atoms form an antichain: this is the case for 297 out of 340 ontologies (around
87%) for ⊥-AD, for 303 out of 340 ontologies (around 89%) for ⊤-AD, and 315 out of 340
(around 92%) for ⊤⊥∗-AD. For ⊤-AD, however, the presence of large atoms leads to a wider
range of widths relative to the ontology size in Figure 10.

21. We implemented the computation of maximal antichains using the implementation of the Hopcroft–Karp
algorithm from the Java library JGraphT.

22. Our implementation was unable to compute the width of one ontology due to an out-of-memory exception.
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Figure 10: Plots of AD width against ontology size.

To answer Question 4, we want to understand the joint effect of the individual phenomena
observed above on the overall structure of the ADs, in particular how the spread of atom
size and number and the length of antichains combine in the ontologies of our corpus. To
this end, we consider the partial order on axioms induced by the AD, and determine how
close it is to a total order. The closer the induced partial order is to a total order, the fewer
large atoms the AD has, and the more atoms are related to each other via the dependency
relation, i.e., the smaller the width of the AD and the more structure it has. Also, the closer
the induced partial order is to a total order, the more helpful that AD will be for determining
a suitable reading order, see §4.3.2.

To capture this distance, we follow the approach described by Cook, Kress, and Seiford
(1986) to measure the distance between two orders but adapt it to our notation and simplify
it (since we are not comparing two arbitrary orders). We start by computing the comparable
pairs CPs(O) in the AD A(O) as follows:

CPs(O) =
∑

a∈A(O)

(
#a ∗

∑

b≻a

#b

)
. (1)

For example, consider the ontologies O1, . . . ,O4 with ADs as shown in Figure 11, and
where each has 100 axioms: both A(O1) and A(O3) have 100 singleton atoms; in A(O1) they
form a chain and in A(O3) they form a single antichain. In A(O2), we have one long chain
of 50 singleton atoms that depend on the (large) atom a51 with 50 axioms. In A(O4), we
have one antichain of 50 singleton atoms which depend on the atoms a26 and a52 with 25
axioms each.

In A(O1), i− 1 atoms depend on ai (namely those above it), for every i ≤ 100. Since all
atoms are singletons, Equation (1) yields CPs(O1) =

∑100
i=1

(
1 · (i− 1)

)
=
∑99

i=0 i =
99·100

2 =
4, 950, i.e., all of the 99·100

2 = 4, 950 pairs of axioms are comparable pairs. In contrast, since
each atom in A(O3) depends on no other atom, there are 0 comparable pairs.

In A(O2), it is again the case that i− 1 atoms depend on ai. Hence (1) yields CPs(O2) =∑50
i=1

(
1 · (i− 1)

)
+50 · (51− 1) =

∑49
i=0 i + 50 · 50 = 3, 725. Finally, since A(O4) contains 50
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Figure 11: Four example ADs.

singleton atoms depending on 25 axioms each (and 2 atoms depending on nothing), (1) yields
CPs(O4) = 50 · 25 = 1, 250.

In a next step, the relative reading score RRS(O) is defined as the relativised CPs:

RRS(O) =
CPs(O)(

#O2 −#O
)
/2

.

Thus, RRS(O) is the special case of the distance between the AD-induced order on axioms
and a total order extending it, which has

(
#O2 −#O

)
/2 comparable axiom pairs: the

maximal axiom is comparable to #O − 1 axiom, the next smallest one to #O − 2, and so
on, i.e. we have (#O − 1) + (#O − 2) + ... + 1 comparable pairs.

Returning to our example ontologies in Figure 11, we see that RRS(O1) = 100%, reflecting
the fact that the AD induces a total order. Next, RRS(O3) = 0% because its AD induces an
empty order. Furthermore, RRS(O2) = 75.25% and RRS(O4) = 25.25%, and hence A(O2) is
closer to a total order than A(O4).

We have computed the RRS for all ontologies in our corpus, and Figure 12 shows scatter
plots of the RRS(O) against the size of the ontology O. We find that, for ⊥-AD and ⊤⊥∗-AD,
the RRS of almost all ontologies is below 20%, namely 298 out of 341 ontologies (around
87.39%) for ⊥-AD, and 307 out of 341 (around 90.03%) for ⊤⊥∗-AD. For ⊤-AD, the RRS is
more evenly distributed and generally higher than that of ⊥-AD and ⊤⊥∗-AD. i.e. almost all
ontologies have big atoms or/and many/large antichains w.r.t. ⊥-AD and ⊤⊥∗-AD.

Now if we compare our RRS and Width, we find that they behave similarly for ⊥-AD and
⊤⊥∗-AD. For example, for ⊥-AD, 87.05% of ontologies have antichains containing at least
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Figure 12: Plots of relative reading score (RRS) against ontology size.

half of the AD’s atoms, and 87.39% of ontologies have a RRS below 20%. To understand
better the causes of low reading scores, i.e., whether they are mainly caused by large atoms
or long antichains, we consider the correlations between these metrics.

To do so, we need to pick a suitable correlation coefficient : we decide to use the well-
known Spearman’s rank correlation coefficient because we want to compare measures that
grow quadratically with the ontology size like CPs with measures that are proportional to
the ontology size like the Width. In general, we would expect the correlations between the
reading score or number of comparable pairs and the width/maximal atom size to be negative
but modest since high values of the latter two metrics cause the former two to be low.

To compute these scores, we also introduce relativised metrics for the width, RW, and the
maximal atom size, MA, so that we can compare them with the (relativised) reading score:

RW(O) =
Width(O)

#A(O)
, RMA(O) =

MA(O)

#A(O)
.

In Table 6, we use Cor(m,n) to represent Spearman’s rank correlation coefficient between
parameters m and n, and correlate the ontologies’ numbers of comparable pairs CPs with
their width Width (maximal length of antichains of its AD) and the size of their largest atom
MA, and also correlate the corresponding two pairs of relativised metrics.

Correlations
AD type Cor(CPs,Width) Cor(RRS,RW) Cor(CPs,MA) Cor(RRS,RMA)

⊥-AD 0.6912 -0.4555 0.6922 0.7722

⊤⊥∗-AD 0.3447 -0.8223 0.8599 0.6534

⊤-AD 0.6521 -0.3133 0.5945 -0.4012

Table 6: Spearman’s rank correlation coefficients for CPs and Width, RRS and RW, CPs and
MA, RRS and RMA, respectively.
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In contrast to our expections, most correlations are positive. In particular, the non-
relativised metrics are all positive, for all three kinds of ADs. A reasonable explanation
is that all three metrics are strongly dominated by the ontology size, i.e., the larger the
ontology, the higher are CPs, Width, and MA, and thus we ignore these.

As expected, Cor(RRS,RW) is negative for all three kinds of ADs and rather strong for
⊤⊥∗-AD: the latter can be explained by the fact that many ontologies have a ⊤⊥∗-AD with
only tiny atoms in a huge antichain, see Fig. 10 and 9. In contrast, this correlation is weaker
for ⊥-AD and ⊤-AD, which is due to these ADs having some large atoms (in particular
⊤-AD) and smaller width.

Similarly, for⊤-AD, Cor(RRS,RMA) is negative as expected, which can be again attributed
to the prevalence of large atoms. In contrast and unexpectedly, this correlation is positive
and relatively high for ⊥-AD and ⊤⊥∗-AD, which reflects the fact that these two kinds of
ADs lead to mostly tiny atoms and low RRS.

We summarise all findings from this section in Table 7. In general, we see that many
ontologies in our corpus contain many unrelated atomic subsumptions which causes their
⊥- and ⊤⊥∗-AD to contain many tiny atoms in large antichains. We also notice that the
AD computation is mostly feasible, with the ⊤⊥∗-AD having the largest number of time
outs and the ⊤-AD showing the largest performance variation. In general, only few of the
ontologies in our corpus show a non-trivial structure—by coincidence, the two best-structured
ontologies (i.e., with the highest relative reading score RRS for all kinds of ADs) are among
the oldest, most established ontologies in BioPortal: both Drosophila Development Ontology

and C. elegans Development Vocabulary have been maintained since 2008 and reach RRS

values of 76% and 65%, respectively, for ⊥-AD. In general, however, the ⊤-AD is, among
the three kinds of ADs, the most likely one to lead to a better structure as measured by the
relative reading score.

AD Number of Size of Width of Reading
type Feasibility atoms atoms AD Score

⊥-AD fastest, large many tiny, many wide mostly low
almost linear some varied

⊤⊥∗-AD most time-outs, large many tiny, mostly very mostly low
almost linear some varied wide

⊤-AD slowest, varied varied, varied, varied
largest variations some huge many narrow

Table 7: Summary of the empirical analysis of the ADs of ontologies in our corpus.

6. Conclusion and Outlook

We have introduced the atomic decomposition of an ontology and analysed its theoretical
foundations, in particular the properties of the underlying module notion it relies on. We have
discussed the core, general properties of a ‘good’ modular structure of ontologies, for both the
AD and related approaches. In particular, we have shown that the AD is computable in time
polynomial in the size of the ontology, while its atoms provide a suitable basis for all modules,
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and its dependency relation has the potential to support various ontology engineering tasks,
e.g., comprehension and module extraction. We have furthermore shown that the majority
of ontologies from BioPortal decompose well, i.e., we can indeed compute their AD in a
reasonable time, and the resulting AD is of a reasonable form.

Regarding future work, and as an immediate consequence of our feasibility analysis,
it is worthwhile to improve the implementation of AD. A straightforward yet promising
optimisation is one aimed at ontologies that are mostly taxonomies, i.e., ontologies that
mostly consist of atomic subsumptions. Since the AD of a pure taxonomy coincides with
its (inferred) concept hierarchy, we should be able to further optimise the decomposition of
‘mostly taxonomic’ ontologies by exploiting this relationship during parsing and thus avoiding
most calls to the module extractor.

Other future work relates to applications and applicability of the AD in ontology engi-
neering. For this purpose, we have identified two general goals, described in the following.

Goal 1 is the improvement of our understanding of the AD, which can be achieved in
several ways. First, the current axiom-based labels of atoms (see, e.g., Figure 4) are not very
informative for tasks such as comprehension and fast module extraction. The generation of
labels for each of these tasks would improve the applicability of AD. Second, our granularity
analysis showed that the number of atoms can easily be too large for manual inspection. It
would be useful to devise heuristics that can be employed to coarsen the decomposition, thus
providing a way to control the granularity (i.e., ‘zoom in and out’). Third, if an ontology
is being developed and its AD is to be maintained, then it would be practical to update
the AD incrementally, rather than recompute it afresh after every change. Our first steps
in this direction are restricted to axiom additions (Klinov et al., 2012). Fourth, we would
like to ‘open’ the AD to module notions other than locality-based modules. The family of
datalog-based modules (DBMs), which generalises locality, is a natural candidate, see also
Section 4.5.4. Before the AD can be based on DBMs, however, it is necessary to identify
members of the DBM family that satisfy all properties (M0)–(M5). Once they are found, the
AD based on them can be compared with the AD based on locality-based modules. Finally,
the precise relationship of AD with related notions, such as forgetting (Zhao & Schmidt,
2018a), should be studied.

Goal 2 is the design and evaluation of methodologies that make use of AD for several tasks
such as collaborative ontology development, ontology maintenance—including maintaining a
suitable AD and refactoring support for decomposing an OWL ontology into a suitable set of
.owl files (Del Vescovo, Gessler, Klinov, Parsia, Sattler, Schneider, & Winget, 2011), ontology
comprehension, the identification of a suitable module for reuse/sharing, and automated
reasoning and classification optimisation (Zhao, Parsia, & Sattler, 2019).
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