Modular Verification of
Collaboration-Based Software Designs

Kathi Fisler
Department of Computer Science
Worcester Polytechnic Institute
Worcester, MA, 01609 USA

kfisler@cs.wpi.edu

ABSTRACT

Most existing modular model checking techniques betray
their hardware roots: they assume that modules compose in
parallel. In contrast, collaboration-based software designs,
which have proven very successful in several domains, are se-
quential in the simplest case. Most interesting collaboration-
based designs are really quasi-sequential compositions of
parallel compositions. These designs demand and inspire
new verification techniques. This paper presents algorithms
that exploit the software’s modular decomposition to verify
collaboration-based designs. Our technique can verify most
properties locally in the collaborations; we also characterize
when a global state space construction is unavoidable. We
have validated our proposal by testing it on several designs.

Categories and Subject Descriptors

D.2.2 [Design Tools and Techniques]: Modules and in-
terfaces; D.2.4 [Software /Program Verification]: Model
checking; D.2.11 [Software Architectures]: Languages;
F.3.1 [Specifying and Verifying and Reasoning about
Programs]: Specification Techniques

General Terms

Design, Verification

Keywords

Model checking, compositional reasoning, computer-aided
verification, software architecture, collaboration-based de-
sign, aspect-oriented programming

1. INTRODUCTION

Software designs can be decomposed into actors, roles and
features: actors play roles to collaboratively implement fea-
tures. For example, the actors might be databases, Web

Shriram Krishnamurthi
Computer Science Department
Brown University
Providence, RI, 02912 USA

sk@cs.brown.edu

interfaces and control logic; features include on-line shop-
ping and inventory management. Software designs must
provide a coherent organization for the code implementing
actors and features. Traditional software organizations ar-
range programs around actors: each module reflects an ac-
tor, and the collection of actor modules forms the complete
design.

Recent research suggests that, in many domains, organizing
designs around features rather than actors produces more
reusable designs and implementations. In such a design,
each module reflects a feature, and contains fragments of
actors playing the roles relevant to implementing that fea-
ture. As with aspects [24], these designs often divide the
implementation of each actor into several fragments that
cross-cut the modular structure of the design. Modules in
such designs are sometimes called collaborations [27], hyper-
slices [29], refinements [5], or units [14]. We will use the
term collaborations, but our work applies equally well to
these other forms of aspect-like, cross-cutting-based designs.

Collaborations have well-defined interfaces that permit their
composition to build larger designs; they tend, at least in
principle, to obey the characteristics of components [17, 21,
36], such as separate compilation, multiple instantiability
and external linkage. By specifying each collaboration in-
dependently, designers can flexibly decide which features to
include and exclude in a particular composite design. These
designs have been particularly successful in software product
lines, where different compositions of a collection of features
can produce several variations on a theme. A brief sam-
pling of successful designs in this vein includes a military
command-and-control scenario simulator [4], a programming
environment [13], protocol layers and database modules [5,
6, 38], and verification tools [16, 35].

The success of collaboration-based designs at implementing
software product lines suggests a tantalizing prospect: per-
haps they can also assist in validating such designs. Each
collaboration’s interface would indicate properties that hold
of that collaboration. At composition time, the designer
would validate these interface properties against other col-
laborations, thus ensuring they hold over the entire design.
This scenario represents a useful and important form of
modular verification.

While verifying designs based on their modular structure
is an old idea, collaboration-based designs do not appear
to fit existing modular verification frameworks. Most mod-
ular verification literature concentrates on parallel compo-
sition of modules, as befits its hardware origins. There is
a small corpus on sequential composition, which represents
a very simple case of collaboration-based design. Realis-
tic collaboration-based models of software, however, quasi-
sequentially compose collaborations of parallel execution.
This subtlety requires a new verification methodology. This
structure, moreover, would simplify the thorny questions
that arise in traditional modular verification of how to per-
form property decomposition.

In this paper, we propose a verification methodology for
collaboration-based software designs. We use model check-
ing as our underlying verification technique. Our method-
ology checks properties of individual collaborations before
composition; it also generates constraints to verify against
other collaborations during composition. In most cases, es-
pecially the ones we have encountered in practice, we can
establish these properties without ever constructing a global
state space. This reuses the verification effort on individual
collaborations, and avoids the horrors of state explosion.

Our efforts to verify a fire simulation support software pack-
age called FSATS [4] have inspired and driven our results.
The FSATS implementation is a real and substantial soft-
ware product, in which the collaboration-based architecture
is fundamental to the design’s development and mainte-
nance. As FSATS is too complex to serve as a running
example in this paper, we illustrate our development on two
simple examples that distill the problems that we have en-
countered to date in our work on FSATS.

The rest of this paper is organized as follows. Section 2
discusses prior work on modular verification and its rela-
tionship to our work. Section 3 presents our methodology.
Section 4 presents conclusions and discusses avenues for fu-
ture work.

2. BACKGROUND AND RELATED WORK

Model checking is a technique for proving logical properties
of designs [9]. Its successful application to hardware makes
its use on software designs an attractive proposition. In a
canonical model checker, a design is represented as a (fi-
nite) state machine, while properties are usually expressed
in variants of temporal logic. Model checkers handle designs
consisting of several machines running in parallel by auto-
matically computing the cross-product of the machines, then
applying their algorithms to the resulting single machine; we
exploit this feature in section 3. For an extensive survey of
model checking, we refer the reader to the book by Clarke,
Grumberg and Peled [9]. In the rest of this paper, we assume
a basic familiarity with model checking.

Model checking algorithms vary with the logic of properties.
Our work extracts properties of collaborations by examin-
ing the labels on interface states. This assumes the model
checker uses state labeling, which is the technique employed
for branching-time temporal logics such as CTL. To sim-
plify the development, we present our algorithms assuming
an explicit representation of the state space of a design. In

practice, many model checkers represent state symbolically
rather than explicitly [28]. Our algorithms are insensitive to
this difference; indeed, we performed the verification tasks
in this paper on a model checker employing symbolic repre-
sentations [37].

Several researchers have described techniques for modular
verification of designs [15, 20, 25, 30]. These techniques
are based on a hardware-oriented notion of modularity, in
which modules are composed in parallel. For instance, one
module might be a CPU, while another module represents
a floating-point co-processor. The research then shows how
to ensure the preservation of individual properties about the
CPU or floating-point processor; using these techniques to
prove properties involving both devices requires substantial
experience, and is not always possible. These results do not
apply to most software designs, where control flows sequen-
tially between modules.

Some preliminary research [2, 10, 26] has begun to consider
modular verification with sequential, rather than parallel,
control flow. The original work [26] handles designs with
only one state machine; it also lacks a design framework,
such as collaboration-based design, that drives the decom-
position of the design. Subsequent work uses hierarchical
state machines [2] and StateCharts [10] to provide this de-
composition, but the resulting designs are still monolithic.
In contrast, we analyze designs with two key distinguishing
features:

e We have to verify individual collaborations without
knowing about all the other collaborations that may
exist. In other words, we need to verify open, rather
than closed, systems.

e The designs include multiple state machines per col-
laboration, which greatly complicates the verification
problem.

The work by these other authors does not even admit these
design possibilities. Alur and Yannakakis cite the problem of
sequential verification over multiple state machines as open
for future work [2]. Furthermore, they do not discuss how
to handle designs that involve quasi-sequential composition
of parallel compositions, such as exist in FSATS. Alur et al.
discuss analysis techniques for sequential refinements within
modules that are composed in parallel (this work uses the
term “behavioral hierarchy” for refinements within modules
and “architectural hierarchy” for parallel compositions of
modules) [1]. The critical difference between their work and
ours is that theirs does not support coordination between
sequential refinements across modules. Our work, in con-
trast, considers verification for collaborations that gather
related sequential refinements into modules. Encapsulat-
ing related refinements in collaborations allows us to verify
properties of entire features in isolation from other features,
even when those features cross-cut several actors. Without a
collaboration-based architecture, isolating this information
from across parallel modules is difficult if not impossible.

Inverardi, Wolf, and Yankelevich extract graph-based repre-
sentations of software components for purposes of checking

for deadlock-freedom [23]. Our work relates to theirs in that
we also represent components with graph-based abstractions
and traverse those graphs to check properties. Our work dif-
fers from theirs in two key ways: first, we are establishing
an overall methodology for handling collaboration-based de-
sign, which adds some technical challenges to the verification
problem (described in the remainder of this paper), and sec-
ond, we support a larger class of properties (namely those
representable in CTL).

Much software architecture research has focused on support
for product-lines and separation of concerns. Some of this
work uses layered architectures [32], whose high-level struc-
ture resembles collaboration-based architectures; layered ar-
chitectures, however, generally include an assumption that
each layer refines a more abstract layer already in the sys-
tem. Our work does not require any abstraction relationship
between collaborations. Rajlich and Silva studied software
reuse and evolution of orthogonal architectures, which orga-
nize code fragments into layers of code at the same level
of abstraction and threads of code for common actors [31].
Their work did not consider formal analyses of designs un-
der orthogonal architectures. Griswold and Notkin explore
performance issues arising from layered architectures [19].
While their layers resemble collaborations, their “actors”
were data abstractions (or views) on shared data in a design
with loose coupling between the pieces of a layer. Our ac-
tors, in contrast, are control-intensive and are tightly cou-
pled within each collaboration. In general, the loose cou-
pling in collaboration-based architectures occurs between,
rather than within, the “layers”.

3. VERIFYING COLLABORATION-BASED
SOFTWARE DESIGNS

3.1 A Model of Collaboration-Based Design

We view a design as a set of classes, roughly one per actor in
the design. A collaboration consists of a set of class exten-
sions (mizins [7, 18, 33, 34, 39]) for the actor classes. The
set of mixins in a collaboration relate to a common task,
or feature, in the overall design. This definition permits ac-
tor classes and mixins of arbitrary complexity. To make the
problem of verification more tractable, we assume each ac-
tor class can be described as a state machine, and that each
mixin extends an existing (base) state machine by adding
nodes, edges, and/or paths between states in the base ma-
chine. State machine models of software arise from one of
two sources: either the software is written in terms of state
machines, as is true for many embedded software applica-
tions, or abstraction techniques derive state machines from
the source code [11, 12, 23]. As FSATS is of the former fla-
vor, we assume that approach in this paper. Our work could
adapt to the latter if the abstractions produce machines for
which we could define meaningful interfaces between collab-
orations; accordingly, we regard the work on state machine
abstractions as orthogonal to this paper.

Each base or composed design specifies interfaces, in terms
of states, at which clients may attach extensions. We define
interfaces formally below. In our experience, new features
generally attach to the base design at common or predictable
points; the set of interfaces is therefore small. This is impor-
tant, as the interface states will indicate information that

we must gather about a design in order to perform com-
positional verification of collaborations; a large number of
interfaces might require too much overhead in our method-

ology.

Figures 2 and 5 show examples of base designs, collabo-
rations, extensions, and interfaces; Sections 3.3 and 3.4 ex-
plain the examples in detail. The following formal definition
makes our model of collaboration-based designs precise. The
definitions match the intuition in the figures, so a casual
reader may wish to skip the formal definition.

Definition 1. A state machine is a tuple (S, X, A, so, R, L),
where S is a set of states, ¥ is the input alphabet, A is the
output alphabet, so € S is the initial state, R C Sx PL(X)x
S is the transition relation (where PL(X) denotes the set of
propositional logic expressions over X), and L : S — 24
indicates which output symbols are true in each state.

Definition 2. A base system is a tuple (Mi,..., My) of
state machines and a set of interfaces. We denote the ele-
ments of machine M; as (Swmi, Xni, Ani, S0,y Bariy Lnti).
An interface contains a sequence of pairs of states

({exit1, reentryr), ..., (exity, reentryz)).

Each exit; and reentry; is a state in machine M;. State exit;
is a state from which control can enter an extension machine,
and reentry; is a state from which control returns to the base
system. Interfaces also contain a set of properties and other
information which are derived from the base system during
verification; we describe these properties in detail in later
sections.

Definition 8. An extension is a tuple (E1, ..., Ey,) of state
machines. Each E; must induce a connected graph, must
have a single initial state with in-degree zero, and must have
a single state with out-degree zero. For each E;, we refer to
the initial state as in; and the state with out-degree zero as
out;. States in; and out; serve as placeholders for the states
to which the collaboration will connect when composed with
a base system. Neither of these states is in the domain of
the labeling function L;.

Given a base system B, one of its interfaces I, and an ex-
tension E, we can form a new system by connecting the
machines in E to those in B through the states in I, as
shown in Figure 1. For purposes of this paper, we assume
that B and E contain the same number of state machines.
This restriction is easily relaxed; the relaxed form allows ac-
tors to not participate in each new feature, or to allow new
actors as required by new features. We also assume that
the states in the constituent machines of base systems and
extensions are distinct.

Definition 4. Composing base system B = (M, ..., M)
and extension collaboration E = (Fi,...,Ey) via an in-
terface I=((exit1,reentryi),..., (exity,reentrys)) yields a
tuple {(C1i,...,Ck) of state machines. Each state machine
C; = (Sci, Xci, Aci, Sog;, Rei, Lei) is defined from M; =

reentry exit

reentry exit

(out) (in)

| = <exit, reentry>

E out! =) (g—— in

Py

Figure 1: Composition of a base system B with an extension F via an interface.

{Sniy Xariy Antiy S04, , Ruiy Lari) and its corresponding ex-
tension Ei = <SEi, ZEi, AEi, S0g;» REi, LEi> as fOllOWS: SCi =
Smi U Sgi — {ini,outi}; soq; = S0u,; Rei is formed by re-
placing all references to ¢n; and out; in Rg; with ezit; and
reentry;, respectively, and unioning it with Raz;. All other
components are the union of the corresponding pieces from
M; and E;. We will refer to the cross-product of C1,...,Ck
as the global composed state machine.

Definition 4 allows composed designs to serve as subsequent
base systems by creating additional interfaces as necessary.
This supports the notion of compound components that is
fundamental in most definitions of component-based sys-
tems.

3.2 Verification Methodology

Our methodology is designed to support compositional ver-
ification of collaboration-based designs. Specifically, our
methodology supports the following activities:

1. Proving a CTL property of an individual collaboration
or composition of collaborations. This is easily done in
the base system with existing techniques, but becomes
more complicated in extension collaborations.

2. Deriving a set of constraints on the exit and reentry
states of a collaboration that are sufficient to preserve
a particular property after composition (the preserva-
tion constraints).

3. Proving that a collaboration satisfies the preservation
constraints of another collaboration (or existing sys-
tem). This activity is only meaningful if the preserva-
tion constraints were generated for the exit and reentry
states to which the new collaboration will attach. We
establish preservation by analyzing only the extension,
not the composition of the extension and the existing
system.

These activities correspond to a kind of modular verification,
where the collaborations are modules. As in standard ap-
proaches to modular verification, we are interested in prov-
ing properties of modules in isolation from the rest of the
system and in preserving those properties upon composition
with other modules.

We illustrate our methodology using two examples: a simple
sportswatch and a communication protocol. The sportswatch
design consists of a single actor; each collaboration there-
fore contains and extends only one state machine. This ex-
ample motivates our interfaces and high-level approach to

Bidn BZdn
" L. (toggle i
clock . Blup alarm ~B2w | aarm '
(\ / e
Biup
B2up™ (disp !
date

! Timer Layer

Bldn T Bidn T Bldn
msb !
el B2dn sop
split B2dn split 3
ms-by ¥ ms-b '
ms-b
Bldn
Bldn v !
B2up| B2dn Alarm Time Layer

Figure 2: A collaborative design for a sportswatch.

sequential collaboration composition. The communication
protocol captures key characteristics of FSATS and shows
how our methodology extends to designs with multiple state
machines in each collaboration. Section 3.5 discusses some
pragmatic issues that arise when performing these verifica-
tion runs with an existing model checker.

3.3 Single-Machine Designs

Figure 2 shows a collaboration-based design of a sportswatch
with timer and alarm features. The base system contains
four display nodes: clock display, alarm time display, date
display, and an alarm status display that supports toggling
the alarm status. The first extension adds a timer which
the user can reset, resume, and stop. The timer collabora-
tion also supports a split timer for capturing time instanta-
neously. The second extension supports setting the alarm
time; we omit collaborations for setting the clock time due to
space constraints. Although both extensions add core func-
tions, rather than optional features, we implement them as
collaborations to allow a designer to include any of several
possible implementations of these features in a final watch
(as in a product-line architecture). The watch is controlled
through two buttons (B! and B2) which can be either up or
down and a mode switch that can be in the forward (ms-f)
or back (ms-b) positions.

The base system should satisfy the property that one can
always get to the display-clock state (AG EF display-clock

in CTL). This property is easy to verify using a model
checker. The base collaboration publishes one interface:
(dispclock, dispclock), meaning that all extensions will start
from and return to the dispclock state. Once we extend
the base system with the timer, we must prove that adding
the timer will not cause the display-clock property—which
has already been proven of the base collaboration—to fail.
We could compose the base system and timer collaborations
and re-verify the property on the composed system. This
approach, however, wastes the work that we have already
done proving the property of the base collaboration; worse
still, on a larger example, the composed design could be too
large to model check effectively. We therefore want to ver-
ify that the timer collaboration will preserve the property
already proven of the base system without using the entire
base system.

The classic CTL model checking algorithm [8] checks a prop-
erty by marking each state with the subformulas of the prop-
erty that are true in that state. After marking is complete,
the formula is true of the design if its initial state is marked
with the full property formula. If we can prove that an ex-
tension does not alter the markings of the base system states
for a given property, then that property will hold in the com-
position of the base system with the extension as well. It
suffices to show that the markings of the exit states in the
base system interfaces are not altered, as all states which
reach collaboration states do so through the exit state.

Given the base system interface ({dispclock,dispclock) in
this case) and a property to preserve (AG EF display_clock),
we use a model checker to extract the set of subformulas
of the property that mark each state in the interface; these
markings can be stored with the interface, and need not be
re-computed on each extension. The following three formu-
las mark dispclock:

e E(TRUE U dispclock)
o dispclock (this implies the previous formula)

e (E(TRUE U (E(TRUE U dispclock)))) (equivalent to
AG(EF dispclock)).

We must prove that the extension will preserve the markings
on the exit state from the base system. The CTL model
checking algorithm marks states based on the markings of its
successor states. As some extension states have transitions
to the reentry state (in the base system), we need the reentry
state’s markings to compute the markings on the extension
states. Our verification algorithm consists of assuming that
the out state of the extension has the same markings as
the reentry state, deriving the markings on the in state,
and checking that those markings are the same as on the
original exit state. We derive the markings on the in state
by checking a property of the form AG(in— ¢) for each
subformula ¢ of the property to be preserved. Figure 3
shows the sportswatch timer collaboration with the marking
assumptions on out. Model checking confirms that in retains
the original markings of dispclock, so the property will be
preserved upon composition.

In addition to the display-clock property, we can also verify
that the timer collaboration (without the base collaboration

attached) satisfies the property “once started, the timer can
always be stopped” (AG(resumetimer — EF stoptimer)). We
view the timer collaboration as the base system and the base
as the extension to verify that the base collaboration would
preserve this property upon composition.

We also construct a composed system from the base and
timer collaborations, with interface {dispclock,reset). The
interface states change after composition because the watch
requires switching between modes to be deterministic; sat-
isfying this constraint requires new collaborations to be en-
tered from the timer collaboration, rather than the original
base system. For both states in the interface, we record
the markings necessary to satisfy the two properties already
proven of the design. These markings arise from both veri-
fying the properties of each collaboration and from verifying
the preservation of the other collaboration’s properties. For
dispclock, the new set of interface markings is:

e (E(TRUE U (E(TRUE U dispclock))));
E(TRUE U dispclock);
dispclock;

(resumetimer — E(TRUE U stoptimer));
E(TRUE U stoptimer)

Using these markings, we verify that adding the alarm col-
laboration preserves the existing properties (displaying the
clock and stopping the timer).

Summary of Algorithm on Single State Machines
In summary, the verification algorithm for the single state
machine case is as follows:

1. Write the model for the extension, including the place-
holder states in and out.

2. Assign the subformulas that marked the actual reentry
state in the base system as labels of the placeholder
reentry state (out).

3. Model check all of the subformulas of the original prop-
erty in the placeholder reentry state (in). If in has
exactly the same labels (relative to the property) as it
did before the extension, the property will hold in the
composed system.

This algorithm was independently derived by Laster and
Grumberg for reasoning about sequential decomposition of
finite state machines [26]. Its correctness depends in part
on all reachable states in the composed design lying in ei-
ther the base system or the extension (an obvious point in
the single-machine case, but one which becomes interesting
in the multiple-machine case). For checking preservation
of purely existential properties, this algorithm is often un-
necessary because sequential composition trivially preserves
such properties when the out state is always reachable from
the in state (a simple observation, but one which Laster and
Grumberg failed to note).

(E(TRUEU !((resumetimer — E(TRUE U stoptimer)))));

E(TRUE U display_clock) .----.
display_clock ¢ |
I(E(TRUE U !(E(TRUE U display_clock)))) *.. .~

/—\Bldn

B2dn

; L msf

T eset) B2dN (resume stop
n ey L B2dn | timer

e b Bldnl T Bidn T Bldn

B2d ms-b
resume , stop
split/ < B2dn_\ split
ms-by ¥ ms-b

Figure 3: The timer extension with marking assumptions on the out state.

For our experiments, we simulated this algorithm using the
VIS model checker. VIS does not support this algorithm
directly, as there is no way to seed out with the assumed
marking. Instead, we were forced to include a transition
from out to the entire base system model; we did not in-
clude transitions from the base system to in. We verified
that the markings on the actual reentry state (dispclock) did
not change under this operation. As in was not attached to
the base system, this approach is sufficient to argue that
the verification would have gone through with the seeded
markings (and no base system) had VIS supported that op-
eration. Section 3.5 discusses our experiences using a con-
ventional model checker for our sort of modular verification
in more detail.

3.4 Multiple-Machine Designs

The algorithm in Section 3.3, as well as prior research into
verification under sequential composition, does not apply to
FSATS because FSATS has multiple state machines in each

collaboration. In practice, almost all interesting collaboration-

based designs, by their very nature, will employ multiple
state machines (one for each actor). When each collabo-
ration contains a single state machine, extending a design
with a collaboration corresponds to sequential composition
of state machines. When collaborations contain multiple
state machines, extending a design with a collaboration cor-
responds to a hybrid of sequential and parallel composition:
the machines within a collaboration are composed in par-
allel (because they run together to implement a particular
feature), but the collaborations themselves are composed in
a quasi-sequential manner (quasi because the machines do
not synchronize exactly when entering an extension). The
actual composition is not strictly sequential: this detail is at
the crux of the verification problem for designs like FSATS;,
and is the focus of this section.

Constructing a design by sequential composition is appeal-
ing because, as Section 3.3 shows, it supports independent
verification of collaborations. Figure 4 (left) shows a de-
sign constructed in this fashion. The construction provided
in the formal model (the global composed state machine,
Definition 4), however, is different. As Figure 4 (right) il-
lustrates, the construction first extends each base machine
with its corresponding mixin, then composes the resulting
machines in parallel. Clearly, we would prefer to compose
designs according to the first construction because it sup-
ports collaboration-based verification. In order to do this,
however, the first construction must produce the same global
composed state machine (upto reachability of states) as the
second! This relationship captures the crucial challenge
in collaboration-based verification of designs with multiple
state machines per collaboration. We must construct the

parallel compositions representing each collaboration in such
a way that composing them sequentially yields the global
state machine arising from Definition 4.

This section motivates our algorithm for constructing par-
allel compositions within collaborations. Our algorithm is
designed to create parallel compositions that can in turn be
composed sequentially with other collaborations. We de-
scribe the algorithm by illustrating its behavior on a small
example. We also evaluate this algorithm’s ability to ver-
ify properties of collaborations in isolation. While many
collaborations (including the FSATS collaborations) can be
verified in isolation under this construction, our motivat-
ing example illustrates a case where independent verification
may fail. A property for which verification may fail must be
verified in the composed design, rather than composition-
ally through the collaborations. We provide a characteriza-
tion of these cases and a model-checking-based algorithm to
determine whether properties can be verified composition-
ally. Section 3.4.1 presents our new example, which captures
the salient characteristics of FSATS without necessitating as
much explanation of the domain.

3.4.1 The Clayton Tunnel Protocol

We consider a collaboration-based design of a communica-
tions protocol between operators at either end of a train
tunnel (see Figure 5) [22]. Our design is derived from an
actual communication protocol that was in use (and con-
tributed to an accident!) in England in 1861. The two
state machines model the human operators on either end of
long train tunnel covering a one-way track. Unable to see
one another, the operators communicate messages about the
status of the tunnel. In the base collaboration, the opera-
tors communicate when trains are entering and exiting the
tunnel. The inbound operator sends a train-in message to
the outbound operator when a train enters the tunnel. The
outbound operator sends a tunnel-clear message to the in-
bound operator when a train exits the tunnel. The base
collaboration consists of the protocol for exchanging these
two messages.

The full protocol was designed to prevent two trains from
ever being in the tunnel simultaneously (we omit the specific
details from the model is this paper because they are irrel-
evant for our purposes). The accident that occurred arose
because a second train entered the tunnel before the first
one had left; although the inbound operator suspected the
problem, the communication protocol was too weak to con-
vey the situation to the outbound operator. One solution is
to add messages to the protocol that convey this informa-
tion accurately. The extension adds a two-in message from
the inbound to the outbound operator; it also adds states to

mtra n/“train-in"

else
tunnel clear &
el

! tunnel-clear

! Two-train extension

Figure 5: A collaboration-based design for a track-operator communication protocol.

both operator machines so that the outbound operator does
not send the train-clear message until both trains have left
the tunnel.

Verifying this protocol requires a model of the trains that
can enter and exit the tunnel. A model of the events that
drive a protocol, but are not part of its definition, is called an
environment model. The environment model for the tunnel
protocol must generate reasonable train data; for example,
no train should ever leave the tunnel before it enters the
tunnel. For simplicity, we use an environment model con-
taining two trains. Their only constraints are that the first
train enters the tunnel before the second, and that both
trains enter the tunnel before they exit the tunnel. This
model is reasonable because the original protocol was such
that at most two trains could be in the tunnel at once if
the train drivers obeyed the rules of using the tunnel. We
implement environment models as state machines. For the
tunnel protocol, the environment model generates signals
wntrain and outtrain to indicate trains entering and leaving
the tunnel.

Depending upon when trains enter and leave the tunnel, the
operators may be inconsistent on their views as to whether
there is a train in the tunnel. Given the base collabo-
ration, we would like to prove that the inbound operator
never livelocks thinking that there is a train in the tun-
nel (AG(EF(inbb.state=notrain))); this property requires all
trains in the tunnel to eventually exit the tunnel, which we
handle with a fairness constraint [9]. We can easily discharge
this property of the base system; the challenge is to verify
that the extension preserves it. For the extension, we wish
to prove that once the inbound operator warns that there are
two trains in the tunnel, it does not exit the extension until
it receives a tunnel-clear message (AG ((inbmsg=two-in)—
A(!(instate=out) U (outbmsg=tunnel-clear)))).

3.4.2 Creating the Extension Cross-Product

The extension consists of the two state machines in the lower
dashed box in Figure 5 (though with in and out states, as in
Figure 3). In order to model check the extension, we need to

Itrain-in & intrain

. else
train-in

outtrain/ "tunnel-clear"

intrain/"train4in"

notrain
notrain

tunnel-clear&!|ntrain

Figure 6: The cross-product state machine (reach-
able subset) for the tunnel base collaboration. The
exit subgraph for an interface containing both train
states as exit states is enclosed in the solid box.
Both states in the exit subgraph have the potential
to transition to an extension.

compose the extension machines in parallel. We could form
a naive parallel composition of these two machines using
a standard cross-product procedure [9]. This construction
would assume that both machines start in their initial states
(the 4n states) simultaneously. This assumption, however,
is not necessarily valid. In the tunnel protocol, for example,
the inbound operator may notice the second train before the
outbound operator has registered that there is a train in the
tunnel (this synchronization problem arises in FSATS). Our
parallel composition therefore needs additional information
about the synchronization of the in states in the extension
in order to construct a valid composition; without this in-
formation, we may use the wrong initial states during the
parallel composition within the extension.

This synchronization observation reflects a general technical
challenge with collaboration-based verification: the reach-
able global state space of an extended design may contain
global states comprised of states from both the base sys-
tem and the extension. Our techniques must guarantee
that we visit all such states during model checking. As
most collaboration-based designs roughly synchronize actors
around each collaboration, these hybrid states arise in two
controlled places: as the actors enter the extension and as
the actors leave the extension to return to the base system.
Our techniques must identify these hybrid states and use

them both to properly generate the parallel composition of
an extension and to check whether the synchronization is
sufficient to avoid model checking the entire system. Sec-
tion 3.4.4 discusses the latter issue.

We derive synchronization information on the exit states
from the base system. Given a set of exit states that form
an interface in the base system, we can compute the sub-
graph of the base system that involves only the exit states;
we then use this subgraph (the exit subgraph, described for-
mally in Definition 5) to drive transitions from the in states
in the parallel composition. Figure 6 shows the exit sub-
graph for the tunnel protocol. While in practice the exit
subgraph could be large, these graphs are small in FSATS
(and presumably in similar designs as well) because the ac-
tors decide to enter a particular extension at roughly the
same time based on a tight sequence of message-passing.

Definition 5. Given the cross-product B of the base sys-
tem and an interface

I = {{exit1, reentrys),. .., (exity, reentryy))

to the base system, the exit subgraph is the subgraph of B
over all cross-product states containing at least one exit;
state.

The exit subgraph indicates which states from the base sys-
tem could be involved in transitions to the extension. Intu-
itively, each state in the exit subgraph is a potential initial
state for the cross-product of the extension collaboration.
We must therefore drive the construction of the extension
cross-product from all states in the base system that appear
in some state of the exit subgraph. To do this correctly, we
must prepend each individual machine in the extension with
states from the exit subgraph.

Figure 7 illustrates the needed construction. The diagram
on the left shows an exit subgraph and a potential state in
the extension (note that state (ini,in2) is not reachable).
In order to construct the potential extension state from its
correct predecessor, we need to capture states b; and by in
the extension machines before forming the cross-product.
The diagram on the right shows the extension machines Ey
and E5 expanded with information obtained by decomposing
the exit subgraph. The expanded machines are then used to
build the extension cross-product.

The following steps formally describe how to construct the
cross-product of the extension using the exit subgraph:

1. Construct the exit subgraph ES.
2. For each extension machine FEj:

(a) Determine all states of base machine M; that ap-
pear in ES.

(b) Add these states to E; (with the exception of
exit;, which is already in E; as state in;—we refer
to exit; and in; interchangeably throughout this
description).

G

Figure 8: Using escape states to detect insufficient
synchronization of interface states.

(c) For each pair of states s; and ¢; added to F; (in-
cluding exit;), add a transition from s; to t; iff
such a transition exists in the base machine M;.
The guards on the transition should be identical
to those on the transition from s; to ¢; in the base
system machine.

(d) Add a state escape; to Ej;. For each state s; from
M; added to E; (including ewit;), add a transition
from s; to escape; enabled on all other transitions
from M; that leave s;.

3. Treating each state in ES as a potential initial state,
construct the cross-product of the expanded E; ma-
chines using the standard cross-product construction.
We will use this expanded cross-product for all model
checking activities for the extension.

This construction yields a set of cross-product states and
transitions involving states from the original extension ma-
chine E;. The composed cross-product machine arising from
Definition 4 also yields a set of cross-product states and tran-
sitions involving states from the original extension machine
E;. Our construction is correct if these two sets of states
and transitions are identical. The correctness proof argues
(a) that the states leading into the extension are the same
under both constructions, and (b) that since these states
(the initial states of the extension) are the same under both
constructions and the transition labels on the individual ma-
chines are identical, the generated sets of states and transi-
tions must also be identical. The proof requires an assump-
tion that no cross-product state involving an escape; state is
reachable under our construction. We restrict our method-
ology to cases where this condition holds in Section 3.4.4.

Ideally, this construction should yield all cross-product states
in the composed design that arise from entering the exten-
sion. This situation might not hold in the general case,
however, as illustrated in Figure 8. In the diagram, the
second machine enters the extension before the first ma-
chine reaches its interface state. This creates a global state
(b3, e1) which spans the base system and the extension, but
without involving an interface (exit) state. This example
motivates the use of the escape state in the extension cross-
product construction. The construction would yield a tran-
sition from (b2, in2) to {escape1,e1) (where escape: captures
state bs). Reachable escape states capture cases such as this
in which our methodology could not correctly apply.

3.4.3 Environment Models for Verifying Extensions

(Extension)

El

Figure 7: Decomposing an exit subgraph to drive extension cross-product construction.

Given the parallel composition of the extension machines
constructed using the exit subgraph, we can attempt to ver-
ify the collaboration property using the original environment
model to generate the trains. This effort fails. The inbound
operator sends the {wo-in message as soon as the environ-
ment model sends the first train into the tunnel; this is
wrong, however, because the inbound operator should only
enter the multiple train state when the second train enters
the tunnel before the first train exits. Aligning the initial
states of the extension cross-product with the initial states of
the environment model loses some history about the state of
the environment model at the interface states to the exten-
sion. In the tunnel example, the environment model must
have the first train in the tunnel and the second train ap-
proaching the tunnel at the in states of the extension; the
normal environment model starts with both trains approach-
ing the tunnel. We can synchronize the environment model
with the extension by composing the environment model
with the base system before computing the exit subgraph.
The initial states of the exit subgraph now contain states of
the environment model; those states should be used as the
initial states of the environment when verifying properties
of the collaboration. This construction indicates that the
tunnel environment should start with the first train already
in the tunnel.

Although generating restricted initial states of the environ-
ment model appears to be an overhead of formal verification,
the problem of generating these models is similar to the
problem of generating a testing harness for a collaboration-
based design. Collaboration-based designs offer the hope
of testing collaborations in isolation. That testing, how-
ever, requires knowledge about the environment that will
drive the collaboration. Our approach merely formalizes
the problem of obtaining a restricted testing harness for
collaboration-based designs. In FSATS, the environment
model problem arises because each extension corresponds
to a new type of mission which is initiated only if the envi-
ronment has generated a target of a particular type.

3.4.4 \Verifying Properties Compositionally

We have identified two key issues in supporting verification
of multiple-machine collaborations independently from their
base systems: capturing global states that bridge collabora-
tions and restricting environment models. Exit subgraphs
and restricted environment models allow us to verify that
an extension satisfies a given property relative to an in-
terface to a base system. The methodology as presented
is still incomplete, however, as we must characterize when
the properties of the composition of this collaboration with
a base system can be verified via sequential composition,

rather than on the global composed state machine. Verify-
ing multiple-machine collaborations under sequential com-
position is correct only if we are able to identify and capture
all global states that contain sub-states from both the base
and extension collaborations. Thus, we require sufficient
conditions for capturing these states.

Section 3.4.2 described a construction for the exit subgraph,
which coordinates actors as they enter an extension. Just
as the actors do not enter an extension simultaneously, we
cannot expect them to exit an extension collaboration si-
multaneously. The asynchronous exits could create reach-
able states in the composed system that are not contained
in the extension. Worse still, these states could lead to
global states that become reachable in the base system only
after composition. Either case would break our proposed
collaboration-based verification methodology.

Fortunately, the collaboration-based designs that we have
studied, including FSATS, tend to have a characteristic that
addresses this problem: the reentry states eventually syn-
chronize after executing an extension. With this synchro-
nization, the sequential composition of the base system and
the extension could capture the full global state space, as
required for collaboration-based verification. If this syn-
chronization does not occur, then our methodology is in-
sufficient; in such cases, we will have to check the properties
in the full composed system.!

The following constraints indicate when we can prove that
a collaboration preserves a property under sequential com-
position. The first two address issues related to entering
an extension, while the latter two address issues related to
reentering the base system.

1. Every reachable state in the extension cross-product
contains some substate (in qualifies) from the original
extension machine.

2. No reachable state in the extension cross-product con-
tains an escape; substate.

3. The reentry states eventually synchronize. That is, the
state (outi,...,out) is reachable and terminal in the
extension cross-product.

4. State (reentryi,...,reentrys) is reachable in the base
system cross-product.

!When we need to verify in the full composed system, we can
apply existing techniques for parallel composition. As these
techniques can be very difficult to use in practice, applying
them effectively remains an open problem.

These constraints restrict reentry to the base system more
than the exit to the extension. Intuitively, this means that
actors must synchronize more tightly when leaving a col-
laboration than when entering it. This seems necessary to
avoid generating additional reachable states in the global
base collaboration. It also enables us to reuse our exist-
ing verification methodology in which we use properties of
states in the base system to check properties in the exten-
sion; requiring state (reentryi,...,reentryg) to be reach-
able provides a concrete reentry state from which to seed
the verification of the extension. We defer the proof that
the given conditions are sufficient to prove a correspondence
between the two constructions of the global composed state
space. Intuitively, the proof consists of an argument that,
under the above constraints, all reachable states under the
first construction are reachable states in either the extension
or the base system under the second construction. The in-
teresting cases of this proof involve global states with some
components in the base system and some in the extension.
The conditions listed above restrict all such states to lie in
the extension including the exit subgraph.

3.5 Implementation

We have conducted all the model checking tasks described
in this paper using the VIS model checker [37]. We modified
VIS slightly to display all sub-formulas of properties gener-
ated during the marking phases; we used these sub-formulas
for verifying the preservation of properties in other collabo-
rations. For the paper’s examples, the time and space usage
are negligible, so we do not report them.

Section 3.3 describes how we simulated the modular veri-
fication scenario while in fact attaching extensions to, po-
tentially, the entire base system. This approach was neces-
sary because existing model checkers do not appear to be
designed for extension to verifying open systems. For in-
stance, they do not provide a way to query and assert prop-
erties on specific states. Expressing our extension collab-
orations in Verilog (VIS’s input language) required manual
insertion of additional design variables because we could not
easily unify states in the underlying symbolic transition sys-
tem. Furthermore, the exit and reentry subgraphs were hard
to connect to the extension collaboration in VIS’s symbolic
framework, so we constructed them manually. Computing
the core subgraphs is straightforward (by adding routines
to the VIS source code); adding the escape state is dif-
ficult because it requires us to essentially reverse-engineer
the symbolic state encoding to find an unused boolean rep-
resentation for the escape state. A front-end for supporting
collaboration-based design languages could work around the
limitations of Verilog, but the limitations of the symbolic
framework are harder to surmount.

4. CONCLUSION AND FUTURE WORK

This paper has described how intricacies of collaboration-
based software designs inhibit straightforward attempts at
modular verification. We demonstrate that the standard
decompositions of designs into parallel or sequential mod-
ules are insufficient for collaboration-based software design:
verification under parallel composition is extremely difficult
in practice and verification under sequential composition is
too simplistic. In practice, many software designs tend to be
quasi-sequential compositions of parallel compositions. We

explain how certain constraints can make modular verifica-
tion tractable by reducing such designs to purely sequential
compositions of parallel compositions; these constraints are
reasonable because many existing software designs appear
to satisfy them.

In the big picture, our verification model attempts to parallel
the software development model by respecting independent
development followed by externally-specified composition.
By analogy to separate compilation, we try to minimize the
work expended in verifying compositions relative to the work
done verifying the individual collaborations. Our technique
can potentially apply to a variety of system designs includ-
ing certain uses of components and aspects. It is especially
applicable to collaboration-based product line designs.

‘We have concentrated solely on model checking because we
want to understand the strengths and limitations of algo-
rithmic verification on collaboration-based designs. Our ex-
perience suggests that extant model checkers have not been
designed to be extended for such tasks. We therefore intend
to develop custom model checkers for this effort. We believe
this will be necessary to complete the verification of the en-
tire FSATS suite. A related question is how to extend our
approach to handle LTL formulas; for technical reasons, we
have only considered CTL properties.

Within the realm of algorithmic verification, model checking
may be overkill for verifying certain collaboration properties.
For instance, simple properties that ensure a design always
reaches a consistent state may not need extensive verifica-
tion in an extension: simply showing reachability between
the extension’s in and out states often suffices (this relates
to checking the requirement in our formal model that exten-
sions yield connected graphs). These properties arise both in
the examples presented in this paper and in FSATS. There-
fore, there is clearly potential for applying more light-weight
verification tools, such as reachability engines and type sys-
tems. We expect further work with a richer set of designs to
help us identify when the full power of our current method-
ology is required.

Collaboration-based designs can benefit from a broader scope
of verification techniques. Early work on analyzing depen-
dencies between collaborations [3] must be formalized and
incorporated into any validation framework. Addressing
this problem may involve creating special architectural de-
scription languages for collaboration-based designs that cap-
ture these dependencies and simplify construction of the
exit and reentry subgraphs. Finally, we have encountered
collaboration-based designs involving complex data invari-
ants that will likely be more amenable to theorem proving.

5. ACKNOWLEDGEMENTS

‘We thank Don Batory for several enlightening discussions on
collaboration-based designs, Jia Liu for sharing his design
for the sportswatch, Harry Li for useful comments on an
earlier draft, the Automated Software Engineering Group
at NASA Ames for an engaging exchange, and the reviewers
for their helpful suggestions.

6. REFERENCES

[1] R. Alur, R. Grosu, and M. McDougall. Efficient
reachability analysis of hierarchic reactive machines. In
International Conference on Computer-Aided
Verification, volume 1855 of Lecture Notes in Computer
Science, pages 280—-295. Springer-Verlag, 2000.

[2] R. Alur and M. Yannakakis. Model checking of
hierarchical state machines. In Symposium on the
Foundations of Software Engineering, pages 175—188,
1998.

[3] D. Batory and B. J. Geraci. Composition validation and
subjectivity in GenVoca generators. IEEE Transactions
on Software Engineering, pages 67-82, Feb. 1997.

[4] D. Batory, C. Johnson, B. MacDonald, and D. von
Heeder. FSATS: An extensible C4I simulator for army
fire support. In Workshop on Product Lines for
Command-and-Control Ground Systems at the First
International Software Product Line Conference
(SPLC1), August 2000.

[5] D. Batory and S. O’Malley. The design and
implementation of hierarchical software systems with
reusable components. ACM Transactions on Software
Engineering and Methodology, 1(4):355-398, Oct. 1992.

[6] E. Biagioni, R. Harper, P. Lee, and B. G. Milnes.
Signatures for a network protocol stack: A systems
application of Standard ML. In ACM Symposium on
Lisp and Functional Programming, 1994.

[7] G. Bracha. The Programming Language Jigsaw:
Mizins, Modularity and Multiple Inheritance. PhD
thesis, University of Utah, Mar. 1992.

[8] E. Clarke, E. Emerson, and A. Sistla. Automatic
verification of finite-state concurrent systems using
temporal logic specifications. ACM Transactions on
Programming Languages and Systems, 8(2):244-263,
1986.

[9] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, 2000.

[10] E. M. Clarke and W. Heinle. Modular translation of
Statecharts to SMV. Technical Report
CMU-CS-00-XXX, Carnegie-Mellon University School of
Computer Science, August 2000.

[11] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach,
C. S. Pasareanu, Robby, and H. Zheng. Bandera :
Extracting finite-state models from java source code. In
International Conference on Software Engineering, 2000.

[12] M. B. Dwyer and L. A. Clarke. Flow analysis for
verifying specifications of concurrent and distributed
software. Technical Report UM-CS-1999-052, University
of Massachusetts, Computer Science Department,
August 1999.

[13] R. B. Findler, J. Clements, C. Flanagan, M. Flatt,
S. Krishnamurthi, P. Steckler, and M. Felleisen.
DrScheme: A programming environment for Scheme.
Journal of Functional Programming, 2001. To appear.

[14] R. B. Findler and M. Flatt. Modular object-oriented
programming with units and mixins. In ACM SIGPLAN
International Conference on Functional Programming,
pages 94-104, 1998.

[15] B. Finkbeiner, Z. Manna, and H. Sipma. Deductive
verification of modular systems. In Compositionality:
The Significant Difference, volume 1536 of Lecture Notes
in Computer Science, pages 239-275. Springer-Verlag,
1998.

[16] K. Fisler, S. Krishnamurthi, and K. E. Gray.
Implementing extensible theorem provers. In
International Conference on Theorem Proving in
Higher-Order Logic: Emerging Trends, Research Report,
INRIA Sophia Antipolis, September 1999.

[17] M. Flatt. Programming Languages for Reusable
Software Components. PhD thesis, Rice University, 1999.

[18] M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes
and mixins. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 171-183,
January 1998.

[19] W. G. Griswold and D. Notkin. Architectural
tradeoffs for a meaning-preserving program restructing
tool. IEEE Transactions on Software Engineering,
21(4):275-287, April 1995.

[20] O. Grumberg and D. Long. Model checking and
modular verification. In International Conference on
Concurrency Theory, volume 527 of Lecture Notes in
Computer Science. Springer-Verlag, 1991.

[21] G. T. Heineman and W. T. Councill.
Component-Based Software Engineering: Putling the
Pieces Together. Addison-Wesley, 2001.

[22] G. Holzmann. Design and Validation of Computer
Protocols. Prentice-Hall, 1991.

[23] P. Inverardi, A. Wolf, and D. Yankelevich. Static
checking of system behaviors using derived component
assumptions. ACM Transactions on Software
Engineering and Methodology, 9(3):239-272, July 2000.

[24] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. V. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect-oriented programming. In Furopean Conference
on Object-Oriented Programming, June 1997.

[25] O. Kupferman and M. Y. Vardi. Modular model
checking. In Compositionality: The Significant
Difference, volume 1536 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

[26] K. Laster and O. Grumberg. Modular model checking
of software. In Conference on Tools and Algorithms for
the Construction and Analysis of Systems, 1998.

[27] K. Lieberherr, D. Lorenz and M. Mezini.
Programming with Aspectual Components. Technical
Report NU-CCS-99-01, College of Computer Science,
Northeastern University, March 1999.

[28] K. McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[29] H. Ossher and P. Tarr. Multi-dimensional separation
of concerns in hyperspace. Technical Report RC
21452(96717)16APR99, IBM, 1999.

[30] C. S. Pasareanu, M. B. Dwyer, and M. Huth.
Assume-guarantee model checking of software: A
comparative case study. In Theoretical and Practical
Aspects of SPIN Model Checking, volume 1680 of Lecture
Notes in Computer Science. Springer-Verlag, 1999.

[31] V. Rajlich and J. H. Silva. Evolution and reuse of
orthogonal architecture. IEEE Transactions on Software
Engineering, 22(2):153-157, February 1996.

[32] M. Shaw and D. Garlan. Software architecture:
perspectives on an emerging discipline. Prentice-Hall,
1996.

[33] Y. Smaragdakis and D. Batory. Implementing layered
designs and mixin layers. In European Conference on
Object-Oriented Programming, pages 550-570, July 1998.

[34] G. L. Steele, Jr., editor. Common Lisp: the Language.
Digital Press, Bedford, MA, second edition, 1990.

[35] K. Stirewalt and L. Dillon. A component-based
approach to building formal-analysis tools. In
International Conference on Software Engineering, 2001.

[36] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley, 1998.

[37] The VIS Group. VIS: A system for verification and
synthesis. In R. Alur and T. Henzinger, editors,
International Conference on Computer-Aided
Verification, volume 1102 of Lecture Notes in Computer
Science, pages 428-432. Springer-Verlag, July 1996.

[38] R. van Renesse, K. Birman, M. Hayden, A. Vaysburd,
and D. Karr. Building adaptive systems using Ensemble.
Technical Report 97-1638, Department of Computer
Science, Cornell University, July 1997.

[39] M. VanHilst and D. Notkin. Using role components to
implement collaboration-based designs. In ACM
SIGPLAN Conference on Object-Oriented Programming
Systems, Languages € Applications, 1996.

