
Modular Synchronization in Multiversion Databases:

Version Control and Concurrency Control

Soumitra Sengupta l

Columbia University

Divyakant AgrawaP

UC, Santa Barbara

February 1989

Technical report No. CUCS-426-89

Abstract

In this paper we propose a version control mecha:lism that enhances

the modularity and extensibility of multiversion concurrency control

algorithms. We decouple the multiversion algorithms into two com

ponents: version control and concurrency control. This permits mod

ular development of multiversion protocols. and simplifies the task of

proving the correctness of these protocols. An interesting feature of

our framework is that the execution of read-only tra,nsactions becomes

completely independent of the underlying concurrency control imple

mentation. Also, algorithms with the version control mechanism have

several advantages over most other multi version algorithms.

1 Department of Computer Science, Columbia University, New York. NY 10027. The

author was support.ed by the New York Stat.e under grant number NYSSTF CAT (88)-5.
2Department of Computer Science, University of California. Santa Barbara, CA 93106.

The author was support.ed by the NSF under grant number CCR-8809387.

1 Introduction

Multiple versions of data are used in database systems to support transaction

and system recovery. These multiple versions of data can also be exploited

to improve the degree of concurrency that is achievable in the system. The

higher concurrency results since out-of-order read requests can be serviced by

reading appropriate, older versions of data.. Thus, read-only transactions in

most multiversion concurrency control schemes are executed almost unhin

dered. Specifically, the ad verse effects of concurrent 7'ead-write transactions

on read-only transactions are minimized. Unfortunately in many multiversion

concurrency control schemes, there is still a possibility of read-only transac

tions having undesirable effects on read-write transactions.

One of the observations that can be made about various multiversion con

currency control protocols is that each of them employs a different approach to

integrate multiple versions of data with the desired concurrency control pro

tocol. For example, the multiversion protocol with timestamp ordering [14]
is quite different from the multiversion protocol with two-phase locking [7].

This is so because the version control components of these algorithms are very

closely tied to the chosen concurrency control protocols. In contrast, protocols

for replicated data employ synchronization mechanisms which naturally divide

into two components: the concurrency control component, and the replica con

trol component. The advantage of such subdivision is that it allows a modular

development of new protocols, and simplifies the task of proving correctness

of these protocols. For example, a new concurrency control mechanism can

be combined with the quorum protocol [11] for replica control very easily; the

combined protocol then can be used for managing replicated data.

Unfortunately, no such subdivision exists for protccols that manage mul

tiversion data. There are several advantages to the separation of the version

control component from the concurrency control component. Conceptually,

this separation allows modular development of multi version protocols and sim

plifies the extension of these protocols to a distributed environment. Secondly,

the task of proving correctness of such protocols is greatly simplified. Finally,

there is improved extensibility in that more experimentations are possible in

areas such as garbage collection algorithms and adaptive concurrency control

schemes without introducing major modifications to the entire protocol.

In this paper, we propose a version control mechanism that can be inte

grated with any conflict-based concurrency control protocols, viz. two-phase

locking, timestamp ordering, and optimistic concurrency control protocols

[9, 14, 12]. One of the major advantages of the version control mechanism

is that read-only transactions do not have any concurrency control overhead.

and cannot cause aborts of read-write transactions, as is the case in some

other protocols [14]. The mechanism extends easily to distributed, multiver

sion database environments. The version control mechanism guarantees global

serializability of read-only transactions (unlike [8]), and the execution of read

only transactions is completely independent of the chosen concurrency control

protocol.

The rest of this paper is organized as follows. In Section 2, we briefly discuss

other multiversion protocols and indicate their shortcomings. \Ve present the

formal model for correctness in multiversion databases in Section 3. In Section

4, we propose our version control mechanism and demonstrate how it can

be integrated with the two-phase locking and timestamp ordering protocols.

Correctness of these protocols is argued in Section 5. Vie discuss our results

in Section 6, and concluding remarks appear in Section 7.

2 Multiversion Algorithms

Numerous concurrency control algorithms have been proposed for multiversion

databases [14, 15, 4, 7, 8, 17]. It is not oUI intention to propose yet another

algorithm; instead, we propose a uniform methodology that can be used to

implement these protocols. Multiversion timestamp ordering was introduced

by Reed [14]. The main advantage of this scheme is that read requests are

never rejected. The algorithm can be viewed as an extension of the timestamp

ordering protocol [4]. However. there are several drawbacks associated with

this algorithm as presented. First, read operations issued by read-only transac

tions in this protocol must be synchronized with the operations of read-write

transactions, i.e., read operations may be blocked due to a pending write.

2

Second, read-only operations have a significant concurrency control overhead

since they must update certain information associated with the versions of

the objects. This may also result in a read-only transaction causing an abort

of a read-write transaction. Finally, since read-only transactions update the

database, distributed read-only transactions require two-phase commit proto

col for their atomic commitment. Thus, execution of read-only transactions

in this protocol has significant synchronization overhead.

J\1 ultiversion two-phase locking was originally proposed by Chan el al. [7J.

This protocol makes a distinction between read-only and read-write transac

tions. Read-write transactions are executed as in any other two-phase locking

scheme, with some minor changes. Read-only transactions are handled differ

ently in that some additional information is associated with every read-only

transaction. One is a start timestamp which indicates the time when a trans

action started, and other is a completed transaction list which is a list of

all read-write transactions that have committed successfully until that time.

One drawback of this scheme is the maintenance and usage of the completed

transaction list. The execution of a read operation of a read-only transaction

involves finding a largest version of an object smaller than the start times

tamp of the transaction, and ensuring that creator of this version appears in

the copy of the completed transaction list of the transaction. This approach

is cumbersome and complex to deal with.

The second drawback of the multiversion two-phase locking protocol [7] ap

pears in the extension for distributed databases [8]. Although the distributed

variant of the protocol guarantees a consistent view to a read-only transac

tion, it does not guarantee global serializability of read-only transactions. The

protocol also requires that a read-only transaction must have a priori knowl

edge of the set of sites where it will perform its reads. This is necessary to

construct a globa.l completed transaction list from the copies of the local com

pleted transaction lists at the respective sites before the read-only transaction

begins its execution. Thus. the complexity of the protocol increases when used

in a distributed database environment.

\Veihl proposed several protocols to implement read-only transactions and

3

to manage multiversion databases [17]. vVe will discuss only one of them since

others are primarily intended to integrate garbage-collection algorithms effi

ciently. The protocol which USes timestamps and initiation [17] is similar to

the multiversion two-phase locking algorithm [7]. In this protocol, a completed

transaction list is not required; however, a read-only transaction has to per

form synchronization actions with a concurrent read-write transaction to avoid

inconsistent views. The synchronization is performed on timestamps associ

ated with the objects, and in some cases, this may lead to a race condition

where neither transaction may proceed with useful work.

\Ve proposed a multi version optimistic concurrency control protocol to pri

marily eliminate the validation overhead of read-only transactions [1, 2] in

optimistic schemes. The mechanism presented in this paper is based on the

version management scheme of the multi version optimistic concurrency con

trol protocol [2]. However, the concurrency control and version management

issues are too closely inter-related in this protocol. As a result, it is difficult

to determine if certain aspects of the protocol are necessary because of the

optimistic protocol or due to the version management. scheme.

The novel aspect of this paper is not that we present new multiversion

algorithms, rather that it is possible to decouple the concurrency control issues

from the version control issues. The proposed version control mechanism. to

a certain degree, is based on all earlier multiversion algorithms. However, the

elegance of this version control is that it allows simple and uniform integration

with the standard concurrency control protocols such as timestamp ordering,

two-phase locking, and optimistic schemes. To the best of our knowledge. no

one has previously attempted to modularize the components of multi version

protocols as has been done for the replicated data management protocols [11,
16].

3 The Model

A database consists of a set of objects, and users interact with the database

system by invoking transaction programs. A transaction T j is an ordered pair

(E j , <;), where E j is the set of operations in Tj, and <i indicates the execution

order of those operations. Read or \Vrite operations executed by Ti on an

object x are denoted by rj[x) and Wi[X) respectively. \Ve assume that there is

at most one 1'j[x) and at most one wdx) in ~i. Furthermore, if rj[x) and Wi[X)
are both in Ei then rdx) <j wdx). The execution of a transaction must appear

atomic, i.e., a transaction T j terminates with either a commit, Cj, or an abort.

ai, operation. The commit of a transaction results in all its changes being

applied to the database; the abort results in the changes being discarded.

The following definitions are borrowed from [6). \Ve denote the set of trans

actions that executed in a system as T = {T1 , ••• , Tn}. The execution of

transactions in T is modeled by a structure called histo1'Y. A history, H, over

T is defined as a partial order (E, <II)' where E is the set of all operations

executed by transactions in T, and <II indicates the execution order of those

operations.

3.1 Single Version Data

We first describe the commonly accepted correctness criteria for single version

databases. Let H be a history over a set of transactions T = {T}, . .. , Tn}. A

transaction Tj reads x f1"Om another transaction Ti in H if:

The final write of x in a history H is the operation Wj[x] E H, such that:

Two histories, H and H', are equivalent if:

1. they are over the same set of transactions and have the same operations,

2. they have the same reads from relation for each object x, and

3. they have the same final writes for each object x.

5

A serial history H s is a total order such that for every two transactions T;

and Tj , either all operations of Ti precede all operations of Tj or vice-versa. A

history is serializable if it is equivalent to a serial history. The serializable exe

cution of transactions is a commonly accepted correctness criteria in database

systems. However, the problem of determining if an arbitrary history is serial

izable is shown to be NP-complete [13]. Hence concmrency control protocols

for general purpose databa.ses are based OIl the notion of conflict. Two oper

ations conflict if they both operate on the same object, and one of them is a

write. A history H is conflict-serializable if there exists some serial history Hs

such that:

1. Hand Hs are defined over the same set of transactions and have the

same operations, and

2. if 01 and 02 are two conflicting operations and 01 <H 02 then 01 <Hs 02'

It can be shown that H is equivalent to Hs , and therefore H is serializable. \Ve

ca.n determine whether a history is serializable by analyzing a graph derived

from the history called a serialization graph. The serialization graph for H.

denoted SG(H), is a directed graph whose nodes are the transactions in T,

and has an edge Ti ~ Tj if one of T/s operations precedes and conflicts with

one of T/s operations. A history H is serializable if and only if SG(H) is

acyclic [9, 4].

3.2 Multiversion Data

\Ve next consider a multiversion database in which each write operation on an

object x produces a new version of x. Thus, for each object x in the database,

there is a list of associated versions. A read operation on x is performed by

returning the value of x from an appropriate version in the list. The existence

of multiple versions is visible only to the scheduler implementing the protocoL

and not to the user transactions which refer to the object as x. The ver

sions of x are denoted as Xi, Xj, ••. , where t.he subscript is the (monotonically

increasing) version number of each version. The version number most often

corresponds to the index or the transaction IltUl1ber of the transaction that

wrote that version. We assume that if a transaction is aborted, all versions it

created are destroyed.

A multiversion (!\lV) history H represents the sequence of operations on

the version of objects. Thus, each Wj[x] in an MV history is mapped into

wi[xd, and each ri[x] into rj[xj]' for some j. A transaction Tj reads x from

Ti in H if Tj reads a version of x produced by T j, i.e .• rj[xd E H. Note that

the notion of final writes can be dropped from the definition of equivalence of

multiversion history, since every write results in a new entity being created in

the database [6].

Two MV histories over a set of transactions, T, are equivalent if they have

the same operations. An rvlV history is O1le-copy serializable if it is equivalent

to a serial history over the same set of transactions executed over a single

version database.

The serialization graph of an MV history H is a directed graph whose nodes

represent transactions and whose edges are all T j ~ Tj such that one of T/s

operations precedes and conflicts with one of T/s operations in H. Howe\'er,

SG(H) by itself does not contain enough information to determine whether

JI is one-copy serializable or not. To determine if an IVIV history is one-copy

serializable, a modified serialization graph is used. Given an MV history H. a

multiversion serialization graph (A1V SG(JI)) is SG(H) with additional edges

such that the following conditions hold:

1. For each object x, lvlV SG(H) has a total order (denoted ~x) on all

transactions that write x, and

2. For each object x, if Tj reads x from T j and if T j ~x Tk , then A1VSG(H)

has an edge from Tj to Tk (i. e., Tj ~ Tk): otherwise, if Tk ~x Tj. then

AIV SG(H) has an edge from Tk to Ti (i.e .. Tk ~ Ti).

The additional edges are called version order edges. An j'vIV history H IS

one-copy serializable if AlV SG(JI) is acyclic [5, 6].

7

4 The Version Control Mechanism

In the following description of the version control mechanism, it is assumed

that the execution of read-write transactions is synchronized by a concurrency

control protocol that guarantees some serial order. Furthermore, a read-write

transaction T is assigned a transaction number tn(T) which is unique and cor

responds to the serial order. That is, if Tl precedes T2 in the serial order then

tn(T1) < tn(T2), and vice-versa. It can be easily verified that any conflict

based concurrency control protocol can be changed to assign such numbers to

the transactions. For example, in two-phase locking read-write transactions

can be assigned transaction numbers from a monotonically increasing counter

when the transactions reach their lock-point [13]. A transaction number in

timestamp ordering simply corresponds to the logical timestamp of a transac

tion.

In this section we first describe the versIOn control mechanism and also

describe the execution of read-only transactions using this mechanism. We

next present multiversion algorithms in which version control is integrated

with two-phase locking and timestamp ordering protocols. The multiversion

algorithm with version control and optimistic concurrency control appears in

[1, 2] and, hence, is not presented in this paper.

4.1 Version Control

Vve now describe our version control mechanism integrated with an abstract

concurrency control mechanism. First, 'we require that all transactions in the

system be classified into the following two categories:

1. Read-only Transactions: Transactions which do not modify the state of

the database, and therefore, do not execute any write actions.

2. Read-write Transactions: Transactions which update the state of the

database, and therefore, execute at least one write action.

If a transaction's class cannot be determined a priori, it is classified as a read

write transaction by default. Since we assume that all read-write transactions

8

are serialized by the underlying concurrency control protocol, a transaction

with unknown category will be serialized with respect to read-write transac
tions.

The read-write transactions execute in the multiversion environment in the

same way as in a single version environment. That is, the concurrency control

related synchronization for the read-write transactions is performed as if a sin

gle copy of an object exists in the database. The read operation is carried out

by reading the most recent version of the object, and write operation creates

a new version of the object. The version number of the version of the object

written by a read-write transaction is its transaction number. In order to

assign these numbers to the transactions the version control mechanism main

tains a monotonically increasing counter called tmnsaction number counter,

tnc.

Let us consider the read-only transactions next. If we make the versions of

data objects visible to a read-only transaction in such a way that no smaller

version can be created by any active or future transactions, we can easily

serialize the read-only transactions in the system. This is accomplished by

choosing a value of inc such that all transactions with transaction numbers

smaller than the chosen value have completed. \Ve can use this value to assign

a number to the read-only transactions when they begin execution. This is

called the start number of a transaction T, sn(T). \Vhen T reads an object

x, it chooses the largest version of x that is smaller than sn(T). It can be

informally argued that T is serialized according to its sn(T), i.e., it succeeds

all completed read-·write transactions and precedes all active and future read

write transactions.

The main problem m executing read-only transactions is how to choose

an appropriate value of the start number that will guarantee the property

mentioned above. This is precisely the source of complication in multiversion

two-phase locking as proposed in [7] and [17]. A transaction T is assigned tn(T)

at the beginning in multiversion timestamp ordering and it is assigned tn(T)

at the lock-point in multi version two-phase locking. Since in both schemes

T remains active after the assignment, the current value of inc cannot be

9

used to assign start numbers to the read-only transactions. In our scheme

we employ another monotonically increasing counter called visible transaction

number counter (vtne). Intuitively, the value of vtne controls the visibility

of the versions of data objects to the read-only transactions. Hence, vtne

serves the purpose of assigning start numbers to the read-only transactions.

Unlike inc, which is incremented when a transaction is assigned a transaction

number, vine may be incremented when a transaction completes. It will be left

unchanged, however, if, at the time a transaction T completes, there is another

transaction T' that is still active and tn(T') < tn(T}. This is possible since

the transaction number order need not necessarily correspond to the order in

\\Thich transactions complete their execution. Thus, vine is incremented in

such a way that the versions of data objects are made visible according to

the serialization order of transactions in the system. Hence, we can state the

following properties for the two counters in our scheme:

Transaction Ordering Property. The value of inc at all times is the smallest

number such that all transactions T, which either are active and unas

signed or will arrive later, will have tn(T) ~ inc.

Transaction Visibility Property. The value of vinc at all times is the largest num

ber such that all transactions T with in(T) ~ vtnc have completed.

Additionally, the values of the two counters must be such that vinc < tnc at

all times.

The code related to the version control mechanism is illustrated in the

module VersionConirol in Figure 1. It has four entry procedures: VCstartO,

VCregisier(T, status), VCdiseard(T), and VCcomplete(T). Also, this mod

ule maintains three data-structures related to yersion control: inc, vine: and

VCQueue. VCQueue is an ordered list of all transactions that have been as

signed transaction number (and, therefore, have a fixed position in the serial

order) and are still active in the system or are waiting for a transaction with

a smaller transaction number to complete. This queue is used to make the

versions created by the read-write transactions visible in the order of their

serialization.

10

MODULE VersionControl
PERSISTENT DATA tnc, vtnc : COUNT:

VCQueue : QUEUE;

PROCEDURE VCstart(): COUNT
RETURN(vtnc);

END VCstart;

PROCEDURE VCregister(T: TransactionDesc; status: Status)
tn(T) - inc + +;
Allocate entry E(T);
E(T).type - status;
E(T).num - tn(T);
Insert(VCQueue. E(T»;

END VCregister;

PROCEDURE VCdiscard(T: TransactionDesc):
Discard(VCQueue. E(T»:

END VCdiscard;

PROCEDURE VCcomplete(T: Tl'ansactionDesc):
E(T).type - "complete"
WHILE (Head(VCQueue).type = "complete") DO

vtnc - Head(VCQueue).num;
Delete(H ead(VCQueue»;

END;
END VCcomplete;

END.

Figure 1: The Version Control Module

11

The entry procedure VCstartO is invoked by a read-only transaction to

obtain its start number. The entry procedure FC1'egister(T, "active") is

invoked by a read-write transaction T at the time when its serialization order

has been determined. Thus, in timetsamp ordering, this procedure is invoked

right at the beginning, where as in two-phase locking this procedure is invoked

when T reaches its lock point. The entry procedure VCdiseard(T) is invoked

if T is aborted. On the other hand, if T commits, it invokes VCeomplete(T)

after updating the database. Note that the procedure VCeomplete(T) enforces

the transaction visibility property. That is, it sets the current value of vine

to tn(T) if all transactions with smaller transaction number have completed.

Otherwise, the increment of vtne is delayed.

4.2 Read-only Transactions

The execution of read-only transactions is shown in Figure 2. The left hand

column shows the action of a read-only transaction, and the right hand column

illustrates the resulting execution of the same transaction. The read-only

transactions in our scheme are independent of the underlying concurrency

control protocol. These transactions do not interact with the concurrency

control module at all, and make only one call to the version control module

in the beginning. Afterwards, their existence remains transparent to both

the concurrency and version control modules. and therefore, there is almost

negligible overhead associated with read-only transactions in our scheme.

Action Invocation
begil1(T)

read(x)

end(T)

Action Execution
sn(T) -- VCstartO
tn(T) -- sn(T) 1* for proving correctness * /

return Xj with largest version ~ sn(T)

Figure 2: Execution of Local Read-only Transactions

A read-only transaction, T, begins jts execution by obtaining its start num-

12

ber, sn(T), from the version control module. Note, that sn(T) for read-only

transactions is also tn(T). A read request of T for an object x is never blocked

and results in the transaction reading a version of x with the largest version

number less that or equal to sn(T). Barring the unavailability of an appropri

ate version to read due to garbage-collection of old version, a read request of

T is never rejected.

4.3 Version Control with Timestamp Ordering

Since the serial order of transactions in timestamp ordering is determined a

priori, read-write transactions are assigned a transaction number before they

begin execution. Figure 3 illustrates the execution of read-write transactions

in a timestamp ordering protocol integrated with version control. The proce

dure VC1'egister(T, "active") executed by a read-write t.ransaction, T, serves

the purpose of assigning a number to T and registering it for version control

purposes. The rat.ionale behind registering T in t.he VCQueue, as soon as T's

serial order is determined, is to ensure that we do not make updates of latter

transactions visible before T completes. If this is not enforced, it will result in

non-serializable execution of read-only transactions. Note that in timestamp

ordering protocol sn(T) is the same as tn(T).

Recall that in timestamp ordering protocols [14, 4L each version of an object

x has a unique write timestamp, w-ts(x), which records the transaction number

of the transaction that created this version of x. The most recent version of

x additionally has a read timestamp, r-ts(x), which records the timestamp of

the youngest transaction that read the most recent version of x.

A write request from T for x is granted only if tn(T) is greater than or equal

to the read and the write timestamps of t.he most recent version of x. This

conflict check is required in order to serialize transactions in their timestamp

order. Transactions whose write requests are not granted are aborted. Once

a write request is granted. it is considered pending until the writer commits.

If a read or write request is made for an object by a transaction, and there

ex;sts a pending write request for the object by an older t.ransaction, the read

or write request is blocked until the pending write is no longer pending, i.e ..

until the older transaction either commits or aborts.

13

Action Invocation
begin(T)

read(x)

write(y)

end(T)

VCregiste1'(T, "active")
sn(T) ;- tn(T)

Action Execution

r-ts(x) ;- M AX(r-ts(x). tn(T»
return Xj with largest version ~ sn(T)
1* may be delayed due to the pending writ.es as per TO protocol* /

IF r-ts(x) > tn(T) vw-ts(x) > tn(T) THEN abort(T);VCdiscard(T)
create Xj with version tn(T)
w-ts(x) o!- MAX(w-ts(x), tn(T»

commit(T)
perform database updates; clear pending read actions;
VCcomplete(T)

Figure 3: Execution of Local Read-write Transactions in Timestamp Ordering

Read requests are never rejected, though they may sometimes be blocked

due to pending write requests. A read request from a transaction T for an

object x is granted by allowing the transaction to read a version of x with the

largest w-ts{x) such that sn{T) ~ w-ts(x). Note that, although T must have

started more recently than the writer of this version of x, the writer may still

be executing. This is the case that requires that a read request be blocked for

the completion of the pending write request.

At the time of termination of T, we check VCQueue if its updates are

subject to delayed visibility on account of older transactions that are still

active. If there are no such transactions, vtnc is set to tn(T). Otherwise the

increment of vtnc is delayed until the future time when these older transactions

complete their execution. Also, if T is aborted for any reason after it has been

in VCQueue, its entry must be discarded from VCQue1le. This ensures that

the visibility is delayed only for active and unaborted transactions.

14

4.4 Version Control with Two-phase Locking

In a two-phase locking protocol, the serial order of read-write transactions

correspond to their lock-points. A lock-point of a transaction is a point in time

between the last lock acquired and the first lock released by a transaction.

Thus, while the transaction is executing its read and write operations, i.e ..

acquiring additional locks, its serial order is uncertain. Therefore, a read-write

transaction in this scheme is not registered with the version control module

until it completes its execution phase. vVe assume that a transaction, T, signals

a completion of its execution phase when it invokes the action end(T). The

execution of a read-write transaction in a two-phase locking protocol integrated

with version control is illustrated in Figure 4.

Action Invocation
begin(T)

read(x)

write(y)

end(T)

Action Execution
sn(T) -- 00 1* for uniformity * /

7'-lock(x)
1* may wait due to write locks as per 2PL protocol * /
return xi with largest version::; sn(T)

w-lock(y)
1* may wait due to other locks as per 2PL protocol * /
create Yj with version <P

V Cregiste7·(T. "active")
commit(T)
perform database updates with version number tn(T)
clear locks
VCcomplete(T)

Figure 4: Execution of Local Read-write Transactions in Two-phase Locking

A read-write transaction, T, in two-phase locking scheme always reads the

latest version of objects. Hence, for the purpose of uniformity sn(T) is chosen

as infinity. A read request from T for x results in obtaining a read lock on x. If

the lock is not available, T is delayed. Otherwise, T reads the largest version of

15

x in the database. Since in two-phase locking, a lock may be released only after

a transaction has reached its lock-point, T's acquiring the read lock guarantees

that there are no write locks on x, and also that any transaction T' that wrote

x must have had a lock-point smaller than T, and hence must precede T in

the serial order. Similarly, since T will release its lock on x only after it has

reached its lock-point, any other transaction T' that intends to write x will

have to wait for the lock release, and thus will have a lock-point larger that T,

and hence will succeed T in the serial order. It is thus guaranteed that after T

acquires the read lock on x, the version of :r that T reads is the latest version.

A similar argument shows that T is the only transaction that writes the

non-committed version of y after it acquires a write lock on y. The difference

from the timestamp ordering protocol, however, is that T does not have an

assigned tn(T) as yet. But this is not a problem because this protocol will

not allow any other transaction to read version of y created by T until it

releases its lock on y. If T releases its lock on y, it must have gone past its

lock-point and must have been assigned tn(T). Thus, once again the version

control mechanism requires that T be registered as soon as its serial order is

determined. At the end of execution, T is registered in the VCQueue and

thus, is assigned tn(T) in the order of its lock-point, i.e., in the order of its

serialization. T can then complete its database updates using tn(T) as the

version number.

This scheme delineates read-only and read-write t:·ansactions completely.

Since a read-only transaction execution is independent of the concurrency

control, it is unaffected by the concurrent read-write transactions (unlike [7]

and [17]), and the algorithms are considerably simpler. The version control

mechanism is not affected by deadlocks that may arise in the system since

the transactions that interact with the version control have gone past their

lock-point. Since such transactions cannot have any pending lock requests,

they cannot be involved in any deadlock cycle.

16

5 Correctness

In this section we demonstrate that the two multi version algorithms developed

in the previous section guarantee serializability of all transactions.

5.1 Proof of Version Control with Timestamp Ordering

The following lemmas state certain properties of this protocol. We will use

these properties to prove that the protocol is one-copy serializable. The first

lemma indicates that the read-write transactions in this protocol are assigned

unique transaction numbers. Note that the lemma holds only for read-write

transactions; unlike the multiversion timestamp ordering protocol, several

read-only transactions in this scheme may be assigned the same transaction

number. However, this property does not affect the proof of serializability.

Lemma 1 For each read-write transaction T; there is a unique transaction

number tn{T;).

Proof. Immediate from the assumption that transaction number assignment

1S umque. 0

The next lemma states that a transaction reads versions of objects that

were created by its predecessors in the serial order.

Proof. Consider the two cases: one is when the read action rdxj] corresponds

to a read-write transaction Tk and the other is when rk[xj] corresponds to a

read-only transaction.

If Tk is a read-write transaction, the timestamp concurrency control pro

tocol (through the version control action VCRegister) assigns tn(Tk) before

Tk executes any of its action. Furthermore, 1'dx] is executed by choosing a

largest version Xj such that tn(Tj) < tn(Tkl.
If Tk is a read-only transaction, the version control protocol (through the

action V C Start) assigns sn(Tk) before n executes any of its action. Since Tk

is a read-only transaction, tn(Tk) = sn(Tk). The execution of rk[x] will return

Xj such that tn(Tj) :::; sn(Tk). Hence, tn(Tj) :::; tn(Tk}. 0

17

The final lemma states that when a transaction, T, reads an object x,

it reads a version of x which is the largest version smaller than tn(T). In

addition, if another transaction later attempts to write x with a transaction

number smaller than tn(T) and larger than the version of x read by T, the

write will be rejected and the transaction will be aborted.

Lemma 3 For every rk[Xj] and Wj[xd E H, i #- j, one of the following condi

tions must hold:

(i) tn(Tj) < tn(Tj), or

(ii) tn(Tk) < tn(TjL or

Proof. Consider the two cases when Tk is a read-write transaction and when

Tk is a read-only transaction.

Case 1. Tk is a read-write transaction. Let us assume i #- k. From Lemma

2, tn(Tj) < tn(Tk)' Furthermore, the timestamp concurrency control protocol

would reject an operation wdxj] if tn(Tj) < tn(Tj) < tn(Tk). Hence, only

possibilities are either tn(Tj) < tn(Tj) or tn(Tk) < tn(Tj). The case i = k

holds due to the restriction on the transactions (see Section 3).

Case II. Tk is a read-only transaction. From Lemma 2, tn(Tj) :s; tn(Tk).

Since Tk is a read-only transaction, i #- k. Consider the case when tn(Tj) =

tn(Tk). From the uniqueness oftransaction numbers of read-write transactions,

it follows that either tn(Td < tn(Tj) or tn(Td < tn(Td.

Consider the case when tn(Tj) < tn(Tk). The transaction ordering property

and transaction visibility property together guarantee that it is not possible

to have Wj[Xj] such that tn(Tj) < tn(Td :s; tn(Tk). Therefore, there are only

two possibilities: either tn(Td < tn(Tj), or tn(Tk) < tn(Td 0

By using the above lemmas as formal specifications of the protocol, the

following theorem demonstrates that the protocol guarantees one-copy seri

alizability. The theorem is an extension of the theorem for the multiversion

timestamp ordering [6].

18

Theorem 1 Version control with timestamp ordering guarantees serializable

execution of transactions.

Proof· We define the version order as the transaction number of the creators

of version, i.e., Xi <t::x Xj if and and only if tn{Td < tn(Tj).

Let H be a history produced by the version control with timestamp ordering

protocol. \eVe will prove that lvlVSG(H) is acyclic by showing that for each

edge T j ~ Tj in A1V SG{H), tn{Ti) < tn{TJ.

Both Ti and Tj are read-write transactions since A1VSG{H) has only those

transactions that interact with the concurrency control component. Recall

that AfVSG{H) includes edges in SG(H) and additional version order edges.

Consider the edges in SG(H). Each edge Ti ~ Tj in SG(H) is due to a

reads-from relation, i.e., for some X, Tj reads X from T i • ~From Lemma 2 and

Lemma 1, tn{Tj) < tn(Tj). I-Ience, if there is an edge Ti -+ Tj in SG(H),

tn{T;) < tn{Tj).

Next consider the version order edges in A1VSG(H). Let rk[Xj] and WdXi]

be in H where i, j, and k are distinct. Consider the following cases:

1. Xi <t::x Xh which implies Tj ~ Tj is in MVSG(H), and

2. Xj <t::x Xi, which implies Tk ~ Tj is in MVSG(IJ).

In case 1, from the definition of version order, tn(Tj) < tn(Tj). In case 2, from

Lemma 3, tn(Ti) < tn(Tj) or tn(Tk) < In(Td. Since Xj <t::x Xi, tn(T;) < tn(Tj)

is not possible. Hence, tn(Tk) < tn(Tj).

If l'vlVSG(H) has a cycle, it violates the total order of the transaction

numbers of transactions involved in that cycle. Thus by application of the

serializability theorem for multiversion data. every history H produced by the

version control with timestamp ordering protocol is one-copy serializable. 0

5.2 Proof of Version Control with Two-phase Locking

The proof of this algorithm is similar to the previous one, and we omit the

proof for lack of space. A complete proof appears in [3].

19

6 Discussion

Read-only transactions in a multiversion algorithm with the version control

mechanism do not interact with the concurrency control component, there

fore, the multiversion algorithm with version control does not have any syn

chronization overhead for read-only transactions. Furthermore, unlike multi

version timestamp ordering, the version control mechanism guarantees that

a read-only transaction cannot delay or abort read-write transactions. Also,

the execution of read-only transactions is relatively simple when compared to

that in the multiversion two-phase locking protocol. Finally, multiversion al

gorithms with the version control mechanism described in this paper do not

need an extended negotiation phase for a transaction's serialization order as

is the case in the multiversion protocol presented in [17].

In order to achieve the advantages mentioned above, the version control

mechanism is deficient in one aspect of transaction execution. The deficiency

is that the read-only transactions suffer from delayed visibility due to the lag

between the two counters, and there are several techniques to rectify this

problem. First, delayed visibility may violate temporal relationship between

transactions. For example, a read-only transaction, R, executed immediately

after a read- write transaction, T, may not see the results of T. If unacceptable,

this problem can be rectified by ensuring that R be executed with a value

of sn(R) which is at least as large as tn(T). The second and more serious

shortcoming of delayed visibility is that rea.d-only transactions do not observe

the most recent state of the database. Although this may be acceptable to

most read-only transactions, some applications may not be willing to sacrifice

concurrency at the expense of CU1Tency [10]. Such transactions can be dealt

with by executing them as pseudo read-write transactions.

A complete description of a version control mechanism for a distributed

database appears in [3]. Our formulation of distributed version control is not

very complex, and it guarantees global serializability of read-only transactions.

Since each database site in a distributed environment maintains its own coun

ters (tnc and vtne) and its own queue (VCqueue). care must be taken to

ensure correctness. However, once we ensure that there is only one start num-

20

ber associated with a read-only transaction and only one transaction number

for every read-write transaction, the extension of centralized version control

to a distributed one is quite straightforward.

No description of a multiversion algorithm is complete unless some atten

tion is given to the process of garbage collection of old and unnecessary version

of data. In our scheme. a garbage collection algorithm, which keeps the in

formation about read-only transactions, can be easily integrated. The only

restriction the version control mechanism imposes OIl the garbage collectioJl

scheme is that it must not discard any version of objects as young as or younger

than vine. This separation again helps since the concurrency control compo

nent is not overloaded with auxiliary functions. Also, the garbage collection

scheme does not interact with the read-write transactions and the concurrency

control component does not interact with the read-only transactions. \Ve feel

that this separation is quite elegant and desirable.

7 Conclusions

In this paper, we demonstrated that it is possible to decouple the version

control from the concurrency control for multiversion databases. This modu

larization leads to an elegant and uniform interface between the components.

The versatility of the interface is demonstrated by the ease and simplicity with

which multiple conflict-based concurrency controls can be accommodated. An

additional benefit of the decoupling is that read-only transactions undergo no

concurrency control, and therefore, have no overhead associated with related

synchronization. Consequently, concurrency control processing of read-write

transactions is completely independent of the read-only transaction processing.

21

References

[1] D. Agrawal, A. J. Bernstein, P. Gupta, and S. Sengupta. Distributed

multiversion optimistic concurrency control for relational databases. In

The 31st IEEE Computer Society International Conference, March 1986.

[2] D. Agrawal, A. J. Bernstein. P. Gupta. and S. Sengupta. Distributed op

timistic concurrency control with reduced rollback. Journal of Distributed

Computing, Springer- Verlag, 2(1):45-59, January 1987.

[3] D. Agrawal and S. Sengupta. Distributed version control. Technical re

port, Department of Computer Science, University of California at Santa

Barbara & Department of Computer Science. Columbia University, 1989.

In preparation.

[4] P. A. Bernstein and N. Goodman. Concurrency control in distributed

database systems. ACi\[Computing SU7'veys, 13(2):185-221, June 1981.

[5] P. A. Bernstein and N. Goodman. Multiversion concurrency control: The

ory and algorithms. ACi\! Transactions on Database Systems, 8(4):465-

483, December 1983.

[6] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Con

tr'ol and Recovery in Database Systems. Addison \Vesley, Reading, i\las

sachusetts, 1987.

[7] A. Chan, S. Fox, W. K. Lin, A. Nori, and D. R. Ries. The implementation

of an integrated concurrency control and recovery scheme. In Proceedings

of the ACA1-SIGAfOD, pages 184-191, July 1982.

[8] A. Cha.n and R. Gray. Implementing distributed read-only transactions.

IEEE Transactions on Software Engineering, 11(2):205-212, February

1985.

[9] K. P. Eswaran, J. N. Gray, R. A. Lorie. and I. 1. Traiger. The notion of

consistency and predicate locks in database system. Communications of

the AG.M, 19(11):624-633, November 1976.

22

[10J H. Garcia-Molina and G. Weiderhold. Read-only transactions in a dis

tributed database. A eM Transactio1ls on Database Systems, 7(2):209-

234, June 1982.

[llJ D. K. Gifford. \Neighted voting for replicated data. In Proceedings of

the Seventh Symposium on Operating Systems P1'incipies, pages 150-159,

December 1979.

[12J H. T. Kung and J. T. Robinson. On optimistic methods for concurrency.

ACM Transactions on Database Systems. 6(2):213-226, June 1981.

[13J C. H. Papadimitriou. The serializability of concurrent database updates.

Journal of the ACAf, 26(4):631-653, October 1979.

[14] D. P. Reed. Naming and synchronization in a decentralized computer

system. Technical Report 1UT-LCS-TR-205, Massachusetts Institute of

Technology, Cambridge, Massachusetts, September 1978.

[15] R. E. Stearns and D. J. Rosenkrantz. Distributed database concurrency

control using before-values. In Proceedings of the A G.Af-SIG1\fOD Con

ference on Management of Data, pages 74-83, June 1981.

[16] R. H. Thomas. A majority consensus approach to concurrency control

for multiple copy databases. A CM Transaction on Database Systems,

4(2):180-209, June 1979.

[17] "V. E. \Neihl. Distributed version management of read-only actions. IEEE

Transactions on Software Engineering, 13(2):55-64, January 1987.

23

