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Modularity and stability in ecological communities
Jacopo Grilli1, Tim Rogers2 & Stefano Allesina1,3,4

Networks composed of distinct, densely connected subsystems are called modular. In

ecology, it has been posited that a modular organization of species interactions would benefit

the dynamical stability of communities, even though evidence supporting this hypothesis is

mixed. Here we study the effect of modularity on the local stability of ecological dynamical

systems, by presenting new results in random matrix theory, which are obtained using a

quaternionic parameterization of the cavity method. Results show that modularity can have

moderate stabilizing effects for particular parameter choices, while anti-modularity can

greatly destabilize ecological networks.
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E
cological communities are structured both in space, as in
a stratified lake and in time, as for migratory birds.
This temporal and spatial organization is reflected in the

strength of species interactions, where we expect populations
dwelling in the same location, or being active in the same season,
to interact more frequently than those that are not.

When drawing ecological interaction networks—where species
are the nodes and the edges connecting the species stand
for interactions (for example, consumption, pollination and
competition)—we therefore expect to find that species can be
partitioned into distinct ‘groups’, such that the frequency of
interaction largely depends on group-membership1,2. Networks
with this property are said to be ‘block-structured’: a modular
structure is a particular block structure, in which a network is
divided into subsystems, and within-subsystem interactions are
much more frequent than those between subsystems3,4. If, on the
other hand, interactions occur exclusively between groups, we
obtain a bipartite network—another type of block structure with
many ecological applications5.

The appealingly simple idea of a block structure has been
formalized in the measure of modularity, Q3,4, calculated as
the difference between observed and expected within-group
interactions, divided by the total number of interactions.
Positive values indicate that interactions occur predominantly
within-groups, while negative values that interactions are more
frequent between- than within-group. Modularity has become
one of the most investigated network metrics, with applications
spanning biological, social and technological networks6–11.

Unveiling the relationship between the network structure of
biological systems and their dynamical properties has been a
long-sought goal of the discipline, and many authors have
hypothesized that biological networks must be shaped by
evolution12–15 and co-evolution16, favouring configurations
yielding controlled dynamics17–19.

In ecology, the idea that a modular organization would be
beneficial for the local stability of ecological communities
(that is, their ability to recover from small perturbations) dates
back to work on complexity and stability by May20 , where he
suggested ‘that our model multi-species communities [...] will
do better if the interactions tend to be arranged in blocks’.
This hypothesis was challenged by a number of authors21,22,
who produced simulations showing the opposite effect. However,
recent studies found that modularity can indeed enhance
species persistence23,24, further complicating the picture.
Though the relationship between block structure and dynamics
on networks has since been investigated in many fields,

including epidemiology25, neuroscience26 and complex systems
in general27, a systematic classification is still lacking.

Here we study how the local stability of ecological systems is
influenced by modularity, providing new results on the theory of
random matrices that can be used to draw a direct relationship
between modularity Q and local stability. The mathematical
results are briefly stated in the Methods section, while a
calculation based on the cavity method28–31 with quaternions is
carried out in the Supplementary Notes.

We show that, with respect to the corresponding unstructured
case, modularity can have moderate stabilizing effects for
particular parameter choices, while anti-modularity can greatly
destabilize networks. The rich range of possible effects associated
with the same level of modularity stresses the fact that a given
network structure is not ‘stabilizing’ or ‘destabilizing’ per se, but
only for particular regimes.

Results
Building community matrices. We study the stability of a
community matrix M, modelling a continuous-time, dynamical
ecological system composed of S populations, resting at a feasible
equilibrium point. We remove self-interactions from the matrix
(setting Mii¼ 0), so that we can concentrate on inter-specific
effects (adding intra-specific effects would not qualitatively alter
the results32).

M is obtained by multiplying element-by-element two
matrices, a matrix of interaction strengths, W, where Wij

expresses the effect of species j on species i around equilibrium,
and the adjacency matrix of an undirected graph, K. The
community matrix is therefore M¼W J K (Fig. 1).

Initially, we independently sample the coefficients in W in
pairs, drawing (Wij, Wji) from a bivariate distribution with
identical marginals, defined by the mean m¼E Wij

� �
¼E Wji
� �

, the

variance s2¼E½ Wij�m
� �2�¼E½ Wji�m

� �2� and the correlation
r¼ E WijWji

� �
� m2

� �
=s2. By varying these parameters, we can

model different types of interactions between the species from
preponderantly predator–prey to dominated by competition or
mutualism33.

The binary matrix K dictates ‘who interacts with whom’, and is
symmetric because we assume pairwise interactions. Thus, K
determines which interactions in W are activated, and which
are suppressed. Here we study the case of a block-structured K:
we assume that the community is composed of two subsystems,
of sizes aS and (1� a)S, respectively (with ar1/2),
and that species in the same subsystem interact with

Matrix of interactions W Adjacency matrix K Community matrix Mcba

Figure 1 | Block structure. (a) The matrix of interaction strengths W, whose diagonal elements are all zero and the off-diagonal elements are independently

sampled in pairs from a bivariate distribution (in this case, a bivariate normal with identical marginals defined by m¼0, s¼ 1/2 and correlation r¼ � 3/4;

red stands for negative coefficients, blue for positive one and the intensity of the colour is proportional to the coefficient value). (b) The adjacency matrix K,

which has a block structure; in this case, we have that a¼ 1/4 of the species belong to the first subsystem, and that the modularity Q¼0.3, meaning that

interactions tend to occur within-subsystem. (c) The community matrix M is obtained by multiplying W and K element-by-element.
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probability Cw (within-subsystem connectance), while species in
different subsystems with probability Cb (between-subsystem
connectance).

This parameterization is especially intuitive, because for
Cb¼Cw, we recover the well-studied case of a random ecological
community20,33. Hence, by varying Cb and Cw, we can isolate the
effect of having a modular or anti-modular structure (Fig. 2),
with the two extreme cases being networks composed of two
separate subsystems (perfectly modular), and those in which
interactions occur exclusively between subsystems (perfectly
anti-modular or bipartite). For simplicity, we speak of a
‘modular’ structure whenever Cw4Cb, and of an ‘anti-modular’
structure when CwoCb. The case of Cw¼Cb represents
‘unstructured’ systems, such as those studied by May and other
authors20,33. Equivalently (Methods), we can express Cw and Cb

in terms of the overall connectance C (that is, the overall density
of interactions in K) and Q, the modularity of the network3,4,
defined as:

Q ¼ Lw �E Lw½ �
Lw þ Lb

ð1Þ

where Lw is the observed number of interactions within the
subsystems, Lb the number of between-subsystem interactions
and E Lw½ � is the number of within-subsystem interactions we
would expect by chance. Values of Q40 (Qo0) mean that we
observe within-subsystem interactions more (less) frequently than
expected by chance. To calculate E Lw½ �, we need to choose a
reference model for network structure, and here we use the
Erd+os–Rényi random graph34, as we want to contrast our results
with those found for an unstructured, random network. Though
Q is bounded by � 1 and 1, only a smaller interval of values
might be achievable for a given choice of a reference model, a and
C (Methods; for example, in our case, when a¼ 1/2, then
QA[� 1/2, 1/2], provided that Co1/2).

In summary, the parameterization M¼W J K allows us to
separate the effect on stability of a block structure (modelled by K
through a, C and Q) from those due to the distribution
of interaction strengths (modelled by W). Given that the case
of Q¼ 0 (unstructured network) has been studied intensively, and
that the calculation of the stability of these matrices can
be achieved analytically20,32,33,35, we use it as a reference point
to determine the effect of Q on stability.

Effect of modularity on stability. We want to study the effect of
modularity on stability. Therefore, we contrast the value for the

real part of the ‘rightmost’ eigenvalue of M, Re(lM,1), with
Reðl ~M;1Þ, the value found for eM, a matrix with exactly the same
coefficients, but re-arranged according to a random network
structure (Q¼ 0). Re(lM,1), is a measure of stability, as it
expresses the amount of self-regulation we would need to stabilize
the equilibrium20,32.

Our analysis (Fig. 3; Methods) highlights that there are three
main parameterizations we need to consider: (a) mean interaction
strength close to zero (mE0); (b) strongly negative mean
interaction strength; and (c) strongly positive mean interaction
strength. Without loss of generality, we can set s2¼ 1, and study
the effect of the modularity Q on the stability of the community,
measured as the ratio G ¼ ReðlM;1Þ=Reðl ~M;1Þ, for a given choice
of a (controlling the size of the smaller subsystem), r (correlation
of interaction strengths) and C (overall connectance of the
system). Values Go1 are found when imposing the block
structure helps stabilizing the community (for example, in Fig. 3,
for Qo0 and m¼ 0), while ratios G 41 stand for destabilizing
effects (for example, any Qa0 for positive mean). For an
unstructured matrix (Q¼ 0), the ratio is exactly 1.

In Fig. 4, we show the effect of modularity on stability in a
community composed of 1,000 species, when we set C¼ 0.2.
Take the case of two equally sized subsystems (a¼ 1/2), for which
we derive new results allowing us to express the ratio analytically
(Methods; Supplementary Information): when mZ0, we have no
effect of modularity on stability; when mo0, on the other hand,
a bipartite structure is highly destabilizing, while a modular
structure is moderately stabilizing. Both effects are stronger in the
case of a negative correlation.

When the two subsystems have different sizes (ao1/2),
the stabilizing effect of modularity found for the case of mo0
is greatly diminished, and eventually also modularity can
become destabilizing (especially for positive r and a � 1=2).
For m40, any Qa0 is destabilizing, while for mE0, a modular
structure is always destabilizing, and a anti-modular structure can
be stabilizing, provided that r is sufficiently negative. These
effects hold qualitatively for different levels of C (Methods;
Supplementary Figs 2–3), with higher connectances leading to
more marked effects. Though we cannot predict the ratio in full
generality for the case of ao1/2, we can treat the extreme cases of
a perfectly modular and perfectly bipartite structure, and this is
sufficient to understand the qualitative behaviour of all cases
(Methods).

The picture emerging from these results is much more nuanced
and complex than what was previously hypothesized20–22:
modularity can have a moderate stabilizing effect when the two

Antimodular
Cw < Cb, Q < 0

Unstructured
Cw = Cb, Q = 0

Modular
Cw > Cb, Q > 0

cba

Figure 2 | Modularity. By varying the modularity Q (or, equivalenty, the within-group connectance Cw and between-group connectance Cb), we can

produce community matrices where interactions occur mostly between species in different subsystems (Qo0, a), completely at random (Q¼0, b) or

mostly within subsystems (Q40, c).
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subsystem have about the same size, and the mean m is negative
or destabilizing, when mZ0 and the subsystems have different
sizes. Similarly, anti-modularity is highly destabilizing for ma0,
but can be stabilizing for m¼ 0.

The qualitative behaviour of these systems can be understood
quite simply, when considering the distribution of the eigenvalues
of the block-structured matrices in the complex plane. As shown in
Fig. 5, when there are two subsystems the spectrum of M is
composed of a ‘bulk’ of eigenvalues, and up to two ‘outlier’, real
eigenvalues. When mE0, there are no outliers, and thus stability is
determined in all cases by the rightmost eigenvalue(s) in the bulk.
When ma0, we have only one outlier in the case of unstructured
networks: if mo0, then the outlier lies to the left of the bulk and
thus has limited effects on stability; if m40, on the other hand, the
outlier lies to the right of the bulk and therefore solely determines
stability. The modular case is similar to the unstructured one,
though we now have two outilers, in that both lie either to the right
(m40) or the left (mo0) of the bulk. In the bipartite case, however,
for any ma0 the spectrum presents an outlier to the right
(determining stability) and one to the left of the bulk.

These simple observations are sufficient to understand the very
strong destabilizing effect of a bipartite structure when mo0: in
this case, the stability of the unstructured network, Reðl ~M;1Þ, is
determined by the bulk of the eigenvalues, while that of the block-
structured network, Re(lM,1), by the outlier to the right of the
bulk (Fig. 5, red). When both Re(lM,1) and Reðl ~M;1Þ are
determined by the bulk (for example, modular case with mo0
or any structure with mE0), the either stabilizing or destabilizing
effect is going to be moderate. Moderate effects are also observed
when both Re(lM,1) and Reðl ~M;1Þ are associated with an outlier
lying to the right of the bulk (m40). When both Re(lM,1) and
Reðl ~M;1Þ are determined by the same type (bulk, outlier) of
eigenvalue, the precise stabilizing or destabilizing effect depends
nonlinearly on the parameters a, C, Q, m, s and r (Methods).

To summarize, a block structure for an otherwise random
ecological system can help stabilization in only two cases: (a)
when the structure is modular, and mo0 (though small a or a
positive r could reverse this effect); and (b) when the structure is
bipartite, mE0, and the correlation is negative. For all the other
cases, the effect of a block structure ranges from neutral to highly
destabilizing.

Food-web structure. Clearly, ecological systems do not follow a
random graph structure, for example, displaying a directionality
in the flow of energy from producers to consumers. This
directionality proved important in our previous study36, where
we showed that when the mean of the negative effects dominates
that of the positive effects, systems built according to the
cascade37 model (in which ‘larger’ species consume ‘smaller’
ones) are more likely to be stable than their random counterparts.
We therefore analysed matrices constructed using a variation of
the cascade model, where we assign a ‘size’ to each species and
each species can only consume smaller species, and has a
preference for those in the same subsystem (Q40), or for those in
the other subsystem (Qo0). Note that in this case, we need to set
a mean for the positive effects and another one for the negative
effects (Methods). Figure 6 shows that the stabilizing effect of
modularity found before for the case of mo0 is practically
negligible, while the other results are qualitatively the same.

Discussion
We have studied the effect of a modular or anti-modular network
structure on the stability of an otherwise random ecological
system. Our parameterization makes it easy to compare the
effect of the network structure with that one would obtain
for unstructured, random systems such as those studied in
the past20,33: a ratio Go1 stand for stabilizing and G41 for
destabilizing effect of network structure.
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Figure 3 | Three cases. Modularity influences stability in different ways, depending on the mean strength of interaction m, the variance s2, the correlation

r, the overall connectance C and the size of the smaller subsystem, controlled by a. In this and following figures, we show the effect of the modularity (Q, x

axis) on the ratio G ¼ Re lM;1

� �
=Reðl ~M;1Þ (y axis), measuring the stabilizing/destabilizing effect of the modularity Q. The ratio is obtained dividing the

real part of the leading eigenvalue of the block-structured matrix, Re(lM,1), by that of the corresponding unstructured matrix, Reðl ~M;1Þ. Ratios greater than

one indicate destabilization, lower than one stabilization and whenever Q¼0 (unstructured matrices) we should find G¼ 1. For a given connectance

(C¼0.1 in this case), correlation (r¼ � 3/4) and size of the smaller subsystem (a¼ 1/4), we fix the variance s2¼ 1 and study three different cases, in

which the mean m is negative (red), positive (blue) or zero (green). The figure highlights that the same modularity Q, all other parameters being fixed, can

have completely different effects on stability, depending on the value of m. Each point is obtained averaging the ratio over 50 replicates of a community

matrix containing 1,000 species (Methods).
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For block-structured matrices, we showed that modularity can
have a positive effect on stability only when (a) the system is
composed of two subsystems of about the same size and (b) the
overall mean interaction strength is negative. The stabilizing
effect is stronger for negative correlations. Anti-modularity, on
the other hand, is typically strongly destabilizing, besides the case
in which the average interaction strength is close to 0 (a
well-studied case20,33, though of limited biological realism).
When the mean interaction strength is positive, both
modularity and anti-modularity are destabilizing.

Through numerical simulations, we have investigated the
more complex case of an interaction between modularity and
food-web structure, and found that the results are qualitatively
unchanged.

The picture emerging from both simulations and mathematical
analysis is much more complex than previously hypothesized.
Block structure can have an effect on the local asymptotic stability
of the underlying system. However, unless we are in particular
areas of the parameter space, the effect tends to be destabilizing.
Our results stress the fact that, when discussing the relationship
between network structure and local stability, we need to qualify
our statements, as a given structure is not stabilizing or
destabilizing per se, but is only so under certain specific conditions.

Though we have illustrated this point by studying the modular
structures, we believe this phenomenon to hold generally: any
network structure can have different effects on stability, depending

on the choice of parameters. To reinforce this message, in Fig. 7,
we show three cases in which an empirical network structure
makes the system more or less stable than its random counterpart,
depending on the parameterization of the coefficients.

Practically, this means that the challenge of proving that
biological network structure emerges because of a selective process,
removing configurations yielding unfavourable dynamics17–19 is
much harder than expected: network structure, without estimates
of the distribution of the coefficients, cannot be used to determine
the effect on dynamical properties.

Methods
Constructing the community matrix. M is the S� S community matrix,
representing the population dynamics of an unknown dynamical system around a
feasible equilibrium point. We consider two cases: (a) random ecological networks
with block structure and (b) food webs with block structure.

For case (a), we sampled the pairs (Wij, Wji) independently from a bivariate
normal distribution with means (m, m)T, and covariance matrix

� ¼ s2 1 r
r 1

� �
ð2Þ

For case (b), we first assigned a ‘size’ to each species (randomly sampling it from
a uniform distribution between 0 and 1), and then sampled the pairs (Wij, Wji)
independently from a normal bivariate distribution with means ((1þ x)m,
(1� x)m)T (ensuring that E Wij

� �
¼m, for Fig. 6, x¼ 3), and covariance matrix S,

whenever i was larger than j. This means that species can only consume ‘smaller’
prey, such as in the cascade model. In particular, in this case we could order the
rows and columns of matrix W so that all the positive effects would be confined to
the upper-triangular part and the negative effects to the lower-triangular part.
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Figure 4 | Effects of modularity on stability. For each value of a (determining the size of the smaller subsystem; rows) and r (expressing the correlation

between interaction strengths; columns), we vary Q and record the ratio G. Given that the maximum and minimum Q that can be attained depend on C and a
(Methods), we take 20 equally spaced points between the minimum and maximum Q for each configuration. We set C¼0.2, S¼ 1,000 and s2¼ 1, and track

the case of m¼0 (green), m¼ � 1 (red) and m¼ 1 (blue). The dots represent numerical simulations, obtained by averaging over 50 replicates. The open circles

are the corresponding analytical predictions (Methods). Because for negative means the destabilizing effect of bipartite structures is so strong that plotting it

would make the other effects difficult to see, we only plot the region of G bounded by 1/2 and 3/2. See Supplementary Fig. 1 for the complete graph.
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In both cases, the matrix M is obtained via the Hadamard (element-by-element)
product of W and the adjacency matrix K. The matrix K is characterized by four
parameters: S, a, C and Q. S is the size, a is the proportion of species belonging to
the first subsystem, Q is the modularity and C the overall connectance of K (density
of the nonzero elements). The first aS species are assigned to the first subsystem,
and the remaining (1� a)S species to the second subsystem. The vector~g encodes
the subsystem-membership of each species. Then, we set (Kij, Kji) to (1, 1)
with probability Cw, when gi¼ gj and with probability Cb when giagj. The
‘within-subsystem connectance’ Cw is:

Cw ¼ C 1þ Q

a2 þ 1� að Þ2
� �

ð3Þ

and the ‘between-subsystem connectance’ Cb is:

Cb ¼ C 1� Q
2a 1� að Þ

� �
ð4Þ

Note that, given the Erd+os–Rényi reference model, the values of Q that are
attainable depend on both a and C:

max C� 2a 1� að Þ; 0ð Þ�C a2 þ 1� að Þ2
� �

C
� Q

� min C; a2 þ 1� að Þ2
� �

�C a2 þ 1� að Þ2
� �

C
ð5Þ

Numerical simulations. For each a and r, we set S¼ 1,000, C¼ 0.2, s¼ 1 and
m¼ 0 (green), m¼ � 1 (red) or m¼ 1 (blue), and varied Q from its minimum to its
maximum possible value in twenty equally sized steps. For each parameter set, we
produced 50 block-structured matrices M, and 50 unstructured matrices eM,
obtained by setting Q¼ 0. The ratio G ¼ Re lM;1

� �
=Reðl ~M;1Þ was computed by

averaging over the replicates. In many cases, one can obtain the expectation for the
ratio analytically (below; Supplementary Information). The simulations were
repeated for both random ecological networks (Fig. 4) and cascade-based food
webs (Fig. 6).

The spectrum of block-structured matrices. For our derivations, we adopt a
slightly more general notation, which includes that discussed above as a special
case. We consider the matrix M, with Mii¼ 0 and the off-diagonal coefficients
independently sampled in pairs from either of two distributions:

Mij;Mji
� �

�
Zw

mw
mw

� �
; s2

w
1 rw
rw 1

� �� �
if gi ¼ gj

Zb
mb
mb

� �
; s2

b
1 rb
rb 1

� �� �
if gi 6¼ gj

8>><>>: ð6Þ

Hence, the pairs come from a certain bivariate distribution Zw, when i and j
belong to the same subsystem, while from a different distribution Zb, when i and j
belong to different subsystems. We do not need to specify the exact form of the
distributions Zw and Zb, given that, as for many results in random matrix theory,
our findings are consistent with the ‘universality’ property38,39: once fixed the mean
and covariance matrices of Zw and Zb, and provided that the fourth moment of
each is bounded, any choice of distributions yields the same result, for S-N.

When considering the case examined in the main text, where the elements
Mij¼WijKij, the universality property helps us in two ways. First, consider that the
pairs (Mij, Mji) are zero with probability 1�Cw (case gi¼ gj) or probability 1�Cb

(case giagj), and that the nonzero pairs are sampled from a bivariate distribution
(for the elements of W), defined by the parameters m, s2 and r. This is sufficient to
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Figure 5 | Effects of modularity on the shape of the spectrum. The spectrum of block-structured matrices is given by a ‘bulk’, and—when there are

two subsystems—up to two ‘outlier’ eigenvalues (highlighted points). The stability of the system is determined by the rightmost eigenvalue(s) (crosses),

which can either be one of the outliers (cases with m40 and when Qo0, mo0), or the rightmost eigenvalue(s) of the bulk (cases with m¼0, and mo0

with Qr0). Large effects of Q on stability are found when varying Q changes the type of eigenvalue determining stability (mo0), while, when the type of

eigenvalue determining stability does not depend on Q, effects will be moderate. The panels show the eigenvalues of a single matrix with S¼ 1,000,

C¼0.4, a¼ 1/4 and s2¼ 1. Red: m¼ � 1/4, r¼ � 1/4; green: m¼0, r¼ � 3/4; and blue: m¼ 1/4, r¼ �0.5. The dashed solid line marks the position of

the rightmost eigenvalue for the case of Q¼ �0.5 (top row); the dotted line for Q¼0 (middle row) and the dashed line for Q¼0.35 (bottom row).
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Figure 6 | Effect of modularity on food webs. As in Fig. 4, but with the matrix W built such that when two species i and j interact, and species i is

‘smaller’ than j, then the effect of j on i, Wij is negative (on average), while that of i on j positive. This means that the food web is structured, as in a

cascade model with block structure (Methods). While the results are generally similar to those in Fig. 4, food-web structure greatly decreases the

stabilizing effect of modularity found when mo0 and aE1/2 in the random case. The same qualitative results are found when varying the connectance

C (Supplementary Figs 4–6).
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Figure 7 | Variable effect of network structure. We show the results of numerical simulations where we parameterize empirical networks, and

we study the stabilizing/destabilizing effect of network structure (G, y axis) when varying a ‘critical’ parameter y (x axis). When parameterizing a

high-school social network42 (left), y is the average of the nonzero coefficients: for negative y, we observe that matrices with empirical structure are easier

to stabilize than their random counterparts (Go1); the reverse is found for positive means. For the parameterization of the Little Rock food web43

(centre), y expresses the relative magnitude of positive effects (effects of prey on predators) with respect to the negative ones (effects of predators on

prey), so that when yE1 positive effects are about as strong as the negative ones, and network structure is destabilizing; for y much lower (higher)

than one, on the other hand, network structure is stabilizing. Finally, for a pollination network44,45 (right), the strength of plant–plant and

pollinator–pollinator competition (y) can be stabilizing (strong competition) or destabilizing (weak competition). Details on the simulations are reported in

the Methods section.
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calculate32 the relevant parameters for the distributions Zw and Zb:

mw ¼ Cwm
mb ¼ Cbm
s2

w ¼ Cw s2 þ 1�Cwð Þm2ð Þ
s2

b ¼ Cb s2 þ 1�Cbð Þm2ð Þ
rw ¼ rs2 þ 1�Cwð Þm2

s2 þ 1�Cwð Þm2

rb ¼ rs2 þ 1�Cbð Þm2

s2 þ 1�Cbð Þm2

ð7Þ

This means that the effect of the connectances is somewhat trivial: we can
‘absorb’ the connectances in the parameters mw, mb, sw, sb, rw and rb, which
are our ‘effective’ parameters, dictating the shape of the distribution of the
eigenvalues of M.

The second advantage of having universal results is that we are free to choose
any distribution for the pairs (Wij, Wji). In all our examples, these are sampled
from a bivariate normal distribution.

Decomposition. We want to study the limiting (that is, when S is large) dis-
tribution of the eigenvalues of M for the case of a random community (for the food
webs following the cascade model, we rely exclusively on simulations). Following
the approach by Allesina et al.36, we write the matrix M as the sum of two matrices,
M¼AþB, where A is a matrix with block structure whose elements are

Aij ¼
mw if gi ¼ gj

mb if gi 6¼ gj

�
ð8Þ

and B is obtained by difference: B¼M�A. Thus, the diagonal elements of
Bii¼ � mw, while for the off-diagonal E Bij

� �
¼0, and E BijBji

� �
¼rws

2
w (when gi¼ gj),

or E BijBji
� �

¼rbs
2
b (when giagj).

This parameterization is very convenient, as the spectrum of matrix B describes
the bulk of the eigenvalues of M, while the outlier eigenvalues of M are given by the
nonzero eigenvalues of A, modified by a small correction40.

The eigenvalues of A. The eigenvalues of A are easy to obtain for any choice of S,
a, mw and mb, with all being zero besides

lA;1� 2 ¼
S
2

mw �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a 1� að Þð Þm2

w þ 4a 1� að Þm2
b

q
 �
ð9Þ

which can be both zero as well (mw¼ mb¼ 0), both different from zero (aa1/2,
mwamb), or one zero and one nonzero (mw¼ mba0). Thus, there are going to be up
to two outlier eigenvalues.

These are the approximate locations of the two outlier eigenvalues of M
(only one outlier when mb¼ mwa0, as found for example in the ‘unstructured’
case). The exact location of the outliers depends also on B, as explained below.

The eigenvalues of B. The spectrum of B has never been studied in full generality.
We start by discussing the known cases, and then introduce new results that allows
us to understand the qualitative behaviour of our simulations. These results can be
derived by a calculation making use of the cavity method (Supplementary
Information).

Known case: rw¼ rb, qw¼qb. In this case, the eigenvalues of B follow the ‘elliptic
law’39, and for S large, are approximately uniformly distributed in an ellipse,
centred at (�mw, 0), and with horizontal semi-axis

ffiffiffiffiffiffiffiffi
Ss2

w

p
1þ rwð Þ and vertical

semi-axis
ffiffiffiffiffiffiffiffi
Ss2

w

p
1�rwð Þ.

Known case: rb¼0 (perfectly modular). When there are no connections
between-subsystem, we have two independent subsystems. Hence, the eigenvalues
of B are simply the union of the eigenvalues of the two squared block matrices
found on the diagonal. The eigenvalues of each diagonal block follow the elliptic
law, so that the distribution of the eigenvalues of B is a combination of two uniform
ellipses, both centred at (�mw, 0), and with horizontal semi-axes

ffiffiffiffiffiffiffiffiffiffi
aSs2

w

p
1þ rwð Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� að ÞSs2

w

p
1þ rwð Þ, and vertical semi-axes

ffiffiffiffiffiffiffiffiffiffi
aSs2

w

p
1� rwð Þ andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� að ÞSs2
w

p
1�rwð Þ, respectively.

Known case: qb¼qw¼0. New results41 can be applied to this case, showing that
the eigenvalues of B are contained in a circle in the complex plane, with centre
(� mw, 0) and radius

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S
2

s2
w þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4a 1� að Þð Þs4

w þ 4a 1� að Þs4
b

q
 �r
ð10Þ

In this case, the distribution of the eigenvalues is not uniform, and Aljadeff
et al.41 provide an implicit formula for the density of the limiting spectral
distribution, which is consistent to that found in the Supplementary Information
using a different method.

New case: a¼ 1/2 (equally sized subsystems). When the two subsystems have
the same size (a¼ 1/2), we find (Supplementary Information) that the eigenvalues

of B are approximately uniformly distributed in the ellipse in the complex plane
with centre in (� mw, 0), horizontal semi-axis

rx ¼
ffiffiffi
S
p

2
1þ rwð Þs2

w þ 1þ rbð Þs2
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
w þ s2

b

p ð11Þ

and vertical semi-axis

ry ¼
ffiffiffi
S
p

2
1�rwð Þs2

w þ 1� rbð Þs2
bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
w þs2

b

p ð12Þ

Note that this would also be the limiting distribution for the eigenvalues of the
unstructured matrix eB with �mw on the diagonal, and off-diagonal elements
sampled independently in pairs from the bivariate normal distribution with means
(0, 0)T, a correlation that is a weighted average of the correlations in B,

er ¼ rws
2
w þ rbs

2
b

s2
w þ s2

b

ð13Þ

and a variance that is the arithmetic mean of the variances in B,

es2 ¼ s2
w þs2

b

2
ð14Þ

In this case, it is convenient to express these values in terms of m, s2, r, C and Q,
because this makes the role of modularity in modulating the stability much clearer:

er ¼ rs2 þ 1�C� 4CQ2ð Þm2

s2 þ 1�C� 4CQ2ð Þm2
ð15Þ

es2 ¼ Cðs2 þð1�C� 4CQ2Þm2Þ ð16Þ
From the two equations above, it is clear that (a) for m¼ 0, modularity has no

effect on the spectrum, while for ma0 the sign of m does not affect the spectrum;
(b) modular and bipartite structures have the same effect: the eigenvalues of B will
be approximately the same, when we have Q¼ q or Q¼ � q; (c) the effect of
modularity is going to be more marked for large C or |m|; and (d) the radius of B is
always lower or equal than that we would find by setting Q¼ 0.

Summarizing, for a¼ 1/2, the eigenvalues of B are contained in an ellipse whose
horizontal semi-axis is always smaller or equal than that found for the
corresponding unstructured matrix. This explains the stabilizing effect of a
modular structure (Qo0) we observed for mo0, as in that case the rightmost
eigenvalue of M is the rightmost eigenvalue of B.

New case: rw¼0 (perfectly bipartite). When sw¼ 0 (that is, Cw¼ 0), the
nonzero coefficients of B are exclusively contained in the two blocks, representing
the interactions between subsystems, as in a bipartite network. Hence, we can write
the matrix B in block form:

B ¼ 0 X
Y 0

� �
ð17Þ

where X is a aS� (1� a)S matrix and Y is a (1� a)S� aS matrix. The two matrices
on the diagonal contain all zeros, and have size aS� aS and (1� a)S� (1� a)S,
respectively.

The eigenvalues of B2, are the eigenvalues of B, squared: if li is an eigenvalue of
B, then l2

i is an eigenvalue of B2. Squaring B, we obtain:

B2 ¼ XY 0
0 YX

� �
ð18Þ

XY has aS eigenvalues, while YX has (1� a)S eigenvalues. The eigenvalues of
YX are the same as those of XY, with the exception of (1� a)S� aS eigenvalues
which are exactly 0 (take v to be an eigenvector of XY. Then XYv¼ lv. Let w¼Yv,
hence, XYv¼Xw¼ lv. Finally, consider YXw¼Y(lv)¼ lYv¼ lw. Thus, if la0, it
is an eigenvalue of both XY and YX). Hence, we can study the eigenvalues of XY
(the smaller matrix) without loss of generality.

In the Supplementary Information, we show that the eigenvalues of XY are
contained in an ellipse in the complex plane, with centre in xc¼Srbs

2
b; 0

� �
,

horizontal semi-axis rx¼Ss2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ

p
1þr2

b

� �
and vertical semi-axis

ry¼Ss2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ

p
1� r2

b

� �
(Supplementary Fig. 7, top).

If the support of the distribution of the eigenvalues of XY is an ellipse in the
complex plane, then the support of the eigenvalues of B for perfectly bipartite
interaction matrices is obtained via a square-root transformation of the ellipse in
the complex plane (Supplementary Fig. 7, bottom), with the addition of the point
(0, 0), stemming from the extra eigenvalues of YX.

To find the real part of the rightmost eigenvalue of B, we thus need to consider
the square-root transformation of the ellipse found for XY. The eigenvalues of XY,
which are the squared eigenvalues of B, are contained in the ellipse:

x� xcð Þ2

r2
x

þ y2

r2
y
� 1 ð19Þ

where x is the real part and y the imaginary part of the point z¼ xþ iy (we can
consider the case y40 without loss of generality, given that the spectrum of B is
symmetric about the real and the imaginary axis). Then, the square root of z has
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real part a:

a ¼ Re
ffiffiffi
z
p� �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
2

s
ð20Þ

To approximate the maximum real part for the eigenvalues of B, we need to find
the x that maximizes a. First, we can rewrite the equation for a, exploiting the fact
that we know that all the points z we want to consider are on the curve describing
the ellipse:

a ¼ Re
ffiffiffi
z
p� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ r2

y 1� x� xcð Þ2
r2

x


 �r
2

vuuut
ð21Þ

where we have substituted the value of y2 by constraining the point z to be on the
curve describing the ellipse.

Substituting the values for xc, rx and ry, we can write:

Re lB;1
� �

	
ffiffiffiffiffiffiffi
Ss2

b

p ffiffiffi
2
p arg max

x 2 rb; rbþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ

p
1þ r2

b

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a 1� að Þ 1� r2

b

� �2
1� x� rbð Þ2

1� að Þa 1þr2
b

� �2

 !vuut
vuuut

ð22Þ

Where we maximize the function for a by taking values x in [xc, xcþ rx], which is
sufficient because of the symmetry discussed above. Maximizing, we find two cases:

Re lB;1
� �

	

ffiffiffiffiffi
Ss2

b

p
2
ffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 2arb 1� r2

bð Þ2
r2

b

r
when rbo0 and ao 4r2

b
1þ 6r2

b
þ r4

bffiffiffiffiffiffiffi
Ss2

b

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 1� að Þ

p
1þ r2

b

� �q
otherwise

8><>:
ð23Þ

Combining the eigenvalues of A and B. Having derived the position of the
eigenvalues of A, and, for particular cases, the support of the distribution of those
of B, we want to combine the results to obtain an approximation for Re(lM,1), the
real part of the rightmost eigenvalue of M¼AþB.

This problem has been recently studied by O’Rourke & Renfrew40, who
considered the following case: B is a large, random matrix whose eigenvalues follow
the elliptic law. It is defined by its size, S and the distribution of the coefficients,
which are independently sampled in pairs from a bivariate distribution with mean
zero, unitary variance and correlation r. A is a matrix with low rank (that is, few
nonzero eigenvalues), and nonzero eigenvalues that are sufficiently larger than
those of B. Then (Theorem 2.4), we can order the eigenvalues of
M=

ffiffiffi
S
p
¼ AþBð Þ=

ffiffiffi
S
p

such that:

lM=
ffiffi
S
p
;i ¼ l AþBð Þ=

ffiffi
S
p
;i ¼ lA;i=

ffiffiffi
S
p
þ r

lA;i=
ffiffiffi
S
p þ o 1ð Þ ð24Þ

where the term o(1) goes to zero as S-N. This means (ref. 40; Theorem 2.8) that
a random matrix with a nonzero mean m will have a single outlier located
approximately at mS, exactly as found for the unstructured case32,33 studied above.

Clearly, the correction above is well suited for the unstructured case, and for the
perfectly modular one (which is the combination of two unstructured cases). We
also corrected in the same way the eigenvalues for matrices with a¼ 1/2, reasoning
that the correction would have the same form, given that the spectra of these
matrices converge to those of equivalent unstructured cases. We do not have a
formula for correcting the eigenvalues of bipartite matrices, but, as for the other
cases, the correction is negligible when |m| is large enough.

Supplementary Fig. 8 shows that our approximation is indeed excellent for all
the cases considered here.

Simulating empirical network structures. We parameterized three empirical
networks, and studied the effect of network structure by measuring the ratio
G ¼ Re lM;1

� �
=Reðl ~M;1Þ, when varying a critical parameter y. For simplicity, we

always consider the case of matrices with zero on the diagonal.

Contact network. We took a symmetric adjacency matrix, A, specifying whether
two members of an high school were in contact (see ref. 42), and built the matrix M
by sampling the coefficients Mij¼Mji from a normal distribution with mean y and
variance 0.0025, whenever Aij¼Aji¼ 1. We sampled y independently from a
uniform distribution U � 1=4; 1=4½ � and for each M, we obtained eM by shuffling
the interactions while maintaining the pairs (so that both matrices are symmetric),
following ref. 35. In Fig. 7, we show 250 realizations.

Food web. We took the adjacency matrix A, specifying trophic interactions in the
Little Rock lake43, and built M by sampling Mij from the half-normal distribution
� N 1; 0:2ð Þj j, whenever Aij¼ 1. These are the (negative) effects of predators on
prey. For each Mijo0, we chose Mij by multiplying �Mij by a random value drawn
from U 0; 2y½ �. Thus, for yE1 the positive coefficients have about the same strength
as the negative ones; when y41 positive effects dominate; and for yo1 negative
effects are stronger. Again, for each of the realizations, we built both M and eM,

obtained by shuffling the interactions. In Fig. 7, we show results obtained by
sampling y 250 times from the distribution U 0; 2½ �.

Pollinator network. We took the pollination network compiled by Robertson44,45,
and we used the rectangular adjacency matrix to determine the position of the
nonzero, mutualistic effects between plants and pollinators: Mij and Mji were
sampled independently from the uniform distribution U 0; 1½ �, whenever plant i and
pollinator j interacted. We then sampled competitive effects by sampling uniformly
the coefficients Mkl � �U 2y; 0½ � for k and l being both plants or both pollinators.
Thus, M has a block structure, very similar to that studied here. In Fig. 7, we show
the effects of the strength of competition (y) on stability.

Data availability. The data and code needed to reproduce all results presented in the
article can be downloaded from https://github.com/StefanoAllesina/blockstructure
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