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Modularity and Extreme Edges of the Internet
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We study the spectral properties of a diffusion process taking place on the Internet network focusing
on the slowest decaying modes. These modes identify an underlying modular structure roughly
corresponding to individual countries. For instance, in the slowest decaying mode the diffusion current
flows from Russia to U.S. military sites. Quantitatively the modular structure manifests itself in a
10 times larger participation ratio of its slow decaying modes compared to a random scale-free network.
We propose to use the fraction of nodes participating in slow decaying modes as a general measure of
the modularity of a network. For the 100 slowest decaying modes of the Internet this fraction is �30%.
Finally, we suggest that the degree of isolation of an individual module can be assessed by comparing
its participation in different diffusion modes.
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graphical regions within the country. Of course, the sionality of several complex networks [9]. At each time
Virtually any complex system has an underlying net-
work that defines the backbone of interactions among its
components. Examples of such networks include the
Internet and the World Wide Web, molecular networks
of living cells, food webs in ecosystems, etc. An im-
portant question is whether nodes of such a network can
be divided into smaller subnetworks (modules), which
interact with each other relatively weakly [1]. Estimat-
ing the strength of intermodular interactions, localizing
crucial links connecting these modules to each other, and
finding pairs of modules which are the most distant
from each other is important for several reasons. First
of all, it serves as a test of stability of the system with
respect to breaking it up into truly isolated components.
Such a breakup would be undesirable in, for example, the
Internet. Creation of extra connections between the most
distant modules in the network and reinforcement of
crucial links is an efficient way to increase its stability.
Second, by measuring the relative strength of inter- and
intramodular connections one directly assesses the qual-
ity of the independent module approximation, which may
turn out to be important in modeling the actual dynamics
of a given complex system.

In this work we explore the modular structure present
in the physical layout of the Internet. To this end we study
an auxiliary diffusion process taking place on this net-
work. The slowest modes of diffusion, easily identifiable
from the spectrum of its transfer matrix, allow us to
detect the weakly interacting modules of the Internet.
These modules turn out to roughly correspond to individ-
ual countries or for large countries to cultural or geo-
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diffusion process studied in this work does not describe
the real dynamics of the information flow over the
Internet. However, the detected modular features play
an important role in any local dynamical process taking
place on this network including the real Internet traffic.

Analysis of spectral properties of a similar diffusion
process lies at the heart of the popular search engine
www.google.com [2]. Its variants have also been applied
to social networks (the correspondence analysis) [3],
random and small-world networks (the Laplace equation
analysis) [4], artificial scale-free networks [5,6], and the
community structure of the World Wide Web [7].

Here we study the physical backbone of the Internet on
a coarse-grained level of the so-called autonomous sys-
tems (AS), which are large groups of routers and servers
belonging to one organization such as a university or a
business enterprise (e.g., an Internet service provider). For
the information about which AS pairs directly exchange
information with each other we use the 3 January 2000
data set of the National Laboratory for Applied Network
Research. According to these data, the entire Internet
back then consisted of 6474 autonomous systems ex-
changing information via 12 572 undirected links [8].
As expected for the Internet, any pair of autonomous
systems is connected to each other by at least one path,
so that topologically the network consists of just one large
cluster. The diffusion process we analyze here describes
the dynamics of a large number of random walkers mov-
ing on the network at discrete time steps. Statistical
properties of returns to the origin of such random walks
have recently been used to measure the effective dimen-
2003 The American Physical Society 148701-1
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FIG. 1. The participation ratio PR��� (a) and the eigenvalue
density (b) as a function of the eigenvalue �1< ���� < 1
measured in the Internet (filled circles) and in its randomized
counterpart (open squares) —a random scale-free network
(RSFN). The participation ratio was averaged over � bins of
size 0.05 excluding eigenmodes ���� � 0 [12] and ��1� � 1.
Notice that for j�j ’ 1 participation ratios in the Internet
significantly exceed those in an RSFN indicating the modular
character of the former network.
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step every walker moves from its current node to one of
the neighboring nodes along a randomly selected link.
The average dynamics of this process is described by

�i�t� 1� �
X
j

Tij�j�t�; (1)

where �i�t� is the expectation value of the number of
random walkers at site i and time t. The elements Tij of
the transfer matrix are equal to 1=Kj for neighboring
nodes i and j and zero otherwise. Here Kj is the connec-
tivity (the number of immediate neighbors) of the node j
from which a walker steps to the node i. Note thatP

i Tij � 1, so that the total number of walkers is con-
served at all times. Equation (1) can also be rewritten as a
discrete time diffusion equation �i�t� 1� � �i�t� �P

j�Tij � 	ij��j�t�. Hence the diffusion matrix D is
related to the transfer matrix T simply as

D � T� 1: (2)

As time advances the distribution of random walkers
approaches a steady state �i�1� in which the diffusion
current flowing from a node i to a node j is exactly
balanced by that flowing from j to i. This is satisfied
when the average number of walkers �i�1� on every node
i is proportional to its connectivity Ki.

The relaxation of any initial distribution of random
walkers among nodes, �i�0�, towards the steady state
configuration �i�1� is determined by the spectral proper-
ties of the matrix T [10] (or alternatively D). For instance,
the steady state configuration �i�1� itself is proportional
to the principal eigenvector ��1�

i of T corresponding to its
largest eigenvalue ��1� � 1, which is unique for single
component networks such as the Internet. The remaining
eigenvectors ���� describe the decay of the initial configu-
ration towards the steady state with a characteristic decay
time ��� related to the corresponding eigenvalue ����

through exp��1=���� � j����j. Note that in general there
exist both nonoscillatory (���� ’ 1) and oscillatory
(���� ’ �1) slowly decaying modes.

The modularity of a given complex network reflects
itself in statistical properties of its diffusion eigenvectors
����
i . One such property is the participation ratio (PR),

which quantifies the effective number of nodes participat-
ing in a given eigenvector with a significant weight. In the
Internet the components of the principal eigenvector
��1�
i / �i�1� / Ki as well as those of other slow decaying

modes are broadly distributed (scale-free) [11] and as
such tend to be localized on just a few highly connected
nodes. In this case participation ratios are best calculated
using the normalized eigenvector

c���i � ����
i =Ki (3)

of outgoing currents flowing from node i along each of its
links. More formally c���i is also the eigenvector of the
transposed transfer matrix Ty with the same eigenvalue
148701-2
����. For such a vector normalized by
P

c2i � 1 the par-
ticipation ratio is defined as PR � �

P
N
i�1 c

4
i �

�1.
In Fig. 1 the participation ratio of eigenvectors c���i

(top) and the eigenvalue density (i.e., the spectrum of
the matrix) (bottom) is plotted as a function of the
corresponding eigenvalue �1< ����

i < 1. The data for
the Internet (filled circles) is displayed together with
the data for its randomized counterpart (open squares).
The randomization of the Internet was performed in such
a way that the connectivity of every node is strictly
preserved [13]. It was argued [13,14] that such a network
constitutes a proper null model of a given complex net-
work. Since this random network has the same scale-free
distribution of connectivities as the Internet [11] it will be
referred to as a random scale-free network (RSFN).

Comparing the data for the Internet and an RSFN, we
note that while the density of states is rather similar in
these two networks [Fig. 1(b)], the participation ratio of
the slowly decaying modes (especially for the nonoscil-
latory ones with � close to 1) is markedly higher in the
Internet than in an RSFN [Fig. 1(a)]. In these nonoscil-
latory modes the diffusion current flows from relatively
isolated regions (modules) along the few links connect-
ing them to the rest of the network. If for such a module
these links would be hypothetically cut one by one, the
corresponding eigenvalue would gradually increase to-
wards unity, ���� ! 1, while the eigenvector would be-
come more and more localized on the module. When
finally the module is completely disconnected from the
network, the eigenvector has evolved to the steady state
solution on the module, which has the participation ratio
equal to its size. Thus the PR of slowly decaying eigen-
modes serves as a good quantitative estimate of the size
148701-2
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of modules in the network. In an RSFN these modules are
small consisting of just a handful of nodes that acciden-
tally happen to be loosely connected to the rest of the
network. The fact that the participation ratios of slow
decaying modes on the Internet significantly exceed
those in an RSFN indicates that the corresponding mod-
ules are real and not accidental. The average participation
ratio of slowly decaying modes can be quantified byP

� PR
���j����jk=

P
� j�

���jk. For 5 � k � 10 this average
changes only slowly in both the Internet and an RSFN
and equals approximately 60 and 5, respectively. A rough
estimate for the number of different modules is given
by the number of slowly decaying nonoscillatory states
in Fig. 1(a) that have a participation ratio significantly
exceeding that of an RSFN. For the Internet the number
is around 100. The sum of the participation ratios for
these first 100 modes, �5400, providing a rough estimate
of the total number of nodes in the modular part of the
network, is about an order of magnitude larger than in an
RSFN. If one takes special care to avoid double count-
ing nodes that strongly participate in more than one of
these slowly decaying eigenmodes, the number of nodes
in the modular part of the network is reduced to �1800.
Thus the overall modularity of the Internet is at least
1800=6500 ’ 30%.

To determine the organizing principle behind these
Internet modules in Fig. 2 we plot the outgoing current
c�2�i in the slowest decaying diffusion mode (��2� �
0:9626) as a function of the AS number (note that some
AS numbers are not yet in use). Autonomous systems
known to be located in Russia are marked with a circle.
The PR for this eigenmode is 107, while the total number
of Russian AS in our data set is 174. In Fig. 2 one can see
that almost all the autonomous systems that significantly
0.05

0.1

0.15

th
e 

se
co

nd
 e

.v
. :

 c i(2
)

0 5000 10000 15000
−0.015

−0.01

−0.005

i − the AS number

0 

FIG. 2. Components c�2�i of the slowest decaying diffusion
mode in the Internet (eigenvalue ��2� � 0:9626) as a function of
the AS number. The AS known to be geographically located in
Russia are marked with circles. The scale of the negative part of
the y axis is increased for clarity. Out of 100 autonomous
systems with the most negative components c�2�i , those 23 for
which we were able to find the description are associated with
the U.S. military.
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participate in this mode (large positive c�2�i ) are Russian.
We have checked that the few exceptions to this rule are,
in fact, autonomous systems closely related to Russia.
Thus in the slowest decaying mode the diffusion current
flows from a module that may be identified with Russia
towards the rest of the Internet. Curiously enough the set
of autonomous systems farthest away from Russia (the
most negative c�2�i ) are located in the U.S. and belong to
the U.S. military. This possible legacy of the cold war
makes Russia and the U.S. military the extreme edges of
the Internet. Performing a similar analysis for other
slowly decaying modes, we get a similar picture, just
with other pairs of countries being pulled out. For the
Internet the modules thus correspond to individual
countries, or for large countries to organizational or geo-
graphical features within the country.

It is interesting to note that these country modules
cannot be detected using the spectral analysis of the
adjacency matrix of the network [5,6,15]. The elements
of this matrix, closely related to T, are equal to 1 for a
pair of neighboring nodes and 0 otherwise. The largest
eigenvectors of the adjacency matrix are known to be
localized primarily on the highest connected hubs and
their neighbors [5,6]. However, unlike in the case of T,
this undesirable localization cannot be properly elimi-
nated simply by dividing the components of the eigen-
vectors by the connectivity Ki. Hence eigenvectors of the
adjacency matrix do not properly reflect the country-
based modular structure uncovered in this work.

Having established that the Internet is indeed modular,
we now address the question of how good these individual
modules are. To this end we compare different eigen-
modes c���i to each other. Although the primary feature in
a slowly decaying eigenmode c���i is the flow between a
dominant pair of country modules (such as between
Russia and the U.S. military in c�2�i ), other modules may
also participate in it but to a smaller extent. This gives rise
to a fine structure within slow decaying modes that is not
captured by the participation ratio. The hallmark of a
good module is that even though it participates in dif-
ferent eigenmodes � to a different extent, the relative
distribution of � currents within the module stays ap-
proximately the same. In other words, it enters different
eigenmodes as just 1 degree of freedom. In this case the
ratio c���i =c���j is approximately independent of the eigen-
mode � for any pair of nodes i and j within the module.
This is equivalent to the condition that for any two dif-
ferent eigenmodes � and �, c���i =c���i � const for every
node i belonging to the given module. In Fig. 3 we plot
the outgoing currents in the two slowest decaying non-
oscillatory eigenmodes—c�2�i and c�3�i —as a function of
each other. Similar plots can be made for other pairs of
slow decaying eigenmodes. The principal feature in
this kind of plot is a starlike shape, where different
rays of the star correspond to individual country
modules. This type of plot is more powerful in identifying
148701-3
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FIG. 3 (color). The Internet clustering: Coordinates of the ith
AS in this plot are its components �c�2�i ; c�3�i � in the two slowest
decaying nonoscillatory diffusion modes. The color code re-
veals the geographical location of the AS (Russia: red squares;
France: green circles; U.S.: blue crosses; Korea: orange trian-
gles). Note the straight lines corresponding to good country
modules.
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individual modules than the participation ratio alone.
Indeed, in Fig. 3 one can easily detect not only the most
excited modules like Russia, France, and U.S. (red
squares, green circles, and blue crosses), but also less
excited ones like Korea (orange triangles). We believe
that the idea of measuring the quality of individual
modules by how proportionally their nodes partici-
pate in different slowly decaying modes can be easily
generalized to other dynamical processes taking place
on the network such as, e.g., spin dynamics, vibrational
modes, etc.

In summary, we have demonstrated how a diffu-
sion process taking place on the Internet network allows
one to extract information about its modules and extreme
edges. For many ‘‘real-world’’ complex networks the
local context of a node (in terms of the linkage pattern)
reflects or, perhaps, even determines the importance and
function of the given node. For instance, in biology one
can successfully assign putative functions to unclassified
proteins based on the function of their interaction part-
ners [16]. In general, the diffusion process introduced in
this work can be seen as a systematic way to explore the
local linkage structure of a network beyond just the
nearest neighbors. The detection of the modular structure
of a network is just one possible application of such a
process [2,9].
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