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Abstract. Verification of a modular system composed of communicating 
components is a difficult problem, especially when the models of the components 
are not available. Conventional testing techniques are not efficient in detecting 
erroneous interactions of components because such interactions often occur as 
interleavings of events that are difficult to reproduce in a modular system. The 
problem of detecting intermittent errors in the absence of models of components  
is addressed in this paper. A method to infer a controllable approximation of 
components through testing is elaborated. The inferred finite state models of 
components are used to detect intermittent errors and other compositional 
problems in the system through reachability analysis. The models are refined at 
each analysis step thus making the approach iterative. 

1   Introduction 

Integration of components is now a major mode of software development. Very often, 
components coming from outside sources (such as COTS) have to be connected to build 
a system. In most cases, the components do not come with a formal model, just with 
executable or in some cases source code. At the same time, the interaction of 
components may lead to integration bugs that may be hard to find and trace, especially 
in the absence of any model or other development information. In this paper, we are 
targeting compositional problems in the behaviours of a system composed of 
communicating components. Specifically, we aim at identifying intermittent (sporadic) 
errors occurring in event interleavings that are difficult to reproduce in an integrated 
system. Generally speaking, the system may eventually produce several event 
interleavings in response to a given external input sequence, if that sequence is applied 
several times. This occurs in particular when the execution order of the components 
changes over time from one experiment to another, typically because of different 
scheduling, varying load and communication jitters. However, it is unrealistic to expect 
to be able to enforce all the interleavings during testing. Therefore, the intermittent 
errors are hard to elicit and to reproduce in functional testing.  
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On the other hand, all potential interleavings can be checked for potential errors by 
instrumenting the modular system and executing it in a controlled environment to 
observe all the possible executions and interactions of all its components, see, e.g., 
Verisoft [6]. For components without source code, this approach may not be 
applicable and a model-based approach can be attempted. Indeed, if component 
models are available, the global model state space can be exhaustively searched 
(reachability analysis) to look for compositional problems, using, for instance, a 
model checker. As stated earlier, the models usually do not exist. One possibility 
would be to reverse engineer them from the code, but reconstruction based on static 
analysis has a number of limitations. The main alternative is to infer them from 
executions. However, given the complexity of typical software components, it is 
unrealistic to assume that components could be modelled with a perfect abstraction in 
a finite, compact representation. Inferring approximated models of components in a 
given modular system appears to be more realistic. 

In this paper, we are developing an approach to verify a modular system by 
inferring tunable approximated models of its components through testing and 
performing reachability analysis to detect intermittent errors and other compositional 
problems in the system. This approach possesses two main advantages regarding the 
models that are inferred. First, it allows derivation of models of the components 
describing the behaviours that can actually be exhibited in the integrated system. 
Typically, components bundle a number of functions, but it is often the case that only 
a subset of those functions are used in the system, so inferring them in isolation is 
hard if not impossible; whereas our approach delivers models which omit behaviours 
unused in the integrated system. Second, the models are determined with a 
controllable precision to balance between the level of abstraction and the amount of 
efforts needed to obtain the models.  

We make the following assumptions about a given system: 
 

• The system interacts with a slow environment which submits external inputs only 
when the system stabilizes.  

• Components are black boxes that behave as finite state (Mealy) machines and 
interact asynchronously. In response to an input, a component can produce several 
outputs to other components or the environment of the system. 

• Each component is deterministic; however, due to possible jitter in communication 
delays, or scheduling of components, the system might not be. 

• The external input actions of the system are known. 
• Every output action of the components can be observed in testing. 
 

No additional information about the system, such as the number of states, a priori 
given positive or negative samples of its behavior or teacher [9], often used in 
traditional model learning, is available for model inference. The components are 
modelled using Finite State Machine (FSM) with multiple outputs, or equivalently 
Input Output Transition System (IOTS) (with restrictions). A modular system is 
composed of IOTS components that communicate asynchronously through queues 
modelled by IOTS. We define an approximation of an FSM, called k-quotient, for any 
given positive integer k, based on state distinguishability. The precision of this 
approximation can be controlled by the parameter k, which is important, since 
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identification of a state machine is in general infeasible without knowing the number 
of its states.  

The first contribution of this paper is an algorithm that computes a k-quotient for a 
component (thus, for a whole system) by testing in the two following steps: behavior 
exploration bounded by the parameter k and “folding” of the observed behavior by 
state merging using trace inclusion relation. We then elaborate an approach to infer a 
k-quotient of a modular system. The k-quotient of the modular system with observable 
internal actions in the form of an IOTS is used to infer initial models of components 
by projecting the quotient. Reachability analysis of the models is next performed to 
identify witness (diagnostic) traces of a composition problem, such as unspecified 
receptions, livelocks, and races. The identified witness needs to be tested in the real 
system, to check whether it is an artifact coming from our approximations or the 
system indeed has this problem. However, since we cannot control the delays 
occurring in the integrated system, each component is tested in isolation on a 
projection of the witness trace. A witness refuted by testing the components yields 
new observations. The models are then refined using new observations and the 
process iterates until the obtained models are well-formed. The obtained component 
models are consistent with all observations made on the real system. Once composed, 
they are at least as accurate as the k-quotient model of the system. At the same time, 
the obtained models are well-formed, i.e., have no compositional problems that may 
otherwise occur with sequences of at least k external inputs to the system. 

The paper is organized as follows. Section 2 defines a k-quotient of an FSM and 
presents an algorithm for its inference. Section 3 restates the results of Section 2 for 
Input Output Transition Systems. Inference of modular systems is elaborated in 
Section 4. The notion of a slow asynchronous product is defined to formalize the 
interactions of components in a slow environment and several known compositional 
problems along with the witness traces are formally defined. The approach is 
illustrated on a small example. Section 5 discusses the related work. Section 6 
concludes the paper. 

2   Inferring Finite State Machine 

2.1   Basic Definitions 

In this section, some basic definitions about finite state machines with multiple 
outputs are given. 

A Finite State Machine with multiple outputs (FSM) A is a 6-tuple (S, s0, I, O, E, 
h), where  

• S is a finite set of states with the initial state s0; 
• I and O are finite non-empty disjoint sets of inputs and outputs, respectively; 
• E is a finite set of finite sequences of outputs in O (may include the empty 

sequence ε); 
• h is a behavior function h: S × I → 2S×E, where 2S×E is the powerset of S × E. 

FSM A = (S, s0, I, O, E, h) is  

• completely specified (a complete FSM) if h(s, a) ≠ ∅ for all (s, a) ∈ S × I; 
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• partially specified (a partial FSM) if h(s, a) = ∅ for some (s, a) ∈ S × I; 
• deterministic if |h(s, a)| ≤ 1 for all (s, a) ∈ S × I; 
• nondeterministic if |h(s, a)| > 1 for some (s, a) ∈ S × I; 

• observable if the automaton A× = (S, s0, I × E, δ), where δ(s, aβ) ∋ s′ iff (s′, β) ∈ 
h(s, a), is deterministic.  

 

In this paper, we consider only observable machines; one could use a standard 
procedure for automata determinization to transform a given FSM into an observable 
one. We use a, b, c for input symbols, α, β, γ for input (or output) sequences, s, t, p, q 
for states, and u, v, w for traces. 

In FSM A = (S, s0, I, O, E, h), (s, aβ, t) is a transition if s, t ∈ S and (t, β) ∈ h(s, a). 
A path from state s1 to sn+1 is a sequence of transitions (s1, a1β1, s2)(s2, a2β2, s3)…(sn, 
anβn, sn+1) s.t. (si+1, βi) ∈ h(si, ai) (1 ≤ i ≤ n). The length of the path is n. A sequence u 
∈ (Ι  × E)* is called a trace of FSM A in state s1 ∈ S, if there exists a path (s1, a1β1, 
s2)(s2, a2β2, s3)…(sn, anβn, sn+1) s.t. u = a1β1a2β2…. anβn. Note that a trace of A in state 
s0 is a word of the automaton A×. 

Let Tr(s) denote the set of all traces of A in state s, while Tr(A) denotes the set of 
traces of A in the initial state. Given sequence u ∈ (I × E)*, the input projection of u, 
denoted u↓I, is a sequence obtained from u by erasing symbols in O. Input sequence β 
∈ I* is a defined input sequence in state s of A if there exists u ∈ Tr(s) s.t. β = u↓I. We 
use Ω(s) to denote the set of all defined input sequences for state s. 

Given FSM A = (S, s0, I, O, E, h) and s, t ∈ S, s and t are equivalent, s ≅ t, if Tr(s) 

= Tr(t). States s and t are distinguishable, s ≇ t, if there exists α ∈ Ω(s) ∩ Ω(t) s.t. {u 
∈ Tr(s) | u↓I = α} ≠ {u ∈ Tr(t) | u↓I = α}, called an input sequence distinguishing s 
and t. 

We use Trk(s) to denote the set of traces in s ∈ S each of which has at most k 
inputs, i.e., Trk(s) = {u | u ∈ Tr(s) ∧ |u↓I| ≤ k}. Two states s, t ∈ S are k-equivalent iff 
Trk(s) = Trk(t), otherwise, if Trk(s) ≠ Trk(t), states s and t are k-distinguishable, in this 
case there exists a distinguishing sequence of the length at most k. 

Given two complete FSM L = (S, s0, I, O, EL, hL) and K = (P, p0, I, O, EK, hK), L 
and K are (k-)equivalent, iff s0 and p0 are (k-)equivalent. 

2.2   Initial k-Quotient  

Definition 1. Given two complete FSM L = (S, s0, I, O, EL, hL) and K = (P, p0, I, O, 
EK, hK), K is an initial k-quotient of L (or simply k-quotient) if 

1. P ⊂ 2S s.t. s0 ∈ p0 and if s ∈ p1 and t ∈ p2 for p1, p2 ∈ P then 
• p1 = p2, if s and t are k-equivalent or 
• p1 ≠ p2, if s and t are k-distinguishable. 

2. For all p ∈ P there exists s ∈ p, s.t. for all a ∈ I  
• (s′, β) ∈ hL(s, a) implies that there exists p′ ∈ P, s.t. (p′, β) ∈ hK(p, a), and s′ ∈ 

p′; 
• (p′, β) ∈ hK(p, a) implies that there exists s′ ∈ S, s.t. (s′, β) ∈ hL(s, a), and s′ ∈ 

p′. 
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Initial k-quotients possess the following properties. 

Theorem 1. Given FSM K, an initial k-quotient of a complete FSM L, if all the 
distinguishable states of L are k-distinguishable, then FSM L and K are equivalent; 
otherwise, if some distinguishable, but k-equivalent, states of L are reachable from the 
initial state, then L and K are k-equivalent, but are distinguishable. 

 
A k-quotient of an FSM is, thus, its approximation, whose precision can be varied with 
the parameter k. We omit the proofs of the theorems in the paper due to space limit. 

2.3   Inferring k-Quotient of FSM 

We want to infer a k-quotient of an FSM A by testing. We assume that A is 
completely specified and deterministic; moreover, only its input set I is known, while 
the output set (or at least part of it) will be determined from A’s outputs. 

The basic idea of our inference method is to observe the traces of the unknown 
FSM A from all k-distinguishable states that can be reached from the initial state, by 
applying in each state all the input sequences of length k. To represent the observed 
traces of FSM A, we use a tree FSM. 

Definition 2. Given a (prefix closed1) set U of observed traces of A over input set I 
and output set O, the observation tree FSM is (U, ε, I, O, EU, hU), where the state set 
is U, EU = {β ∈ O* | ∃a ∈ I, ∃u ∈ U s.t. uaβ ∈ U}, and hU(u, a) = {(uaβ, β) | ∃β ∈ O* 
s.t. uaβ ∈ U}. 
 
We use U to refer to both, a prefix-closed set of FSM traces and the corresponding 
tree FSM (U, ε, I, O, EU, hU). In a (tree) FSM U, a state u is a k-predecessor of state 
w, iff u is a proper prefix of w and |w↓I| - |u↓I| ≤ k. 

The inference method includes two steps, behavior exploration resulting in an 
observation tree and state merging in the tree which yields an FSM. The exploration 
step terminates when no new state, i.e., k-distinguishable from all the other visited 
states, can be reached from the initial state. The output of the exploration procedure is 
an observation tree U. In the next step, we obtain a model M of the FSM A by 
merging states of U using trace inclusion relation between states. 

In the exploration step, we perform a Breadth First Search (BFS) on U, starting 
with U = {ε}, to find a state u ∈ U, which is unmarked and has no k-predecessor 
marked “prune” (marking is done as explained below), and explore the behavior of 
the given machine from the state u by applying all the possible input sequences of 
length k, observing the outputs, and adding the observed traces into U. If the state u is 
k-equivalent to an already visited state, we mark it “prune”. 

In the state merging step, we traverse the obtained observation tree U following a 
BFS and if the trace set of an already visited state is a superset of traces of the current 
state we merge the two states. 

                                                           
1 Recall that a symbol of an FSM trace is a pair of an input from I and a sequence of outputs 

from O*, so every prefix takes an FSM from its initial state into some state. 
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The following theorem claims that the above method can be used to infer an initial 
k-quotient of an FSM being tested. 

Theorem 2. If the inference method is applied to a deterministic FSM A and yields an 
FSM M, then FSM M is equivalent to an initial k-quotient of FSM A. 

3   Inferring Input/Output Transition System 

3.1   Basic Definitions 

Certain operations on FSMs, such as composition, are easier to formulate using their 
transition system counterparts. An input/output transition system (IOTS) L is a 
quintuple <S, I, O, λ, s0>, where S is a set of states; I and O are disjoint sets of input 
and output actions, respectively; λ ⊆ S × (I ∪ O ∪ {τ}) × S is the transition relation, 
with the symbol τ denoting internal actions; and s0 is the initial state. 

(t, a, s) ∈ λ is called a transition; (t, a, s) is input, output or internal transition, if a 
∈ I, a ∈ O or a = τ, respectively. Given IOTS L, a path from state s1 to state sn+1 is a 
sequence of transitions p = (s1, a1, s2)(s2, a2, s3)…(sn, an, sn+1), s.t. (si, ai, si+1) ∈ λ for i 
= 1, …, n.  

Let ε denote the empty sequence of actions. The projection operator ↓A, which 
projects sequences of actions onto the set A ⊆ Ι ∪ O ∪ {τ}, is recursively defined as 
ε↓Α = ε, (va)↓Α = v↓Αa if a ∈ A, and (va)↓Α = v↓Α otherwise, where v ∈ (Ι ∪ O ∪ {τ})* 
and a ∈ Ι ∪ O ∪ {τ}. We also lift the projection operator to IOTS, i.e., given IOTS L 
= <S, I, O, λ, s0> and set A ⊆ Ι ∪ O, the IOTS L↓Α is obtained by first replacing each 
transition (t, a, s) ∈ λ s.t. a ∉ A by internal transition (t, τ, s) and then determinizing 
the obtained IOTS (with tau-reduction) [18]. 

A sequence u ∈ (Ι ∪ O)* is called a trace of IOTS L in state s1 ∈ S if there exists a 
path (s1, a1, s2)(s2, a2, s3)…(sn, an, sn+1), s.t. u = (a1…an)↓(I∪O). Similar to FSM, we use 
Tr(T) to denote the set of traces in states T ⊆ S, while Tr(L) to denote the set of traces 
of L in the initial state. We use Trk(s) to denote the set of traces in s ∈ S, each of 
which has at most k input actions, i.e., Trk(s) = {u | u ∈ Tr(s) ∧ |u↓I| ≤ k}. k-equivalent 
and k-distinguishable states are defined similar to that of FSM. 

We use init(s) to denote the set of actions enabled in state s, i.e., init(s) = {a ∈ (I ∪ 
O ∪ {τ}) | ∃t ∈ T s.t. (s, a, t) ∈ λ}. L is input-enabled if all input actions are enabled 
in each state, i.e., I ⊆ init(s) for each s ∈ S; L is fully specified if either all or no input 
actions are enabled in each state, i.e., either I ⊆ init(s) or I ∩ init(s) = ∅ for each s ∈ 
S. If L is not fully specified, it is partially specified. In state s of a fully specified 
IOTS L, either L does not read input at all if no input is enabled in s, or L’s behavior 
after any input is defined in s. The response of L to any input, therefore, is 
predictable, and hence we call L “fully specified”. L is deterministic if it has no 
internal transitions and λ is a function S × (I ∪ O)→ S. State s ∈ S is stable if no 
output or internal actions are enabled in s, i.e., init(s) ∩ (O ∪ {τ}) = ∅, otherwise it is 
unstable. IOTS L is conflict-free if input actions are only enabled in stable states. 
Intuitively, such a system is allowed to produce all possible outputs in response to 
input before the environment offers a next input, similar to FSM, where input/output 
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transitions are atomic. In fact, any FSM, once each of its transitions is unfolded into 
input transition followed by output transition (which is omitted, if the output is empty, 
ε ∈ E), to an intermediate state, yields a conflict-free IOTS.  

In a conflict-free IOTS, there is no nondeterminism related to concurrency of 
inputs and outputs, but there may still be nondeterministic choices of outputs. A 
conflict-free IOTS L is output deterministic if it produces a single output sequence in 
response to any input sequence. Formally, L = <S, I, O, λ, s0> is output-deterministic 
iff α↓I = β↓I implies α = β for any α, β ∈ Tr(s0), otherwise it is output-
nondeterministic. Thus, an IOTS can be output-nondeterministic and, at the same 
time, deterministic. 

State s ∈ S is a deadlock if no action is enabled in it, i.e., init(s) = ∅. State s ∈ S is 
a livelock if there is a cycling path of output or internal transitions that includes s; if 
the path includes only internal transitions then livelock is internal, otherwise it is an 
output livelock. IOTS L is deadlock-free or livelock-free, if there is no deadlock or 
livelock state reachable from a starting state, respectively. L is input-progressive if it 
is deadlock-free and livelock-free. If L is input-progressive, input actions are defined 
in each stable state, and it enters a stable state executing fewer than |S| transitions after 
any input.  

3.2   Inferring k-Quotient of IOTS 

As mentioned earlier, livelock-free, deterministic, and conflict-free finite IOTS can be 
considered as another representation of observable FSM. This indicates that the 
inference method for FSM can be used for this kind of IOTS. We assume that an 
unknown IOTS A is finite, fully specified, deterministic, output-deterministic, and 
conflict-free, moreover, its input action set I is known. Notice that by requiring IOTS 
be output-deterministic we make the results of Section 2 directly applicable to IOTS. 
Since a deadlock state cannot observationally be distinguished from a stable state 
where all inputs cause looping transitions, we also assume that the IOTS A has no 
deadlock. 

The observation tree is defined as follows: given a (prefix closed) set U of 
observed traces of A over input action set I and output action set O, the observation 
tree is an IOTS <U, I, O, λT, ε>, where the state set is U, and (β, a, βa) ∈ λT iff βa ∈ 
U. A state β of U is stable if βa ∉ U for all a ∈ O. We use U to refer to both, a prefix-
closed set of traces and the IOTS <U, I, O, λT, ε>. Based on the observation tree, we 
can determine k-equivalence of stable states.  

In a (tree) IOTS U, a stable state u is a k-predecessor of stable state w, iff u is a 
proper prefix of w and |w↓I| - |u↓I| ≤ k. 

The inference method for IOTS also includes two steps, behavior exploration and 
state merging. 

In the exploration step, we perform a BFS on stable states of U, starting with U = 
{ε}, to find a stable state u ∈ U, which is unmarked and has no k-predecessor marked 
“prune”, and explore the behavior of the given IOTS from the state u by applying all 
the possible input sequences of length k, observing the outputs, and adding the 
observed traces into U. If the state u is k-equivalent to an already visited stable state, 
we mark it “prune”. Applying an input action to IOTS A, we wait for output actions. 
By our assumption, the IOTS A has no deadlock; at the same time, it may still have 
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output livelocks. To detect output livelock in a black box, we set a bound for the 
maximum length of output sequences the IOTS can produce in response to a single 
input action. This bound cannot exceed the number of states in the IOTS. If the length 
of observed output sequence exceeds the given bound, exploration terminates and 
output livelock is declared. 

In the state merging step, we traverse the stable states of the obtained observation 
tree U following a BFS and if the trace set of an already visited stable state is a 
superset of traces of the current stable state we merge the two states. 

Since livelock-free, deterministic and conflict-free IOTS is, in fact, another 
representation of observable FSM, Theorem 2 still applies to the above procedure 
once initial k-quotient of FSM is replaced by its IOTS counterpart, which definition 
we omit here for simplicity. 

4   Inference of Modular Systems 

4.1   Basic Definitions 

In this paper, we use queued communications between system’s components. 
Modeling queues, we distinguish the same action at the two ends of a queue by using 
the relabeling ' operator [1]. The operator is defined on input actions: for a ∈ I, (a)' = 
a', and (a')' = a. It is lifted to the sets of input actions, traces, and IOTS: for an action 
set I, I' = {a' | a ∈ I}; for traces, ' is recursively defined as ε' = ε and (ua)' = u'a' for 
trace u if a is an input action, otherwise (ua)' = u'a; L' is obtained from L by 
relabeling each action a ∈ I to a'. A (unbounded) queue with input set I, is an IOTS 
<I*, I, I', λI, ε>, denoted QI, where the state set I* and transition relation λI = {(u, a, 
ua) | u, ua ∈ I*} ∪ {(av, a', v) | av, v ∈ I*}. The only stable state of a queue is its 
initial state.  

We consider a modular system consisting of components communicating 
asynchronously, where each component reads inputs from its input queue and writes 
outputs to other components’ input queues. We assume in this paper that the 
components are conflict-free, as well as input-progressive; moreover, without losing 
generality, we also assume that they are deterministic. Each component is not input-
enabled, but the composition of the component with its input queue is input-enabled. 
It means that even if the component does not read an input in some state, the input is 
not lost, kept in the input queue, and can be consumed in subsequent state reached by 
internal or output transitions, in other words, we do not need to assume that inputs can 
be blocked or refused, as in other work [2].  

Let C = {C1, C2, …, Cn} be a set of component IOTS’s, where Ci = <Si, Ii, Oi, λi, 
s0i>, s0i is a stable initial state, s.t. Ii ∩ Ij = ∅ and Oi ∩ Oj = ∅ for i ≠ j. Let I and O 
denote the union of all input action sets and output action sets, respectively. Two 
components C1 and C2 communicate if I1 ∩ O2 ≠ ∅ or O1 ∩ I2 ≠ ∅. For each 
component Ci with the input set Ii, there is an unbounded input queue QIi

 = <Ii*, Ii, Ii', 

λIi
, εi>, thus, each component consumes inputs from its input queue and produces an 

external output or internal output, the later is stored in input queue of other 
component. The set Iext = I\O contains external inputs; components constitute a closed 
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system, if Iext is empty, otherwise an open system. Let Oext = O\I be the set of external 
outputs of the system. In this paper, we consider only an open system C = {C1, C2, …, 
Cn} with at least one external output, s.t. each component communicates in the 
system, more precisely, we assume that for each component Ci it holds that if a ∈ Ii 
then either a ∈ Iext or a ∈ Oj and if a ∈ Oi then a ∈ Oext or a ∈ Ij for some Cj.   

A behavior of an open system may vary, depending on the speed of its 
environment. We distinguish two types of the environment, fast and slow. A fast 
environment can supply external inputs at any state of a system with which it 
communicates. A slow environment does so only when the system is in a stable global 
state.  

The behavior of the system operating in the fast environment is described by the 
IOTS C1' || C2' || … Cn' || QI1

 || QI2
 || … || QIn

, where || is the standard LTS parallel 

composition operator, Ci' = <Si, Ii', Oi, λi, s0i>, for Ci = <Si, Ii, Oi, λi, s0i>, and QIi
 = 

<Ii*, Ii, Ii', λIi
, εi>. To describe the behavior in case of the slow environment, we 

modify the || operator to allow external inputs only in stable global states.  
 
Definition 3. Given a system of communicating components C = {C1, C2, …, Cn}, 
where Ci = <Si, Ii, Oi, λi, s0i> and the set of queues over input alphabets of the 
components Q = {QI1

, …, QIn
}, where QIi

 = <Ii*, Ii, Ii', λIi
, εi>, the slow asynchronous 

product of C, denoted Σ = Πi=1
nCi, is the IOTS <R, Iext, O, λ, s01...s0nε1...εn>, where Iext 

= I\O, I = I1 ∪ … ∪ In and O = I1' ∪ … ∪ In' ∪ O1 ∪ … ∪ On; the set of states R ⊆ S1 
×  ... × Sn × I1* ×  ... × In* and the transition relation λ are the smallest sets obtained by 
applying the following inference rules:  

• s01...s0nε1...εn ∈ R; 
• if a ∈ Iext ∩ Ii, (s1...snε1...εn) ∈ R s.t. states s1, ..., sn are stable, then (s1...snε1…εn, a, 

s1...snb1…bn) ∈ λ and (s1...snb1…bn) ∈ R s.t. bi = a, and bj = εj for j  ≠ i (external 
input is buffered in the queue of the component, which has it as input); 

• if a ∈ Ii, (s1...snb1…bn) ∈ R s.t. a ∈ init(si), bi = av, then (s1...snb1…bn, a', 
s1'...sn'c1…cn) ∈ λ and (s1'...sn'c1…cn) ∈ R, s.t. (si, a, si') ∈ λi, and ci = v; sj' = sj and 
cj = bj for j  ≠ i (input is consumed from a queue, and input transition is executed); 

• if a ∈ Oi, (s1...snb1…bn) ∈ R s.t. a ∈ init(si), then (s1...snb1…bn, a, s1'...sn'c1…cn) ∈ 
λ and (s1'...sn'c1…cn) ∈ R, s.t. (si, a, si') ∈ λi, sj' = sj for all j  ≠ i, and if a ∈ Ij then cj 
= bja, otherwise, cj = bj (output transition is executed, and output is buffered in the 
queue of the component, for which it is an input). 

Notice that all components’ inputs, save external ones, as well as outputs, become 
(observable) outputs of the composition, as is usually the case for input-output 
automata composition [3]. The notion of slow asynchronous product defined here is 
similar to what has already been implemented for SDL tools such as Object Geode. 
 
Definition 4. A system C of communicating components in slow environment has 

• unspecified reception, if in the product Σ, there exists a state (s1...snb1…bn) s.t. for 
some component Ci, a is a prefix of bi and a ∈ Ii, but a ∉ init(si); 

• compositional livelock, if Σ has a livelock state; 
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• divergence, if in Σ, there exists a path from state (s1...snb1…bn) to state 
(s1...snc1…cn) s.t. each bi is a prefix of ci, and there exists d ≠ ε, s.t. bidd is a prefix 
of ci. 

• races, if there exist traces α, β ∈ Tr(Σ) s.t. α↓Iext
 = β↓Iext

 and α↓Oext
 ≠ β↓Oext

. 
 

The system with at least one of the above properties is said to have a compositional 
problem, the system with no compositional problem is well-formed. Notice that 
unspecified receptions cause compositional deadlocks, divergence causes buffer 
overflow, and races are a witness of a nondeterministic behavior of a system 
composed of deterministic components. 

Given a system of communicating components, the slow asynchronous product can 
be constructed and, thus, its well-formedness can be checked using a classical 
reachability analysis (RA) procedure which we will not discuss further in this paper. 
We simply assume that given a system C = {C1, C2, …, Cn}, the procedure either 
confirms that the system is well-formed or outputs the following witness (diagnostic) 
traces for: 

• unspecified reception of a ∈ Ii, a trace βa, s.t. β takes the product into a state, 
where the action a is not enabled in the corresponding state of some component Ci 
whose input queue contains just a; 

• compositional livelock and divergence, a trace αβ, s.t. α takes the product into a 
state of a cycle or path, respectively, labeled by the sequence β; 

• races, two traces α and β with a common external input projection which leads to 
races.  

4.2   The Approach 

To infer models of communicating components, one can determine a k-quotient of 
each component in isolation using the method of Section 3.  This approach requires 
that an appropriate value of the parameter k be chosen individually for each 
component. Intuitively, a component with more states would require a bigger value 
than components with fewer states, however, it is unclear how one can determine 
these parameters without taking into account the components’ interactions, except for 
(rare) cases when the maximal number of states is a priori known for each component. 
A trial-and-error approach can be followed, and even if it succeeds, it may result in 
“redundant” models of components which describe functionalities unused in a given 
system. 

Another approach which we follow in this paper is to infer first a k-quotient of the 
slow asynchronous product (thus, assuming that internal outputs are observable for 
testing) and determine models of components by projecting the product onto the 
alphabets of each component and refining them if needed. If the given system has “a 
single message in transit”, (see, e.g., [16]) then the slow asynchronous product is 
output-deterministic and the inference method of Section 3 directly applies. If, 
however, several actions can concurrently be executed in the system, the product 
becomes output-nondeterministic. This means that the system could produce several  
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output interleavings in response to a given external input sequence, if that sequence is 
applied several times. The problems coming from such causes are often hard to elicit 
and to reproduce in functional testing; they often appear as a side effect in stress 
testing, but are harder to analyze in that stage. The crux of our approach is precisely 
to be able to identify such intermittent problems that occur only under specific 
circumstances in integrated systems. 

Therefore, we assume that during the exploration the system behaves as an output-
deterministic IOTS and use the inference method of Section 3. We do not rely on “all 
weather”, aka “complete testing”, assumption [4]. First, such an assumption is very 
costly because each input sequence must be tested a potentially huge number of times 
(esp. for long sequences); second, it is often unrealistic to assume that all 
interleavings will be observed in a given test configuration, and if configurations must 
be changed for each occurrence of an input sequence, this is even more costly in test 
execution time. 

 

Fig. 1. The verification approach 

 
To identify and check all possible interleavings, we use the RA procedure. Even if 

the components themselves constitute a well-formed system the inferred models do 
not necessarily do so. Each obtained model is only an approximation of the actual 
behavior of a real component and may possess a behavior absent in the component, so 
the inferred models may exhibit compositional problems. RA can discover them by 
exploring all the possible execution interleavings.  

The models exhibit a compositional problem in two cases: either the problem exists 
in the real system or the inferred models are not adequate models of the behavior of 
the system exposed during the exploration step and need to be further refined. To 
confirm that a compositional problem detected in RA exists in the real system, one 
can check whether each projection of a witness trace, which was not observed in the 
exploration step, belongs to the set of traces of the corresponding component by 
executing the projected trace against the component in isolation. The actions of the 
witness trace determine the order of testing the components involved in the execution, 
which terminates as soon as some component produces a trace different from the 
expected one. In this case, the compositional problem is refuted, and the newly  
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obtained trace is used to refine the model of that component. The iterative process 
terminates when either a compositional problem is confirmed to exist in the real 
system or a well-formed system of models is obtained. Notice the real system to have 
compositional livelock or divergence should exhibit a cyclic behavior in all the 
involved components when they are tested using the projected witness traces. In 
black-box testing, we can only confirm this by repeatedly applying input sequence of 
a trace to each component.  The verification approach is summarized in Figure 1.  

While the main steps of this procedure are intuitive and clear from the previous 
discussions, the model refinement needs some explanation. 

Let U be a global observation tree obtained by exploring the behavior of a given 
system of communicating components C = {C1, C2, …, Cn}. Moreover, let M be an 
IOTS obtained by merging states of the global observation tree and M1, M2, …, Mn be 
the IOTS models of the components obtained by projecting M onto their alphabets. 
Assume that for some witness trace, the component Ci in response to the input 
projection of the witness trace produces a trace α which is not in IOTS Mi. To refine 
the latter, we add this trace to the local observation tree Ui (obtained by projecting the 
global observation tree U), thus, Ui := Ui ∪ {α} and merge states in the updated tree 
using the above given procedure to obtain a refined model Mi′. The refined model is 
used to check again the well-formedness of the current models.  

4.3   Example 

We illustrate the approach for inference of communicating components using the 
example shown in Figure 2. We infer a k-quotient of the product of the given system 
for k = 1. The global observation tree U obtained after applying the external input x is 
shown in Figure 3 (we use the actual components in Figure 2 to determine the 
reaction of the system). 
 

A B

x
a

c
C

b
d D y, w

e
Architecture

x,e/ab

Component A Component B

a/c

Component C

b/d

Component D

d/ε
c/e

c, d/ε

c/εd/y,
c/w

d/ε

 

Fig. 2. A Modular System 

The final state needs to be explored, so the input sequence xx is now applied to the 
system, the input x creates in the global observation tree the same trace, so we 
conclude that the stable states ε and xx′aa′bcb′c′dd′y are 1-equivalent. The behavior 
exploration procedure terminates, and both stable states are merged, to obtain the 
IOTS M which is a 1-quotient of the product, it is shown in Figure 3 with the dashed 
transition labeled y. Next, we determine models by projecting the IOTS M. M2 and M3 
are trace included by B and C respectively. M1 and M4 are shown in Figures 4 and 5. 
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ε

x

x′
a

a′

b

x xx′aa′

xx′aa′b xx′aa′bc
c

xx′ xx′a

xx′aa′bcb′ xx′aa′bcb′c′dd′

xx′aa′bcb′c′dd′y

y

xx′aa′bcb′c′dxx′aa′bcb′c′

c′
d

b′

d′

y

 

Fig. 3. The global observation tree U after applying x; stable states are depicted in bold 

1 2

a

x

3b

 
Fig. 4. M1 

1

32

c

d

y

 

Fig. 5. M4 

 

Now we perform RA of the system composed of M1, M2, M3 and M4 to check 
whether it is well-formed and find that there exists an unspecified reception. The 
witness trace is xx′aa′bb′d. The components M1 and M3 are involved in the execution of 
this trace, their traces are x′ab and b′d, respectively; the component M4 has unspecified 
reception of d. The traces x′ab and b′d are already in the global observation tree, so only 
the component D has to be tested in isolation by applying the input d. We observe that 
the component has no output in response to this input, so the obtained trace d is added to 
its observation tree, as shown in the first row of Table 1. The table contains local 
observations trees and models of the components A and D as well as a witness trace for 
each version of the models. The table illustrates the iterative process of refining the two 
models based on detected unspecified receptions. In these figures, “?” and “!” are used 
to represent input and output respectively, as usual. 

Using models in the last row of the table, we detect a livelock, the witness traces 
are xx′, leading to livelock and aa′bb′dd′cc′ee′ which labels it. The corresponding 
projections of xx′aa′bb′dd′cc′ee′ are x′abde′, a′c, b′d, and d′c′e. To confirm this 
livelock in the real system, we proceed as follows. Assuming that in each component 
a trace executed consecutively three times indicates that the component cycles, we 
add to the above projections two more instances of the trace labeling a cycle of the 
component, obtaining x′(abe′)3, (a′c)3, (b′d)3, and (d′c′e)3. 

None of these traces is in the local observation trees, so we have to apply xeee, 
aaa, bbb, dcdcdc to the components A, B, C, and D, respectively. We use again the 
real components to obtain the following traces: xabeabeabeab, acacac, bdbdbd, and 
dcedcwdce. Only component D produces a new trace dcedcwdce, the current model of 
D expects dcedcedce instead, so we add the trace dcedcwdce to the observation tree 
and refine the model of D to obtain the IOTS shown in Table 2 which illustrates final 
model refinements. 

The RA of the obtained models results now in the witness traces for races: 
xx′aa′cc′bb′dd′y and xx′aa′bb′dd′cc′ee′aa′bb′dd′cc′w. In fact, the external input 
sequence x yields several traces in the product which differ in their output projections, y 
and w. We project the two traces to each component, and find that all the obtained traces 
are already in the corresponding local observation trees. The compositional problem is 
confirmed. With this report the procedure terminates. Even though the inferred models 
exhibit compositional problem, they are trace included in the actual models. 
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Table 1. Iterative model refinement 

U1 M1 U4 M4 Witness 
traces 

1

3

2

?x

!a
!b

45

6

7
!b

?x
!a

 

1 2

!a

?x

3!b

 

1

3

2 ?c
?d

!y
8

?d

45

6

7
!y

?c
?d

 

1

3

2 ?c

?d !y

4

?d

 

xx′aa′bb
′dd′c 

1

3

2

?x

!a
!b

45

6

7
!b

?x
!a

 

1 2

!a

?x

3!b

 

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

 

1

3

2 ?c

?d !y
4

?d

56
?c

!e
 

xx′aa′bb
′dd′cc′e 

1

3

2
?x

!a

!b
45

6

7
!b

?x
!a

8

9

10
!b

!a
?e

 

1

3

2
?x

!a

!b
45

6

7
!b

?x
!a

8

9

10
!b

!a
?e

 

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

 

1

3

2 ? c

?d !y
4
?d

56
?c

!e

 

xx′aa′cc
′bb′dd′y
xx′aa′cc
′bb′dd′y
x 

1

3

2
?x

!a

!b
45

6
!b

?x
!a

8

9

10
!b

!a
?e

13

12

11
!a

!b

7
?x

 

1

3

2
?x

!a

!b
45

6

!b

?x
!a

8

9

10
!b

!a
?e

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

 

1

3

2 ?c

?d !y
4
?d

56
?c

!e

 

xx′aa′cc
′bb′dd′y
xx′aa′bb
′dd′cc′e 

1 32
?x !a

!b

45

6

7
!b

?x

!a
8

9

10
!b

!a

?e

1312

11
!a

!b

?x

1615

14
?e

!a
!b

 

1

3

2
?x

!a

!b
4

?x

8

9

10
!b

!a
?e

 

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

 

1

3

2 ?c

?d !y
4
?d

56
?c

!e
 

xx′aa′bb
′dd′cc′e
e′aa′c 
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Table 1. (continued) 

1 32?x !a
!b

45

6

7
!b

?x

!a
8

9

10
!b

!a

?e

1312

11
!a

!b

?x

1615

14
?e

!a
!b

 

1

3

2
?x

!a

!b
4

?x

8

9

10
!b

!a
?e

 

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

11
?c

 

1

3

2 ?c

?d!y
4

?d

5
?c !e

 

xx′aa′bb
′dd′cc′e
e′aa′cc′
bb′dd′yx 

1 32
?x !a !b 4

56

7
!b

?x
!a

8

910
!b

!a

?e

13

12

11
!a

!b

?x

16 15

14
?e

!a
!b

17
?x

18

!a

19
!b

 

1

3

2
?x

!a

!b
4

?x

8

9

!b

!a
?e

 

1

3

2?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

11
?c

 

1

3

2 ?c

?d!y
4

?d

5
?c !e

 

xx′aa′bb
′dd′cc′e
e′aa′bb′
dd′cc′e 

1 32?x !a !b 4

56

7
!b

?x
!a 8

910 !b
!a

?e
13

12

11
!a

!b

?x

16 15

14
?e

!a
!b

17
?x

18
!a

19
!b

20

21
!a

22
!b

?e

 

1

3

2
?x

!a

!b
4

?x ?e

 

1

3

2 ?c
?d

!y
8

?d

45

6

7

!y

?c
?d

9 10

?c
!e

11
?c

 

1

3

2 ?c

?d!y
4

?d

5
?c !e

 

xx′  
and 
aa′bb′d
d′cc′ee′ 

Table 2. Final Iterations 

U4 M4 Witness traces 

1

3

2 ?c
?d

!y
8

?d

45

6

7
!y

?c
?d

9 10

?c
!e

11

?c

12

16 15

14

13

?d
?c

!w

?d

?c

17
!e

 

1

3

2 ?c

?d !y
5

?d

6
?c

!e

7 9

10

?d
?c

!w

8
?c

 

xx′aa′bb′dd′cc′ee
′aa′cc′bb′d 

1

3

2 ? c
? d

!y
8

? d

45

6

7
!y

? c
? d

9 1 0

? c
!e

1 1

? c

1 2

1 6 1 5

1 4

1 3

? d
? c

!w

? d

? c

1 7
!e

1 8
? d

1 9
!y

 

1

3

2 ?c

?d !y
5

?d

6
?c

!e

7 9

10

?d
?c

!w

?c
 

xx′aa′cc′bb′dd′y 
and 
xx′aa′bb′dd′cc′ee
′aa′bb′dd′cc′w 
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5   Related Work 

Finite State Machine learning is widely addressed, specifically in the grammatical 
inference works, e.g., [9], [8] etc. Angluin presents a polynomial time algorithm [5] to 
infer regular language as deterministic finite automaton. She uses an equivalence oracle 
which provides a (minimal) counterexample. In our work, the state k-equivalence 
relation can be viewed as an approximated equivalence oracle. Learning and testing 
through model checking approach is used to infer a grey box system [15]. However, the 
upper bound on the number of states in the system is required to test conformance of the 
conjectured model to the actual system. On the other hand, the notion of k-quotient 
provides a means for inferring a variable size approximation without upper bound on the 
number of states. 

The observation tree FSM used in this paper is, in fact, an input-output version of a 
prefix tree machine [13] used in various techniques for learning an automaton from 
positive examples. However, we do not require samples of the behavior given for 
inference, the samples (traces) are obtained by testing. At the same time, as in a 
common paradigm in learning from positive examples, the observation tree FSM is 
also iteratively merged. The rule used for state merging in the proposed approach is 
language containment (input-output trace inclusion). The exploration step ensures that 
the observation tree FSM contains k-equivalent states; these states have the same 
traces for k consecutive inputs. As in [14], the parameter k allows one to control the 
precision and complexity of the synthesized machine. However, differently from that 
work, the inferred k-quotient is a deterministic FSM.  

There is much less work published on the inference of modular systems. The work 
[17] relies on observed traces to construct automata models of communicating 
components which are then model-checked using user defined properties. An object-
flattening technique [11] is used to collect system behavior and then invariants are 
calculated on the behaviors to check against the new version of the system. This work 
is more related to regression testing. Moreover, the system behavior is observed while 
the system is running as in [17]. In this paper, we rely on testing communicating 
system by stimulating it through external inputs and then use the observations to 
obtain tunable approximated models. The verification of black box communicating 
system on the architectural level is also addressed recently [7]. Similar to the previous 
approaches, the system is monitored at runtime by instrumenting the middleware, no 
testing strategy is used. On the contrary, we infer models by testing and use them to 
check the system for compositional problems. Our past work [10] and [12] in this 
domain also concerned inference of components as finite state machines through 
testing. In fact, we were implicitly inferring a 1-quotient of each component in 
isolation without defining k-quotient. Moreover, the previous approaches focused on 
learning components separately, one component at a time; whereas in this paper, we 
proposed to test the integrated system avoiding thus unnecessary testing efforts to 
learn models only related to the composition.  

6   Conclusion 

In this paper, we offered a solution to the problem of modular system verification by 
blending together techniques of inference, testing, and reachability.  
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We first suggested the notion of an approximation of a Mealy machine, called  
k-quotient, where all k-equivalent states of the given machine are represented as a 
single state of the quotient, provided that at least one of them is on a path from the 
initial state which includes only pairwise k-distinguishable states. The precision of 
this approximation can be varied with the parameter k. We then proposed an approach 
to infer models of a modular system which starts with exhaustive (limited by some 
test length) testing of the integrated system and iterates between RA of intermediate 
models and pinpointed testing of components in isolation. A k-quotient of the modular 
system with observable internal actions in the form of an IOTS is used to infer initial 
models of components by projecting the quotient. RA of the models is next used to 
identify composition problems, such as unspecified receptions, livelocks, divergences, 
and races. A witness (diagnostic) trace is then used to test concerned components in 
isolation either to confirm that a problem exists in the real system or to obtain new 
observations. The models are then refined using new observations until the obtained 
models are well-formed.  

The proposed approach relies on application of all external input sequences of 
length k, however, the parameter allows one to find a compromise between 
complexity of testing of the integrated system and precision of the resulting models. 
Moreover, the use of all input sequences of given length is completely avoided in 
testing a component in isolation, since only single diagnostic test is executed in each 
iteration. Another advantage of the approach is that inferred models capture the 
functionalities of components used in the given system; unused behaviors of 
components are not modeled. 

As a future work, it would be interesting to investigate whether instead of testing a 
number of components in isolation based on a witness trace one would test just a 
subsystem consisting of these components to reduce the number of iterations needed 
to infer well-formed models. There are also a number of options for treating witness 
traces to update the global observation tree once the individual models are refined. 
This may help converge faster and shorten the RA process. It is known that 
reachability analysis can provide more than one witness traces, evidencing multiple 
problems in one step. The treatment of multiple traces at a time could be another 
improvement in the approach.  

References 

1. Huo, J., Petrenko, A.: Covering Transitions of Concurrent Systems through Queues. In: 
ISSRE, pp. 335–345 (2005) 

2. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. Software - 
Concepts and Tools 17(3), 103–120 (1996) 

3. Lynch, N., Tuttle, M.: An Introduction to Input/output Automata. CWI-Quarterly 2(3), 
219–246 (1989) 

4. Luo, G., Bochmann, G.v., Petrenko, A.: Test Selection Based on Communicating 
Nondeterministic Finite State Machines Using a Generalized Wp-Method. IEEE 
Transactions on Software Engineering (February 1994) 

5. Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Information and 
Computation 2, 87–106 (1987) 



 Modular System Verification by Inference, Testing and Reachability Analysis 233 

 

6. Godefroid, P.: Model Checking for Programming Languages Using VeriSoft. In: POPL, 
pp. 174–186 (1997) 

7. Bertolino, A., Muccini, H., Polini, A.: Architectural Verification of Black-box Component-
based Systems. In: Guelfi, N., Buchs, D. (eds.) RISE 2006. LNCS, vol. 4401, pp. 98–113. 
Springer, Heidelberg (2007) 

8. Balcazar, J.L., Diaz, J., Gavalda, R.: Algorithms for learning finite automata from queries: 
A unified view. In: AALC, pp. 53–72 (1997) 

9. Kearns, M.J., Vazirani, U.V.: An introduction to Computational Learning Theory. MIT 
Press, Cambridge (1994) 

10. Li, K., Groz, R., Shahbaz, M.: Integration Testing of Components Guided by Incremental 
State Machine Learning. In: TAIC PART, pp. 231–247 (2006) 

11. Mariani, L., Pezzè, M.: Behavior Capture and Test: Automated Analysis of Component 
Integration. In: ICECCS, pp. 292–301 (2005) 

12. Shahbaz, M., Li, K., Groz, R.: Learning and Integration of Parameterized Components 
Through Testing. In: TestCom, pp. 319–334 (2007) 

13. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based 
Data. ACM Trans. Softw. Eng. Methodol. 7(3), 215–249 (1998) 

14. Biermann, A., Feldman, J.: On the Synthesis of Finite State Machines from Samples of 
their Behavior. IEEE Transactions on Computers 21(6), 592–597 (1972) 

15. Elkind, E., Genest, B., Peled, D., Qu, H.: Grey-box Checking. In: Najm, E., Pradat-Peyre, 
J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 420–435. Springer, 
Heidelberg (2006) 

16. Petrenko, A., Yevtushenko, N.: Solving Asynchronous Equations. In: FORTE, pp. 231–
247 (1998) 

17. Hallal, H.H., Boroday, S., Petrenko, A., Ulrich, A.: A Formal Approach to Testing 
Properties in Causally Consistent Distributed Traces. Formal Aspects of Computing 18(1), 
63–83 (2006) 

18. Jéron, T., Morel, P.: Test Generation Derived from Model-Checking. In: Halbwachs, N., 
Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 108–121. Springer, Heidelberg (1999) 


	Modular System Verification by Inference, Testing and Reachability Analysis
	Introduction
	Inferring Finite State Machine
	Basic Definitions
	Initial $k$-Quotient
	Inferring $k$-Quotient of FSM

	Inferring Input/Output Transition System
	Basic Definitions
	Inferring $k$-Quotient of IOTS

	Inference of Modular Systems
	Basic Definitions
	The Approach
	Example

	Related Work
	Conclusion
	References


