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Abstract 

There has been a considerable effort in the design of evolutionary systems for the automatic 

generation of neural networks. Symbiotic Adaptive Neuro Evolution (SANE) is a novel 

approach that carries co-evolution of neural networks at two levels of neuron and network. 

The SANE network is likely to face problems when the applied data set has high number of 

attributes or a high dimensionality. In this paper we build a modular neural network with 

probabilistic sum integration technique to solve this curse of dimensionality. Each module is 

a SANE network. The division of the problem involves the breaking up of the problem into 

sub-problems with different (may be overlapping) attributes. The algorithm was simulated 

for the Breast Cancer database from UCI machine learning repository. Simulation results 

show that the algorithm, keeping the dimensionality low, was able to effectively solve the 

problem. 

http://iospress.metapress.com/content/0127t04853847051/?issue=4&genre=article&spage=309&issn=1872-4981&volume=5
http://iospress.metapress.com/content/0127t04853847051/?issue=4&genre=article&spage=309&issn=1872-4981&volume=5
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1. Introduction 

Decision making is a major issue that is currently under research by multiple research 

domains. Inability to model the problem effectively and the associated uncertainties, lead 

to the use of machine learning techniques for the same. Here we aim in extracting hidden 

data or knowledge from a historical database containing inputs and outputs. With the 

increase of automation more complicated problems are being attempted to be solved, 

which require sophisticated methods. We attempt to make a robust decision making 

system that can solve problem having high number of inputs and representing high 

complexity, and give good results.  

 

Neural networks are good tools for intelligent system design. Learning involves the 

extraction of knowledge from the input training data which is represented in the form of 

internal parameters of the neural network. One of the commonly used models of neural 

network is the Multi-Layer Perceptron which contains many artificial neurons arranged in 

a layered manner. Each of the neuron carries some task of processing of the inputs to 

facilitate the mapping of inputs to the outputs. The task of machine learning is to tune the 

network weights and biases such that an optimal mapping takes place. Back Propagation 

Algorithm (BPA) is one of the commonly used algorithms for machine learning. BPA 

carries out supervised learning of the training database (Konar, 1999). The algorithm is 

however prone to get struck at some local minima. This calls for better machine learning 

techniques. The other problem associated with the neural networks is its architecture. The 
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architecture plays a key role in deciding the performance of the neural network. The 

architecture is specified by the human designer, who tries numerous architectures, before 

finalizing the optimal architecture. Due to the human limitations, the results are likely to 

be sub-optimal.  

 

Evolutionary Algorithms are strong optimizing agents that try to optimize given systems 

for better performance. The evolutionary algorithms are widely used for system design 

and evolution (Shukla, Tiwari, & Kala, 2010). These algorithms optimize the system in 

an iterative manner, where more emphasis is given to the fitter solutions in the entire 

evolutionary process. Genetic Algorithm comes under the class of Evolutionary 

Algorithms. This algorithm uses the analogy of the natural evolutionary process. The 

algorithm maintains a pool of individuals or population that keeps improving with 

generations. The creation of a higher generation individuals is carried from the lower 

generation individuals by using genetic operators like selection, mutation, crossover, elite, 

etc (Mitchell, 1999).  

 

The strong evolutionary powers of these algorithms open doors to an exciting field of 

evolutionary neural networks, where the problem solving capability of the neural 

networks is combined with the evolutionary power of the evolutionary algorithms for a 

more sophisticated hybrid system. The evolutionary neural networks may be fixed 

architecture or variable architecture. The fixed architecture neural networks use genetic 

algorithms only for tuning the system weights and biases. The variable architecture 

evolutionary neural networks, on the contrary, optimize both the network architecture and 

parameters by the evolutionary algorithms (Nolfi, Parisi, & Elman, 1990; Yao, 1999). 

This problem is much more challenging and time consuming. Many times the 
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evolutionary process may be assisted by a local search strategy like BPA or simulated 

annealing to search for local minima in the vicinity of the current location of the 

evolutionary individual in the search space (Yao, 1993). 

 

Cooperative evolution or co-evolution is a novel concept that gives good results to most 

complex problems. This form of evolution takes its analogy from the social living nature 

of humans where we not only try to develop ourselves, but also the other members of the 

society. This results in a better overall development. In this form of evolution the 

individuals represent part solutions, rather than complete solutions. This representation 

reduces the problem dimensionality by the generation of smaller individuals. The fitness 

evaluation of the individuals takes place by analysis of the individual performance in 

multiple complete solutions. The individual is assigned a high fitness count, even if it aids 

other individuals in attaining high fitness count. The aim is to use evolutionary pressures 

to develop distinct and high performance components of the solutions or individuals. This 

is perceived as a better mechanism than the conventional mechanisms of diversity 

preservation in evolutionary computation (Potter, 1997; Rosen and Belew, 1996; Stanley 

& Miikkulainen, 2004).  

 

Dimensionality is a major problem associated with evolutionary algorithms. The 

algorithm performance reduces drastically by the addition of parameters. Each parameter 

of the evolutionary algorithm represents a dimension into its search space. It is evident 

that the additional dimensions have a large effect on algorithm performance, 

convergence, and computational requirements. The problem is even more when we deal 

with problem of neural network evolution. Any addition of input attribute may result in 

the need of additional hidden layer neurons. This increases the total number of 
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connections in the neural network by large amounts, which are all dimensions in the 

evolutionary algorithm search space. This creates a large problem in the evolution, 

making the evolutionary process very time consuming. It is hence important to carefully 

select the attributes and their numbers, before giving it to an evolutionary neural network 

(Kala, Shukla, & Tiwari, 2010).  

 

The higher number of dimensions is further problematic from a neural perspective as 

well. The additional dimensions or input attributes in the problem result in the creation of 

a large input space which is extremely difficult to model for the neural network. The 

control of the neural network architecture is an extremely difficult task as the number of 

attributes increase. This further requires more training instances for training and a very 

large training time. Hence the attributes must always be limited in a neural network (Kala, 

Shukla, & Tiwari 2009).  

 

Modular Neural Network is advancement over the conventional neural networks. Here we 

try to introduce modularity into the structure and working of the neural network. This 

leads to the creation of multiple modules that together solve the entire problem. The 

results generated by the different modules are integrated using an integrator. Each of the 

modules of the modular neural network is a neural network that aids in the solution 

building. These networks can hence model very complex problems and give effective 

decisions in smaller times (Fu et al., 2001; Gruau, 1995; Jenkins and Yuhas, 1993). A 

related concept is ensemble, where the same problem is solved by a number of experts. 

Each of them computes the output to the problem which is then integrated using an 

integration mechanism (Dietterich, 2000; Hansen & Salamon, 2000; Jacobs, et al., 1991).  
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Biomedical Engineering is a very exciting field where computational intelligence has 

found application. A lot of work is done for automatic diagnosis of the diseases. The 

automatic diagnostic system can be an excellent tool for aiding the doctors in making 

effective decisions very early. These tools take the data for any patient as an input and 

produce the diagnosis result as the output. The mapping of the input to the output, or the 

diagnosis is generally based on the learning of the system from the training database. The 

artificially designed expert systems behave just like real doctors to carry out the diagnosis 

task (Bronzino, 2006; Shukla & Tiwari, 2010a, 2010b). Breast Cancer is specifically an 

emerging problem for which numerous diagnosis techniques are being engineered. The 

growing rise of this disease is a major point of concern for engineers (Breastcancer.org, 

2010).  

 

In this paper we propose a method for the automatic diagnosis of breast cancer by using 

Modular Symbiotic Adaptive Neuro Evolution (SANE). The approach involves 

adaptation of the Symbiotic Adaptive Neuro Evolution (Moriarty, 1997; Moriarty and 

Miikkulainen, 1997) algorithm for the classificatory problems. The resulting system is 

prone to have reasonably large execution time due to very large problem complexity. 

Further the convergence is likely to be poor. We hence then build a modular neural 

network framework over SANE. The resulting system is capable of handing very 

complex problems with large number of attributes. This makes the resultant algorithm 

robust, at the same time displaying large diagnostic accuracy.  

 

This paper is organized as follows. In Section 2 we present some of the related works. 

Section 3 presents the classificatory model of the SANE algorithm. The next task is the 

modularization of the formulated SANE network by division of attributes. This is 
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discussed in Section 4. The simulation results are given in Section 5. Section 6 gives the 

conclusion remarks.  

 

2. Related Work 

A considerable amount of work is done into the domain of evolutionary and modular 

neural networks in the past decade. A review of the various evolutionary approaches, 

operators, and other concepts behind the evolution of fixed and variable architecture 

neural networks can be found in the work of Yao (1999). The use of Evolutionary 

Programming for a behavioural evolution of the neural network is found in (Yao, 1997).  

Pedrajas (2003) proposed a novel framework of using co-operative evolution or co-

evolution for the task of modular neural network evolution. Their solution used two levels 

of evolution. The first level was the nodule level. Here the individuals corresponded to 

the individual neural networks. The next level was the network level which tried to figure 

out the best combination of nodules for an effective overall recognition. The fitness 

function used in this algorithm encouraged the individuals to possess a good overall 

fitness, as well as rewarded them for adding unique characteristics to the network. The 

results showed a better performance of these networks over the conventional approaches.     

 

Fieldsend and Singh (2005) used Multi-objective optimization to evaluate the 

evolutionary neural network against a set of error functions against a pareto front. The use 

of multiple errors functions enabled strong check against generalization loss or over-

fitting. This neural network was further extended to use a validation data set to avoid 

over-fitting, and booststrapping to make use of a number of small data sets for training 

and validation. The net decision was made using the training on validation errors in all 

these sets. Jung and Reggia (2006) present another interesting approach where the users 
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are provided with a language specification they can use to tell the system about the 

general architecture of the neural network. The architectural parameters to be optimized 

may be explicitly specified. The system carries the rest of the evolution as per the user set 

architectural specifications. In this manner the human expertise and evolutionary 

optimizing potential interact at user front for the generation of optimal neural network. 

Rivera et al. (2007) used co-operative evolution for the task of generation of Radial Basis 

Function network. Each individual here was a neuron of this network or a radial basis 

function. The impact of the neuron was measured against its performance, error and 

overlapping with the other neurons. The final evaluation was done using a Fuzzy Rule 

Based system. This enabled the neurons to attain diverse roles, which collectively made 

an effective network.  Cho and Shimohara (1998) used Genetic Programming for the 

generation of Modular Neural Network. Here the chromosome was framed to model the 

architecture and parameters of the various modules of the modular neural network. 

Different types of modules were used to performed different functions.  

 

Boosting is another novel concept applied for effective machine learning. Here we assign 

different weights to the different data instances, which denote their ease of being learned. 

The more difficult instances have a greater impact on the final network error. These 

weights are updated as per the system readings of errors (Freund, 1995; Freund and 

Schapire, 1996). Pedrajas (2009) presents an interesting application to boosting. In his 

approach multiple classifiers are made. Computation of the boosting weights takes place 

as the system learns. The projection of input space to the hidden layer space (outputs of 

the hidden layer) is passed as inputs to next classifier.  
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Division of the entire input set into multiple input sets for easier and better recognition is 

a commonly used task. A good use of modular neural network can be found in the work 

of Melon and Castilo (2005). Here the authors carried out the task of multi-modal 

biometric fusion. Each biometric modality was handled separately by a modular neural 

network, which were all integrated using fuzzy integration. Each of the biometric 

identification system was a modular neural network consisting of one module for each 

part of the biometric modality. Each modality input was broken into three parts, each part 

being performed by a different neural network. The parts were also integrated using fuzzy 

integration. A similar concept was applied by Kala et al. (2010) for bi-modal biometric 

recognition. Here the entire pool of attribute set from both modalities was distributed into 

four recognition neural networks. All outputs were integrated using probabilistic sum 

technique.. 

 

3. Classificatory Symbiotic Adaptive Neural Evolution 

Symbiotic Adaptive Neuro Evolution (SANE) uses co-evolution as a means to evolve the 

optimal architecture of the neural network. Complete details regarding SANE may be 

found at (Moriarty, 1997; Moriarty and Miikkulainen, 1997). In this approach two 

evolutionary approaches are used, at the neuron level and network level. It is assumed 

that the neural network to be evolved is a multi-layer perceptron where the different 

neurons are arranged in a layered manner. The input and the output layers are fixed whose 

number of neurons is provided by the user. It is assumed that the neural network may 

have only a single hidden layer. The number of neurons in this layer is however evolved 

by the SANE algorithm. Any neuron of the hidden layer may be connected to any number 

of hidden or output layer neurons. Hence it is not assumed that the architecture is fully 

connected.  
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The first genetic algorithm is used for the neurons. Here each genetic individual is a 

hidden layer neuron. This neuron has certain connections with the input and output layer 

neurons. Information regarding all these connections and the corresponding weights, 

along with the bias is stored in these neurons. These neurons try to attain optimal values 

to carry out effective processing. Since these neurons store reasonably small information, 

these are easy to be optimized by the evolutionary process, which is the basic motive 

behind the co-evolution. The individuals are used to denote part solutions rather than the 

individual solutions. These part solutions co-operate with each other to make the 

complete solution. 

 

The other major task associated with the problem is the manner in which these part 

solutions integrate to make the complete solution. We may not select the best performing 

part solutions as the best complete solutions, as they might not collectively give a high 

performance. In our case the part solutions are the neurons that are collectively supposed 

to make the complete neural network. The selection of neurons that make the neural 

network is an important decision. Multiple combinations of the various neurons may be 

possible. This problem is solved by another genetic algorithm. This algorithm does the 

task of optimal selection of the neurons of the first genetic approach. Hence an individual 

in this level stores the selected neurons hat make the network. 

 

These two evolutionary approaches run simultaneously in a co-operative manner for the 

evolution of the optimal neural network. The neuron genetic algorithm tries to generate 

good neurons that can carry effective computations for getting the desired output. Good 

neurons are source of good neural networks for the network construction. The task of 



11 
 

assembling these neurons and their selection is done by the other genetic algorithm. Since 

the system possesses good neurons as per the problem requirements, it is natural that the 

complete network may have good performance. The optimal neuron selection and 

arrangement further maximizes the performance. In this manner a very complicated 

problem is solved optimally. 

 

Fitness evaluation is different for both these levels of evolution. The fitness evaluation for 

the network is its performance for the designated data. The fitness evaluation of the 

neuron is however its fitness in the best 5 networks it participates in. This judges the 

capability of the neuron is contributing good features to the network. If the contributed 

features are good, these would be combined with the other neurons resulting in a high 

network performance. The average over 5 networks ensures that the specific neuron 

capability is judged, as specific neural networks may be dominated by other neurons, and 

fitness may not necessarily be from the neuron being assessed.   

 

The evolutionary operators carry the task of construction of a higher generation 

population from a lower generation population. The evolution is as well different for both 

the evolutionary approaches. At the neuron level, the evolution is done by crossover and 

mutation operators. The crossover operator randomly selects the parents from the top 

25% of the population. This generates two children. The first child is the result of one-

point crossover. The other child is one of the participating parents. This is used for 

convergence control. These two children replace the worst fit individuals from the 

population. The mutation is also applied at constant rate. Half the population individuals 

are replaced at every generation. The operations are similar for evolution at the network 

genetic algorithm as well. The network contains a set of neurons. The crossover carries 
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the exchange of these neurons between the parents to generate the children. The mutation 

operation carries the change of neurons in the network. Another mutation is used to 

assign newly created neurons at any generation to the networks. The general architecture 

of the SANE algorithm is given in figure 1.   

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The general architecture of SANE algorithm 
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determination of the class to which the applied input maps to, out of all the various 

available classes. Let the system have n classes. In this model we take n outputs of the 

neural network, with each output denoting the probability of the occurrence of the class. 

This lies between 0 and 1. The output vector may hence be taken as <o1, o2, o3, ...., on> 

Here oi denotes the probability of the input belonging to class i. While testing the class 

that has the largest probability is returned as output. This may be given by (1).  

 

Output = {i: oi < oj ˅ 0 ≤ i, j ≤ n, i ≠ j}       (1) 

 

In this model we may easily see that every output tries to identify the region in the input 

space where the associated class is present. It returns output close to 1 for the areas in the 

input space where class is likely to be present, and returns outputs close to 0 for all other 

areas in the input space. 

 

The error measurement of this network is a measure of the classification accuracy of the 

classifier. An error is recorded if the network incorrectly classifies an input. Let the 

training database contain N instances. Let the output of any instance i be Oi. Let the target 

be Ti. The error is measured by (2). 

 

         (2) 

 

4. Modularity in Attributes 

Any machine learning or classification task is highly dependent on the number of 

attributes that make inputs to the intelligent system. Attributes especially play a vital role 

in deciding the algorithm performance. Very less attributes may not give a good 
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recognition score as it may be very difficult to separate the classes by the decision 

boundaries. This is expecting the attributes were not idealistic in nature having high inter-

class separation and low intra-class separation. However the system may not behave well 

either if the number of attributes is very large. In such a case there are a large amount of 

decision boundaries possible, and figuring out the optimal one is a time consuming task. 

There might further be the requirement of a large amount of training database to tune the 

various weights and parameters in the network. This greatly reduces the execution time of 

the algorithm. In case the algorithm is not executed for the entire length, the algorithm 

may be trained sub-optimally (Kala, Shukla, & Tiwari, 2010).  

 

In order to control the problem of dimensionality in this network, we use the concept of 

modularity into the classificatory SANE algorithm. The attributes of the algorithm are 

distributed into a number of modules (Kala et al. 2010; Kala, Shukla, & Tiwari 2010b). 

Each module gets a part of the total number of attributes available with the system. The 

division of attributes amongst the modules is done in such a manner that the various 

attributes occur in some module or the other. An attribute may simultaneously be given to 

multiple modules of the network. The attribute division is done so that the various 

modules individually give high performance with the least number of attributes. It is 

expected the errors of one module may be eliminated by the other modules when they 

collectively work in a ‘mixture of experts’ architecture.  

 

Integration of the results is an essential part of the entire modular network architecture. 

The various modules working with different attributes act like experts in judging the 

inputs. The results of each of the experts need to be integrated by the integrator to make 

the final decision regarding the output class of the system. The integration in this 
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algorithm is performed by a probabilistic sum technique. Each module j returns as output 

a set of probabilities corresponding to the occurrence of each of the classes in the system. 

Let these probabilities be O
j
 <o

j
1, o

j
2, o

j
3, ... o

j
i, ... o

j
n>. Here o

j
i denotes the probability of 

occurrence of class i as per expert j. The probabilistic addition technique takes the 

weighted addition of all these probabilities. This forms the final probability vector P<P1, 

P2, P3, ... Pi, ...Pn>. Here Pi denotes the probability of occurrence of class i. This may be 

given by (3). 

 

          (3) 

 

Here wj denotes the weight given to expert j. The weights must obey equation (4).   

 

          (4) 

 

The resultant probability vector is then checked for the computation of the final class. The 

class corresponding to the maximum probability of occurrence is stated as the class to 

which the output classifies to, as given in equation (5). 

 

Output = {k: pk < pj,  i ≠ j}         (5) 

 

Each of the modules of the problem is a classificatory SANE neural network. It takes the 

stated input attributes and produces as output the probability vector denoting the 

possibility of occurrences of the various classes. The training and the testing data sets are 

hence divided into the various attributes. This forms the inputs of the training and testing 
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data sets of the various modules which are processed as per the SANE evolutionary 

methodology. The complete architecture of the system is given in figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The Modular SANE architecture 

 

5. Results 

The discussed model was applied over the problem of Breast Cancer diagnosis. Here we 

are given a set of attributes and these needs to be classified into malignant or benign. We 

take the breast cancer data from the UCI Machine Learning Repository for this purpose 

(Wolberg, Mangasarian and Aha, 1992). This database consists of 30 real valued inputs. 

These correspond to the following features for each cell nucleus: radius (mean of 
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distances from center to points on the perimeter), texture (standard deviation of gray-scale 

values), perimeter, area, smoothness (local variation in radius lengths), compactness 

(perimeter2 / area - 1.0), concavity (severity of concave portions of the contour), concave 

points (number of concave portions of the contour), symmetry, fractal dimension 

("coastline approximation" - 1). Here three cells are considered for analysis which makes 

sure that all information is captured that may affect the diagnostic decision. Choosing 

lesser number of cells clearly implies loss of some valuable information. The database 

chosen is recorded from real world data and hence it carries all the characteristics of the 

actual problem. Hence the developed system may be directly applied for diagnosis, 

subjected to the condition that same attributes are considered for diagnosis. The entire 

data set consists of a total of 357 benign and 212 malignant cases, totalling to 569 

instances in the database. 

 

The first task to be carried out is the division of attributes. The 30 attributes need to be 

distributed into modules. We make a total of 3 modules. The various attributes are 

distributed amongst these three modules. The distribution, by design of the algorithm, 

may be done in a manner that each attribute is given to some or the other neuron. Further 

an attribute may be given to multiple modules. Hence we distribute the attributes such 

that each attribute is given randomly to two modules. The entire database is broken for 

both training as well as testing data sets. Approximately 70% of the instances are 

randomly chosen for training and the rest 30% and kept for testing. Each data set gets 

designated to training or testing datasets. 

 

The next task is the use of classificatory SANE algorithm for evolution. For this we use 

the SANE code available at (Texas, 2010). This forms the base code over which the other 
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modules are built as per the requirements stated in section 3 and section 4. One module of 

the program did the task of collection of the data from a text file, its normalization, and 

random division into training and testing data sets. The attribute division was done 

randomly within the program. The training and testing data sets are passed into the JAVA 

SANE program for each of the modules. The algorithm evolved the neural network using 

the co-evolutionary principles. The various parameters used for the execution of the 

algorithm include maximum number of connections per neuron as 24, evolutionary 

population size of 1000, maximum neurons in hidden layer as 12, SANE elite value of 

200, mutation rate of 0.2, and number of generations as 100. These parameters were same 

for all the three modules that were executed one after the other. The output of each of the 

module was taken. These values were then used by a separate module that carried out the 

task of integration to give the final results.  

 

On training and testing the system as per this methodology, the network achieved a good 

accuracy for both training and testing dataset. The values of the weights of the three 

modules were fixed so as to maximize the performance in training dataset. The accuracies 

were taken as a mean of 20 executions with the same parameter set. The net performance 

of the system was 96.90% using training data set and 96.59% using testing dataset. The 

algorithm took approximately 2 minutes and 30 seconds for the evolution. It may be 

easily seen that the time required is significantly less than the conventional approaches 

over data sets of same size and complexity which may sometimes even take hours to be 

trained. The reduction in time is first due to use of co-evolutionary technique that 

simplifies problem by large degree, and second due to further simplification by use of 

modularity. In the absence of these factors training time may be in order of an hour. The 

results of the algorithm for an average of 20 runs are summarized in table 1.  
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Convergence is an important factor in the evolutionary approaches that gives an idea of 

the manner in which the individuals of the algorithm behave in regard to the fitness along 

with generations. We plot the fitness of the best network for all the three modules along 

with time. Here fitness is taken to be the accuracy over the training data.  The resultant 

convergence is shown in figure 3. The figure clearly shows a large improvement in the 

performance value in the initial few generations. This improvement however becomes 

small as the generations increase. Towards the later stages, the algorithm converges to the 

optimal value. It may be noted that the database taken had limited instances, and hence 

the training accuracy can only increase by some discrete amounts, corresponding to the 

increase in accuracy due to a single data instance.  

Table 1: Analysis of the Results of the algorithm 

 

S. No. Property Value 

1. Mean Training Accuracy 96.90% 

2. Mean Testing Accuracy 96.60% 

3. Standard Deviation in Training 

Accuracy 

0.933 

4. Standard Deviation in Testing 

Accuracy 

1. 65 

5. Approx. Mean Training Time 2 mins 30 

secs 

6.  Mean Correctly Identified Instances 

(Testing) 

165 

7. Mean Incorrectly Identified Instances 

(Testing) 

6 

 

The high accuracies achieved in the use of proposed algorithm encourage a high usage of 

the algorithm for medical diagnosis. In order to fully test the performance of the 

algorithm, we compare the proposed algorithm with a number of algorithms available in 

literature. In all these algorithms the data was broken down into training and testing data 

sets. The training data set was used for network tuning the network parameters. The 

testing dataset was used for the testing purposes.  
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Figure 3: Performance of best networks for all three modules against generations 

 

 

The first method applied was the conventional neural network model Multi-Layer 

Perceptron trained with back Propagation Algorithm. Here MATLAB was used for the 

simulation purposes. The network had 1 hidden layer with 18 neurons. Learning rate was 

fixed to be 0.05. Momentum was fixed to 0.7. The network was trained for 3500 epochs. 

The resultant network gave a training accuracy of 97.01% and a testing accuracy of 

94.61%.  

 

The other model trained was a fixed architecture evolutionary neural network. Here the 

neural network architecture was the same as discussed in the previous approach. The 

weights and biases were optimized using genetic algorithm. The genetic algorithm 

consisted of 10 individuals, each trained in 15 generations. The various weights and 

biases could vary from -2 to 2. Rank based scaling with stochastic uniform selection was 

used.  Elite count was kept as 2. Crossover rate was 0.8. Gaussian mutation with a spread 

and scale of 1 each was used. The genetic algorithm used back propagation algorithm as 
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the local search strategy. The BPA had a learning rate of 0.05, and momentum of 1. 

Training was carried for 30 epochs. The algorithm had a training accuracy of 93.92% and 

testing accuracy of 95.40%. 

 

The next algorithm we use to test the accuracy with is the variable architecture 

Evolutionary Neural Network. Here we follow a connectionist approach. The neural 

network is assumed to be consisting of one hidden layer. In place of an all-connected 

architecture, we assume that only some connections are allowed from the input layer to 

hidden layer and hidden layer to output layer. The information regarding the connections 

is stored into the genetic individual. The various parameters used in this approach are the 

same as the ones used in the fixed architecture neural network. Extra connections were 

penalized by assigning a penalty of 0.01 per connection. The hidden layer could have a 

maximum of 30 neurons. The accuracy in this case was 97.01% for the training data and 

95.21% for testing data. 

 

The next approach tried to test the accuracy of the algorithm was ensemble. Here we 

made 3 experts, each being a neural network with similar architecture as discussed in the 

previous approaches. These three neural networks gave their probability vectors 

corresponding to the various classes as outputs. A probabilistic sum of these vectors was 

taken, to get the final output vector. The winning class was determined from this vector. 

On training and testing, the system gave an accuracy of 97.98% on the training data and 

95.95% on the testing data.  

 

The other method applied for testing the accuracy of the algorithm was modular neural 

network, where the complete feature space was partitioned into three modules. Each of 
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these modules was given a separate neural network for training. The architecture of the 

neural network was the same as discussed earlier. After training and testing, the system 

gave an accuracy of 96.49% on the training data set and 95.08% on the testing data set.  

 

The next method of application was an attribute division using Back Propagation 

Algorithm. Here we try to control the curse of dimensionality by using multiple neural 

networks in a modular manner. Three modules were made. Every attribute was given 

randomly to two of the three modules. The three modules were trained and tested against 

the respective data sets. On simulation, the training accuracy was found to be 97.19% and 

testing accuracy was found to be 96.03%.  

 

The last method we adopt for the same problem is the convenital SANE algorithm. The 

modifications were made to this algorithm to enable it act for the classificatory problems. 

The parameters of this algorithm were similar to the parameters used in the execution of 

the proposed algorithm. The algorithm on execution gave a training accuracy of 94.73% 

and a testing accuracy of 93.52%.   

 

The various algorithm results have been summarized in table 2.  

Table 2: Comparisons between various algorithms 

 

S. 

No. 

Algorithm Training 

Accuracy 

Testing 

Accuracy 

1. Modular Classificatory SANE 96.90% 96.60% 

2. MLP with BPA 97.01%  94.61% 

3. Fixed Architecture Evolutionary 

ANN 

93.92%  95.40% 

4. Variable Architecture 

Evolutionary ANN 

97.01%  95.21%  

5. Ensemble 97.98% 95.95% 

6. Feature Space Modular ANN 96.49% 95.08% 

7. Attribute Modular ANN 97.19%  96.03% 

8. Classificatory SANE 96.40%  95.39% 
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From the above table, it is clear that the proposed algorithm gave the best generalization 

and testing accuracy as compared to all the methods presented. A higher training accuracy 

was displayed by a variety of methods, but the ultimate aim of the network is a high 

performance over the testing data. The larger networks may produce a better training 

accuracy, but not a better testing accuracy. The higher generalization capability of the 

proposed algorithm is a warrant that it would carry effective diagnosis, whenever applied 

to the real life scenarios. The high recognition score illustrates an effective diagnostic 

system. 

 

6. Conclusions 

The present work dealt with devising a solution to the problem of curse of dimensionality. 

Evolutionary neural networks have been known to be strong agents of machine learning 

with good capability of generalizing the learning from the learnt data to new data or the 

testing data. We took SANE algorithm as the development platform for this purpose. The 

problem of dimensionality was solved by building a modular neural network over SANE. 

The modular neural network carried out attribute division. Each module, with its 

designated attributes, computed the output. The outputs were integrated using an 

integrator, which used a probabilistic sum for output computation. The class 

corresponding to the maximum likeness of occurrence was designated as the output class 

to the input applied.  

 

The approach was applied over the problem of breast cancer diagnosis. The entire 

attribute set, comprising of 30 attributes, was divided into 3 modules. Each attribute was 

randomly given to two of the three modules. All the three modules were trained using the 
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training database. Each of the modules was SANE which used co-evolution as the basic 

evolutionary methodology. In the testing mode the outputs of the various modules was 

combined using the integrator. This gave the final output. 

 

The algorithm over this database achieved an accuracy of 96.90% for the training data 

and 96.60% for the testing data. This accuracy was compared to a variety of methods 

commonly used in literature. In all these we found that the proposed algorithm gave the 

highest accuracy for the testing database. This shows a very high learning capability, as 

well as a very high generalizing capability of these networks. The high generalizing 

capability shows that the proposed algorithm can be effectively used for the Breast 

Cancer diagnosis. 

 

Present study is limited to only a single database of Breast Cancer. Future attempts may 

be made to carry experimentation with this algorithm on multiple databases from multiple 

domains. The rising automation has brought many new domains into the outreach of 

neural networks. The crux of this algorithm is its ability to handle a large number of 

attributes. Extensive research over different problems with large dimensions may be 

useful to fully experiment the algorithm capability of handling dimensions. Further 

research may build optimal attribute division strategy, as well as strategy to decide the 

number and roles of modules. The problems are getting more complex and difficult to 

solve. The increasing complexity largely results in an increase in the total number of 

attributes. This further motivates the need of making systems that can take a large number 

of attributes. While the present approach is effective in introduction of modularity at the 

attribute level, further sincere attempts are needed to make the systems scalable to an 

even higher level.   
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