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Modular Termination Verification of Single-Threaded and
Multithreaded Programs

BART JACOBS, KU Leuven

DRAGAN BOSNACKI, Eindhoven University of Technology

RUURD KUIPER, Eindhoven University of Technology

We propose an approach for the modular specification and verification of total correctness properties of
object-oriented programs. The core of our approach is a specification style that prescribes a way to assign
a level expression to each method such that each callee’s level is below the caller’s, even in the presence
of dynamic binding. The specification style yields specifications that properly hide implementation details.
The main idea is to use multisets of method names as levels, and to associate with each object levels that
abstractly reflect the way the object is built from other objects. A method’s level is then defined in terms of
the method’s own name and the levels associated with the objects passed as arguments.

We first present the specification style in the context of programs that do not modify object fields. We then
combine it with separation logic and abstract predicate families to obtain an approach for programs with
heap mutation. In a third step, we address concurrency, by incorporating an existing approach for verifying
deadlock-freedom of channels and locks. Our main contribution here is to achieve information hiding by
using the proposed termination levels for lock ordering as well. Also, we introduce call permissions to enable
elegant verification of termination of programs where threads cause work in other threads, such as in thread
pools or fine-grained concurrent algorithms involving compare-and-swap loops.

We explain how our approach can be used also to verify liveness of non-terminating programs.
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1. INTRODUCTION

Software plays a significant role in ever more areas of human activity, and in ever more
applications with high reliability requirements, where failures caused by software de-
fects could affect human safety, system security, or mission success. In many cases,
software verification through testing provides insufficient assurance of the absence of
defects. Formal program verification, where the program’s source code is analyzed to
obtain mathematical certainty that all of a program’s possible executions satisfy cer-
tain formalized requirements, is in such cases a promising complementary approach.
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0:2 B. Jacobs et al.

Formal program verification approaches can be roughly divided into two categories:
whole-program approaches and modular approaches. In a whole-program approach,
a complete, closed program must be available before any results can be obtained. In
such an approach, a method call is verified by verifying the method’s implementation,
taking into account the particular context of the call. If a call is dynamically bound, all
potential callees are inspected. A major advantage of a whole-program approach is that
typically, besides the source code itself and a formalization of the overall correctness
property being verified, little or no additional user input is required. A disadvantage
is that modifying any part of the program invalidates the results obtained.

In a modular approach, on the other hand, the object of verification is not whole pro-
grams, but program modules, coherent sets of classes, developed independently, that
satisfy a well-defined module specification. A module need not be closed: it may refer
to classes not defined by the module itself, but by other modules which it imports. A
module should use only those classes and methods from an imported module that are
specified as exported (or public) by that module’s specification; only those elements are
guaranteed to still be present in future versions of the imported module. Verifying a
module means proving that it satisfies its specification, assuming that imported mo-
dules satisfy theirs.

In a modular approach, a method call is verified by assuming that it satisfies the cal-
led method’s specification. If the call is dynamically bound, only the specification of the
statically resolved method is considered. Separately, it is checked that each overriding
method satisfies the specification of each method it overrides. In this approach, after
modifying a method, it is sufficient to check that the method still satisfies its specifi-
cation, to ensure that any properties verified previously still hold. Once stable module
specifications have been established, modular verification is more scalable since it ena-
bles distributing the verification effort across multiple teams and reusing verification
results.

A major issue in modular verification is the question of the specification approach:
what should a module specification look like? The approach should be sufficiently
expressive to be able to capture precisely the dependencies that a module’s clients
(i.e. those other modules that import the module) may have upon it, but it should also
be sufficiently abstract so that proper information hiding is achieved: a module’s spe-
cification should not unnecessarily constrain the current implementation or its future
evolution. Any modification that does not break clients should be allowed.

In recent years, great progress has been made in specification approaches for partial
correctness, the property that the program never reaches a incorrect state. However,
we are not aware of any existing approach for modular specification of total correctness
of object-oriented programs, the property that additionally the program terminates.

In this article, we propose such an approach.
For sequential programs, termination means absence of infinite loops and absence

of infinite recursion. In the remainder of this article, we assume the program has no
loops; this can be achieved by turning each loop into a recursive method.

The main difficulty in defining a specification approach for modular verification of
termination of sequential object-oriented programs, is in dealing with dynamic bin-
ding. This can be understood as follows. Firstly, we assume that the module import
graph is acyclic. (That is, no module directly or indirectly imports itself. If there is
such a cycle, its members should be consolidated into a single module.) This assump-
tion allows us to think of the program as consisting of layers, such that modules only
import modules from lower layers. In the absence of dynamic binding, all method calls
are either internal within a module, or descend into a lower layer. (Indeed, a module
should refer only to the classes and interfaces it defines itself and the ones it imports.)
Therefore, any cycle in the call graph is necessarily internal to a module, so proving
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interface Func {
num apply(num x)

}
class Util {

static num deriv(Func f,num x)
{ f.apply(x+ 1)− f.apply(x) }

}

class ZeroFunc imports Util implements Func {
num apply(num x) { 0 }
static void main()
{ Util.deriv(new ZeroFunc(), 42) }

}
class Loopy imports Util implements Func {

num apply(num x) { Util.deriv(this, x) }
static void main()
{ Util.deriv(new Loopy(), 42) }

}

Fig. 1. An example program without intra-module recursion but with infinite inter-module recursion

absence of infinite recursion is not directly a module specification issue. Indeed, the
number of inter-module calls in a call stack below a given call is bounded by the static
depth of the caller, i.e. the number of layers below it.

In contrast, in the presence of dynamic binding, the number of inter-module calls in
a chain of calls is not bounded, so absence of infinite intra-module recursion does not
imply absence of infinite recursion. This is the main problem addressed in this article.

For example, consider the program of Fig. 1. In the examples of this article, for sim-
plicity, we conflate classes and modules: each module consists exactly of a single class.
(We do not consider interfaces to be part of modules.) Each class declares the classes
it imports in its imports clause. If a class mentions another class as the type of a
variable, as the target of a static method call, or to create an instance of it, it must
import it. In this program, then, we have three modules: Util, ZeroFunc, and Loopy, and
ZeroFunc and Loopy each import Util. Util does not import any module. Notice that the
import graph is acyclic, and that none of the modules contain intra-module method
calls; nonetheless, whereas method ZeroFunc.main correctly computes the derivative of
the constant function 0 at argument 42, method Loopy.main performs infinite inter-
module recursion between methods Util.deriv and Loopy.apply.

In this article, we propose:

— a program logic for expressing module specifications that specify total correctness
properties of methods exported by these modules, such as termination of method
ZeroFunc.main;

— a corresponding proof system for verifying modules against their specifications that
is sound, i.e. if a proof exists in this proof system for each module of a program,
then each method satisfies its specified total correctness properties, implying that the
proof system does not allow the verification of a specification that states that method
Loopy.main terminates; also, the proof system is modular, meaning that each module’s
proof uses only the specifications, not the implementations of imported modules, and
does not depend at all on other modules, such that the proof of Util.deriv does not
depend on the existence or non-existence, or the content, of modules ZeroFunc and
Loopy, and the proof of ZeroFunc.main uses only the specification of Util.deriv and not
its implementation; and

— a specification style for writing specifications in this program logic such that they
perform proper information hiding, e.g. such that method Util.deriv’s specification is
satisfied equally by alternative implementations that are more complex (and more
accurate).

The remainder of this article is structured as follows. In Section 2, we introduce the
core of our approach: an approach for assigning level expressions to methods that sup-
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0:4 B. Jacobs et al.

ports dynamic binding and that performs proper information hiding. This approach
is initially presented in the context of programs that do not modify object fields. In
Section 3, this approach is combined with separation logic to support programs that do
mutate the heap. In Section 4, we show how to apply the approach to modularly verify
termination of concurrent programs. In Section 5, we show how to prove liveness of
non-terminating programs. In Section 6, we discuss the tool support we implemented
for our approach. Finally, we discuss some ways to relax our approach in Section 7, as
well as related work in Section 8, and we offer a conclusion in Section 9. A formaliza-
tion of the approach is provided in the Appendix.

An earlier version of this work appeared at ECOOP 2015 [Jacobs et al. 2015a]. For
the material of Sections 4 and 5, that paper referred to its accompanying technical
report [Jacobs et al. 2015b]. Also, the presentation has been greatly improved throug-
hout: the various elements are introduced more incrementally and motivated better,
there are many additional examples, and the material of Sections 2.2.4 and 2.2.5 is
new.

2. LEVELS

To present the essence of our modular termination verification approach, in this section
we consider only sequential programs. Furthermore, we adopt the standard module
specification formalism where each method of a program is associated with an ex-
pression that evaluates to an element from a universe of levels, equipped with a well-
founded order1. Such an expression, which may depend on the method’s parameters
and on the program state, is commonly known as a ranking function, a measure, a
variant, or a decreases clause. Additionally, we adopt the standard notion of module
correctness where a module is correct if for each method call, the callee’s level (i.e. the
level value obtained by evaluating the callee’s level expression under the callee’s ar-
guments and pre-state) is below the caller’s. Soundness of the approach then follows
trivially: an infinite call chain would imply an infinite descending chain in the universe
of levels.

The main contribution of this article, then, lies not in our choice of specification
formalism or notion of module correctness, but in our proposed choice for the universe
of levels and for which particular level to assign to each particular method. Indeed,
for any given program that terminates, there are infinitely many possible ways to
choose a universe of levels and to assign levels to the methods of the program such
that each module is correct; however, only some of those assignments lead to module
specifications that are abstract. We say a module specification S is abstract if it does not
distinguish between module implementations that cannot be distinguished by clients.
More specifically, S is abstract if it is closed under contextual refinement, i.e. if an
implementation I satisfies S and an implementation I ′ contextually refines I (meaning
that if a client C composed with I terminates, then C composed with I ′ terminates),
then I ′ satisfies S.

To illustrate this, consider the program in Figure 2(a). Assume that each method is
declared by a separate class, such that the class of method vectorSize imports the class
of method sqrt, and the class of method main imports the class of method vectorSize.
Notice that each module is correct: at each call, the level decreases. However, this
choice of levels is not abstract. In particular, it should always be possible to refactor
a method’s implementation so that it reuses functionality from a library2, without

1A well-founded order is an order that admits no infinite descending chains, or, equivalently, where each
nonempty set S has a minimal element (an element x ∈ S such that ∄y ∈ S. y < x).
2We assume the library does not itself use the method being refactored for its own implementation, which
would cause a cycle in the module import graph.
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num average(num x,num y)
level 0

{ (x+ y)/2 }

num sqrt(num x)
level 0

{ (1 + x)/2 }

num vectorSize(num x,num y)
level 1

{ sqrt(x · x+ y · y) }

void main()
level 2

{ assert 0 ≤ vectorSize(3, 4) }

(a)

num average(num x,num y)
level 0

{ (x+ y)/2 }

num sqrt(num x)
level 0

{ average(1, x) }

num vectorSize(num x,num y)
level 1

{ sqrt(x · x+ y · y) }

void main()
level 2

{ assert 0 ≤ vectorSize(3, 4) }

(b)

Fig. 2. (a) A choice of levels that is not abstract; (b) A refactoring that it disallows. Elements shown in red
violate module correctness.

breaking the method’s specification. However, if we introduce a call of method average
into the body of method sqrt, we cannot make this call pass the level check without
changing the specifications of the modules involved.

In the remainder of this section, we introduce our proposed choice for the universe of
levels, and our proposed approach for choosing which levels to assign to the methods of
a program. We do so in three steps. In the first step (Section 2.1), we introduce a sim-
plified version that works for programs that have only upcalls; it uses method names
as levels. In the second step (Section 2.2), we extend this approach to support dynamic
binding, using multisets of method names as levels. In the third step (Section 2.3), we
add support for recursion to obtain the final approach, where we combine multisets of
method names with local levels.

2.1. Upcalls Only

In this subsection, we consider only programs that perform only statically bound met-
hod calls (i.e. calls of static methods) and where the call graph has no cycles. All such
programs necessarily terminate, but here we will look at how to prove this for a given
program modularly, using abstract module specifications, within the modular verifica-
tion framework defined above.

The example of Figure 2 illustrates that for any approach where each module’s met-
hods are associated with closed level expressions assigning levels from a fixed well-
founded order, and for any two modules M1 and M2 that do not import each other, it
has to be the case that either a refactoring of M1 so that it uses (and therefore imports)
M2, or a refactoring of M2 so that it uses M1 requires changing at least one module’s
specification. Therefore, to allow both of these refactorings without changing module
specifications, we must allow either the interpretation of level expressions or the order
relation on levels to somehow depend on aspects of the way modules are implemented,
without revealing such implementation aspects in the level expressions themselves.

One approach is to use symbolic level constants in level expressions, as illustrated
in Fig 3. In this approach, a module specification can expose the existence of one or
more symbolic level constants, without revealing their definition. The module’s level
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0:6 B. Jacobs et al.

final int AVERAGE LEVEL = 0
num average(num x,num y)
level AVERAGE LEVEL

{ (x+ y)/2 }

final int SQRT LEVEL = 0
num sqrt(num x)
level SQRT LEVEL

{ (1 + x)/2 }

final int VECTOR SIZE LEVEL =
SQRT LEVEL+ 1

num vectorSize(num x,num y)
level VECTOR SIZE LEVEL

{ sqrt(x · x+ y · y) }

void main()
level VECTOR SIZE LEVEL+ 1

{ assert 0 ≤ vectorSize(3, 4) }

(a)

final int AVERAGE LEVEL = 0
num average(num x,num y)
level AVERAGE LEVEL

{ (x+ y)/2 }

final int SQRT LEVEL =
AVERAGE LEVEL+ 1

num sqrt(num x)
level SQRT LEVEL

{ average(1, x) }

final int VECTOR SIZE LEVEL =
SQRT LEVEL+ 1

num vectorSize(num x,num y)
level VECTOR SIZE LEVEL

{ sqrt(x · x+ y · y) }

void main()
level VECTOR SIZE LEVEL+ 1

{ assert 0 ≤ vectorSize(3, 4) }

(b)

Fig. 3. (a) Using symbolic levels; (b) A refactoring that it allows.

expressions can mention these constants. A module’s implementation must define each
declared symbolic level constant in terms of the constants exposed by imported modu-
les. Typically, a module’s level constant is defined as one more than the maximum of
the level constants exposed by imported modules.

An alternative approach is to use levels whose order depends on the module import
graph. In particular, one could use method names as levels, ordered as follows: m1 is
less than m2 if either m1 and m2 are defined in the same module and the definition
of m1 appears textually before the definition of m2 in the module’s program text, or
there is a path in the “− imports −” graph from the module that defines m2 to the
module that defines m1. In Figure 4, we use method names as levels to obtain abstract
specifications of the modules of the example program. Notice that we simply assigned
to each method m its own name m as its level.

Indeed, for programs that perform upcalls only, both specification approaches yield
specifications that are trivially satisfied by current and future implementations of the
program’s modules3. For conciseness, in the rest of this article we use the second ap-
proach, where method names are used as levels. However, all of the ideas introduced in
the rest of this article apply equally to the approach based on symbolic level constants.

The first approximation of the proposed specification style of this article is therefore
as follows:

SPECIFICATION STYLE 1 (UPCALLS ONLY).

— For the universe of levels, pick the set of method names, ordered by the module import
graph and some appropriate intra-module ordering (such as textual order).

— Assign to each method m its own name m as its level.

3Assuming that within a module, callees appear textually before callers.
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num average(num x,num y)
level average

{ (x+ y)/2 }

num sqrt(num x)
level sqrt

{ (1 + x)/2 }

num vectorSize(num x,num y)
level vectorSize

{ sqrt(x · x+ y · y) }

void main()
level main

{ assert 0 ≤ vectorSize(3, 4) }

(a)

num average(num x,num y)
level average

{ (x+ y)/2 }

num sqrt(num x)
level sqrt

{ average(1, x) }

num vectorSize(num x,num y)
level vectorSize

{ sqrt(x · x+ y · y) }

void main()
level main

{ assert 0 ≤ vectorSize(3, 4) }

(b)

Fig. 4. (a) Using method names as levels; (b) A refactoring that it allows.

2.2. Dynamic Binding

2.2.1. Simple Objects. Let us now consider programs with dynamically bound method
calls. Consider the example program of Figure 5. It defines the following elements:

— An interface Func for objects that represent mathematical functions on rational num-
bers.

— A utility class Util that provides a method deriv that computes a rough approximation
of the derivative of the function given by a Func object f at a given argument x.

— A class ZeroFunc whose objects represent the constant function that equals zero ever-
ywhere.

— A main class Main that exercises classes Util and ZeroFunc.

In an initial attempt to modularly prove termination of this program, we applied the
specification approach of the preceding subsection: we assigned to each method its
own name as its level. Note that we will only use class method names, i.e. names of
the form C.m, where C is a class name, as levels. We will not use interface method
names I.m or unqualified method names m as levels.4 Note also that, as mentioned in
Section 1, for modular verification of dynamically bound method calls, we will associate
a specification with each interface method, verify calls of interface methods against
these specifications, and verify each class method that implements an interface method
against the interface method’s specification. (We will not assign separate specifications
to such class methods individually.) Therefore, we interpret the specification approach
of the preceding subsection such that we should specify as the level of an interface
method the name of the method to which calls of the interface method will be bound at
run time. To do so, we will allow the use of the expression classOf(−) in level clauses.
This way, we can specify the level for method Func.apply as classOf(this).apply.

Note that applying the specification style of the preceding subsection does not allow
us to verify this program. Indeed, method deriv is not correct: we cannot establish

4This is a design decision, consistent with the decision of not considering interfaces to be part of modules,
and therefore not being ordered by the module import graph. As the reader will see, this yields an elegant
approach. However, we do not claim it is the only possible approach.
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interface Func {
num apply(num x)
level classOf(this).apply

}
class Util {

static num deriv(Func f,num x)
level Util.deriv

{ f.apply(x+ 1)− f.apply(x) }
}
class ZeroFunc implements Func { num apply(num x) { 0 } }
class Main imports Util,ZeroFunc {

static void main()
level Main.main

{ Util.deriv(new ZeroFunc(), 0) }
}

Fig. 5. A program with dynamically bound method calls. Method deriv’s implementation is not allowed by
its specification, since the calls of apply cannot be shown to satisfy the level constraint.

class Util {
static num deriv(Func f,num x)
level classOf(f).apply + 1

{ f.apply(x+ 1)− f.apply(x) }
}

(a)

class Util {
static num derivHelper(Func f,num x)
level classOf(f).apply + 1

{ f.apply(x+ 1)− f.apply(x) }
static num deriv(Func f,num x)
level classOf(f).apply + 1

{ Util.derivHelper(f, x) }
}

(b)

Fig. 6. (a) A specification that is not abstract; (b) A refactoring that is disallowed by it. The call of method
derivHelper does not satisfy the level constraint.

that classOf(f).apply < Util.deriv, and indeed, in the case where f is an instance of class
ZeroFunc, this is not the case.

We could try to fix this by extending our universe of levels with levels of the form
m + n, where m is a method name and n is a natural number, such that m + n <
m′ + n′ if m < m′ or m = m′ and n < n′. We could then assign to method deriv level
classOf(f).apply + 1, as shown in Figure 6(a). However, this specification would not be
abstract: it would not allow us to introduce a static helper method Util.derivHelper and
to call it in the body of method deriv (see Figure 6(b)).

Method deriv should be allowed to perform both upcalls (statically bound calls of
lesser-named methods) and calls on f, and it should be able to pass f as an argument
in upcalls, such that callees can call f themselves.

To achieve this, we propose to use as levels not method names, but multisets of met-
hod names, ordered by multiset order [Dershowitz and Manna 1979]. For multisets
A and B, we say A < B iff A 6= B and there exist multisets C, A′, B′ such that
A = C ⊎ A′ and B = C ⊎ B′ and ∀x ∈ A′. ∃y ∈ B′. x < y. In other words, star-
ting from a given multiset, a lesser multiset is obtained by replacing one or more
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Modular Termination Verification of Single-Threaded and Multithreaded Programs 0:9

interface Func {
num apply(num x)
level {[classOf(this).apply]}

}
class Util {
static num derivHelper(Func f,num x)
level {[Util.derivHelper, classOf(f).apply]}

{ f.apply(x+ 1)− f.apply(x) }
static num deriv(Func f,num x)

level {[Util.deriv, classOf(f).apply]}
{ Util.derivHelper(f, x) }

}
class ZeroFunc implements Func { num apply(num x) { 0 } }
class Main imports Util,ZeroFunc {

static void main()
level {[Main.main]}

{ Util.deriv(new ZeroFunc(), 0) }
}

Fig. 7. Specifications for the example program using multisets of method names

elements by any number of lesser elements. In particular, we have {[ZeroFunc.apply]} <
{[Util.derivHelper,ZeroFunc.apply]} < {[Util.deriv,ZeroFunc.apply]} < {[Main.main]}.5

This leads us to the specifications in Figure 7. These allow us to verify the program.

2.2.2. Complex Objects. However, we are not done. In particular, the specification for
Func.apply is not abstract. Indeed, consider the case where the Func object has fields
holding references to other objects, and the apply method performs calls on these, as in
class Plus1Func in Figure 8. Method Plus1Func.apply is not correct: we cannot establish
{[classOf(this.f).apply]} < {[classOf(this).apply]}. The case of Plus1Func.apply is similar to
that of Util.deriv: it should be able both to perform upcalls and to call f.apply. And this
is true recursively: the object pointed to by Plus1Func’s f field may itself refer to more
objects.

The solution we propose is to associate levels with objects, and to refer to those
levels in the level clauses of the objects’ methods. For example, to address the problem
highlighted in Figure 8, we impose upon each class that implements interface Func the
obligation to define an applyLevel, a multiset of method names, for each of its objects,
and we define the level of method apply as being equal to its receiver’s applyLevel. For
objects of class ZeroFunc, we define applyLevel = {[ZeroFunc.apply]}, and for objects of class
Plus1Func, we define applyLevel = {[Plus1Func.apply]} ⊎ fal , where fal is the applyLevel of
the object referred to by the Plus1Func object’s f field. This allows us to verify ZeroFunc’s
and Plus1Func’s apply methods.

For simplicity, in this section we realize the association of levels with objects techni-
cally by means of ghost fields (see Figure 9). This works well in the absence of heap
mutation; therefore, in this section, we assume that all fields are immutable. In the
next section, to show that our approach is fully compatible with heap mutation, we
combine our approach with separation logic and we use abstract predicate families
instead of ghost fields to associate levels with objects.

5The usefulness of multisets and multiset order for proving termination has long been recognized [Dersho-
witz and Manna 1979]. It was pointed out to us by K. Rustan M. Leino. We are not aware of more specific
prior work for our particular application of the idea.
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interface Func {
num apply(num x)
level {[classOf(this).apply]}

}
class Plus1Func(Func f) implements Func {
num apply(num x) { f.apply(x) + 1 }

}
class Main imports Util,ZeroFunc,Plus1Func {
static void main()
{ Util.deriv(new Plus1Func(new ZeroFunc()), 0) }

}

Fig. 8. The specification of method apply disallows complex objects. We declare a class’s fields in a parent-
hesized list after the class name. (Classes Util and ZeroFunc are unchanged from Figure 7 and not shown.)

interface Func {
abstract ghost field MethodBag applyLevel
num apply(num x)
level this.applyLevel

}
class Util {
static num deriv(Func f,num x)

level {[Util.deriv]} ⊎ f.applyLevel
{ f.apply(x+ 1)− f.apply(x) }

}
class ZeroFunc implements Func {
ghost field MethodBag applyLevel = {[ZeroFunc.apply]}
num apply(num x) { 0 }

}
class Plus1Func(Func f) implements Func {
ghost field MethodBag applyLevel = {[Plus1Func.apply]} ⊎ f.applyLevel
num apply(num x) { f.apply(x) + 1 }

}
class Main imports Util,ZeroFunc,Plus1Func {
static void main()
level {[Main.main]}

{
Func f1 := new ZeroFunc();
{f1.applyLevel = {[ZeroFunc.apply]}}
Func f2 := new Plus1Func(f1);
{f2.applyLevel = {[Plus1Func.apply,ZeroFunc.apply]}}
Func f3 := new Plus1Func(f2);
{f3.applyLevel = {[2 · Plus1Func.apply,ZeroFunc.apply]}}
{{[Util.deriv, 2 · Plus1Func.apply,ZeroFunc.apply]} < {[Main.main]}}
Util.deriv(f3, 0)

}
}

Fig. 9. Verifying termination in the presence of complex objects by associating levels with objects. In this
section, for simplicity, ghost fields are used to realize this association.
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Interface Func declares an abstract ghost field of type MethodBag (multiset of method
names) named applyLevel. This imposes the obligation upon each class that implements
interface Func to define a ghost field of the same name and type. This ghost field is used
in the specification of methods Func.apply and Util.deriv and in the definition of ghost
field Plus1Func.applyLevel.

The specification of method deriv shows the typical pattern for a static method that
takes an object as an argument: the method’s level is the multiset union of its own
name and a level associated with the argument object. Since f.applyLevel < {[Util.deriv]}⊎
f.applyLevel, the method verifies.

To verify method main, after creating ZeroFunc instance f1, we look at the definition
of ZeroFunc.applyLevel to conclude that we have f1.applyLevel = {[ZeroFunc.apply]}. After
applying similar reasoning for f2 and f3, we can conclude that the Util.deriv call is cor-
rect.

2.2.3. Abstract Object Construction. We have now successfully verified the example pro-
gram of Figure 9; however, to verify method main, we looked at the definitions of ghost
fields ZeroFunc.applyLevel and Plus1Func.applyLevel to derive the value of f1, f2, and f3’s
applyLevel from the values of these objects’ fields. A more modular approach is to shield
method main from the internal layout of these objects by having it call factory met-
hods, and by having the postconditions of these factory methods describe the resulting
objects abstractly using the applyLevel ghost field, as in Figure 10.

Notice that Plus1Func.create’s declared level includes its argument’s applyLevel: we
simply applied the general specification pattern also exhibited by the specification of
method Util.deriv in Figure 9. This allows future implementations of Plus1Func.create to
call f.apply.

In order to allow client code to call the created object’s methods, a factory method
should always specify an upper bound for the created object’s levels. A suitable upper
bound is the level of the factory method itself: this ensures that any client that can call
the factory method can also call the created object’s methods.

2.2.4. Sibling objects. In the example above, method Util.deriv takes a single object as
an argument. Now, consider method Util.sum in Figure 11, which takes two Func objects
and returns the sum of their values at a given argument value. Since the sum method
should be able to call both f1.apply and f2.apply, we assign to it the level {[Util.sum]} ⊎
(f1.applyLevel⊔ f2.applyLevel), where ℓ1 ⊔ ℓ2 is an abbreviation for max(ℓ1, ℓ2). (To ensure
that this is always well-defined, we establish a total order on levels by choosing an
arbitrary, fixed total order on modules consistent with the module import graph.)

Note that while conceptual economy would suggest reusing the ⊎ operator and as-
signing level {[Util.sum]} ⊎ f1.applyLevel ⊎ f2.applyLevel to method sum, this would overly
constrain client code: it would not allow us to verify method double (also in Figure 11),
whereas our use of ⊔ does (since ℓ ⊔ ℓ = ℓ).

We use the same approach to define the levels of objects that are built on top of
multiple existing objects: see class SumFunc in Figure 11.

2.2.5. Passing Objects as Arguments to Objects. Consider interface Set in Figure 12. Its
method intersects takes another object as an argument. Its level is the multiset union
of the receiver’s level and the argument’s level.

Notice that the specification of Util.intersects differs from that of Util.sum in Figure 11:
the former takes the multiset union, and the latter the maximum of the two argument
objects’ levels. This reflects the fact that in Util.intersects, one of the argument objects
performs calls on the other one, whereas in Util.sum, the argument objects do not call
each other. Indeed, in our approach, the fact that a method causes argument objects to
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class ZeroFunc implements Func {
ghost field MethodBag applyLevel = {[ZeroFunc.apply]}
num apply(num x) { 0 }
static ZeroFunc create()
level {[ZeroFunc.create]}
ens result.applyLevel < {[ZeroFunc.create]}

{ new ZeroFunc() }
}
class Plus1Func(Func f) implements Func {
ghost field MethodBag applyLevel = {[Plus1Func.apply]} ⊎ f.applyLevel
num apply(num x) { f.apply(x) + 1 }
static Plus1Func create(Func f)
level {[Plus1Func.create]} ⊎ f.applyLevel
ens result.applyLevel < {[Plus1Func.create]} ⊎ f.applyLevel

{ new Plus1Func(f) }
}
class Main imports Util,ZeroFunc,Plus1Func {
static void main()
level {[Main.main]}

{
Func f1 := ZeroFunc.create();
{f1.applyLevel < {[ZeroFunc.create]}}
Func f2 := Plus1Func.create(f1);
{f2.applyLevel < {[Plus1Func.create,ZeroFunc.create]})}
Func f3 := Plus1Func.create(f2);
{f3.applyLevel < {[2 · Plus1Func.create,ZeroFunc.create]})}
{{[Util.deriv]} ⊎ f3.applyLevel < {[Main.main]}}
Util.deriv(f3, 0)

}
}

Fig. 10. Abstract object construction

call each other cannot generally be hidden from clients. We conjecture that this would
be the case in any other modular termination verification approach as well.

Notice also that in this example, interface Set associates a single level level with its
objects, instead of declaring separate levels containsLevel and intersectsLevel for use in
the corresponding methods’ level clauses. While such fine-grained specifications may
sometimes enable verifying more client programs, we anticipate that most often it will
be sufficient to declare a single level per object.

We summarize the specification style for programs with dynamic binding that we
propose in this article as follows:

SPECIFICATION STYLE 2.

— For the universe of levels, pick the multisets of method names, ordered by multiset
order, where method names are ordered as in Specification Style 1.

— Declare in each interface an association between each object of the interface and a
multiset of method names, called the object’s level.

— In each class C, define the level of an object o of the class in terms of the level of the
class itself (i.e. the names of the methods of the class) and the levels of the objects
of which o is composed. In particular, if the class does not cause component objects
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class Util {
static num sum(Func f1,Func f2,num x)
level {[Util.sum]} ⊎ (f1.applyLevel ⊔ f2.applyLevel)

{ f1.apply(x) + f2.apply(x) }
static num double(Func f,num x)

level {[Util.double]} ⊎ f.applyLevel
{ Util.sum(f, f, x) }

}
class SumFunc(Func f1,Func f2) implements Func imports Util {
ghost field MethodBag applyLevel = {[SumFunc.apply]} ⊎ (f1.applyLevel ⊔ f2.applyLevel)
num apply(num x) { Util.sum(f1, f2, x) }
static Func create(Func f1,Func f2)
level {[SumFunc.create]} ⊎ (f1.applyLevel ⊔ f2.applyLevel)
ens result.applyLevel < {[SumFunc.create]} ⊎ (f1.applyLevel ⊔ f2.applyLevel)

{ new SumFunc(f1, f2) }
}
class Main imports Util,ZeroFunc,Plus1Func, SumFunc {
static void main()
level {[Main.main]}

{
Func f1 := ZeroFunc.create();
Func f2 := Plus1Func.create(f1);
Func f3 := SumFunc.create(f1, f2);
Util.sum(f2, f3, 0)

}
}

Fig. 11. Sibling objects

o′ ∈ O to call each other, define the level of o as {[C.m]} ⊎ (
⊔

o′∈O o′.level), where m is the
greatest non-static method of C. If the class does cause component objects to call each
other, define the level of o as {[C.m]} ⊎ (

⊎

o′∈O o′.level). If particular component objects
call only particular other component objects, then use an appropriate combination of
⊔ and ⊎ to combine the levels of the component objects.

— Define each static method C.m’s level as {[C.m]}⊎d, where d is the appropriate combina-
tion of the levels of the objects passed into C.m as arguments with ⊔ and ⊎, depending
on whether C.m causes particular argument objects to call each other or not, in the
same way as above.

— Define each non-static method C.m’s level as this.level⊎d, where d is the combined level
of the argument objects, as defined above.

2.3. Recursion

Above, we have looked at programs where method calls cross module boundaries and
descend into lower layers of abstraction, and we have denoted those layers by means
of multisets of method names. In this subsection, we complete our approach by ad-
ding support for programs where some method calls stay within the current layer of
abstraction and are performed not to invoke an abstraction but for computational, al-
gorithmic reasons. We assume that the author of each such algorithm involved has
proven termination of the algorithm by means of a ranking function that maps each
state of the algorithm to an element of some well-founded set. We call the union of
these well-founded sets the set of the local levels of the program, and we adopt as the
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interface Set {
abstract ghost field MethodBag level
bool contains(int x)

level this.level
bool intersects(Set other)

level this.level ⊎ other.level
}
class Empty() implements Set {

ghost field MethodBag level = {[Empty.intersects]}
bool contains(int x) { false }
bool intersects(Set other) { false }
static Set create()

level {[Empty.create]}
ens result.level < {[Empty.create]}

{ new Empty() }
}
class Insert(int elem, Set set) implements Set {

ghost field MethodBag level = {[Insert.intersects]} ⊎ set.level
bool contains(int x) { x = elem ∨ set.contains(x) }
bool intersects(Set other) { other.contains(elem) ∨ set.intersects(other) }
static Set create(int elem, Set set)

level {[Insert.create]} ⊎ set.level
ens result.level < {[Insert.create]} ⊎ set.level

{ new Insert(elem, set) }
}
class Util {

static bool intersects(Set s1, Set s2)
level {[Util.intersects]} ⊎ s1.level ⊎ s2.level

{ s1.intersects(s2) }
}

Fig. 12. An interface method that takes another object as an argument

final choice for the set of levels the expressions of the form d or d + ℓ, where d is a
multiset of method names, ℓ is a local level, and we have the relationships d < d + ℓ,
d < d′ ⇒ d+ ℓ < d′, and ℓ < ℓ′ ⇒ d+ ℓ < d+ ℓ′.

Consider for example in Figure 13 a method that computes the Ackermann function,
where (m,n) denotes the lexicographically ordered pairs, with m more significant than
n. Note that the specification of method ackermannIter reveals information about its
algorithmic behavior. That is why, to achieve abstract module specifications, recursive
methods like ackermannIter should always be private to a module, and public wrappers
like ackermann should be provided whose specification conforms to the standard pattern
suggested above and therefore does not reveal any algorithmic information.

SPECIFICATION STYLE 3 (RECURSION).

— For the universe of levels, pick the expressions of the form d or d + ℓ, where d is a
multiset of method names, ordered as in Specification Style 2, and ℓ is an element of
some well-founded set of local levels. Define the order on levels by the rules d < d+ ℓ,
d < d′ ⇒ d+ ℓ < d′, and ℓ < ℓ′ ⇒ d+ ℓ < d+ ℓ′.

— If a module is implemented internally using recursion, keep all recursive methods
private to the module; expose their functionality through separate public methods that
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class Math {
static int ackermannIter(int m, int n)
req 0 ≤ m ∧ 0 ≤ n
level {[Math.ackermannIter]}+ (m, n)

{
if m = 0 then n+ 1 else

if n = 0 then
ackermannIter(m− 1, 1)

else
ackermannIter(m− 1, ackermannIter(m, n− 1))

}
static int ackermann(int m, int n)

req 0 ≤ m ∧ 0 ≤ n
level {[Math.ackermann]}

{ ackermannIter(m, n) }
}

Fig. 13. Recursion

are not themselves recursive, and whose specifications therefore do not reveal internal
recursion termination measures.

— For public methods, use levels of the form d, as prescribed by Specification Style 2.

Note, however, that our approach also supports recursion involving dynamically
bound calls between mutually unknown modules, as shown by the example of Fi-
gure 14.

3. SUPPORTING MUTATION: SEPARATION LOGIC

In the preceding section, for simplicity we presented our specification approach in the
context of programs that do not modify object fields. However, our approach is fully
compatible with heap mutation. In this section, we show how to modularly verify total
correctness of object-oriented programs that modify object fields, by combining the
ideas of the preceding section with separation logic.

In Section 3.1, we motivate and introduce separation logic for modular reasoning
about heap-mutating programs. In Section 3.2, we combine separation logic with dyn-
amic binding, and we discuss the issue of logical consistency. In Section 3.3, we show
how to combine these ideas with the ideas of Section 2 to verify total correctness.

3.1. Separation logic for partial correctness

The example program of Figure 15 illustrates the problem addressed by separation
logic when reasoning about heap-mutating object-oriented programs. The program de-
fines three classes: Cell, CellWrapper, and Main. Objects of class Cell represent a nonne-
gative integer, and so do objects of class CellWrapper. The difference between these two
classes is that class Cell stores its value directly, whereas CellWrapper uses a Cell object
to store its value. For both classes, we define an abstract predicate valid. In both cases,
for an object o, o.valid(v) expresses that o satisfies its invariant and that it represents
value v. We use these predicates in the specification of the methods, with the goal of
enabling users of these classes to reason about method calls without needing to know
the classes’ internal implementation.

However, the specifications of Figure 15 do not actually achieve this purpose fully.
Even though the assert command in method main is satisfied when the program is
executed, the specification of method CellWrapper.create does not allow the author of
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interface IsEvenFunc {
abstract ghost field MethodBag level
bool isEven(IsOddFunc f, int n)
req 0 ≤ n
level (this.level ⊔ f.level) + n
ens result = (n = 0 mod 2)

}
interface IsOddFunc {

abstract ghost field MethodBag level
bool isOdd(IsEvenFunc f, int n)
req 0 ≤ n
level (this.level ⊔ f.level) + n
ens result = (n = 1 mod 2)

}
class Util {

static bool isEven(IsEvenFunc e, IsOddFunc o, int n)
req 0 ≤ n
level {[Util.isEven]} ⊎ (e.level ⊔ o.level)
ens result = (n = 0 mod 2)

{ e.isEven(o, n) }
}
class MyIsEvenFunc implements IsEvenFunc {
ghost field MethodBag level = {[MyIsEvenFunc.isEven]}
bool isEven(IsOddFunc f, int n)
{ if n = 0 then true else f.isOdd(this, n− 1) }

}
class MyIsOddFunc implements IsOddFunc {
ghost field MethodBag level = {[MyIsOddFunc.isOdd]}
bool isOdd(IsEvenFunc f, int n)
{ if n = 0 then false else f.isEven(this, n− 1) }

}
class Main imports Util,MyIsEvenFunc,MyIsOddFunc {

static void main()
level {[Main.main]}

{ Util.isEven(new MyIsEvenFunc(),new MyIsOddFunc(), 42) }
}

Fig. 14. Dynamically-bound recursion. Note: since MyIsEvenFunc.isEven does not perform any upcalls, it
would be sufficient in this example to define MyIsEvenFunc.level to be the empty multiset. However, for
uniformity, we applied the general approach for defining object levels defined in Specification Style 2. (A
similar remark applies to MyIsOddFunc.)

method main to conclude this, without looking at the body of method create. Indeed, if
the body of method create were swapped with that of method createAlt, which satisfies
exactly the same specification, then the assert command would no longer be satisfied.

The problem is that the author of main cannot conclude that the assertion w.valid(0)
is preserved by the c.incr() call.

One approach for addressing this problem is to modify the specification of create
so that it expresses that the set of memory locations associated with object result is
disjoint from the set of memory locations associated with object cell, and to modify the
specification of Cell.incr so that it expresses that this method modifies only the memory
locations associated with the receiver object. If, furthermore, the author of main knows
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class Cell(int value) {
predicate valid(int value) = (this.value = value ∧ 0 ≤ value)
int incr()

req this.valid(v)
ens this.valid(v + 1) ∧ result = v ∧ 0 ≤ result

{ int value := this.value; this.value := value+ 1; value }
}
class CellWrapper(Cell cell) {
predicate valid(int value) = cell.valid(value)
int incr()

req this.valid(v)
ens this.valid(v + 1) ∧ result = v ∧ 0 ≤ result

{ cell.incr() }
static CellWrapper create(Cell cell)
req cell.valid(v)
ens cell.valid(v) ∧ result.valid(v)

{ new CellWrapper(new Cell(cell.value)) }
static CellWrapper createAlt(Cell cell)
req cell.valid(v)
ens cell.valid(v) ∧ result.valid(v)

{ new CellWrapper(cell) }
}
class Main {

static void main() {
Cell c := new Cell(0);
{c.valid(0)}
CellWrapper w := CellWrapper.create(c);
{c.valid(0) ∧ w.valid(0)}
c.incr();
{c.valid(1) ∧ w.valid(0)}
assert w.incr() = 0

}
}

Fig. 15. The problem of method effect framing in the presence of aliasing

that the truth of assertion o.valid(v) depends only on the values of the memory locations
associated with o, then they can conclude that the assert command is satisfied.

A concise and elegant way to achieve this, is by using separation logic [O’Hearn et al.
2001; Parkinson and Bierman 2005]. In separation logic, assertions are interpreted
under partial heaps, i.e. heaps that assign values to only a subset of the set of all
fields of all allocated objects. To ensure that each separation logic assertion has a well-
defined meaning when interpreted under any partial heap, direct field dereferences,
such as o.f = v, are not allowed. Rather, the only way to refer to the value of a field
in separation logic is using a points-to assertion o.f 7→ v, which holds under a partial
heap h if o.f is in the domain of h and its value is v. Correspondingly, the meaning
of a separation logic method specification is as follows: if the pre-state heap h can be
written as the disjoint union of some heap h1 that satisfies the precondition and some
frame hF, then the post-state heap h′ can be written as the disjoint union of some heap
h2 that satisfies the postcondition and the same frame hF. In other words, the method
modifies only the memory locations asserted by the precondition. The final ingredient
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class Cell(int value) {
predicate valid(int value) = (this.value 7→ value ∧ 0 ≤ value)
int incr()
req this.valid(v)
ens this.valid(v + 1) ∧ result = v ∧ 0 ≤ result

{ int value := this.value; this.value := value+ 1; value }
}
class CellWrapper(Cell cell) {
predicate valid(int value) = cell.valid(value)
int incr()
req this.valid(v)
ens this.valid(v + 1) ∧ result = v ∧ 0 ≤ result

{ cell.incr() }
static CellWrapper create(Cell cell)

req cell.valid(v)
ens cell.valid(v) ∗ result.valid(v)

{ new CellWrapper(new Cell(cell.value)) }
static CellWrapper createAlt(Cell cell)
req cell.valid(v)
ens cell.valid(v) ∧ result.valid(v)

{ new CellWrapper(cell) }
}
class Main {
static void main() {

Cell c := new Cell(0);
{c.valid(0)}
CellWrapper w := CellWrapper.create(c);
{c.valid(0) ∗ w.valid(0)}
c.incr();
{c.valid(1) ∗ w.valid(0)}
assert w.incr() = 0

}
}

Fig. 16. The problem of method effect framing in the presence of aliasing, addressed using separation logic

needed is the separating conjunction: the assertion P ∗ Q holds under a partial heap
h if h can be split into two disjoint subheaps h1 and h2 such that h1 satisfies P and h2

satisfies Q. In other words, P ∗Q holds only if P and Q assert distinct memory locations.
It follows that for any method call o.m(v) with precondition P and postcondition Q, and
for any assertion R, we have {P ∗R} o.m(v) {Q ∗R}.

Figure 16 shows the example program, with the specifications modified as described
above using separation logic. In this figure, predicate definitions and method specifica-
tions are to be interpreted in separation logic. Although the specifications have hardly
changed, they have acquired a more precise meaning. In particular, asserting predi-
cate o.valid(v) now asserts the memory locations associated with object o, in addition to
expressing that the object satisfies its invariant and that its value is v. Also, the spe-
cifications of the incr methods now specify that they modify only the memory locations
associated with the receiver object. Furthermore, the postcondition of method create
now asserts that objects result and cell are associated with disjoint sets of memory lo-
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interface Func {
predicate valid((num → num) v)
num apply(num x)
req this.valid(v)
ens this.valid(v) ∧ result = v(x)

}
class Util {

static num deriv(Func f,num x)
req f.valid(v)
ens f.valid(v) ∧ (smooth(v, x) ⇒ result ≈ D(v)(x))

{ f.apply(x+ 1)− f.apply(x) }
}
class ZeroFunc implements Func {

predicate valid((num → num) v) = (v = λx. 0)
num apply(num x) { 0 }

}
class Plus1Func(Func f) implements Func {
predicate valid((num → num) v) =
(∃f, vf. this.f 7→ f ∗ f.valid(vf) ∧ v = λx. vf(x) + 1)

num apply(num x) { f.apply(x) + 1 }
}
class Main {
static void main()
req true
ens true

{
Func f := new Plus1Func(new ZeroFunc());
{f.valid(λx. 1)}
assert Util.deriv(f, 42) ≈ 0

}
}

Fig. 17. Abstract predicate families for modular partial correctness verification of programs with dynamic
binding. D(v) denotes the derivative of function v. We assume appropriate definitions of smooth and ≈.

cations. It follows that the author of main can now conclude that the assert command
is satisfied.

3.2. Abstract predicate families; recursive abstract predicates

The abstract predicates mechanism can be extended straightforwardly for modular
partial correctness verification of programs with dynamic binding, as illustrated in
Figure 17. The abstract predicate declared by interface Func is in fact a family of ab-
stract predicates, indexed by the class of the receiver object [Parkinson and Bierman
2005]. Each class that implements the interface can provide a separate definition of
the abstract predicate for its own objects.

Notice that the abstract predicate family Func.valid is defined recursively: the defini-
tion of Plus1Func.valid refers to Func.valid. In this particular case, the meaning is unam-
biguous, thanks to the use of separating conjunction in the definition of Plus1Func.valid:
for any finite partial heap h, Plus1Func object o, and value v, o.valid(v) holds under h
only if the chain of Plus1Func objects starting at o in h, obtained by following the f field,
is acyclic.
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In fact, in practice, in most cases, recursion within an abstract predicate family as
well as mutual recursion between distinct abstract predicate families is guarded in
this way. However, such guarding is not in fact necessary for consistency, and for ge-
nerality, we adopt the well-formedness condition from the literature [Parkinson and
Bierman 2005] that requires only that the abstract predicate family definitions of a
program be monotonic. To understand this notion, we must first consider the notion of
an interpretation of the abstract predicates of a program. Such an interpretation ans-
wers the question, for any partial heap h, object o, predicate name p and argument list
v, of whether o.p(v) is true under heap h or not. We can therefore completely characte-
rize such an interpretation by the set of tuples (h, o, p, v) such that the interpretation
considers o.p(v) to be true under heap h.

If the abstract predicate family definitions of a program do not mention predicates
in their right-hand sides, then we can obtain the intended interpretation by simply
evaluating, for each object o of class C, predicate name p defined by C, argument list
v, and heap h, the right-hand side of the definition of p in C. If the right-hand side
evaluates to true, then we include (h, o, p, v) in the interpretation; otherwise, we do
not. However, if the predicate definitions of a program are recursive, then in order to
evaluate the right-hand sides, we need to have an interpretation already available to
us! Given such an interpretation I, evaluating the right-hand sides yields a new in-
terpretation F (I). The intended interpretation, then, is one that satisfies the equation
I = F (I). That is, the intended interpretation is a fixpoint of F .

The Knaster-Tarski theorem tells us that such a function F has a fixpoint if it is
monotonic, that is, if for all I ⊆ I ′, we have F (I) ⊆ F (I ′). In other words, a set of defi-
nitions is monotonic if interpreting additional predicate occurrences in the right-hand
sides as true preserves the truth of the right-hand sides in which they occur. A suffi-
cient condition for monotonicity is that predicates occur in definitions only in positive
positions, such as underneath conjunctions, disjunctions, or separating conjunctions,
but not underneath negation or on the left-hand side of implication.

An example of a definition that is excluded by this requirement is predicate
absurd() = ¬absurd(). Indeed, there is no truth value for absurd() such that the equation
absurd() = ¬absurd() holds. However, the definition predicate foo() = foo() is allowed.
Not only does this equation have a solution, in fact it has multiple solutions. For the
purposes of this article, we do not fix the meaning of such infinite recursions; our appro-
ach is compatible with any policy for such cases: taking the least fixpoint (foo() = false),
taking the greatest fixpoint (foo() = true), or any other policy, such as a mixed policy
where predicates may be marked as inductive or coinductive, and their meaning is
defined through a nested fixpoint construction.

In summary, by adopting the monotonicity requirement, we obtain consistency mo-
dularly: if each module developer ensures that their predicate definitions are monoto-
nic, then the set of predicate definitions of the program is consistent.

3.3. Verifying total correctness with separation logic

To perform modular verification of total correctness of object-oriented programs in the
presence of heap mutation, we simply combine the approach of Section 2 with the
separation logic approach described in this section. The only twist is that, to associate
levels with objects, instead of using ghost fields, we piggyback on the use of abstract
predicate families. That is, we extend the abstract predicate families used to verify
partial correctness with an additional parameter of type MethodBag for each level that
we wish to associate with the corresponding objects, as illustrated in Figure 18.

An example that actually performs heap mutation is shown in Figure 19. It is a
dynamically bound variant of the prototypical motivating example for separation logic:
in-place reversal of a linked list [Reynolds 2002].
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interface Func {
predicate valid((num → num) v,MethodBag applyLevel)
num apply(num x)
req this.valid(v, al)
level al
ens this.valid(v, al) ∧ result = v(x)

}
class Util {
static num deriv(Func f,num x)
req f.valid(v, al)
level {[Util.deriv]} ⊎ al
ens f.valid(v, al) ∧ (smooth(v, x) ⇒ result ≈ D(v)(x))

{ f.apply(x+ 1)− f.apply(x) }
}
class ZeroFunc implements Func {

predicate valid((num → num) v,MethodBag al) =
(v = (λx. 0) ∧ al = {[ZeroFunc.apply]})

num apply(num x) { 0 }
}
class Plus1Func(Func f) implements Func {

predicate valid((num → num) v,MethodBag al) =
(

∃f, vf, alf. this.f 7→ f ∗ f.valid(vf, alf)
∧ v = (λx. vf(x) + 1) ∧ al = {[Plus1Func.apply]} ⊎ alf

)

num apply(num x) { f.apply(x) + 1 }
}
class Main {
static void main()
req true
ens true

{
Func f := new Plus1Func(new ZeroFunc());
{f.valid((λx. 1), {[ZeroFunc.apply,Plus1Func.apply]})}
assert Util.deriv(f, 42) ≈ 0

}
}

Fig. 18. Associating levels with objects by piggybacking on abstract predicate families.

4. CONCURRENCY

So far, we have considered only sequential programs. In this section, we extend our
approach to achieve modular verification of total correctness of multithreaded object-
oriented programs.

In Section 4.1, we show that simple concurrent programs can be verified by sim-
ply combining our sequential approach with an approach for modular verification of
absence of deadlock from the literature. In Section 4.2, we extend our proposed spe-
cification style for sequential programs to obtain a specification style for concurrent
programs that allows modules to introduce private locks without changing their speci-
fication. In Section 4.3, we replace level clauses by first-class call permissions, which
can be transferred between threads, to improve the modularity of verifying programs
where threads cause work in other threads. Finally, in Section 4.4, we show how call
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interface List {
predicate valid(num∗ elems,MethodBag level)
List reverseAppend(List? other)
req this.valid(α, l) ∗ ListUtil.validList(other, β, ol)
level l

ens result.valid(α† · β, rl) ∧ rl ≤ l ⊎ ol
}
class ListUtil {
static predicate validList(List? list,num∗ elems,MethodBag level) =
(list = null ∧ elems = ǫ ∧ level = 0 ∨ list 6= null ∧ list.valid(elems, level))

static List reverseAppend(List? list, List? other)
req validList(list, α, l) ∗ validList(other, β, ol)
level {[ListUtil.reverseAppend]} ⊎ l

ens validList(result, α† · β, rl) ∧ rl ≤ l ⊎ ol
{ if list = null then other else list.reverseAppend(other) }
static List reverse(List? list)
req validList(list, α, l)
level {[ListUtil.reverse]} ⊎ l

ens validList(result, α†, rl) ∧ rl ≤ l
{ reverseAppend(list, null) }

}
class Cons(num value, List? tail) implements List {
predicate valid(num∗ elems,MethodBag level) =
(

∃v, t, α, tl. value 7→ v ∗ tail 7→ t ∗ ListUtil.validList(t, α, tl)
∧ elems = v · α ∧ level = {[Cons.reverseAppend]} ⊎ tl

)

List reverseAppend(List? other) { List t := tail; tail := other; ListUtil.reverseAppend(t, this) }
}

Fig. 19. In-place reversal of a linked list of numbers, with dynamic binding. Type List? is type List extended
with the special value null. num∗ denotes the type of sequences of numbers. − · − denotes concatenation,
and α† denotes the reverse of α.

permissions enable the verification of termination of lock-free fine-grained concurrent
algorithms, such as ones that use compare-and-swap loops.

4.1. Simple scenarios just work

Consider the simple example program of Figure 20. The fork c command executes
command c in a new thread; the type channel[τ ] denotes asynchronous FIFO channels
(queues) for communicating messages of type τ , with unbounded buffering.

By termination of a concurrent program, we mean that each execution reaches a
configuration where all threads have finished. (We say that the execution finishes, and
that it reaches a finished configuration.) In other words, by termination we mean the
absence of infinite executions and the absence of executions that reach a configuration
where some threads have not finished but no thread can make a step. (In the latter
case, we say that the execution deadlocks, and that it reaches a deadlocked configura-
tion.)

In the programming language we consider in this article, an infinite execution ne-
cessarily involves an infinite number of method calls. To verify that the number of
method calls in each execution is finite, it suffices to verify, just like in the sequential
case, that at every call, the callee’s level is below the caller’s. Indeed, at each point
during a concurrent execution, we can consider the multiset L obtained by replacing
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class ProdCons {
static void produce(channel[int] c, int n)
{ if n > 0 then { c.send(n); produce(c, n− 1) } }
static void consume(channel[int] c, int n)
{ if n > 0 then { c.receive(); consume(c, n− 1) } }
static void main() {
channel[int] c := new channel[int]();
fork consume(c, 10);
produce(c, 10)

}
}

Fig. 20. Simple producer-consumer example

each element of the multiset of all activation records of all threads by the pair (ℓ, s),
where ℓ is the level of the method being executed, and s is the syntactic size of the
part of the method body that remains to be executed. At each step of the execution, L
decreases in the multiset order obtained by ordering the pairs (ℓ, s) lexicographically,
with ℓ more significant than s. Indeed, at each call executed by a thread, the element
(ℓ, s) for the thread’s topmost activation record is replaced by two elements, (ℓ, s′) and
(ℓ′, s′′), with s′ < s and ℓ′ < ℓ; at a fork c step, where a thread forks a new thread to
execute a subcommand c, the element (ℓ, s) for the forking thread’s topmost activation
record is replaced by two elements of the form (ℓ, s′), where s′ < s; when a call returns,
an element is removed. At each other step, the element (ℓ, s) for the running thread’s
topmost activation record is replaced by (ℓ, s′), with s′ < s. By well-foundedness of
multiset order, we have that the execution is finite.

It remains, then, to verify absence of deadlock. For this, we adopt the approach of
Leino et al. [2010], as later presented more elegantly by Boström and Müller [2015],
for verifying absence of deadlock of programs involving locks, channels, and joinable
threads, originally proposed in the context of the Chalice programming language and
verification system; we will refer to it as the Chalice approach. Specifically, we consider
the following concurrency constructs:

τ ::= · · · | thread[τ ] | lock | channel[τ ]
c ::= · · · | fork c | e.join() | new lock() | new channel[τ ]()

| e.acquire() | e.release() | e.send(e) | e.receive()

The fork c command yields a thread identifier that can be used to join the forked
thread.

In the Chalice approach, performing a receive operation on a channel consumes a
credit for this channel, which can be thought of as a receive permission. At any point
in time, the total number of credits for a channel in the system equals the number of
messages in the channel’s buffer plus the number of obligations to send on the channel
that threads have taken on. When a receive operation blocks, the receiving thread is
effectively waiting for a thread holding an obligation to perform a send operation on
the channel. A thread may at any time take on such an obligation. This ghost operation
also creates a credit. A credit is also created by sending. A credit can be used to receive
or to cancel out a send obligation.

Similarly, by successfully acquiring a lock, a thread takes on an obligation to release
the lock, and a joinable thread has an obligation to eventually terminate. Each thread
must discharge all of its obligations (except for its obligation to terminate) before ter-
minating.
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A blocked thread is blocked on a join operation, a lock operation, or a receive opera-
tion. We can think of such a thread as waiting for another thread: the thread holding
the obligation to terminate, release the lock, or send on the channel6, respectively.
Therefore, in a deadlocked configuration, necessarily there is a cycle of threads, each
of which is waiting on the next. This is prevented by assigning to each thread, channel,
and lock (i.e. each potential target of a wait operation) a wait level, and by allowing a
thread to perform a wait operation only if the wait level of the target is less7 than the
wait levels of the thread’s obligations (i.e. its own wait level as a target for join opera-
tions, the wait levels of the channels for which it holds send obligations, and the wait
levels of the locks which it holds), assuming that the less-than relation on wait levels
is a strict partial order.

Indeed, consider the set B of blocked threads of the deadlocked configuration. Now
consider the set of the wait levels of the waitable objects (threads, locks, and channels)
they are waiting for. This finite set must have a minimal element w. So some blocked
thread t is waiting for an object ω whose wait level is w. It follows that some thread
t′ in the configuration must have ω as an obligation. Thread t′ cannot be a finished
thread, since finished threads must have discharged all of their obligations. So t′ must
itself be a blocked thread from the set B, waiting for some object ω′ whose wait level is
even less than w, which is a contradiction.

To verify adherence to this system, we extend our assertion language with constructs
for describing threads, locks, and channels8:

P,Q ::= · · · | t.thread(Q) | ℓ.lock(π, I) | ℓ.locked(π, I, t)
| χ.channel(P ) | χ.credit() | t.obs(O)

where t, ℓ, π, χ and O range over (expressions denoting) thread identifiers, lock identi-
fiers, fractions (rational numbers between zero, exclusive, and one, inclusive), channel
identifiers, and bags of waitable object (thread, lock, or channel) identifiers, respecti-
vely. t.thread(Q) asserts that thread t has postcondition Q, where Q is an assertion with
a free variable result denoting the thread result. ℓ.lock(π, I) asserts fractional owners-
hip [Boyland 2003; Bornat et al. 2005] with fraction π of lock ℓ with invariant I. I is an
assertion that describes the resources protected by the lock. ℓ.locked(π, I, t) additionally
denotes that thread t currently holds the lock. χ.channel(P ) asserts shared ownership of
channel χ with element predicate P , which is an assertion with a free variable element
denoting an element.9 Whenever the channel holds elements v, it owns the resources
described by ⊛v∈v P [v/element], the separating conjunction of P [v/element] for all v ∈ v.
χ.credit() asserts ownership of one credit (receive permission) for channel χ. t.obs(O)
asserts that some thread currently holds obligations O.

These assertions satisfy the following laws:

LOCKSPLITMERGE ℓ.lock(π1 + π2, I) ⇔ ℓ.lock(π1, I) ∗ ℓ.lock(π2, I)
LOCKDESTROY ℓ.lock(1, I) ⇒ I
CHANNELDUP χ.channel(P ) ⇒ χ.channel(P ) ∗ χ.channel(P )

CHANNELOB t.obs(O) ∗ χ.channel(P ) ⇔ t.obs(O ⊎ {[χ]}) ∗ χ.channel(P ) ∗ χ.credit()
In words: lock fractions can be split and merged; full lock ownership allows the owner
to destroy the lock, obtaining direct ownership of the protected resources; channel per-

6It does not matter whether one thinks of a thread blocked on a receive as waiting for all threads holding
an obligation to send on the channel or for some such thread.
7In Chalice: greater. We invert Chalice’s wait level order for synergy with our termination level order.
8The Chalice approach was formulated in the context of Chalice’s implicit dynamic frames logic; we here
present a translation of the approach into our separation logic setting.
9We do not consider destroying channels, so we do not use fractions to track sharing of channels.
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∀t′. t′ ⊢ {t′.obs(O′) ∗ P} c {t′.obs(0)}
t ⊢ {t.obs(O ⊎O′) ∗ P} fork c {t.obs(O)}

∀t′. w(t′) = w ⇒ t′ ⊢ {t′.obs(O′ ⊎ {[t′]}) ∗ P} c {t′.obs({[t′]}) ∗Q}
t ⊢ {t.obs(O ⊎O′) ∗ P} fork c {t.obs(O) ∗ result.thread(Q) ∧ w(result) = w}

t ⊢
{t.obs(O) ∗ t′.thread(Q) ∧ w(t′) ≺ O}
t′.join()
{t.obs(O) ∗Q}

t ⊢ {I} new lock() {result.lock(1, I) ∧ w(result) = w}

t ⊢
{t.obs(O) ∗ ℓ.lock(π, I) ∧ w(ℓ) ≺ O}
ℓ.acquire()
{t.obs(O ⊎ {[ℓ]}) ∗ ℓ.locked(π, I, t) ∗ I}

t ⊢
{t.obs(O ⊎ {[ℓ]}) ∗ ℓ.locked(π, I, t) ∗ I}
ℓ.release()
{t.obs(O) ∗ ℓ.lock(π, I)}

t ⊢ {true} new channel[τ ]() {result.channel(P ) ∧ w(result) = w}

t ⊢ {χ.channel(P ) ∗ P [v/element]} χ.send(v) {χ.credit()}

t ⊢
{t.obs(O) ∗ χ.channel(P ) ∗ χ.credit() ∧ w(χ) ≺ O}
χ.receive()
{t.obs(O) ∗ P [result/element]}

Fig. 21. Separation logic proof rules for the Chalice approach. w ≺ O means ∀o ∈ O. w < w(o).

missions can be duplicated; channel obligations can be created and destroyed, which
implies creating/destroying a credit.

Additionally, we assume a partially ordered set of wait levels and a function w that
maps each waitable object identifier to a wait level. We assume that for each wait level
w, there are infinitely many thread identifiers t such that w(t) = w, and similarly for
lock identifiers and channel identifiers. We will often need to express that a wait level
w is below the wait levels of a bag of obligations O. We denote this by w ≺ O; formally,
it means ∀o ∈ O. w < w(o).

For reasoning about concurrent programs, we use correctness judgments of the form
t ⊢ {P} c {Q}, denoting that running command c in thread t, starting in a state that
satisfies precondition P , does not fail or deadlock and finishes with a result value v
in a state that satisfies postcondition Q[v/result], under appropriate assumptions on
the environment. The proof rules governing the concurrency constructs are shown in
Figure 21.

There are two proof rules for thread creation: one for cases where the thread will
not be joined, and one for cases where it will. In both cases, the parent thread can
pass some of its obligations to the child. In the latter case, the child t′ is additionally
charged with an obligation t′, representing the obligation to terminate. w is the wait
level of the new thread; it can be picked freely. The child must dispose of all of the
obligations it received from its parent before it terminates.

Joining implies waiting, so the wait level of the target thread must be below the
joining thread’s obligations.

Creating a lock consumes the lock invariant. A wait level w for the lock can be picked
freely.
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class ProdCons {
static void produce(channel[int] c, int n)
req 0 ≤ n ∧ obs({[n · c]}) ∗ c.channel(true)
level {[ProdCons.produce]}+ n
ens obs(0)

{ if n > 0 then { c.send(n); produce(c, n− 1) } }
static void consume(channel[int] c, int n)
req 0 ≤ n ∧ obs(0) ∗ c.channel(true) ∗ n · c.credit
level {[ProdCons.consume]}+ n
ens obs(0)

{ if n > 0 then { c.receive(); consume(c, n− 1) } }
static void main()

req obs(0)
level {[ProdCons.main]}
ens obs(0)

{
channel[int] c := new channel[int]();
{obs(0) ∗ c.channel(true)}
CHANNELOB

{obs({[10 · c]}) ∗ 10 · c.credit ∗ c.channel(true)}
fork consume(c, 10);
{obs({[10 · c]}) ∗ c.channel(true)}
produce(c, 10)

}
}

Fig. 22. Simple producer-consumer example, verified

When a thread acquires a lock, its thread identifier is recorded as an argument of
the locked assertion. This ensures that the same thread releases the lock, as required
by most lock implementations.

Sending on a channel produces a credit, and receiving consumes it.
We are now ready to verify the example program of Figure 20. An annotated ver-

sion is shown in Figure 22. Note: in annotations, we denote the current thread by
currentThread. We use obs(O) as an abbreviation for currentThread.obs(O).

Figure 23 shows an example that illustrates locking, lock invariants, thread joining,
and join permissions that specify thread postconditions, and that requires a careful
choice of wait levels. The reason why this program is deadlock-free is that each thread
acquires the locks in descending order. Therefore, any valid proof of this program must
assign wait levels to the locks correspondingly. Indeed, if a thread waits for a lock
while holding another lock, the former lock’s wait level must be below the latter’s.
Additionally, each thread’s wait level must be greater than the levels of the objects
that thread waits for.

4.2. Hiding private locks by using termination levels to order locks

In the examples above, we used req obs(0) ens obs(0) as the specification for method
main. Now, suppose these example programs are part of larger programs and these main
methods are called while the caller is holding some obligations. The above specification
for main does not allow us to verify such programs, even though such calls of main are
equivalent to no-ops and perfectly safe.
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class Counter(int n) {}
class Dining {
static void main()
req obs(0)
ens obs(0)

{
Counter c1 := new Counter(0); lock fork1 := new lock(); {w(fork1) = 1}
Counter c2 := new Counter(0); lock fork2 := new lock(); {w(fork2) = 2}
Counter c3 := new Counter(0); lock fork3 := new lock(); {w(fork3) = 3}
{obs(0) ∗ fork1.lock(1, c1.n 7→ ) ∗ fork2.lock(1, c2.n 7→ ) ∗ fork3.lock(1, c3.n 7→ )}
thread philo1 := fork {
{obs({[philo1]}) ∗ fork1.lock(1/2, c1.n 7→ ) ∗ fork2.lock(1/2, c2.n 7→ )}
fork2.acquire(); c2.n := c2.n+ 1;
{

obs({[philo1, fork2]}) ∗ fork1.lock(1/2, c1.n 7→ )
∗ fork2.locked(1/2, c2.n 7→ , philo1) ∗ c2.n 7→

}

fork1.acquire(); c1.n := c1.n+ 1;
{

obs({[philo1, fork2, fork1]}) ∗ fork1.locked(1/2, c1.n 7→ , philo1) ∗ c1.n 7→
∗ fork2.locked(1/2, c2.n 7→ , philo1) ∗ c2.n 7→

}

fork1.release(); fork2.release()
{obs({[philo1]}) ∗ fork1.lock(1/2, c1.n 7→ ) ∗ fork2.lock(1/2, c2.n 7→ )}

}; {w(philo1) = 4}
{

fork1.lock(1/2, c1.n 7→ ) ∗ fork2.lock(1/2, c2.n 7→ ) ∗ fork3.lock(1, c3.n 7→ )
∗ philo1.thread(fork1.lock(1/2, c1.n 7→ ) ∗ fork2.lock(1/2, c2.n 7→ )) ∗ obs(0)

}

thread philo2 := fork {
fork3.acquire(); c3.n := c3.n+ 1;
fork2.acquire(); c2.n := c2.n+ 1;
fork2.release(); fork3.release()

}; {w(philo2) = 4}
thread philo3 := fork {

fork3.acquire(); c3.n := c3.n+ 1;
fork1.acquire(); c1.n := c1.n+ 1;
fork1.release(); fork3.release

}; {w(philo3) = 4}
philo1.join(); philo2.join(); philo3.join()
{obs(0) ∗ fork1.lock(1, c1.n 7→ ) ∗ fork2.lock(1, c2.n 7→ ) ∗ fork3.lock(1, c3.n 7→ )}
{obs(0) ∗ c1.n 7→ ∗ c2.n 7→ ∗ c3.n 7→ }

}
}

Fig. 23. Dining philosophers example illustrating the use of lock invariants, join permissions that specify
thread postconditions, and wait levels. Here, we assume the wait levels include the natural numbers.

For programs such as the ones above, this problem can be solved easily, if we assume
that the set of wait levels is such that for every finite subset, there is a wait level that
is below it. We modify the specification of main to req obs(O) ens obs(O) and we pick
as the wait levels for the waitable objects created internally some arbitrary wait levels
that are below O.

However, consider now the module of Figure 24. We would like to devise a
specification for this module that allows for maximum reuse. Notice that method
sqrtCached differs from the main methods above in that it acquires a pre-existing
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class Math {
public static num sqrt(num x)
{ · · · expensive computation · · · }
private static final HashMap[num,num] sqrtCache := new HashMap[num,num]()
private static final lock sqrtCacheLock := new lock()
public static num sqrtCached(num x) {
sqrtCacheLock.acquire();
if ¬sqrtCache.containsKey(x) then

sqrtCache.put(x, sqrt(x));
num result := sqrtCache.get(x);
sqrtCacheLock.release();
result

}
}

Fig. 24. A module that uses a private lock

lock, with a pre-determined wait level. Therefore, it does not satisfy the specification
req obs(O) ens obs(O).

To solve this problem, we propose to use our termination levels as a basis for a pro-
gram’s wait levels. In particular, we propose to use as the set of wait levels the pairs
(ℓ, wL) of multisets of method names ℓ and local wait levels wL, lexicographically or-
dered, with ℓ more significant than wL. Correspondingly, we propose the specification
style where each method asserts in its precondition obs(O)∧ ℓ ≺ O, where ℓ is the met-
hod’s level (as specified in its level clause) and ℓ ≺ O means ∀(ℓ′, wL) ∈ w(O). ℓ < ℓ′.
That is, each method should require that the current thread’s obligations are above
its own termination level. If each module assigns to its internal waitable objects wait
levels based on its own termination level, then this specification style allows each mo-
dule to wait on its own waitable objects, as well as to call into lower modules while
holding obligations on its own waitable objects.

Figure 25 shows this specification style applied to the example of Figure 24. For
simplicity, we turned the static fields into instance fields. The ghost method allows the
assertion o.valid, for Math objects o, to be duplicated arbitrarily.

Since this specification style is not burdensome for callers or callees, we can, at
no significant cost, apply this style to the specifications of all methods, even those
whose current implementation does not involve waitable objects at all. This enables
module authors to introduce private locks into modules without changing the module’s
specification. Indeed, notice in Figure 25 that the specification of sqrt and of sqrtCached
are entirely analogous; callers cannot tell which one is using private locks.

4.3. Call permissions to support threads causing work in other threads

Notice that in the termination verification approach based on level clauses, a thread’s
level (i.e. the multiset obtained by replacing each element of the multiset of the
thread’s activation records by a pair (ℓ, s) where ℓ is the level of the method being
executed and s is the syntactic size of the part of the method body that remains to
be executed, ordered lexicographically, with ℓ more significant than s) is destined to
follow a descending chain in the multiset order, regardless of communication with or
interference from other threads. This can be burdensome.

Consider for example the program of Figure 26. Class ThreadPool implements a sim-
ple single-thread thread pool. When using level clauses, a level value bounding the
number of tasks that will be submitted to the thread pool, as well as bounding the
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class Math(final HashMap[num,num] sqrtCache,final lock sqrtCacheLock) {
predicate valid() =
(

∃π. sqrtCacheLock.lock(π, sqrtCache.valid())
∧ w(sqrtCacheLock) = ({[Math.sqrtCached]}, 0)

)

public static Math create()
req obs(O) ∧ {[Math.create]} ≺ O
level {[Math.create]}
ens result.valid() ∗ obs(O)

{
HashMap[num,num] sqrtCache := new HashMap[num,num]();
lock sqrtCacheLock := new lock();
new Math(sqrtCache, sqrtCacheLock)

}
public ghost void duplicate()

req valid()
ens valid() ∗ valid()

{ }
public num sqrt(num x)
req valid() ∗ obs(O) ∧ {[Math.sqrt]} ≺ O ∧ 0 ≤ x
level {[Math.sqrt]}
ens obs(O) ∧ result ≈ √

x
{ · · · expensive computation · · · }
public num sqrtCached(num x)

req valid() ∗ obs(O) ∧ {[Math.sqrtCached]} ≺ O ∧ 0 ≤ x
level {[Math.sqrtCached]}
ens obs(O) ∧ result ≈ √

x
{
sqrtCacheLock.acquire();
if ¬sqrtCache.containsKey(x) then

sqrtCache.put(x, sqrt(x));
num result := sqrtCache.get(x);
sqrtCacheLock.release();
result

}
}

Fig. 25. The private locks example, verified (after eliminating static fields for simplicity)

levels of the tasks’ run methods, must be determined when the thread pool is created.
This could complicate the specification of modules that use the thread pool, such as
method doWork.

Specifically, a specification for method ThreadPool.addTask could be:

public void addTask(Task task)
req valid(level) ∗ task.valid(tl) ∧ tl < level ∧ level′ < level
level {[ThreadPool.addTask]}
ens valid(level′)
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interface Task { void run() }
class ThreadPool(final channel[Item] channel) {

private interface Item { void run() }
private void work() { channel.receive().run() }
private class TaskItem(final Task task) implements Item {

void run() { task.run();work() }
}
public void addTask(Task task) { channel.send(new TaskItem(task)) }
private class ShutdownItem implements Item { void run() {} }
public void shutDown() { channel.send(new ShutdownItem()) }
public static ThreadPool create() {
ThreadPool pool := new ThreadPool(new channel[Item]());
fork pool.work();
pool

}
}
class MyTask implements Task { void run() {} }
class Main {

static void doWork(ThreadPool pool) {
pool.addTask(new MyTask());
pool.addTask(new MyTask())

}
static void main() {
ThreadPool pool := ThreadPool.create();
doWork(pool);
pool.shutDown()

}
}

Fig. 26. Thread pool example

A corresponding specification for Main.doWork could be:

static void doWork(ThreadPool pool)
req pool.valid({[Main.doWork]} ⊎ level)
level {[Main.doWork]}
ens pool.valid(level)

Furthermore, a non-trivial ghost state construction would be necessary in the proof of
ThreadPool to maintain the link between the argument of the valid predicate and the
value of the level clause of method ThreadPool.work.

Generalizing over this example, work (in the form of method calls) may in general
be imposed on a thread by other threads. When using level clauses, the proof must
determine a bound on the amount of such work when the thread is created, and must
introduce a ghost state construction to track the level of the target thread in the origi-
nator threads.

To eliminate this burden, we propose first-class call permissions as a replacement for
level clauses. Specifically, we define an instrumented execution semantics for programs
where an execution state consists of a heap and a stock of call permissions, which is a
multiset of level values. Initially, the stock of call permissions is {[{[Main.main]}]}, i.e. it
contains a single call permission qualified by the name of the main method, considered
as a singleton multiset. In the instrumented semantics, each method call, before exe-
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cuting the method body, angelically picks an element from the stock of call permissions
and removes it. If at the point of a method call, the stock of call permissions is empty,
the instrumented execution goes wrong. Furthermore, before each execution step, the
instrumented semantics replaces the stock of call permissions by an angelically picked
lesser-or-equal one in multiset order. This means that each call permission is poten-
tially replaced by an arbitrary number of lesser call permissions. By saying that the
choices are angelic, we mean that if for each such choice in an execution, an option
exists such that the execution does not go wrong, then for each such choice some such
option is chosen.

It is easy to see that if an instrumented execution does not go wrong, then its erasure
(i.e. the corresponding non-instrumented execution) terminates. Indeed, suppose the
execution performs an infinite number of method calls. Then the sequence of the stocks
of call permissions before each method call forms an infinite descending chain, which
is impossible due to the well-foundedness of multiset order.

To prove termination of a program, then, it is sufficient to prove that no instrumen-
ted execution goes wrong, that is, that for each execution there exists a way to reduce
the stock of call permissions (or not) at each execution step such that there exists a
call permission to remove from the stock at each method call.

To prove this modularly, we use separation logic to assign ownership of call permissi-
ons to threads, just like we assign ownership of memory locations to threads. Just like
ownership of memory locations, ownership of call permissions can be passed between
threads through locks and channels.

We introduce the assertion cp(ℓ), where ℓ is a level value, to denote ownership of
a call permission ℓ. We modify the proof rule for method calls so that it asserts the
availability of a call permission for removal:

o.m(v) req P ens Q

{cp( ) ∗ P} o.m(v) {Q}
Furthermore, we modify the rule of consequence, to allow weakening of the locally ow-
ned stock of call permissions (in order to exchange a call permission for a number of
lesser call permissions, for the sake of making call permissions available for consump-
tion by method calls or for distribution to other threads):

P ⊑ P ′ {P ′} c {Q} Q ⊑ Q′

{P} c {Q′}
where

P ⊑ P ′ ⇔ ∀h,Λ. h,Λ � P ⇒ ∃Λ′ ≤ Λ. h,Λ′
� P ′

where h,Λ � P means that assertion P is satisfied by partial heap h and stock of call
permissions (i.e. multiset of level values) Λ. For example, if methods Foo.foo and Bar.bar
are less than Main.main in the order on method names, then we have cp({[Main.main]}) ⊑
2 · cp({[Foo.foo]}) ∗ 3 · cp({[4 ·Foo.foo, 5 ·Bar.bar]}), because {[{[Main.main]}]} > {[2 · {[Foo.foo]}, 3 ·
{[4 · Foo.foo, 5 · Bar.bar]}]}.

We move from specifications of the form req P level ℓ ens Q to specifications of the
form req P ∗ cp(ℓ) ens Q.

We illustrate this approach by applying it to the thread pool example. Figures 27
and 28 show this example with annotations proving absence of infinite recursion. (To
focus on call permissions, we postpone proving absence of deadlocks; see below for
a full proof.) Notice that all methods’ specifications adhere to the specification style
proposed in Section 2, except that the level is used to qualify a call permission asserted
in the precondition instead of being used in a level clause, and except for method
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interface Task {
predicate valid(MethodBag level)
void run()

req valid(l) ∗ cp(l)
ens true

}
class ThreadPool(final channel[Item] channel) {
predicate valid() = channel.channel(element.validItem())
private interface Item {

predicate validItem()
void run()
req valid() ∗ validItem()
ens true

}
private void work()

req valid() ∗ cp({[ThreadPool.work]})
ens true

{ channel.receive().run() }
private class TaskItem(final Task task) implements Item {

predicate validItem() =
(∃tl. task.valid(tl) ∗ cp({[TaskItem.run]} ⊎ tl))

void run() { task.run(); pool.work() }
}
public void addTask(Task task)
req valid() ∗ task.valid(tl) ∗ cp({[ThreadPool.addTask]} ⊎ tl)
ens valid()

{ channel.send(new TaskItem(task)) }
private class ShutdownItem implements Item {
predicate validItem() = true
void run() {}

}
public void shutDown()
req valid() ∗ cp({[ThreadPool.shutDown]})
ens true

{ channel.send(new ShutdownItem()) }
public static ThreadPool create()
req cp({[ThreadPool.create]})
ens result.valid()

{
ThreadPool pool := new ThreadPool(new channel[Item]());
fork pool.work();
pool

}
}

Fig. 27. Annotated thread pool module (ignoring deadlocks)

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Modular Termination Verification of Single-Threaded and Multithreaded Programs 0:33

class MyTask implements Task {
predicate valid(MethodBag level) = (level = {[MyTask.run]})
void run() {}

}
class Main {
static void doWork(ThreadPool pool)
req pool.valid() ∗ cp({[Main.doWork]})
ens pool.valid()

{
{pool.valid() ∗ 4 · cp({[ThreadPool.addTask,MyTask.run]})}
pool.addTask(new MyTask());
{pool.valid() ∗ 2 · cp({[ThreadPool.addTask,MyTask.run]})}
pool.addTask(new MyTask())
{pool.valid()}

}
static void main()

req cp({[Main.main]})
ens true

{
{2 · cp({[ThreadPool.create]}) ∗ 2 · cp({[Main.doWork]}) ∗ 2 · cp({[ThreadPool.shutDown]})}
ThreadPool pool := ThreadPool.create();
{pool.valid() ∗ 2 · cp({[Main.doWork]}) ∗ 2 · cp({[ThreadPool.shutDown]})}
doWork(pool);
{pool.valid() ∗ 2 · cp({[ThreadPool.shutDown]})}
pool.shutDown()

}
}

Fig. 28. Annotated thread pool client (ignoring deadlocks)

Item.run, which is internal to the ThreadPool implementation. Indeed, most methods’
preconditions assert a call permission qualified with the method’s name (considered
as a singleton multiset). This allows these methods to perform any number of calls of
lesser methods. For example, consider method Main.main. Each of the three calls in its
body needs two call permissions: one that is removed from the stock of call permissions
at the start of the call by the instrumented execution, and one that is asserted by the
callee’s precondition. Therefore, at the top of the body of Main.main we use the rule of
consequence shown above to reduce the incoming call permission cp({[Main.main]}) to
the six call permissions needed by the body.

Similarly, to prove method Main.doWork, we use the rule of consequence to reduce the
incoming call permission cp({[Main.doWork]}) to four copies of cp({[ThreadPool.addTask,
MyTask.run]}), the level required by ThreadPool.addTask’s specification. Two copies are
consumed at the start of the two calls, and two are passed to the callee, as required by
its precondition.

The added value of call permissions over level clauses is illustrated by the proof of
method ThreadPool.work. It retrieves an item from the channel and calls its run method.
However, ThreadPool.work’s specification asserts a call permission qualified only with
its own name. In the corresponding situation when using level clauses, this would be
problematic. With call permissions, this problem is solved easily. Consider in particular
the specification of method Item.run. Notice that it does not directly assert any call
permissions! Rather, any call permissions needed by this method are asserted through
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the validItem predicate. See in particular the definition of validItem in class TaskItem.
The resources represented by this predicate are retrieved from the channel as part of
the receive operation in method work. They were transferred to the channel as part of
the send operation in method addTask.

A full proof of the thread pool example, including the proof of absence of deadlock,
is shown in Figures 29 and 30. The additional annotations follow the style proposed
in Section 4.2: each method asserts obs(O) in its precondition and its postcondition,
and asserts in its precondition ℓ ≺ O, where ℓ is the method’s level. The novel element
in this example is the abstract specification of the obligations O′ associated with the
thread pool, taken on by the client thread when calling ThreadPool.create, and dischar-
ged when calling ThreadPool.shutDown. In the ThreadPool implementation shown, O′ is
simply the thread pool’s channel. However, in the specification we allow for multiple
waitable objects to be associated with the thread pool. Furthermore, an implementa-
tion might want to associate distinct wait levels with its waitable objects, ordered in
a particular way. At the same time, the client also has requirements about the wait
levels of the obligations taken on. In particular, they should be above the levels of any
methods called by the client. For these reasons, the specification of ThreadPool.create
allows the client to specify a set W of available wait levels. To accomodate arbitra-
rily complex implementations, including ones that are internally built from arbitrarily
many layers of abstraction, the specification requires this set to be infinite, and to be
such that there are levels above and below any level, and between any two ordered le-
vels. (For conciseness, we express this by requiring that W be order-isomorphic to the
rational numbers.) To satisfy these requirements, method Main.main uses the rational
numbers as its local wait levels, and it specifies for W the set of all of the wait levels
at its own termination level.10

4.4. Compare-and-swap loops

In Section 4.3, we showed how call permissions enable one to elegantly prove termi-
nation of programs where threads cause work in other threads by effectively sending
code for execution to other threads. Another way that a thread can cause work in anot-
her thread is by interfering with the other thread’s execution of a lock-free concurrent
algorithm, forcing the other thread to abandon the execution and try again.

Consider the example of a lock-free stack in Figure 31. We only show the push ope-
ration; the pop operation is similar. We use the atomic block notation 〈c〉 to denote
the command c executed atomically. The second atomic block in the example can be
implemented using a compare-and-swap machine instruction, available on most archi-
tectures. The code exhibits a typical compare-and-swap loop: it reads a shared variable,
computes a new value, and then attempts to install the new value, under the condition
that the variable was not changed by another thread in the meantime. Otherwise, it
tries again.

Fine-grained concurrent data structures such as this one are used to distribute work
in parallel computing. A data structure is lock-free if, at any point, there exists a num-
ber N such that if any of the threads currently accessing the data structure is sche-

10This approach relies on the assumption that the properties we stated as requirements for the set of wait
levels available to the implementation are sufficient to verify any implementation. While we believe this
is the case, we could eliminate this assumption by adopting the following alternative approach. The spe-
cification of ThreadPool would expose the existence of some partially ordered set S (e.g. by declaring it
as a static final ghost field ThreadPool.waitLevels of type POSet). The specification of ThreadPool.create
would then allow the client to specify an order-preserving injection h of S into the wait levels, such that
{[ThreadPool.create]} ≺ h(S). The example client would choose S as its set of local wait levels, and would
define h by h(w) = ({[Main.main]}, w). The example implementation would define S as a singleton set, since
it needs only one wait level. We thank the anonymous reviewer who suggested this approach.
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interface Task {
predicate valid(MethodBag level)
void run()

req obs(O) ∗ valid(l) ∗ cp(l) ∧ l ≺ O
ens obs(O)

}
class ThreadPool(final channel[Item] channel) {
predicate valid(ObligationBag O) =

channel.channel(element.validItem()) ∧O = {[channel]}
private interface Item {

predicate validItem()
void run()
req obs(0) ∗ valid( ) ∗ validItem()
ens obs(0)

}
private void work()

req obs(0) ∗ valid( ) ∗ channel.credit ∗ cp({[ThreadPool.work]})
ens obs(0)

{ channel.receive().run() }
private class TaskItem(final Task task) implements Item {

predicate validItem() =
(∃tl. channel.credit ∗ task.valid(tl) ∗ cp({[TaskItem.run]} ⊎ tl))

void run() { task.run(); pool.work() }
}
public void addTask(Task task)
req obs(O) ∗ valid(O′) ∗ task.valid(tl) ∗ cp({[ThreadPool.addTask]} ⊎ tl)

∧ {[ThreadPool.addTask]} ≺ O
ens obs(O) ∗ valid(O′)

{ channel.send(new TaskItem(task)) }
private class ShutdownItem implements Item {
predicate validItem() = true
void run() {}

}
public void shutDown()
req obs(O ⊎O′) ∗ valid(O′) ∗ cp({[ThreadPool.shutDown]})

∧ {[ThreadPool.shutDown]} ≺ O ⊎O′

ens obs(O)
{ channel.send(new ShutdownItem()) }
public static ThreadPool create()
req obs(O) ∗ cp({[ThreadPool.create]}) ∧ {[ThreadPool.create]} ≺ O

∧W ∼=< Q ∧ {[ThreadPool.create]} ≺ W
ens ∃O′. obs(O ⊎O′) ∗ result.valid(O′) ∧ w(O′) ⊆ W

{
ThreadPool pool := new ThreadPool(new channel[Item]);
fork pool.work();
pool

}
}

Fig. 29. Thread pool module: full termination proof
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class MyTask implements Task {
predicate valid(MethodBag level) = (level = {[MyTask.run]})
void run() {}

}
class Main {
static void doWork(ThreadPool pool)
req obs(O) ∗ pool.valid(O′) ∗ cp({[Main.doWork]}) ∧ {[Main.doWork]} ≺ O
ens obs(O) ∗ pool.valid(O′)

{
pool.addTask(new MyTask());
pool.addTask(new MyTask())

}
static void main()
req obs(O) ∗ cp({[Main.main]}) ∧ {[Main.main]} ≺ O
ens obs(O)

{
ThreadPool pool := ThreadPool.create(); W = {{[Main.main]}} ×Q
doWork(pool);
pool.shutDown()

}
}

Fig. 30. Thread pool client: full termination proof

class Node(int value,Node next) {}
class Stack(Node head) {
void pushIter(int value) {
Node head := 〈this.head〉;Node n := new Node(value, head);
Node head1 :=
〈 Node head1 := this.head; if head1 = head then this.head := n; head1 〉;

if head1 6= head then this.pushIter(value)
}
void push(int value) { this.pushIter(value) }

}

Fig. 31. A lock-free stack. (The pop operation is similar and is not shown.)

duled for N steps (potentially with steps by other threads interleaved between these
N steps), then at least one of the threads accessing the data structure will make pro-
gress. Note that this is not the case for data structures that use locks, since if the
thread holding the lock is not scheduled, no other thread can make progress.

Our approach for verifying absence of infinite executions can be used to verify ter-
mination of programs involving compare-and-swap loops like the one above. A proof
outline for the example program is shown in Figure 32.

The proof is based on the observation that whenever an operation has to try again,
then some other concurrent operation has succeeded. The idea is then that the opera-
tion that succeeds supplies a call permission to each of the concurrent operations that
it causes to fail, to enable them to try again. Since it is not known beforehand how
many concurrent operations will be in progress at that time, method push passes a call
permission qualified with level {[Stack.pushIter]} + 1 to pushIter, which can be reduced

ACM Transactions on Programming Languages and Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



Modular Termination Verification of Single-Threaded and Multithreaded Programs 0:37

class GhostBag[T] {
predicate GhostBag(Bag[T] elems)
predicate GhostBagHandle(T elem)
void add(T value)
req this.GhostBag(elems)
ens this.GhostBag(elems ⊎ {[value]}) ∗ this.GhostBagHandle(value)

void remove(T value)
req this.GhostBag(elems) ∗ this.GhostBagHandle(value)
ens this.GhostBag(elems− {[value]}) ∧ value ∈ elems

}
class Stack(Node head,final GhostBag[Node] readers) {
static predicate nodes(Node n) =

∃next. n = null ∨ n.value 7→ ∗ n.next 7→ next ∗ nodes(next)
predicate spaceInv() =

∃h, rs. head 7→ h ∗ nodes(h) ∗ readers.GhostBag(rs)
∗ |{[r ∈ rs | r 6= h]}| · cp({[Stack.pushIter]})

predicate valid() = atomic space(spaceInv())
ghost void duplicate()
req valid()
ens valid() ∗ valid()

{}
void pushIter(int value)

req valid() ∗ cp({[Stack.pushIter]}+ 1)
ens valid()

{
Node head := 〈
Node head := this.head; readers.add(head);head

〉;
{

atomic space(spaceInv()) ∗ readers.GhostBagHandle(head)
∗ cp({[Stack.pushIter]}+ 1)

}

Node n := new Node(value, head);
Node head1 := 〈
readers.remove(head);
Node head1 := this.head;
if head1 = head then this.head := n;
head1

〉;
{

atomic space(spaceInv())
∗ (head1 = head ∨ (cp({[Stack.pushIter]}) ∗ cp({[Stack.pushIter]}+ 1)))

}

if head1 6= head then pushIter(value)
}
void push(int value)

req valid() ∗ cp({[Stack.push]})
ens valid()

{ pushIter(value) }
}

Fig. 32. Proof outline for the lock-free stack example
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class OS {
static void beep()

}

class Main {
static void iter()
{ OS.beep(); iter() }
static void main()
{ iter() }

}

Fig. 33. A program that is non-terminating but live

to an arbitrary number of {[Stack.pushIter]} permissions. Note: a pushIter execution does
not use this call permission for its own recursive calls; rather, it uses it only when
it succeeds, to supply the required call permissions to the concurrent operations. At
that point, it reduces the permission to n lesser permissions, where n is the number of
concurrent operations in progress at that time.

To verify the atomic blocks, the proof uses the notion of an atomic space: similar to
a lock, an atomic space has an atomic space invariant that describes resources that
are being shared between multiple threads and that should only be accessed through
atomic blocks. The ghost operation of creating an atomic space consumes the resour-
ces described by the atomic space invariant, and produces an atomic space handle
atomic space(I), where I is the atomic space invariant. To allow multiple threads to
access an atomic space concurrently, an atomic space handle can be duplicated arbi-
trarily. Formally:

I ⊑ atomic space(I) atomic space(I) ⇒ atomic space(I) ∗ atomic space(I)

{I ∗ P} c {I ∗Q}
{atomic space(I) ∗ P} 〈c〉 {atomic space(I) ∗Q}

The proof tracks the set of operations in progress (i.e. the threads that have perfor-
med the atomic read but have not yet performed the corresponding compare-and-swap)
through a ghost object readers, an instance of ghost class GhostBag, whose specification
is shown in Figure 32. The ghost bag is owned by the same atomic space that owns
the stack’s head field and the linked list of nodes (described by the nodes predicate).
The GhostBagHandle predicate that a thread receives when it inserts an element into
the ghost bag enables it to “remember” that it has an element in the ghost bag in the
interval between the atomic operations. The ghost bag in particular contains, for each
operation in progress, the value of the head field that it read. The atomic space addi-
tionally holds, for each operation in progress whose head value is out of date, a call
permission. As a failed operation removes its element from the ghost bag, it can also
extract a call permission from the atomic space, enabling it to try again.

5. LIVENESS

Many programs, such as servers, are not supposed to terminate. Still, they should be
responsive: if there are pending requests, the server should eventually respond. More
generally, a program should always eventually interact with its environment; we call
this liveness.

For example, consider the program of Figure 33. This program does not terminate;
however, it is live.

There is a simple way to encode this basic notion of liveness as a termination pro-
perty. Suppose we wish to verify that a program always eventually performs an I/O
operation. Then it is sufficient to prove that the program terminates, assuming that
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class OS {
static predicate IO(int n)
static void beep()

req IO(n)
ens 0 < n ∧ IO(n− 1)

}

class Main {
static void iter()

req IO(n) ∗ cp({[Main.iter]}+ n)
ens false

{ OS.beep(); iter() }
static void main()

req IO(n) ∗ cp({[Main.main]})
ens false

{ iter() }
}

Fig. 34. Liveness verification example

the Nth I/O operation causes the program to terminate, for some unknown but fixed
N . This can be encoded into a specification of our approach as shown in Figure 34.

The above approach allows one to verify that a program performs an infinite se-
quence of I/O operations. We may additionally wish to verify that this sequence sa-
tisfies certain conditions. For example, we may wish to verify that a server does not
starve any of its clients, i.e. that each request is eventually matched by a response. We
do not propose a solution to this problem here; however, it seems that combining the
approach we propose here for verifying basic liveness (as defined above) with the I/O
verification approach we proposed in recent work [Penninckx et al. 2015] would serve
as a good basis for addressing this problem.

6. TOOL SUPPORT

We integrated the logic into the program verification tool VeriFast [Vogels et al. 2015],
so that since version 18.02 [Jacobs 2018], it now supports modular verification of ter-
mination of C and Java programs.

For Java programs, we introduced the method specification clause terminates, to
indicate that a method should terminate. Furthermore, we introduced the predicate
call perm(ℓ), where ℓ is a list of Class objects. The order of the elements in the list is
not significant; conceptually, it denotes a multiset. In the current preliminary imple-
mentation, we use Class objects as level ingredients rather than method names, for
simplicity. This coarser granularity was sufficient to encode the examples of the paper,
except that for encoding some examples we had to split a class up into multiple classes.

In order to reduce specification overhead for methods that do not perform callbacks,
our implementation offers a ghost command that allows a method to produce out of
thin air any call permission whose bag of Class objects is less than its own Class

object (considered as a singleton bag). Furthermore, no call permission is consumed
for upcalls. In exchange, our implementation consumes at a (non-upcall) call site not
just any call permission, but only a call permission qualified by a level greater than or
equal to the Class object of the method being called:

{[classOf(o)]} ≤ ℓ instance m(v) req P ens Q

⊢C {cp(ℓ) ∗ P} o.m(v) {Q}

⊢C {P} c {Q}
⊢C instance m(x) req P ens Q { c } ok

ℓ < {[C]}
⊢C {true} produce cp {cp(ℓ)}
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The VeriFast distribution includes, in the directory examples/java/termination, veri-
fied encodings of all of the examples of this paper.11

We are not aware of unsoundnesses in our current implementation, except that
successful verification does not guarantee absence of deadlock in executions where
exceptions occur. Indeed, in Java it is difficult to rule out deadlock completely. This is
because the Java language specification allows the VM to throw a VirtualMachineError
exception at any time [JLS, Java SE 8 Ed., §11.1]. Furthermore, if an exception rea-
ches the top of a thread, the thread terminates but the program does not. Therefore,
if a thread that holds an obligation to send receives a VirtualMachineError and this ex-
ception kills the thread, then any thread that waits on this obligation will deadlock.
The root problem is that Java does not properly propagate failures. In earlier work,
we proposed a language extension that would address this issue [Jacobs and Piessens
2009; Jacobs 2015].

7. DISCUSSION

In this section, we discuss a few ways to relax the approaches of the preceding sections.

The acyclic import graph requirement. In Sec. 2.1, we defined a less-than relation
between method names, by ordering them according to textual order in case of methods
declared by a single module, and according to the module import relation in case of
methods declared by distinct modules. Since we need this less-than relation to be a
partial order for our universe of levels to be well-founded, we assumed that the module
import graph is acyclic. However, we can support cycles in the import graph by allowing
a module author to mark each import as either implying an order relation (call it
strong), or not (call it weak). Then, we only consider strong import edges when defining
the less-than relation on method names, and we require acyclicity of the strong import
graph only. This does mean that a call of a static method along a weak import edge
is not an upcall and will not pass the level check if the methods have their default
specifications as suggested by our specification style; instead, the caller’s specification
will have to reflect the fact that it effectively performs a callback.

Conditional termination. The approaches of the preceding sections verify uncondi-
tional termination. However, it is easy to relax this so that specifications can express
conditional termination: simply add a top element ⊤ to the universe of levels, which is
greater than all levels, including itself. (This means the less-than relation is no longer
an order relation.) Then, in a method’s level clause, or to qualify a call permission,
use a conditional expression that evaluates to either ⊤ or some well-founded level,
depending on whether termination of the method is required under the particular ci-
rcumstances. Of course, care must then be taken that ⊤-qualified call permissions do
not leak to methods that should terminate.

8. RELATED WORK

We are not aware of existing approaches for modular specification and verification
of termination of object-oriented programs. However, work on modular verification of
termination in different settings does exist.

The proof assistant Coq includes a pure functional programming language with
higher-order functions. Coq checks that all functions terminate. However, Coq’s type
system prevents a function from being passed as an argument to itself. Our approach
supports methods that call themselves through dynamic binding, and can prove their
termination.

11Browsable online at https://github.com/verifast/verifast/tree/18.02/examples/java/termination
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Koka [Leijen 2014] is a functional programming language with effect inference, in-
cluding the divergence effect. However, the inference algorithm is limited: it rules out
recursion through the heap, which our approach supports.

Dafny [Leino 2010] is a programming language that supports verification of termi-
nation, with powerful metrics. However, Dafny does not support dynamic binding of
method calls.

Most similar to ours is the work, e.g. [Darvas and Müller 2006; Rudich et al. 2008;
Leino and Middelkoop 2009], on proving well-definedness of specifications for object-
oriented programs where the specifications themselves involve calls of methods of the
program being specified. In most such approaches, in order to ensure that such specifi-
cations make sense and that axioms generated from such specifications are consistent,
proof obligations are imposed to verify that methods called from specifications are pure
(i.e., side-effect-free) and that they terminate. The levels we associate with a data struc-
ture can be seen as a refinement of the depth of the ownership tree (a natural number)
used as a recursion measure by some of this work [Darvas and Müller 2006; Leino and
Middelkoop 2009]. In these approaches, the ownership graph is frozen for the duration
of the execution of a pure method, so if calls descend down an ownership tree, they
terminate. In our approach, however, to support non-pure methods that create new
data structures composed of lower-layer classes, we track not just the number of lay-
ers of which a data structure consists; rather, we also effectively track which modules
implement each layer.

CFML. However, most related to ours in terms of what it achieves is the work by
Charguéraud on CFML [Charguéraud 2011], an approach for the modular verification
of total correctness of sequential higher-order imperative ML programs. In the present
paper, we add features for verifying termination to a typical existing program logic for
partial correctness. In contrast, CFML removes from such a typical logic the features
that allow the verification of non-terminating programs in the first place. In particular,
CFML’s sole rule for function calls is essentially as follows:

{P} c[v/x] {Q}
{P} (λx. c) v {Q}

Furthermore, while CFML allows the use of (essentially) Hoare triples as assertions,
these cannot be self-recursive; for example, the predicate

P (f) = ∀f ′. {P (f ′)} f(f ′) {false}
is not expressible in CFML (whereas it is trivially expressible as an interface or a
class in our logic). This means that there is no need for step indexing-like measures
to assign a meaning to CFML’s Hoare triples, which in turn means that if a command
satisfies a Hoare triple, it terminates (whenever started in a state that satisfies the
precondition).

Notice that CFML’s proof rule for function calls means that proof trees are as deep
as the depth of recursion of the program (i.e., generally infinitely deep, even though,
since the program terminates, each path is finite). This is not a problem, since CFML
is shallowly embedded inside the higher-order proof assistant Coq, which means Coq’s
facilities for (well-founded) recursive definitions can be used to express the proof trees.
This yields a very powerful and very elegant logic, admittedly more elegant than the
one we propose here, since there is nothing like a level clause or a level check built into
the logic. Indeed, it seems that translations into ML of the examples of Sec. 2 can be
verified using CFML without the need to introduce anything like our levels.

Indeed, it seems that all proofs in the logic of Sec. 3 can be translated into CFML
proofs. The main complexity in such a translation is in translating the types of the
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program. Since interface and class definitions within a module are generally recursive
(since the interface and class names being defined can be used as parameter or return
types of the methods), this is not entirely trivial. One approach is to translate the
interfaces and classes of a module into a set of mutually recursively defined CFML
predicates, each indexed by a level. For example, the interface

interface Set { bool intersects(Set other) req P int
X level ℓintX ens Qint

X }
(where X represents the free variables of the method specification linking the pre-
condition, the level, and the postcondition) can be translated into a CFML predicate
roughly like this:

Setℓ(f) = ∀other, X. ℓ = ℓintX ⇒ Set<ℓ(other) ⇒ {P int
X } f(other) {Qint

X }
where Set<ℓ(f) means ∀ℓ′ < ℓ. Setℓ′(f). This works because the fact that the program
was verified using our logic means that nested calls will be at lower levels. Notice,
however, that this does not work for return types; one way to work around this is to
first translate the program and the proof into continuation-passing style (CPS).

The fact that a translation of our proofs into CFML seems to generally require a CPS
transformation, suggests an avenue for finding a proof that would be more elegant in
our approach than in CFML. However, so far we have failed to find such a proof.

Concurrency. Leino et al. [2010] proposed the approach for verifying absence of de-
adlock in programs with channels and locks which our approach incorporates. Bo-
ström and Müller [2015] proposed an approach for verifying finite blocking of non-
terminating concurrent programs. da Rocha Pinto et al. [2016] proposed an approach
for modular termination verification of lock-free fine-grained concurrent algorithms.
None of these works address the issue of modular verification of absence of infinite
recursion in the presence of dynamic binding, and none address the issue of allowing
transparent introduction of private locks.

Call permissions. Our call permissions are similar to the way Atkey [2011] extends
separation logic for amortized resource (e.g., heap space or execution time) analysis.
Since he is interested in enforcing particular resource bounds, he does not qualify his
permissions by arbitrary ordinals. Atkey’s resource analysis has been implemented in
CFML [Charguéraud and Pottier 2011].

Our call permissions can be seen as a straightforward extension of Atkey’s resources.
Our contribution, then, lies in the combination of this well-known idea with our levels
scheme to enable each module to create arbitrary numbers of call permissions.

Hoffmann et al. [2013] propose a concurrent separation logic with tokens, similar to
Atkey’s resources, to prove lock-freedom of concurrent data structures. In their appro-
ach, each thread starts with a particular number of tokens, given as a natural number
in terms of the number of threads in the system, and consumes one token per loop ite-
ration. When a thread needs to retry an operation because of interference from another
thread, a token is transfered from the interfering thread to allow it to do so. This way,
they prove that the total number of retries in the system is bounded, which implies
lock-freedom.

In Sec. 4.4, we prove termination of programs that involve compare-and-swap loops
in a similar way. Again, by qualifying our call permissions with ordinals chosen accor-
ding to our levels scheme, we achieve modular token accounting.

9. CONCLUSION

We propose an approach for the modular specification and verification of total correct-
ness properties of single-threaded and multithreaded object-oriented programs invol-
ving dynamically bound method calls. As far as we know, it is the first such approach.
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We propose a specification style that does not constrain implementations unnecessa-
rily. The style enables any module to acquire private locks. The approach supports
compare-and-swap loops. We sketch an encoding of liveness properties.

We have implemented tool support for our approach in a verification tool and va-
lidated it on a handful of small but challenging example programs. Further experi-
mentation is needed, however, to see if our approach conveniently handles all program
patterns.

APPENDIX

A. FORMALIZATION AND SOUNDNESS PROOF

In this appendix we formalize the key concepts and prove key properties, including
soundness of the program logics assumed in the paper. We formalize the material of
Sec. 2 in Sec. A.1 and the material of Sec. 3 and 4 in Sec. A.2.

A.1. Levels (Sec. 2)

In this section, we formalize the notions of module, module specification, and module
correctness used in Sec. 2, and we prove that if a well-typed program’s modules are
correct, then its executions terminate. Furthermore, we formalize the concepts used in
the specification styles of Sec. 2.

Because Sec. 2 considers only programs that do not update the heap, for the forma-
lization of this section we take a Featherweight Java [Igarashi et al. 2001]-like appro-
ach, where values of class or interface type are of the form new C(v) ⊳ I(v′), i.e. they
are tuples of field values v and ghost field values v′ rather than references pointing
into a heap. (This means the formal language of this section does not support an object
identity comparison operator; however, the formal language of the next section does.)

A machine-checked encoding of the definitions and proofs of this section into the
logic of the Coq proof assistant is available [Jacobs 2018].

A.1.1. Programs. We assume disjoint infinite sets I, C, M, F , G, and X of interface
names, class names, unqualified method names, field names, ghost field names, and
variable names, ranged over by symbols I, C, m, f , g, and x, respectively.

We define the set of method names as MethodNames = {C.m | C ∈ C,m ∈ M}.
A method precedence order ≺ ⊆ MethodNames × MethodNames (or method precedence
for short) is a well-founded partial order on method names that is consistent with a
partial order on class names; specifically, if it relates any two method names qualified
by different classes C and C ′, then it relates all method names qualified by those
classes in the same way: (∃m,m′. C.m ≺ C ′.m′) ⇒ (∀m,m′. C.m ≺ C ′.m′). We call the
induced partial order on class names the induced import order. We write C ≺ C ′ to
mean ∃m,m′. C.m ≺ C ′.m′.

We assume a set of types T , ranged over by τ , including at least the interface
names, the class names, the type bool of booleans, and the unit type void: I, C ⊆
T ,bool,void ∈ T .

We assume a set Operators of operators, ranged over by op, and a function opType :
Operators → (T ∗ × T ) that specifies the parameter types and the result type of each
operator.

We assume a set V of values, ranged over by v, including at least the booleans (B ⊆ V)
and the unit value () ∈ V and closed under object creation: if v, v′ ∈ V then new C(v) ⊳
I(v′) ∈ V. (Not all of these objects are well-typed in the context of a given program; see
below.)

We assume an interpretation function J−K : T → P(V) for types, that maps a type to
the set of its values. We assume JboolK = B, JvoidK = {()}, ∀C ∈ C. JCK = {new C(v) ⊳
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e ::= x | op(e) | e.f | e.g | v
c ::= e | C.m(e) | e.m(e) | new C(e)

| τ x := c; c | if e then e else e | assert e
gfspec ::= ghost field τ g

β ::= static | instance
mspec ::= β τ m(τ x) req e level e ens e

itf ::= interface I { gfspec mspec }
cspec ::= class C { mspec }

gf ::= gfspec = e
meth ::= mspec { c }
class ::= class C(τ f) imports itf cspec implements I { gf meth }
prog ::= itf class

Fig. 35. Syntax of the formal language

I(v′) | ∃v, I, v′}, and ∀I ∈ I. JIK = {new C(v)⊳I(v′) | ∃C, v, v′}. (We define a more precise
interpretation function that interprets class and interface types more precisely below.)

We assume an interpretation function J·K≺ : Operators → V∗ → V for operators
that is consistent with opType. The interpretation function may depend on a program
method precedence order ≺.

We assume operators do not create objects. More specifically, consider any well-typed
term t built from some set of free variables x of class and interface types τ and operator
applications. Then, consider any values v ∈ JτK for x. If the type of t is a class or
interface type, then the value of t[v/x] is in v.

For simplicity, we also assume that non-object values do not “contain” objects. Spe-
cifically, consider any well-typed term t built from some set of free variables x of types
τ and operator applications. Then, consider any values v ∈ JτK for x. If the value v
of t[v/x] is an object, then v is the value of a variable x ∈ x whose type is a class or
interface name.

We assume a type τlevels of levels. We define the set of levels L = JτlevelsK; we as-
sume it is equipped with a well-founded order <≺, which may depend on the method
precedence.

The syntax of programs is defined in Fig. 35. The expressions are the variables x, the
operator expressions op(e), the field dereferences, the ghost field dereferences, and the
literal values. The latter appear only during execution (but some literal values, exclu-
ding in particular the objects, can be encoded as nullary operators). The commands are
the expressions e, the static method calls C.m(e), the instance method calls e.m(e), the
object creation commands, the let commands τ x := c; c′, the conditional commands,
and the assert command.

We define a context Γ = itf cspec class x : τ as a sequence of interfaces, class specifi-
cations, classes, and variable typings.

Given a context Γ, we define the context method precedence relation RΓ as follows:
C RΓ C

′ iff a class specification or class class C · · · appears before class (not class spe-
cification) class C ′(· · · ) · · · in Γ, and, for each class C and method names m and m′,
C.mRΓ C.m

′ iff class C(· · · ) · · · { · · · β τ m(· · · ) · · · β′ τ ′ m′(· · · ) · · · } ∈ Γ. If RΓ

is antireflexive, we define the context method precedence order ≺Γ to be equal to RΓ;
otherwise, we leave ≺Γ undefined.

We define the class context of a class class as the context Γ = itf cspec class consisting
of the class’ imported interfaces and class specifications and the class itself. We define
the class method precedence order ≺c

class as the context precedence order ≺Γ for the
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τ /∈ I ∪ C
Γ ⊢ τ

interface I · · · ∈ Γ

Γ ⊢ I

class C(· · · ) · · · ∈ Γ

Γ ⊢ C

x : τ ∈ Γ

Γ ⊢ x : τ

opType(op) = (τ , τ) Γ ⊢ e : τ

Γ ⊢ op(e) : τ

Γ ⊢ e : C class C(. . . , τ f, . . . ) · · · ∈ Γ

Γ ⊢ e.f : τ

Γ ⊢ e : I interface I { · · · ghost field τ g · · · } ∈ Γ

Γ ⊢ e.g : τ

class C · · · { · · · static τ m(τ x) · · · } ∈ Γ Γ ⊢ e : τ

Γ ⊢ C.m(e) : τ

Γ ⊢ e : I interface I { · · · τ m(τ x) · · · } ∈ Γ Γ ⊢ e : τ

Γ ⊢ e.m(e) : τ

class C(τ f) · · · ∈ Γ Γ ⊢ e : τ

Γ ⊢ new C(e) : C

class C · · · implements I · · · ∈ Γ Γ ⊢ e : C

Γ ⊢ e : I

Γ ⊢ c : τ x /∈ dom(Γ) Γ ⊢ τ Γ, x : τ ⊢ c′ : τ ′

Γ ⊢ τ x := c; c′ : τ ′
Γ ⊢ e : bool Γ ⊢ c1, c2 : τ

Γ ⊢ if e then c1 else c2 : τ

Γ ⊢ e : bool

Γ ⊢ assert e : void

Fig. 36. Well-typedness of types and expressions

class context. It relates the methods of the class by their textual order. Furthermore,
it relates all imported classes’ methods to all of the class’ methods.

Given a program prog , we define the program method precedence relation Rp
prog as

the transitive closure of the union of the class method precedence orders of the classes
of prog . If this relation is antireflexive, we define the program method precedence order
≺p

prog to be equal to Rp
prog ; otherwise, we leave it undefined.

We define well-typedness of programs and program elements under a context Γ in
Figs. 36 and 37. Notice the following: literal value expressions are never well-typed;
a class type C may appear only in the body of a method of class C (since the typing
rule for class types requires the class (not just the class specification) to be present in
the context); class ghost fields or instance methods that do not implement an interface
member are not supported; the only free variables allowed in ghost field initializers
are the field names (we assume an injection fieldVar : F → X for this purpose).

Notice furthermore that the final premise of the rule for well-typedness of a program
states that the transitive closure of the union of the class method precedence orders
of the classes of the program is antireflexive. (If the classes are well-typed, this is
equivalent to saying that the class import graph is acyclic.) It follows that the program
method precedence order of a well-typed program is well-defined.

In Fig. 38 we define three concepts: well-typedness of a context Γ = itf cspec class;
the value JeKΓ,≺ ∈ V of a closed expression e under a well-typed context Γ and method
precedence ≺; and the interpretation JτKΓ,≺ of a type τ under a well-typed context Γ
and method precedence ≺.
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x, result distinct
Γ ⊢ τ, τ Γ, x : τ ⊢ P : bool Γ, x : τ ⊢ e : τlevels Γ, x : τ , result : τ ⊢ Q : bool

Γ ⊢τthis static τ m(τ x) req P level e ens Q wt

this, x, result distinct Γ ⊢ τ, τ Γ, this : τthis, x : τ ⊢ P : bool
Γ, this : τthis, x : τ ⊢ e : τlevels Γ, this : τthis, x : τ , result : τ ⊢ Q : bool

Γ ⊢τthis instance τ m(τ x) req P level e ens Q wt

g distinct Γ ⊢ τ mspec.m distinct mspec.β ⊆ {instance} Γ ⊢I mspec wt

Γ ⊢ interface I { ghost field τ g mspec } wt

cspec = class C { mspec }
mspec.m distinct mspec.β ⊆ {static} Γ ⊢C mspec wt

Γ ⊢ cspec wt

Γ ⊢C mspec wt mspec = static τ m(τ m) · · · { c } Γ, x : τ ⊢ c : τ

Γ ⊢C mspec { c } wt

Γ ⊢C mspec wt mspec = instance τ m(τ m) · · · { c } Γ, this : C, x : τ ⊢ c : τ

Γ ⊢C mspec { c } wt

class = class C(τ f) imports itf cspec implements I { ghost field τ ′ g = e meth }
itf .I distinct itf ⊢ itf wt cspec.C, C distinct

itf ⊢ cspec wt f distinct itf ⊢ τ interface I { ghost field τ ′ g mspec } ∈ itf

itf , f : τ ⊢ e : τ ′ {mspec | mspec { c } ∈ meth,mspec.β = instance} = mspec

itf , cspec, class ⊢C meth wt

⊢ class wt

spec(class C(· · · ) · · · { gf meth }) = class C { mspec }
where mspec = {mspec | mspec { c } ∈ meth,mspec.β = static}

itf .I distinct class.C distinct itf ⊢ itf wt ⊢ class wt

∀class C(· · · ) imports itf
′
cspec · · · ∈ class. itf

′ ⊆ itf ∧ cspec ⊆ spec(class)
(∪class∈class ≺c

class)
+ antireflexive

⊢ itf class wt

Fig. 37. Well-typedness of method specifications, interfaces, class specifications, classes, and programs

The examples of Sec. 2 can be turned into programs of the formal language by in-
troducing temporary variables for subexpressions, making field dereferences on this
(outside of ghost field initializers) explicit, introducing dummy empty interfaces for
classes that do not explicitly implement one, adding interface imports, and expanding
each class import to include the specifications of the static methods. (Note, however,
that examples that do not perform abstract object construction through a factory met-
hod cannot be translated since the formal language supports the creation of objects of
class C only within class C.)
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itf .I distinct cspec.C, class.C distinct itf ⊢ itf wt itf ⊢ cspec wt ⊢ class wt

∀class C(· · · ) imports itf
′
cspec′ · · · ∈ class. itf

′ ⊆ itf ∧ cspec′ ⊆ cspec ∪ spec(class)

⊢ itf cspec class wt

JvKΓ,≺ = v Jop(e)KΓ,≺ = JopK≺(JeKΓ,≺)

JeKΓ,≺ = new C(v) · · · class C(τ f) · · · ∈ Γ

Je.fiKΓ,≺ = vi

JeKΓ,≺ = new C(v) ⊳ I(v′) interface I { ghost field τ g · · · }
Je.giKΓ,≺ = v′i

class C(τ f) · · · implements I { ghost field τ ′ g = e · · · } ∈ Γ
v ∈ JτKΓ,≺ v′ = Je[v/f ]KΓ,≺

new C(v) ⊳ I(v′) ∈ JCKΓ,≺

class C(· · · ) · · · /∈ Γ v ∈ JCK

v ∈ JCKΓ,≺

class C(τ f) · · · implements I { ghost field τ ′ g = e · · · } ∈ Γ
v ∈ JτKΓ,≺ v′ = Je[v/f ]KΓ,≺

new C(v) ⊳ I(v′) ∈ JIKΓ,≺

class C(· · · ) · · · /∈ Γ interface I { ghost field τ g · · · } ∈ Γ v′ ∈ JτKΓ,≺

new C(v) ⊳ I(v′) ∈ JIKΓ,≺

class C(· · · ) · · · /∈ Γ interface I · · · /∈ Γ

new C(v) ⊳ I(v′) ∈ JIKΓ,≺

τ /∈ C ∪ I v ∈ JτK

v ∈ JτKΓ,≺

Fig. 38. Well-typed context; interpretation of expressions and types under a context and method precedence

A.1.2. Operational semantics. We define a big-step relation c ⇓prog O, where c is a closed
command and O ∈ V∪{⊤} is an outcome. The outcome v denotes successful termination
with result value v; the outcome ⊤ denotes divergence. We define the relation by inter-
preting the inference rules in Fig. 39 coinductively [Nakata and Uustalu 2009]. (Read
each ⇓ symbol as ⇓prog . We identify closed expressions with their value under prog and
the program method precedence order. Also, for b ∈ B, we identify if b then c else c′ with
its reduction to c or c′. Also, a class class mentioned as a premise denotes class ∈ prog .)
Notice that for a divergent command c, we have not just c ⇓ ⊤, but c ⇓ v as well, for
every value v. This imprecision is harmless since we will be proving termination.

A.1.3. Proof rules. We define run-time well-typedness of an expression e, denoted Γ ⊢rt
≺

e : τ , by the same inference rules used to define well-typedness, plus an additional rule
for values:

v ∈ JτKΓ,≺

Γ ⊢rt
≺ v : τ
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v ⇓ v
class C · · · { · · · static τ m(τ x) · · · { c } · · · } c[v/x] ⇓ O

C.m(v) ⇓ O
==============================================================

o ∈ JCK class C · · · { · · · instance τ m(τ x) · · · { c } · · · } c[o/this, v/x] ⇓ O

o.m(v) ⇓ O
===================================================================================

class C(τ f) · · · implements I { ghost field τ ′ g = e · · · }
new C(v) ⇓ new C(v) ⊳ I(e[v/f ])

===========================================================
c ⇓ v c′[v/x] ⇓ O

τ x := c; c′ ⇓ O
===================

c ⇓ ⊤
τ x := c; c′ ⇓ ⊤
============== assert true ⇓ () assert false ⇓ ⊤

Fig. 39. Coinductive big-step operational semantics

Building on this, we define run-time well-typedness of a command by replacing
well-typedness of expressions by run-time well-typedness in the rules defining well-
typedness of commands.

We define the command correctness judgment Γ, ℓ ⊢≺ c {Q}, where Γ is a well-typed
context, ℓ ∈ L is the current level, ≺ is a method precedence to be used to evaluate
expressions and interpret types, c is a closed command, and Q is a well-typed post-
condition (a boolean expression whose only free variable is result). Our command cor-
rectness judgments do not mention a precondition; it is implicitly true. We also define
correctness of a method, a class, and a program. We define the judgments inductively
by the inference rules in Fig. 40. Notice that a class’ methods are verified under an
arbitrary method precedence relation that extends the class method precedence rela-
tion, and that a well-typed program is correct if each class is correct and the program
is well-typed, which implies that the class import relation is acyclic.

A.1.4. Soundness. We fix a program prog and we assume ⊢ prog correct. We prove that if
a well-typed command is correct, then it does not diverge and its result value satisfies
its postcondition:

THEOREM A.1. For all ℓ, c, τ , Q, O, if prog ⊢ c : τ and prog , ℓ ⊢≺prog
c {Q} and

c ⇓prog O, then ∃v. O = v ∧Q[v/result].

PROOF. By well-founded induction on ℓ and nested induction on the derivation of
prog , ℓ ⊢≺prog

c {Q}.

A.1.5. Specification Style. The development above is parameterized over the set of ty-
pes and operators, and their interpretations. Operator interpretations may depend on
the program method precedence order ≺. In this subsection, we define the types and
operators required to apply the specification style of Sec. 2, and their interpretations
for a given value of ≺.

For any set X, we define the set Multisets(X) ⊆ X → N of (finite) multisets of ele-
ments of X (also called multisets over X) inductively as follows:

0 ∈ Multisets(X)
M ∈ Multisets(X)

M ⊎ {[x]} ∈ Multisets(X)

where 0 is defined as λ . 0, {[x]} as 0[x := 1], and M ⊎M ′ as λx. M(x)+M ′(x). We define
{[a, b, c]} as 0 ⊎ {[a]} ⊎ {[b]} ⊎ {[c]}. We say x ∈ M iff M(x) > 0.
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Γ, ℓ ⊢≺ v {result = v}
class C · · · { · · · static τ m(τ x) req P level e ens Q · · · } ∈ Γ

P [v/x] e[v/x] <≺ ℓ

Γ, ℓ ⊢≺ C.m(v) {Q[v/x]}

o ∈ JIK interface I { · · · τ m(τ x) req P level e ens Q · · · } ∈ Γ
P [o/this, v/x] e[o/this, v/x] <≺ ℓ

Γ, ℓ ⊢≺ o.m(v) {Q[o/this, v/x]}

class C(τ f) · · · { ghost field τ ′ g = e · · · } ∈ Γ

Γ, ℓ ⊢≺ new C(v) {result = new C(v) ⊳ I(e[v/f ])}

Γ, ℓ ⊢≺ c {Q} ∀v ∈ JτKΓ,≺. Q[v/result] ⇒ Γ, ℓ ⊢≺ c′[v/x] {R}
Γ, ℓ ⊢≺ τ x := c; c′ {R}

Γ, ℓ ⊢≺ assert true {true}

Γ, ℓ ⊢≺ c {Q′} Γ ⊢rt
≺ c : τ ∀v ∈ JτKΓ,≺. Q

′[v/result] ⇒ Q[v/result]

Γ, ℓ ⊢≺ c {Q}

∀o ∈ JCKΓ,≺, v ∈ JτKΓ,≺. P [o/this, v/x] ⇒ Γ, e[o/this, v/x] ⊢≺ c[o/this, v/x] {Q[o/this, v/x]}
Γ ⊢C,≺ instance τ m(τ x) req P level e ens Q { c } correct

∀v ∈ JτKΓ,≺. P [v/x] ⇒ Γ, e[v/x] ⊢ c[v/x] {Q[v/x]}
Γ ⊢C,≺ static τ m(τ x) req P level e ens Q { c } correct

class = class C(· · · ) imports itf cspec · · ·
≺c

class = ≺itf cspec class

class = class C(· · · ) imports itf cspec · · · { · · · meth }
⊢ class wt ∀≺. ≺c

class ⊆ ≺ ⇒ itf cspec class ⊢C,≺ meth correct

⊢ class correct

⊢ prog wt prog = itf class ⊢ class correct

⊢ prog correct

Fig. 40. The proof rules for the correctness judgments. An expression e used as a value should be read as
JeKΓ,≺.

As mentioned in Sec. 2, if a set X is equipped with a well-founded order, this induces
a well-founded order on Multisets(X), where A < B iff A 6= B and

∃A′, B′, C. A = A′ ⊎ C ∧B = B′ ⊎ C ∧ ∀x ∈ A′. ∃y ∈ B′. x < y

We define the set of multisets of method names as MethodBags =
Multisets(MethodNames).

A program method precedence order induces a well-founded order on MethodBags.
However, this order is not total because the program method precedence order is not
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t ∈ ThreadIds, ℓ ∈ LockIds, χ ∈ ChannelIds, r ∈ R, n ∈ N, ι ∈ ObjLabels
v ::= () | true | false | t | ℓ | χ | r | n | new C(ι, v) | · · ·
τ ::= void | bool | thread[τ ] | lock | channel[τ ] | waitobj | real | nat | bag[τ ]

| C | I | · · ·
e ::= x | op(e) | e.ff | v
a ::= e | a ∗ a | a ∧ a | a ∨ a | ∃x : τ. a | e.p(e) | e.f e7→ e | cp(e) | e · a

| e.thread(a) | e.lock(e, a) | e.locked(e, a, e) | e.channel(a) | e.credit() | e.obs(e)
c ::= e | C.m(e) | e.m(e) | new C(e) | τ x := c; c | if e then e else e | assert e

| e.f | e.f := e | new lock() | e.acquire() | e.release()
| fork c | e.join() | new channel[τ ]() | e.send(e) | e.receive()

pspec ::= predicate p(τ x)
β ::= static | instance

mspec ::= β τ m(τ x) forall τ x req a ens a
itf ::= interface I { pspec mspec }

cspec ::= class C { mspec }
pred ::= pspec = a
meth ::= mspec { c }
class ::= class C(final τ ff , τ f) imports itf cspec implements I { pred meth }
prog ::= itf class

Fig. 41. Mutation and concurrency: syntax of the formal language

total.12 Therefore, the ⊔ (max) operator introduced in Sec. 2.2.4 to deal flexibly with
sibling objects is not well-defined under this order. Therefore, for every program met-
hod precedence order ≺, we fix a linearized program method precedence order tot(≺),
chosen arbitrarily among the well-orderings (total well-founded orders) that extend ≺.
Such a well-ordering exists, by a simple extension of the Well-Ordering Theorem. We
then define the order on MethodBags as the order induced by tot(≺).

As mentioned above, a machine-checked encoding of this section into the Coq proof
assistant is available [Jacobs 2018].

A.2. Mutation and Concurrency (Sec. 3–4)

In this section, we sketch a formalization of the programming language, specification
formalism, and notion of module correctness for programs with mutation and concur-
rency, based on separation logic, the Chalice approach for verifying absence of dead-
lock, and call permissions, that were gradually introduced in Sec. 3–4, as well as a
soundness proof.

A.2.1. Programs. The programming language of this section largely extends that of
the preceding one, except that level clauses are replaced by call permissions, and ghost
fields are replaced by predicates. The syntax is defined in Fig. 41.

In addition to the sets assumed in the previous section, we assume infinite sets
PredNames of predicate names, ranged over by p, and FinalFieldNames of final field
names, ranged over by ff . We use the field names (elements f ∈ F) to denote mutable
fields.

12If we define MethodNamesprog as the names of the methods of program prog , then the restriction of ≺p
prog

to MethodNamesprog is total iff the class import order is total (which it generally is not). However, ≺p
prog ,

which is a relation on MethodNames, is never total because it relates two method names C.m and C.m′

qualified by the same class name C only if methods with these names appear in the program.
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In this section, objects, ranged over by o, are of the form new C(ι; v) ⊳ I, where v are
the final field values and ι is an element from an infinite set ObjLabels of object labels
used to distinguish distinct objects that have the same final field values.

We assume disjoint infinite sets ThreadIds, LockIds, and ChannelIds of thread, lock,
and channel identifiers, ranged over by symbols t, ℓ, and χ, respectively. We define the
set WaitObjs of waitable objects, ranged over by ω, as WaitObjs = ThreadIds ∪LockIds ∪
ChannelIds.

The set V of values, ranged over by v, includes the unit value (), the booleans, the
reals (used for fractional permissions), the natural numbers (used as the coefficient
for a multiplied assertion n · a), the objects, and the waitable objects, and it is closed
under multiset construction. (That is, 0 ∈ V and if v ∈ V, then {[v]} ∈ V, and if multisets
M,M ′ ∈ V, then M ⊎M ′ ∈ V.)

Notice that method specifications feature a forall clause. The variables declared
in this clause are in scope in the precondition and the postcondition and can be in-
stantiated arbitrarily at each call site. They correspond to logical variables in Hoare
logic, and they serve to connect the precondition and the postcondition. In the exam-
ples, the forall clauses are left implicit: read a method specification req P ens Q as
forall τ x req P ens Q, where x are the free variables of P and Q (after binding the
method parameters and the special variables this and result).

We define well-typedness of assertions by the rules shown in Fig. 42.

A.2.2. Operational Semantics. We define the set PhysRes of physical resources, ranged
over by α, as follows:

α ::= alloc(o) | o.f 7→ v | ℓ.lock(v) | t.thread(c̃) | χ.channel(v)
c̃ ::= c | ⊥

We define the set PhysHeaps of physical heaps, ranged over by h, as PhysHeaps =
Pfin(PhysRes); i.e., a physical heap is a finite set of physical resources. We use phy-
sical heaps as machine configurations, and we define a machine step relation → ⊆
PhysHeaps2 using the rules shown in Fig. 43.

As can be inferred from the step rules, the meaning of the presence of the various
resources in a machine configuration is as follows: alloc(o) means that object o has
been allocated; o.f 7→ v means that field f of object o currently holds value v; ℓ.lock(v)
means lock ℓ has been allocated and its current value is v (where value 0 means the
lock is currently available and value 1 means it is currently held by some thread);
t.thread(c̃) means that thread t has been allocated, where c̃ = c means that when the
thread is scheduled next, it will execute command c, and c̃ = ⊥, which does not occur
in a machine configuration but only temporarily during a machine step, means that
thread t has been scheduled and is currently taking a step; and χ.channel(v) means
that channel χ has been allocated and the values v have been sent on it, in that order,
but not yet received.

An execution is a finite or infinite sequence of machine configurations, where each
subsequent configuration is related to the previous one by a machine step. The purpose
of the proof system of this section is to prove absence of two kinds of executions: those
that deadlock (i.e., finite executions where the final configuration is not finished, i.e.,
where some thread’s command is not a value), and those that are infinite. We say a
machine configuration h is bad, denoted bad(h), if such an execution exists that starts
in h. We define bad coinductively by the rules shown in Fig. 43.

A.2.3. Logical resources. To reason modularly in the presence of aliasing and concur-
rency, separation logic assigns ownership of resources to threads and commands. Ho-
wever, using physical resources as the unit of ownership would lead to an ownership
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Γ ⊢ e : bool

Γ ⊢ e : asn

⊙ ∈ {∗,∧,∨} Γ ⊢ a, a′ : asn

Γ ⊢ a⊙ a′ : asn

Γ, x : τ ⊢ a : asn

Γ ⊢ ∃x : τ. a : asn

Γ ⊢ e : I interface I { · · · predicate p(τ x) · · · } ∈ Γ Γ ⊢ e : τ

Γ ⊢ e.p(e) : asn

Γ ⊢ e : C class C(· · · τ f · · · ) · · · ∈ Γ Γ ⊢ e′ : real Γ ⊢ e′′ : τ

Γ ⊢ e.f
e′7→ e′′ : asn

Γ ⊢ e : τlevels

Γ ⊢ cp(e) : asn

Γ ⊢ e : nat Γ ⊢ a : asn

Γ ⊢ e · a : asn

Γ ⊢ e : thread[τ ] Γ, result : τ ⊢ a : asn

Γ ⊢ e.thread(a) : asn

Γ ⊢ e : lock Γ ⊢ e′ : real Γ ⊢ a : asn

Γe.lock(e′, a) : asn

Γ ⊢ e : lock Γ ⊢ e′ : real Γ ⊢ a : asn Γ ⊢ e′′ : thread[τ ]

Γe.locked(e′, a, e′′) : asn

Γ ⊢ e : channel[τ ] Γ, element : τ ⊢ a : asn

Γ ⊢ e.channel(a) : asn

Γ ⊢ e : channel[τ ]

Γ ⊢ e.credit() : asn

Γ ⊢ e : thread[τ ] Γ ⊢ e′ : bag[waitobj]

Γ ⊢ e.obs(e′) : asn

x, x′, result distinct
Γ ⊢ τ, τ , τ ′ Γ, x : τ , x′ : τ ′ ⊢ P : asn Γ, x : τ , x′ : τ ′, result : τ ⊢ Q : asn

Γ ⊢τthis static τ m(τ x) forall τ ′ x′ req P ens Q wt

Γ ⊢ τ this, x distinct Γ, this : τthis, x : τ ⊢ a : asn

Γ ⊢τthis predicate p(τ x) = a wt

Fig. 42. Well-typedness of assertions

regime that is too coarse. Therefore, the ownership regime used in this section uses
logical resources, and fractions thereof, as the unit of ownership.

We define the set LogRes of logical resources, ranged over by α̂, as follows:

α̂ ::= o.f 7→ v | t.thread(Q) | ℓ.lock(I) | ℓ.locked(π, I, t) | χ.channel(P ) | χ.credit()
| t.obs(O) | cp(ℓ)

We define the set LogHeaps of logical heaps, ranged over by H, as the fractional mul-
tisets of logical resources: LogHeaps = LogRes → R+ (where R+ = {r ∈ R | 0 ≤ r}). We
define H ⊎H ′ = H +H ′ = λα̂. H(α̂) +H ′(α̂).

We use symbol Λ to range over multisets of levels: Λ ∈ Multisets(L). We will identify
multisets of levels Λ with stocks of call permissions, logical heaps H = {[cp(ℓ) | ℓ ∈ Λ]}
containing only call permissions.
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class C · · · { · · · static τ m(τ x) { c } · · · }
h,C.m(v) → h, c[v/x]

o ∈ JCK class C · · · { · · · instance τ m(τ x) { c } · · · }
h, o.m(v) → h, c[o/this, v/x]

class C(final τ ff , τ ′ f) · · · implements I · · · o = new C(ι; v) ⊳ I alloc(o) /∈ h

h,new C(v, v′) → h ⊎ {[alloc(o), o.f 7→ v′]}, o

h, c → h′, c′

h, τ x := c; c′′ → h′, τ x := c′; c′′
h, τ x := v; c → h, c[v/x] h,assert true → h, ()

h ⊎ {[o.f 7→ v]}, o.f → h ⊎ {[o.f 7→ v]}, v h ⊎ {[o.f 7→ v]}, o.f := v′ → h ⊎ {[o.f 7→ v′]}, ()

ℓ /∈ {ℓ | ℓ.lock( ) ∈ h}
h,new lock() → h ⊎ {[ℓ.lock(0)]}, ℓ h ⊎ {[ℓ.lock(0)]}, ℓ.acquire() → h ⊎ {[ℓ.lock(1)]}, ()

h ⊎ {[ℓ.lock(1)]}, ℓ.release() → h ⊎ {[ℓ.lock(0)]}, () t /∈ {t | t.thread( ) ∈ h}
h, fork c → h ⊎ {[t.thread(c)]}, t

h ⊎ {[t.thread(v)]}, t.join() → h ⊎ {[t.thread(v)]}, v

χ /∈ {χ | χ.channel( ) ∈ h}
h,new channel[τ ]() → h ⊎ {[χ.channel(ǫ)]}, χ

h ⊎ {[χ.channel(v)]}, χ.send(v) → h ⊎ {[χ.channel(v v)]}, ()

h ⊎ {[χ.channel(v v)]}, χ.receive() → h ⊎ {[χ.channel(v)]}, v

h ⊎ {[t.thread(⊥)]}, c → h′ ⊎ {[t.thread(⊥)]}, c′
h ⊎ {[t.thread(c)]} → h′ ⊎ {[t.thread(c′)]} finished(h) = ∀t.thread(c) ∈ h. c ∈ V

h 6→ ¬finished(h)
badh

====================
h → h′ badh′

badh
================

Fig. 43. Mutation and concurrency: program execution

A.2.4. Assertions. In this section, method preconditions and postconditions are asser-
tions rather than just boolean expressions. In addition to asserting the truth of boolean
expressions, assertions may assert the ownership of (fractions of) logical resources.

Assertions may refer to predicates. To interpret an assertion, an interpretation for
the predicates it refers to is needed. We define the set PredInterps of predicate interpre-
tations, ranged over by I, as the set of all sets of tuples of the form (H, o, p, v), where H
is a logical heap, and o.p(v) is a predicate application that, according to the interpre-
tation, is satisfied by H.

We define satisfaction of a closed assertion a by a logical heap H under a predicate
interpretation I, denoted I,H � a, inductively by the rules shown in Fig. 44.
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I,H � b ⇐ b = true
I,H � P ∗Q ⇐ ∃H1, H2. H = H1 ⊎H2 ∧ I,H1 � P ∧ I,H2 � Q
I,H � P ⊙Q ⇐ I,H � P ⊙ I,H � Q where ⊙ ∈ {∧,∨}
I,H � ∃x : τ. a ⇐ ∃v ∈ JτK. I,H � a[v/x]
I,H � o.p(v) ⇐ (H, o, p, v) ∈ I

I,H � o.f
r7→ v ⇐ 0 < r ∧H(o.f 7→ v) ≥ r

I,H � cp(ℓ) ⇐ H(cp(ℓ)) ≥ 1
I,H � 0 · a ⇐ true
I,H � (n+ 1) · a ⇐ I,H � a ∗ n · a
I,H � t.thread(Q) ⇐ H(t.thread(Q)) ≥ 1
I,H � ℓ.lock(r, I) ⇐ 0 < r ∧H(ℓ.lock(I)) ≥ r
I,H � ℓ.locked(r, I, t) ⇐ H(ℓ.locked(r, I, t)) ≥ 1
I,H � χ.channel(P ) ⇐ H(χ.channel(P )) > 0
I,H � χ.credit() ⇐ H(χ.credit()) ≥ 1
I,H � t.obs(O) ⇐ H(t.obs(O)) ≥ 1

Fig. 44. Assertion satisfaction

∀I,H. I,H � P ⇒ I,H � P ′

P ⊑ P ′

o ∈ JCK class C · · · { · · · predicate p(τ x) = a · · · } ∈ Γ

o.p(v) ⊑⊒ a[o/this, v/x]

∀i. ℓi < ℓ

cp(ℓ) ⊑ cp(ℓ1) ∗ cp(ℓ2) ∗ · · · ∗ cp(ℓn)
ℓ.lock(1, I) ⊑ I

t.obs(O) ∗ χ.channel(P ) ⊑⊒ t.obs(O ⊎ {[χ]}) ∗ χ.channel(P ) ∗ χ.credit() P ⊑ P ′

P ∗R ⊑ P ′ ∗R

P ⊑ P ′ P ′ ⊑ P ′′

P ⊑ P ′′

Fig. 45. Assertion weakening. Read each judgment P ⊑ P ′ as Γ ⊢ P ⊑ P ′.

Notice that, as is common in separation logics for garbage-collected programming
languages, our definition of assertion satisfaction allows leaking: if I,H � a then I,H⊎
H ′ � a (provided that for all H and H ′, if (H, o, p, v) ∈ I then (H ⊎H ′, o, p, v) ∈ I).

A.2.5. Proof rules. We define the assertion weakening relation Γ ⊢ P ⊑ P ′ inductively
by the rules shown in Fig. 45.

We define the command correctness judgment t ⊢ {P} c {Q}, where t is a thread
identifier, P is a closed assertion, and Q is an assertion whose only free variable is
result, inductively by the rules of Figs. 21 and 46.

A.2.6. Soundness proof. We fix a program prog , and we assume that it is correct.
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CNEW

class C(final τ ff , τ ′ f) · · · ∈ Γ

{true} new C(v, v′) {result.ff = v ∧ result.f 7→ v′}

CLOOKUP

{o.f π7→ v} o.f {o.f π7→ v ∧ result = v}
CMUTATE

{o.f 7→ } o.f := v {o.f 7→ v}

CLET

{P} c {Q} ∀v ∈ JτK. {Q[v/result]} c′[v/x] {R}
{P} τ x := c; c′ {R}

CFRAME

{P} c {Q}
{P ∗R} c {Q ∗R}

CCONSEQ

Γ ⊢ P ⊑ P ′ {P ′} c {Q} Γ ⊢ Q ⊑ Q′

{P} c {Q′}

CEXISTS

∀v ∈ JτK. {P [v/x]} c {Q}
{∃x : τ. P} c {Q}

CSTATICCALL

class C · · · { · · · static τ ′′ m(τ x) forall τ ′ x′ req P ens Q · · · } ∈ Γ v′ ∈ Jτ ′K

{P [v/x, v′/x′] ∗ cp( )} C.m(v) {Q[v/x, v′/x′]}

CINSTANCECALL

o : I
interface I · · · { · · · instance τ ′′ m(τ x) forall τ ′ x′ req P ens Q · · · } ∈ Γ v′ ∈ Jτ ′K

{P [o/this, v/x, v′/x′] ∗ cp( )} o.m(v) {Q[o/this, v/x, v′/x′]}

CSTATICMETHOD

∀t, v ∈ JτK, v′ ∈ Jτ ′K. t ⊢ {P [v/x, v′/x′]} c[v/x] {Q[v/x, v′/x′]}
Γ ⊢C static τ ′′ m(τ x) forall τ ′ x′ req P ens Q { c } correct

CINSTANCEMETHOD

∀t, o ∈ JCK, v ∈ JτK, v′ ∈ Jτ ′K. t ⊢ {P [o/this, v/x, v′/x′]} c[o/this, v/x] {Q[o/this, v/x, v′/x′]}
Γ ⊢C instance τ ′′ m(τ x) forall τ ′ x′ req P ens Q { c } correct

Fig. 46. Proof rules. The rules from Fig. 21 are not repeated. Read each judgment {P} c {Q} as Γ, t ⊢
{P} c {Q}.

We fix the program predicate interpretation Iprog as Iprog =
⋂{I | F (I) ⊆ I} where

for all I, the set F (I) is defined by the following rule:

o ∈ JCK class C · · · { · · · predicate p(τ x) = a · · · } ∈ prog I,H � a[o/this, v/x]

(H, o, p, v) ∈ F (I)

LEMMA A.2. Assertion satisfaction is monotonic: I ⊆ I ′ ∧ I,H � a ⇒ I ′, H � a.

PROOF. By induction on the structure of a.

LEMMA A.3. F is monotonic: I ⊆ I ′ ⇒ F (I) ⊆ F (I ′).

LEMMA A.4. Iprog is a fixpoint of F : F (Iprog) = Iprog .

PROOF. By the Knaster-Tarski theorem.

We define H � a by the rule H � a ⇔ Iprog , H � a.
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safe(H,weakenCallPerms, Q) = ∃H ′,Λ,Λ′ ≤ Λ. H = H ′ ⊎ Λ ∧Q(H ′ ⊎ Λ′)
safe(H, destroyLock, Q) = ∃H ′, ℓ, I. H = H ′ ⊎ {[ℓ.lock(1, I)]} ∧ ∀H ′′. H ′′ � I ⇒ Q(H ′ ⊎H ′′)
safe(H, createChannelDebit, Q) =
∃H ′, t, χ,O, π, P. H = H ′ ⊎ {[t.obs(O), π · χ.channel(P )]}
∧ Q(H ′ ⊎ {[t.obs(O ⊎ {[χ]}), π · χ.channel(P ), χ.credit()]})

safe(H, destroyChannelDebit, Q) =
∃H ′, t, χ,O, π, P. H = H ′ ⊎ {[t.obs(O ⊎ {[χ]}), π · χ.channel(P ), χ.credit()]}
∧ Q(H ′ ⊎ {[t.obs(O), π · χ.channel(P )]})

safe(H, ǫ,Q) = Q(H)
safe(H, ĉ · ĉ, Q) = safe(H, ĉ, λH ′. safe(H ′, ĉ, Q))

Fig. 47. Safety of a ghost command and of a list of ghost commands

We define the judgment h, c waitingFor ω, expressing that in machine configuration h,
command c is blocked on waitable object ω, by the following rules:

h ⊎ {[ℓ.lock(1)]}, ℓ.acquire() waitingFor ℓ h ⊎ {[χ.channel(ǫ)]}, χ.receive() waitingFor χ

c /∈ V

h ⊎ {[t.thread(c)]}, t.join() waitingFor t
h, c waitingFor ω

h, τ x := c; c′ waitingFor ω

We define a set GhostCmds of ghost commands, ranged over by ĉ, as follows:

ĉ ::= weakenCallPerms | destroyLock | createChannelDebit | destroyChannelDebit

We define safety of a ghost command and of a list of ghost commands by the rules
shown in Fig. 47.

LEMMA A.5. If P ⊑ P ′ and H � P , then ∃ĉ. safe(H, ĉ, λH ′. H ′ � P ′).

PROOF. By induction on the derivation of the first premise.

To relate the physical resources in a machine configuration to the logical resources
owned by the threads, the locks, and the channels, we introduce thread tables, lock
tables, and channel tables. These are finite sets of tuples, where each tuple describes
both the physical and the logical aspects of one thread, lock, or channel, respectively.

Specifically, a thread table T is a finite set of tuples of the form (t, j, O, H̃, ĉ, c̃, Q),
where t is a thread identifier, j is the thread’s joinability (either joinable or nonJoinable),
O is a multiset of waitable objects expressing the thread’s obligations, H̃ is either
the logical heap owned by the thread, or else ⊥, indicating that the thread has been
joined, ĉ is the list of ghost commands to be executed by the thread before it makes
a machine step, c̃ is the thread’s command, and Q is the thread’s postcondition (an
assertion whose only free variable is result). A lock table L is a finite set of tuples of the
form (ℓ, v, π, I, t,H), where ℓ is a lock identifier, v is the lock’s current value, π (a real
number) is the fraction of the ℓ.lock(I) logical resource consumed by the most recent
ℓ.acquire() operation, or 0 if the lock is currently available, I is the lock invariant (a
closed assertion), t is the identifier of the thread currently holding the lock (if any),
and H is the logical resources owned by the lock (if the lock is currently available). A
channel table C is a finite set of tuples of the form (χ, v, P,H), where χ is a channel
identifier, v is the channel’s contents, P is the channel element resources predicate (an
assertion with one free variable, element, that describes the resources owned by the
channel for each of its elements), and H is the resources owned by the channel.
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h, T,Λ ok ⇔
∃A,L,C.

(∀(ℓ, v, π, I, t,H) ∈ L.
0 ≤ π ≤ 1 ∧ (π = 0 ⇔ v = 0) ∧ (v = 0 ⇒ H � I) ∧ Σ( , .O, , , , )∈T O(ℓ) = v)

∧ (∀(t, joinable, O,H, ĉ, c̃, Q) ∈ T. c̃ /∈ V ⇒ Σ( , .O, , , , )∈T O(t) = 1)
∧ (∀(χ, v, P,H) ∈ C. H � ⊛v∈vP [v/element])

∧ h = {[alloc(o), o.f 7→ v | (o, (f, v)) ∈ A]}
⊎ {[ℓ.lock(v) | (ℓ, v, π, I, t,H) ∈ L]}
⊎ {[t.thread(c̃) | (t, , O, H̃, ĉ, c̃, Q) ∈ T ]}
⊎ {[χ.channel(v) | (χ, v, P,H) ∈ C]}

∧ (
⊎

(ℓ,0,π,I,t,H)∈L H) ⊎ (
⊎

(t, ,O,H,ĉ,c̃,Q)∈T H) ⊎ (
⊎

(χ,v,P,H)∈C H) ≤
{[o.f 7→ v | (o, (f, v)) ∈ A]}
⊎ {[(1− π) · ℓ.lock(I) | (ℓ, v, π, I, t,H) ∈ L, π < 1]}
⊎ {[ℓ.locked(π, I, t) | (ℓ, 1, π, I, t,H) ∈ L]}
⊎ {[t.obs(O) | (t, , O,H, ĉ, c̃, Q) ∈ T ]}
⊎ {[t.thread(Q) | (t, joinable, O,H, ĉ, c̃, Q) ∈ T ]}
⊎ {[χ.channel(P ), n · χ.credit() | (χ, v, P,H) ∈ C ∧ n = |v|+Σ( , .O, , , , )∈TO(χ)]}
⊎ {[cp(ℓ) | ℓ ∈ Λ]}

Fig. 48. Consistency of a machine configuration, a thread table, and a stock of call permissions

Furthermore, we introduce the notion of an object allocation table. This is simply
a set of tuples of the form (o, (f, v)), where o is an allocated object and (f, v) are the
names and values of its mutable fields.

We define the judgment h, T,Λ ok that denotes consistency of physical heap h, thread
table T , and stock of call permissions Λ, in Fig. 48. This is the case if an object al-
location table A, a lock table L, and a channel table C exist such that the following
conditions hold:

— For each lock ℓ, the fraction π of the ℓ.lock(I) chunk consumed by the most recent
ℓ.acquire() operation is between 0 and 1, and is zero only if the lock is currently
available. Furthermore, if the lock is available, the logical resources H owned by the
lock satisfy the lock invariant I. Also, the total number of obligations for ℓ held by all
threads equals 0 if the lock is available, and 1 if the lock is held.

— If a joinable thread is not finished (i.e., its command is not a value), the total number
of obligations for t held by all threads equals 1.

— A channel’s bundle of owned logical resources H satisfies the separating conjunction
of its channel element resources predicate instantiated for each element in the chan-
nel’s queue.

— The physical heap consists of the physical chunks corresponding to the elements of
the object allocation table, the lock table, the thread table, and the channel table.

— The sum of the logical resources owned by the locks that are available, the threads
that have not been joined, and the channels, is at most the sum of the logical re-
sources corresponding to the elements of the allocated object table, the lock table, the
thread table, the channel table, and the stock of call permissions. Notice that the to-
tal number of credits for a channel equals the number of elements in the queue plus
the total number of obligations for the channel held by all threads.

We define the size |c| of a command c and |T | of a thread table T as follows:

|τ x := c; c′| = |c|+ 1 + |c′| |fork c| = 1 + |c| | | = 1 |T | = Σ(t, ,O,H,c,Q)∈T |c|
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safeΛ,n(t,H, ĉ, c, Q) =
safe(t,H, ĉ, λH.
(∀v. c = v ⇒ H � Q[v/result]) ∧
(∀h, T, j, O, k,Λ0, HF, Q0.
(Λ0, |T |+ |c|+ k) ≤ (Λ, n) ∧ h, T ⊎ {[(t, j, O,H ⊎HF, ǫ,⊥, Q0)]},Λ0 ok ∧ safe<(Λ,n)(T ) ⇒
(∀h′, c′. h, c → h′, c′ ⇒
∃O′, H ′, ĉ

′
, T ′,Λ′.

(Λ′, |T ′|+ |c′|+ k) < (Λ0, |T |+ |c|+ k)
∧ h′, T ′ ⊎ {[(t, j, O′, H ′ ⊎HF, ǫ,⊥, Q0)]},Λ′ ok

∧ safeΛ′,|T ′|+|c′|+k(t,H
′, ĉ

′
, c′, Q) ∧ safeΛ′,|T ′|+|c′|+k(T

′))
∧ (∀ω. h, c waitingFor ω ⇒ w(ω) ≺ O ∧ ∃(t′, , O′, , , , ) ∈ T. ω ∈ O′)))

safeΛ,n(T ) =
(∀(t, joinable, O,H, ĉ, c,Q) ∈ T. safeΛ,n(t,H, ĉ, c, t.obs({[t]}) ∗Q))
∧ (∀(t, nonJoinable, O,H, ĉ, c,Q) ∈ T. safeΛ,n(t,H, ĉ, c, t.obs(0)))

safe<(Λ,n)(T ) = ∀(Λ′, n′) < (Λ, n). safeΛ′,n′(T )

Fig. 49. Safety of a command and a thread table

The size of a thread table is an upper bound on the number of steps the machine can
take before it performs a method call. During the execution of a correct program, the
pair (Λ, n) of the available stock of call permissions Λ and the size n of the thread
table, which we call the rank of the instrumented machine configuration, ordered lex-
icographically with Λ more significant, forms a descending chain.

To define the meaning of correctness judgments, we adopt the approach of Vafei-
adis [2011] and extend it for total correctness and for unstructured thread forking.
Specifically, we define an auxiliary judgment safeΛ,n(t,H, ĉ, c, Q), which denotes that

execution of ghost commands ĉ followed by command c by thread t under ownership
of logical resources H will terminate successfully with a resulting bundle of logical
resources that satisfies postcondition Q, when started in an instrumented machine
configuration whose rank is at most (Λ, n).

Definition A.6. We define safety safeΛ,n(t,H, ĉ, c, Q) of a command and safeΛ,n(T ) of
a thread table by well-founded recursion on (Λ, n) in Fig. 49.

Specifically, safeΛ,n(t,H, ĉ, c, Q) expresses that the ghost commands ĉ execute safely
under a postcondition that consists of two conjuncts. The first conjunct states that if
the command is a value, then the owned logical resources H satisfy the postcondition,
instantiated with the result value. The second conjunct quantifies over all possible ci-
rcumstances under which the command c could be executed. Specifically, it quantifies
over the machine configuration h, the thread table T (not including the thread t execu-
ting c), t’s joinability j and obligations O, the size k of the context of c in t’s command
(i.e., the size of t’s command minus the size of c), the current stock of call permissions
Λ0, the logical resources HF owned by t minus those owned by c, and t’s postcondition
Q0. It assumes that the instrumented machine configuration’s rank does not exceed
the bound, that the machine configuration, the completed thread table, and the stock
of call permissions are consistent, and that the threads (not including t) are safe under
all lesser rank bounds.

It then states two conjuncts. The first conjunct states that for any step that c can take
in this machine configuration, an instrumentation exists for the resulting machine
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configuration such that it has a lesser rank, it is consistent, and both thread t and
the other threads in the new thread table are safe to execute with the new rank as
a bound. The second conjunct states that if in this machine configuration c is blocked
on a waitable object ω, then ω’s waiting level is below thread t’s obligations and ω is
among some other thread’s obligations.

A thread table T is safe under a rank bound (Λ, n), denoted safeΛ,n(T ), if all threads
that have not been joined are safe to execute under the specified rank bound and under
a postcondition that depends on whether the thread is joinable.

LEMMA A.7.

∀Λ, t, P, c,Q. t ⊢ {P} c {Q} ⇒ ∀n,H. H � P ⇒ ∃ĉ. safeΛ,n(t,H, ĉ, c, Q)

PROOF. By well-founded induction on Λ. Assume the induction hypothesis:

∀Λ′ < Λ. ∀t, P, c,Q. t ⊢ {P} c {Q} ⇒ ∀n,H. H � P ⇒ ∃ĉ. safeΛ′,n(t,H, ĉ, c, Q) (1)

By nested induction on the derivation of the correctness judgment. We detail a few
cases:

— Case CSTATICCALL. We have H � P ′ ∗ cp( ), where P ′ is the method’s precondition,
appropriately instantiated. It follows that there exists some level ℓ and logical heap
H ′ such that H = H ′ ⊎ {[cp(ℓ)]} and H ′ � P ′. Fix a consistent pre-step instrumen-
ted machine configuration. From consistency, it follows that there exists a Λ′ such
that Λ = Λ′ ⊎ {[ℓ]}. It follows that the post-step instrumented machine configuration
is consistent with respect to Λ′ as the stock of call permissions. Let c′ be the body
of the method, appropriately instantiated. By correctness of the program, we have
{P ′} c′ {Q}. By (1) instantiated for Λ′, we have safety of c′.

— Case CLET. Assume c = τ x := c1; c2. Assume {P} c1 {Q1}. Assume the induction
hypotheses:

∀n,H. H � P ⇒ ∃ĉ. safeΛ,n(t,H, ĉ, c1, Q1) (2)

∀v ∈ JτK, n,H. H � Q1[v/result] ⇒ ∃ĉ. safeΛ,n(t,H, ĉ, c2[v/result], Q) (3)

Fix H, n. Assume H � P . By (2), ghost commands ĉ exist such that
safeΛ,n(t,H, ĉ, c1, Q1). We prove the following lemma:

LEMMA A.8.

∀Λ′ ≤ Λ, n,H, ĉ, c. safeΛ′,n(t,H, ĉ, c, Q1) ⇒ ∃ĉ. safeΛ′,n(t,H, ĉ, τ x := c; c2, Q)

PROOF. By well-founded induction on (Λ′, n, |ĉ|). Assume the induction hypothesis:

∀Λ′′, n′, ĉ
′
. (Λ′′, n′, |ĉ′|) < (Λ′, n, |ĉ|) ⇒

∀H, c. safeΛ′′,n′(t,H, ĉ, c, Q1) ⇒ ∃ĉ. safeΛ′′,n′(t,H, ĉ, τ x := c; c2, Q) (4)

If |ĉ| > 0, the goal follows easily by case analysis on the first ghost command and (4).
Now assume |ĉ| = 0. If c is a value v, we have H � Q1[v/result]. The goal then follows
from (3). Otherwise, assume some physical heap h and h, τ x := c; c2 → h′, c′ for some
h′, c′. Then c′ is necessarily of the form τ x := c′′; c2 and h, c → h′, c′′. The goal then
follows by the safety of c and (4).

The goal follows immediately from the lemma and (2).

We define ||T || as the total number of ghost commands in T : ||T || = Σ( , , , ,ĉ, , )∈T |ĉ|.
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LEMMA A.9.

∀Λ, n,m, h, T. n = |T | ∧m = ||T || ∧ h, T,Λ ok ∧ safeΛ,n(T ) ⇒ ¬bad(h)
PROOF. By well-founded induction on (Λ, n,m).

— If m > 0, construct a new Λ′ ≤ Λ and a new T ′ such that |T ′| = n and ||T ′|| = m − 1
and h, T ′,Λ′ ok and safeΛ′,n(T

′) by executing some thread’s first ghost command. Then
apply the induction hypothesis.

— Assume m = 0. We prove the goal by contradiction. Assume bad(h). We perform case
analysis on the derivation of bad(h).
— Assume h 6→ and ¬finished(h). Then, by safeΛ,n(T ) each non-finished thread must be

blocked on some waitable object whose wait level is less than its own obligations,
and some other thread must have that waitable object as an obligation. Since, by
safety of the thread table, finished threads have no obligations, this implies a cycle
in the order on wait levels, which is absurd.

— Assume h → h′ and bad(h′). By safeΛ,n(T ) we have that a Λ′ and a T ′ exists such
that (Λ′, |T ′|, ||T ′||) < (Λ, n,m) and h′, T ′,Λ′ ok and safeΛ′,|T ′|(T

′). The goal follows
by the induction hypothesis.

THEOREM A.10.

∀t, ℓ. t ⊢ {t.obs(0) ∗ cp(ℓ)} c {t.obs(0)} ⇒ ¬bad {[t.thread(c)]}
PROOF. By Lemma A.7, there exists ĉ such that safeΛ,n(t,H, ĉ, c, t.obs(0)), where

Λ = {[ℓ]}, n = |c|, and H = {[t.obs(0), cp(ℓ)]}. It follows that safeΛ,n(T ) where T =

{[(t, nonJoinable,0, H, ĉ, c, true)]}. Furthermore, we have h, T,Λ ok where h = {[t.thread(c)]}.
We obtain the goal by Lemma A.9.
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