Modularity Aspects of Disjunctive Stable Models

Tomi Janhuneh Emilia Oikarinerl, Hans Tompit$, and Stefan Woltrah

1 Helsinki University of Technology
Department of Computer Science and Engineering
P.O. Box 5400, FI-02015 TKK, Finland
[Tomi.Janhunen,Emilia.Oikarinen]@tkk.fi
2 Technische Universitat Wien
Institut fur Informationssysteme, 184/3
Favoritenstrale 9-11, A-1040 Vienna, Austria
[tompits,stefan]@kr.tuwien.ac.at

Abstract. Practically all programming languages used in software engineering
allow to split a program into several modules. For fully declarative and nonmono-
tonic logic programming languages, however, the modular structure of programs
is hard to realise, since the output of an entire program cannot in general be
composed from the output of its component programs in a direct manner. In this
paper, we consider these aspects for the stable-model semantics of disjunctive
logic programs (DLPs). We define the notion obaP-function where a well-
defined input/output interface is provided, and establish a novel module theorem
enabling a suitable compositional semantics for modules. The module theorem
extends the well-known splitting-set theorem and allows also a generalisation of
a shifting technique for splitting shared disjunctive rules among components.

1 Introduction

Practically all programming languages used in software engineering allow the user to
split a program into several modules, which are composed by well-defined semantics
over the modules’ input/output interface. This not only helps towards a good program-
ming style, but admits also to delegate coding tasks among several programmers, which
then realise the specified input/output behaviour in terms of concrete modules.

The paradigm oinswer-set programmin@ASP), and in particular the case dis-
junctive logic programgDLPs) under thestable-model semanti¢s], which we deal
with herein, requires a fully declarative nonmonotonic semantics which is defined only
over complete programs and therefgnéma facie not directly applicable to modu-
lar programming. Due to this obstacle, the concept of a module has not raised much
attention yet in nonmonotonic logic programming, and, except for a few dedicated pa-
pers [2—4], modules mostly appeared as a by-product in investigations of formal prop-
erties like stratification, splitting, or, more recently, in work on equivalence between

* This work was partially supported by the Academy of Finland under project #211025 (“Ad-
vanced Constraint Programming Techniques for Large Structured Problems”) and by the Aus-
trian Science Foundation (FWF) under project P18019-N04 (“Formal Methods for Comparing
and Optimizing Nonmonotonic Logic Programs”).

programs [5—8]. The approach by Oikarinen and Janhunen [8] accommodates the mod-
ule architecture discussed by Gaifman and Shapiro [2] for non-disjunctive programs
and establishesmodule theorenfor stable models. This result indicates that the com-
positionality of stable models can be achieved in practice if positively interdependent
atoms are not scattered among several modules.

In this paper, we deal with the formal underpinnings for modular programming in
the context of disjunctive logic programs under the stable-model semantics. To begin
with, we introduce the notion of BLP-functionwhich can roughly be described as a
disjunctive logic program together with a well-defined input/output interface providing
input atomsoutput atomsandhidden(local) atoms In that, we follow Gelfond [9] who
introducedp-functionsfor specifying (partial) definitions of new relations in terms of
old, known ones. This functional view of programs is also apparent if the latter are
understood agqueriesover an input (i.e., a database). Indeed, several authors (like, e.g.,
Eiter, Gottlob, and Mannila [6]) introduce logic programs as an extension of Datalog,
which poses no major problems with respect to stable semantics as long as a single
program with a specified input/output behaviour is considered.

The latter point leads us to the second main issue addressed in our framework, viz.
the question of a (semantically meaningful) method for cbepositionof modules.

If the underlying semantics is inherently nonmonotonic, as is the case for stable se-
mantics, this generates several problems, which were first studied in detail by Gaifman
and Shapiro [2] for logic programs (without default negation) under minimal Herbrand
models. As they observed, it is hecessary to put certain syntactical restrictions on the
programs to be composed, in order to make the semantics act accordingly. We shall
follow their approach closely but extend it to programs permitting both default negation
and disjunction. Notably, the problem of compositional semantics also arises in relation
to the so-calledplitting-set theorenfb—7], which aims at computing the stable models

of a composed program by a suitable combination of the models of two programs which
result from the split of the entire program.

After having the basic syntactical issues of DLP-functions laid out, we then define
their model theory in terms of a generalisation of the stable-model semantics, where
particular care is taken regarding the input of a DLP-function. The adequacy of our en-
deavour is withessed by the main result of our paper, vizrtbéule theorerpproviding
the foundation for a fully compositional semantics: It shows how stable models of en-
tire programs can be composed by joining together compatible stable models of their
respective component programs. We round off our results with some applications of the
module theorem. First, the module theorem readily extends the splitting-set theorem [5,
6]. Second, it leads to a genesdhlifting principlethat can be used to simplify programs,

i.e., to split shared disjunctive rules among components. Third, it gives rise to a notion
of modular equivalence for DLP-functions that turns out to be a proper congruence
relation supporting program substitutions.

2 The ClassD of DLP-Functions

A disjunctive ruleis an expression of the form

al\/"'\/anHbl,...,bmeCl,...,NCk, (1)

wheren, m,k > 0, anday, . .., an, b1,...,by, @andcy, . .., ¢, are propositional atoms.
Since the order of atoms is considered insignificant, we wtite- B, ~C as a short-
hand for rules of form (1), wherd = {ay,...,a,}, B = {b1,...,bn}, andC =
{e1,...,cx}. The basic intuition behind (1) is that if each atom in the positive body
B can be inferred and none of the atoms in the negative libdyhen some atom in
the headA can be inferred. When botB andC' are empty, we have disjunctive fact
written A . If A is empty, then we have@nstraint written L «— B, ~C'.

A disjunctive logic progran{DLP) is conventionally formed as a set of disjunctive
rules. Additionally, we want a distinguishéabut and output interfacéor each DLP.
To this end, we extend a definition originally proposed by Gaifman and Shapiro [2] to
the case of disjunctive prograrissiven a setrR of disjunctive rules, we write\t(R)
for the signatureof R, i.e., the set of (ground) atoms appearing in the ruleR.ofhe
setHead(R) consists of those elements Af(R) having head occurrences i This
is exactly the set of atoms which adefinedby the rules ofR.

Definition 1. ADLP-function 17, is a quadruplg R, I,O, H), wherel, O, and H are
pairwise distinct sets of atoms, attlis a set of disjunctive rules such that

At(R) CTUOU H andHead(R) COU H.

The elements of are calledinput atoms the elements of output atomsand the
elements off hidden atoms

Given a DLP-functionT = (R, 1,0, H), we write, with a slight abuse of notation,

A «— B,~C € II to denote that the ruld «— B, ~C is contained in the se&k. The
atoms in/ U O are considered to basibleand hence accessible to other DLP-functions
conjoined withlI7; either to produce input fofl or to utilise the output off. On the

other hand, théiddenatoms inH are used to formalise some auxiliary conceptglof
which may not make sense in the context of other DLP-functions but may save space
substantially (see, e.g., Example 4.5 of Janhunen and Oikarinen [11]). The condition
Head(R) C O U H ensures that a DLP-function may not interfere with its own input
by defining input atoms of in terms of its rules. In spite of this, the rules Gf may

be conditioned by input atoms appearing in the bodies of rules. Following previous
ideas [9, 8], we define the signatute(I7) of a DLP-functionlI = (R,1,0,H) as

I UO U H *For notational convenience, we distinguish tble andhidden partsof

At(IT) by settingAt, (IT) = TUO andAty, (IT) = H = At(II)\ At (II), respectively.
Additionally, At;(IT) andAt, (IT) provide us a way of referring to the sdtandO of

input and output atoms df, respectively. Lastly, for any sét C At(I7) of atoms, we
denote the projections &f on At;(IT), At,(IT), Aty (IT), andAty, (IT) by S;, S,, Sy,

and Sy, respectively.

In formal terms, a DLP-functiod/ = (R, I, O, H) provides a mapping from sub-
sets of] to a set of subsets 6?U H in analogy to the method by Gelfond [9]. However,
the exact definition of this mapping is deferred until Section 3 where the semantics of
DLP-functions will be anchored. In the sequel, the (syntactic) class of DLP-functions is

3 There are already similar approaches within the area of ASP [9-11, 8].
* Consequently, theengthof I7 in symbols, denoted byiT ||, gives an upper bound foAt(IT)]
which is important when one considers the computational cost of translating programs [10].

denoted byD. It is assumed for the sake of simplicity tHatspans over a fixed (at most
denumerable) signaturkt(D)° so thatAt(17) C At(D) holds for each DLP-function
1I €D.

The composition of DLP-functions takes place as set out in Definition 2 below. We
say that a DLP-functioril; respects the hidden atoro§another DLP-functior/s iff
At(I) N At (I12) = 0, i.e., IT; does not use any atoms fraftiy, (175).

Definition 2 (Gaifman and Shapiro [2]). Thecompositionof two DLP-functiond1;
and I1, thatrespect the hidden atoms of each otise¢he DLP-function

I & 11, = <R1 U Rs, (Il \02) U (Ig \ 01),01 U0y, Hy U H2>. (2)

As discussed by Gaifman and Shapiro [2], program composition can be generalised
for pairs of programs not respecting each other’s hidden atoms. The treatment of atom
types under Definition 2 is summarised in Table 1 where
the intersections of the sets of the input, output, and hidden Iy |O2|Ho
atoms ofII; andII, are represented by the cells in the re- © i
spective intersections of rows and columns (e.g., an atompz, [i | i
a € O; N I; becomes an output atom iit; © I13). Given [O[[0| o
that hidden atoms are mutually respected, ten cases arigg, [[h| - | - | -
in all. The consequences of Definition 2 should be intuitive
to readers.acqu.amted with the principles of object-orlgnﬁgle 1: Division of atoms
programming: (i) Although'Z; andII; must not share hidynqerg into input (i), out-
den atoms, they may share input atoms, i) I> # 0 is pyt (o), or hidden (h) atoms.
allowed. For now, the same can be stated about output atoms
but this will be excluded by further conditions as done by Gaifman and Shapiro [2],
whereO; N Oy = 0 is assumed directly. (i) An input atom éf; becomes an output
atom inIl, & I, if it appears as an output atom i, i.e., IT, provides the input for
11, in this setting. The input atoms @1, are treated in a symmetric fashion. (iii) The
hidden atoms ofI; andI, retain their status idl; ® I1.

Given DLP-functionsii,, II,, and II5 that pairwise respect the hidden atoms of
each other, it holds thafl; ® II, € D (closure),ll, & @ = @ @ II, = II, for the
empty DLP-functionz = (i, §, 0, 0) (identity), IT, & IT, = IT, ® II; (commutativity),
andIl; & (I, @ I13) = (11, ®I15) ® 115 (associativity). However, the notion ofodular
equivalencd8] is based on a more restrictive operator for program composition. The
basic idea is to forbid positive dependencies between programs. Technically speaking,
we define thepositive dependency gragdG™ (I1) = (At(II),<,) for each DLP-
function I7 in the standard way [12] using only positive dependencies: an atani
in the head of arulel — B, ~C € II depends positively on eaéhe B and each pair
(b, a) belongs to the edge relatiery in DG (IT), i.e.,b <; a holds. The reflexive and
transitive closure oK, gives rise to the dependency relatigrover At(I7).

A strongly connected compondB(CC)S of DG (IT) is a maximal ses C At(IT)
such that) < a holds for everya, b € S. Given thatll; & II, is defined, we say that
11, andIl; aremutually dependeriff DG*(Hl @ I1,) has a SCG shared byi7; and
II, such thatS N At (I11) # 0 and.S N At,(I12) # 0 [8].

Oo|O0|0O
1

5 In practice, this set could be the set of all identifiers (names for propositions or similar objects).

Definition 3. Thejoin, I1; LI 15, of two DLP-functiondl, and I1; is IIy & II,, pro-
viding I1, & II, is defined and7; and II, are not mutually dependent.

It is worth pointing out that\t, (I7;) N At, (II2) = () follows in analogy to Gaifman
and Shapiro [2] wher!; LI I15 is defined. At first glance, this may appear rather re-
strictive, e.g., the head of a disjunctive rule— B, ~C cannot be shared by modules:
either A C At,(II;) or A C At,(IIs) must hold but not both. The general shifting
technique to be presented in Section 5 allows us to circumvent this problem by viewing
shared rules as syntactic sugar. Moreover, sifigeand I1, are not mutually depen-
dent inII; Ul IT5, we have (i)S C At;(II; U II), (i) S C At.(II;) U Aty (IT1), or
(i) S C Ato(I15) U Aty (I15), for each SCCS of DG (I, @ II,). The first covers
joint input atomsz € At;(I1; U I15) which do not depend on other atoms by definition
and which end up in singleton SC¢s}.

The dependency relation lifts to the level of SCCs as followss; < s iff there
area; € S; andasy € Ss such thatu; < as. In the sequel, a total ordéh < --- < Si
of the strongly connected componentsDiG ™ (11, & I15) is also employed. Such an
order< is guaranteed to exist but it is not necessarily unique. E.g., the relative order of
S, andS3 can be freely chosen given théif < S, <S4 andS; < S3 <S4 hold for
four components undet. Nevertheless< is consistent with<, i.e., S; < S; implies
S; £ 8; but eitherS; < S; orS; £ §; may hold depending oft. Given that/l; Ll I1,
is defined, we may projed; < --- < S for I1; and I1, as follows. In case ofI;,
for instance,S1,; = S;, if S; C Ato(I11) U Aty (I11) or S; C At;(II; U IT5), and
S1i = SiNAt(ITh), if S; C Ato(II2) U Aty (II2). In the latter case, it is possible
that S;;, = 0 or S;,; contains several input atoms éf; which are independent of
each other. This violates the definition of a SCC but we do not remove or split such
exceptional components—also called SCCs in the sequel—to retain a uniform indexing
scheme for the components&f, I1;, andII,. Thus, we have established the respective
component structureS; ; < --- < Sy andSyq < --- < Sy, for IT; andIl,.

3 Model Theory and Stable Semantics

Given any DLP-function//, by aninterpretation M, for II we understand a subset
of At(IT). An atoma € At(I7) is true underM (symbolically M = a) iff a € M,
otherwisefalseunderM . For a negative literaka, we defineM |= ~a iff M [~ a. A
setL of literals is satisfied by/ (denoted byM = L) iff M I, for everyl € L. We
also defineM |=\/ L, providing M = [for somel € L.

To begin with, we cover DLP-functions with a pure classical semantics, which treats
disjunctive rules as classical implications.

Definition 4. An interpretation\/ C At(I7) is a(classical) modebf a DLP-function
II=(R,1,0,H),denotedV] =11, iff M = R, i.e., foreveryruled — B,~C € R,

M = BU~C impliesM EV/ A.

The set of all classical models &f is denoted byC M (7).

Classical models provide a suitable level of abstraction to address the role of input
atoms in DLP-functions. Given a DLP-functidih and an interpretatiod! C At(I1),
the projectionM; can be viewed as the actual input fAr which may (or may not)
produce the respective outpi,,, depending on the semantics assigneditoThe
treatment of input atoms in the sequel will be baseganial evaluation the idea is to
pre-interpret input atoms appearinglihwith respect tal/;.

Definition 5. For a DLP-functionII = (R,I,0,H) and an actual inputM; C [
for 11, theinstantiation ofII with respect taM;, denoted byi1/M;, is the quadruple
(R',0,1 U0, H)whereR’ consists of the following rules:

1. the ruleA — (B \ I),~(C \ I), for each ruleA — B,~C € II such that
M; |: B; U ~Cj,

2. the facta <, for each atomu € M;, and

3. the constraintL « a, for each atonu € I\ M;.

The rules in the first item are free of input atoms sidge I = () holds for each rule
A — B,~C in R by Definition 1. The latter two items list rules that record the truth
values of input atoms dff in the resulting programi/ /M;. The reductI/M; is a DLP-
function without input whereas the visibility of atoms is not affected by instantiation.

Proposition 1. Let IT be a DLP-function and/ C At(II) an interpretation that de-
fines an actual inpud/; C At;(IT) for I1. Then, for all interpretationsV C At(I7),

N EHNandN, = M; < N E I[I/M,.

Thus, the input reduction, as given in Definition 5, is fully compatible with classical
semantics and we may characterise the semantic op€rafdsy pointing out the fact
that CM(I1) = U,y CM(I1/M;). Handling input is slightly more complicated in
the case of minimal models but Lifschitzrallel circumscription[13] provides us a
standard approach to deal with it. The rough idea is to keep the interpretation of input
atoms fixed while minimising, i.e., falsifying others as far as possible.

Definition 6. Let IT be a DLP-function and” C At(IT) a set of atoms assumed to
have fixed truth values. A model C At(II) of II is F-minimal iff there is no model
N of Il suchthatvV N FF =M N FandN C M.

The set off’-minimal models of/] is denoted byMM (I7). In the sequel, we treat
input atoms by stipulating\t; (I7)-minimality of models ofII. Then, the condition
N NF = M N F in Definition 6 becomes equivalent f§; = M;. Using this idea,
Proposition 1 lifts for minimal models as follows. Recall thet (17/M;) = 0.

Proposition 2. Let IT be a DLP-function and// C At(II) an interpretation that de-
fines an actual inpud/; C At;(I7) for I1. Then, for all interpretationsv C At(IT),

N € MMAt;(H)(H) andN; = M; < N € MM@(H/Mi).

The setMM aq, (1) (17) of models is sufficient to determine the semantics pbs-
itive DLP-function, i.e., whose rules are of the fortn— B whereA # () and onlyB
may involve atoms fromit; (/7). Therefore, due to non-empty heads of rules, a posi-
tive DLP IT is guaranteed to possess classical models sinceAe(dl,) = 17, and thus
also At; (IT)-minimal models. To cover arbitrary DLP-functions, we interpret negative
body literals in the way proposed by Gelfond and Lifschitz [1].

Definition 7. Given a DLP-functionll = (R,1,0, H) and an interpretation\/ C
At(IT), the Gelfond-Lifschitz reduct ofll with respect toM is the positive DLP-
function

oM ={A«—B|A«~B,~CclIl,A#(,andM = ~C}, 1,0, H). (3)

Definition 8. An interpretationM C At(I7) is a stable modebf a DLP-function//
iff M € MMag,(y(1I™) and M |= CR(II), whereCR(II) is the set of constraints
1« B ~Cell.

Hidden atoms play no special role in Definition 8 and their status will be clarified
in Section 5 when the notion ofiodular equivalencés introduced. Definition 8 gives

rise to the respective semantic operadf : D — 22 for DLP-functions:
SM(II) = {M C At(IT) | M € MMp,(;y(II™) andM = CR(II)}. (4)

As a consequence of Proposition 2, a stable madedf I7 is a minimal model of
IT™ /M; = (II/M;)™ which enables one to dismigs; (I7)-minimality if desirable.

Example 1.Consider a DLP-function
II={aVb— ~c; a—c,~b; b c,~a},{c}, {a,b},0),

which has four stable modeld/; = {a}, M> = {b}, M3 = {a,c}, andMy = {b,c},
which are minimal models of the respective reductsiof

M/ (My); = ITM2 /(Ms); = ({a Vb L« c},0,{a,b,c},0),
HM3/(M3)i = <{a —; C <_}v (Z)v {a7 b, C}’ @>! and

HJ\'{4/(M4>i = <{b 3 CH}’Q)?{avbv C},@>. g

An immediate observation is that we loose the general antichain property of stable
models when input signatures are introduced. For instance, weMave M3 and
M, C My in Example 1. However, since the interpretation of input atoms is fixed by the
semantics, we perceive antichalosally, i.e., the set of stable modelsv € SM(IT) |
N; = M;} forms an antichain, for each inpidt; C At;(II). In Example 1, the sets
associated with actual inpusand{c} are{M;, M-} and{Ms, M, }, respectively.

4 Module Theorem for DLP-Functions

Our next objective is to show that stable semantics allows substitutions under joins of
programs as defined in Section 2. Given two DLP-functibhsand I, we say that

interpretations\/; C At(II;) andM, C At(II,) aremutually compatibléwith respect

to I1; and I1>), or justcompatiblefor short, iff M7 N At (II1) = My N Aty (I12), i.e.,

M, and M- agree about the truth values of their joint visible atoms. A quick inspection
of Table 1 reveals the three cases that may arise if theljois I, LI I1, is defined

and jointoutput atomdor 7, and], are disallowed: There are shared input atoms in
Ati(H) = Ati(Hl)ﬁAti(Hg) and atoms imto (Hl)ﬂAtl(HQ) andAti(Hl)ﬂAto(lb)

that are output atoms in one program and input atoms in the other program. Recall that
according to Definition 3 such atoms end upAity, (17) whenII; U I1, is formed. Our

first modularity result deals with the classical semantics of DLP-functions.

Proposition 3. Let I7T; and 11, be two positive DLP-functions with the respective input
signaturesAt; (11;) and At;(I1,) so thatll; U II, is defined. Then, for any mutually
compatible interpretationd/; C At(II;) and M C At(I1,),

My U M,):Hl Uull, < M |: 11 andM2 |: 1Is. (5)

The case of minimal or stable models, respectively, is much more elaborate. The
proof of Theorem 1 (see below) is based@mnulative projectionslefined for a join
11, U I, of DLP-functionsiI; andIl; and a pair of compatible interpretations, C
At(ITy) and My C At(I1,). Itis clear thatM; = M NAt(I1;) andMy = M NAt(115)
hold for M = M, U M in this setting. Next, we use a total order < - - - < Sy of the
SCCsinDG™ (I1; @ I1,) to define an increasing sequence of interpretations

Ni=NU(NNU_,5S)), (6)

for each interpretatiolv € {M, My, M>} and0 < j < k. Furthermore, letll =
(R,1,0,H) = II, U II,. The relative complement/ = At(II) \ M contains atoms
falseunderM and we may associate a d@{tS;] of rules with each SCG; using M

RIS]={(ANS;) —B|A—BeR,ANS;#0, andA\ S; C M}. (7)

For each ruled — B € R, the reduced rul¢A N S;) «— B is the contribution of
A «— B for the componens; in case\/(4 \ S;) is false under}, i.e.,\/ A is not
eventually satisfied by some other componenfighote that)/ = IT will be assumed
in the sequel. AlthouglR[S;] depends o/, we omit M in the notation for the sake
of conciseness. For eath< j < k, we may now collect rules associated with the first
j components and form a DLP-function with the same signatuié:as

II" = (\JI_, R[S]. 1,0, H). (8)

This implies that non-input atoms [ljfszrl S; are false under interpretations defined

by (6). Since each rule off is either contained inI; or II,, we may useM; =
At(IT;) \ My andM, = At(I15) \ M, to definell{ andII3 analogously, using (7) and

(8) for IT, and 115, respectively. It follows thafl? LI IT} is defined and7? = IT7 LI IT}
holds for every) < j < k due to the compatibility of/7 and/J and the fact thatl =

11, U IT,. Moreover, it is easy to inspect from the equations above that, by definition,
MJ—1 C M7 and the rules ofI’~! are contained idI7, for every0 < j < k.

Finally, we may accommodate the definitions from above to the case of a single
DLP-function by substituting7 for I7; and@ for II,. Then,DG™ (II) is partitioned
into strongly connected componerfs < --- < Si of II and the construction of
cumulative projections is applicable to an interpretatddnC At(I7), giving rise to
interpretations\/? and DLP-functiondI’ for each0 < j < k. Lemmas 1 and 2 deal
with a structure of this kind associated withand describe how the satisfaction of rules
andAt; (IT)-minimality are conveyed under cumulative projections.

Lemma 1. Let II be a positive DLP-function with an input signatufg;(I7) and
strongly connected componenis < --- < Si. Given a modelM C At(I1) for
11, the following hold for the cumulative projectiof$’ and I77, with0 < j < k:

1. Foreverny0 < j <k, M’ |= II7.

2. If N7 |= 117, for some interpretatiodv C M7 of I17, wherej > 0, thenN7—1 |=
I171, for the interpretationV'—! = N7\ S; of I1971.

3. If M7 is an At;(II)-minimal model of/1/, for j > 0, then M7~ is an At;(I1)-
minimal model of 771,

Example 2.To demonstrate cumulative projections in a practical setting, let us analyse
a DLP-functionIl = (R, (,{a, b, c,d, e},), whereR contains the following rules:

aVb—; d«—c;
a < b; e «—d;
b« a; d «— ¢

a<—c, cVdVe+—a,b.

The SCCs ofiT areS; = {a,b,c} andSy = {d,e} with S; < S,. The classical
models ofIl are M = {a,b,d,e} andN = {a,b,c,d,e}. GivenM, II' andII* have
the respective sets of rulg®[S1] = {a Vb «—; a < b; b— a; a — ¢} and R[S1] U
R[Ss] whereR[S2] = {d «— ¢; e — d; d — e; dV e — a,b}. According to (6), we
haveM° = (), M* = {a,b}, andM? = M. Then, e.g.M! | II' and M? & 11>
by the first item of Lemma 1. Sinck/? is an()-minimal model ofI1?, the last item of
Lemma 1 implies thab/' is an@-minimal model ofIT". ad

Lemma 2. Let IT be a positive DLP-function with an input signatufg; (I7) and
strongly connected componetris < --- < S;. Then, an interpretatiod/ C At(I1)
of IT is an At; (IT)-minimal model of 7 iff M is an At;(IT)-minimal model of 7*.

Example 3.For IT from Example 2, the ruld vV e < a,b forms the only difference
betweenlI? andIT but this is insignificant)/ is also arf-minimal model offlf. O

Proposition 4. Let IT; and I1; be twopositive DLP-functions with the respective input
signaturesAt; (I1;) and At; (I12) so thatIl, U IT, is defined. Then, for any mutually
compatible modeld/; C At(II;) and My C At(Il;) of IT; and I1,, respectively,

M U My is At; (111 U IIy)-minimal <= M, is At;(II;)-minimal andM; is
At;(I13)-minimal.

Proof sketchThe proof of this result proceeds by induction on the cumulative pro-
jectionsM7, M{, and M3 induced by the SCCS; < --- < S;, of DG (II; U IT5),
i.e., M7 is shown to be art;(IT)-minimal model oflI7 iff M7 is anAt;(I1;)-minimal
model of IT; and M is anAt;(IT,)-minimal model off1,, wherell7, IT/, andII3, for
0 < j < k, are determined by (7) and (8) when appliedip/l,, andIl>. Lemma 2
closes the gap between tAe; (17)-minimality of M* = M as a model of7* from (8)
with j = k and as that of7. The same can be stated abduf = M, and My = M,
but in terms of the respective projectiofis; < --- < S; ;, obtained fori € {1,2}. O

Lemma 3. Let I1T; and I, be two DLP-functions with the respective input signatures
At;(IT;) and At;(IT,) so thatIl = IT, LI IT, is defined. Then, alsé/* U 172" is
defined for any mutually compatible interpretatias C At(II;) and My C At(I1s),
and ITM = 11" U 11,"2 holds for their unionM = M; U M.

Theorem 1 (Module Theorem).Let I7; and I1, be two DLP-functions with the re-
spective input signatureAt; (I7;) and At;(I13) so thatll; U II, is defined. Then, for
any mutually compatible interpretatiodd; C At(I1;) and My C At(112),

M, UM, € SM(Hl |_|H2) <~— M, € SM(Hl) andM2 S SM(HQ)

Proof. Let M, C At(I1;) and M, C At(Il2) be compatible interpretations afd =
M, U M. Due to compatibility, we can recovdd; = M N At(II;) andMy = M N
At(I1,) from M. Additionally, we haveCR(II) = CR(II;) U CR(Il;) and ITM =
M 1 113" is defined by Lemma 3. Nowk/ € SM(IT) iff

M is anAt; (IT)-minimal model of 7™ andM |= CR(II). 9)

By Proposition 4, we get that (9) holds iff (i)/; is an At;(II;)-minimal model of
I and M, = CR(II,), and (i) M, is an At;(IT,)-minimal model of I7,"2 and
Ms = CR(IIy). Thus,M € SM(II) iff My € SM(IIT) andM, € SM(IT). O

The moral of Theorem 1 and Definition 3 is that stable semantics supports modu-
larisation as long as positive dependencies remain within program modules. The proof
of the theorem reveals the fact that such modules may involve several strongly con-
nected components. Splitting them into further modules is basically pre-empted by hid-
den atoms which cannot be placed in separate modules. Theorem 1 can be easily ex-
tended for DLP-functions consisting of more than two modules. In view of this, we say
that a sequencd/, . . ., M,, of stable models for modulds,, ..., II,,, respectively, is
compatibleiff A/; andM; are pairwise compatible, for all< 4, j < n.

Corollary 1. LetlII4,..., I, be a sequence of DLP-functions such that |- - - LI I,
is defined. Then, for all compatible sequengés . .., M, of interpretations,

Ui, M; € SM(II; U --- U II,) < M, € SM(II;),forall 1 <i <n.

5 Applications

In this section, we demonstrate the applicability of Theorem 1 on three issues, viz.
splitting DLP-functions, shifting disjunctions, and checking equivalence.

Splitting DLP-Functions. Theorem 1 is strictly stronger than the splitting-set theo-
rem [5]. Given a DLP-function of formil = (R,(,0,0) (which is essentially an
“ordinary” DLP), asplitting setU C O for II satisfies, for eacld — B,~C € R,
AUBUC C U,wheneveiANU # (. Given a splitting sel/ for 7, thebottom by, (R),

of R with respect td/ contains all rulesA — B, ~C € Rsuchthatd U BUC C U,
whereas theop, ty(R), of R is R \ by (R). Thus, we may definédl = IIp U Iy,
wherellg = (by(R),0,U,0) and(ty(R), U, O \ U, 0). Then, Theorem 1 implies for
any interpretationV/ C At(Il) = O thatM NU € SM(IIg) andM € SM(IIy) iff

(M NU,M\U) is asolutionfor IT with respect taU, i.e., M is a stable model of
11. On the other hand, as demonstrated in previous work [8], the splitting-set theorem
can be applied to DLP-functions likda < ~b; b < ~a}, 0, {a,b},0) only in a triv-

ial way, i.e., forU = () or U = {a, b}. In contrast, Theorem 1 applies to the preceding
DLP-function, i.e.({a « ~b},{b},{a},0) U ({b « ~a},{a}, {b},0) is defined.

Shifting Disjunctions.A further application of our module theorem results in a general
shifting principle, defined as follows.

Definition 9. LetIT = (R,I,0, H) be a DLP-function with strongly connected com-
ponentsS; < --- < Si. Thegeneral shiftingof IT is the DLP-functionGSH(II) =
(R',I,0,H), whereR'is

{(ANS;) — B,~C,~(A\S;) | A — B,~C € II,1 <i < k,andAnS; # 0}.

This is a proper generalisation of theeal shiftingtransformation [14] which is not
applicable to the prograrff given below because of head cycles involved.
Example 4.ConsiderlI with the following rules:

aVbVceVd«—,;
a+—b, c—d;
b—a; dec

ForGSH(II), the first rule is replaced by b < ~c, ~d andcVd «— ~a, ~b. Itis easy
to verify that both/7 andGSH(IT) have{a, b} and{c, d} as their stable models. O

Theorem 2. For any DLP-functionl = (R, 1,0, H), SM(II) = SM(GSH(II)).

Proof. Let S; < --- < Sk be the strongly connected componentsibfand M C
At(Il) = I U O U H an interpretation. By applying the construction of cumulative
projections for bothl7* andGSH(I7)™, we obtain

(TY)* ={(AnS;) — B| A~ B,~C €I,
MNC=0,1<i<k, ANS;#0,andA\ S; C M},

which coincides with(GSH(I7)M)*. It follows by Lemma 2 thatV/ is an At;(I1)-
minimal model of /7™ iff M is anAt;(IT)-minimal model of GSH(IT)M. O

Theorem 2 provides us a technique to split disjunctive rules among components that
share them in order to get joins of components defined.

Example 5.For the DLP-functionII from Example 4, we obtailR;, = {a Vb «
~e,~d; a— by b—alandRy = {cVd — ~a,~b; ¢« d; d« c} as the sets of
rules associated withl; = (R, {c,d}, {a,b},0) andIls = (R, {a, b}, {c,d},0), for
which IT; U IT; = (R; U Ry, 0, {a,b,c,d}, D) is defined. 0

Checking EquivalenceFinally, we briefly mention how DLP-functions can be com-
pared with each other at the level of modules as well as entire programs.

Definition 10. Two DLP-functions/7; and 15 are modularly equivalentdenoted by
Hl =m HQ, iff

1. Atl(Hl) = Atl(H2> andAto(Hl) = Ato(ng), and
2. there is a bijectiory : SM(II;) — SM(II1) such that for all interpretationd/ €
SM(II), M N Aty (IT;) = f(M) N At (I15).

Using =,,, we may reformulate the content of Theorem 2/as=,, GSH(II).
The proof for a congruence property lifts from the case of normal programs using the
module theorem strengthened to the disjunctive case (i.e., Theorem 1).

Corollary 2. Let Iy, II5, and IT be DLP-functions. Ifff; =,, II, and bothIl, LI IT
and I1, LI IT are defined, thed/; U IT =, IT, U II.

Applying Corollary 2 in the context of Theorem 2 indicates that shifting can be
localised to a particular componefit = GSH(/1;) in a larger DLP-function7; LI IT.

A broader discussion which relates modular equivalence with similar notions pro-
posed in the literature [15] is subject of future work but some preliminary comparisons
in the case of disjunction-free programs are given by Oikarinen and Janhunen [8].

6 Conclusion and Discussion

In this paper, we discussed a formal framework for modular programming in the context
of disjunctive logic programs under the stable-model semantics. We introduced syntax
and semantics of DLP-functions, where input/output interfacing is realised, and proved
a novel module theorem, establishing a suitable compositional semantics for program
modules. Although our approach is not unique in the sense that there are different pos-
sibilities for defining the composition of modules, it nevertheless shows the limits of
modularity in the context of a nonmonotonic declarative programming language. In any
case, we believe that research in this direction not only yields results of theoretical in-
terest but also could serve as a basis for future developments addressing practicably
useful methods for software engineering in ASP.

Concerning previous work on modularity in ASP, Eiter, Gottlob, and Mannila [6]
consider the class of disjunctive Datalog as query programs over relational databases. In
contrast to our results, their module architecture is based onpositive and negative
dependencieand no recursion between modules is tolerated. These constraints enable
a straightforward generalisation of the splitting-set theorem for that architecture. Eiter,
Gottlob, and Veith [3] address modularity within ASP by viewing program modules as
generalised quantifierallowing nested calls. This is an abstraction mechanism typical

to programming-in-the-small approaches. Finally, Fadie. [16] apply themagic set

methodn the evaluation of Datalog programs with negation, introducing the concept of
anindependent setvhich is a specialisation of a splitting set. The module theorem put
forward by Fabeet al. [16] is, however, weaker than Theorem 1 presented in Section 4.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.

New Generation Computing (1991) 365-385

Gaifman, H., Shapiro, E.: Fully Abstract Compositional Semantics for Logic Programs. In:

Proceedings of the 16th Annual ACM Symposium on Principles of Programming Languages
(POPL'89). (1989) 134-142

. Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers.

In: Proceedings of the 4th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’97). Volume 1265 of LNCS, Springer (1997) 290-309

. Baral, C., Dzifcak, J., Takahashi, H.: Macros, Macro Calls and Use of Ensembles in Modular

Answer Set Programming. In: Proceedings of the 22nd International Conference on Logic
Programming (ICLP’06). Volume 4079 of LNCS, Springer (2006) 376—-390

. Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Proceedings of the 11th International

Conference on Logic Programming (ICLP’94), MIT Press (1994) 23-37

. Eiter, T., Gottlob, G., Mannila, H.: Disjunctive Datalog. ACM Transactions on Database

System2(3) (1997) 364-418

. Eiter, T., lanni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules

with External Evaluations for Semantic Web Reasoning. In: Proceedings of the 3rd European
Semantic Web Conference (ESWC’06). Volume 4011 of LNCS, Springer (2006) 273-287

. Oikarinen, E., Janhunen, T.: Modular Equivalence for Normal Logic Programs. In: Proceed-

ings of the 17th European Conference on Atrtificial Intelligence (ECAI'06). (2006) 412—416.

. Gelfond, M.: Representing Knowledge in A-Prolog. In Kakas, A., Sadri, F., eds.: Compu-

tational Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part Il. Volume 2408 of LNCS, Springer (2002) 413-451

Janhunen, T.: Some (In)translatability Results for Normal Logic Programs and Propositional
Theories. Journal of Applied Non-Classical Logi&1-2) (2006) 35-86

Janhunen, T., Oikarinen, T.: Automated Verification of Weak Equivalence within the SMOD-
ELS System. Theory and Practice of Logic Programming (2006). To appear

Ben-Eliyahu, R., Dechter, R.: Propositional Semantics for Disjunctive Logic Programs. An-
nals of Mathematics and Artificial Intelligend®(1-2) (1994) 53-87

Lifschitz, V.: Computing Circumscription. In: Proceedings of the 9th International Joint
Conference on Artificial Intelligence (IJCAI'85), Morgan Kaufmann (1985) 121-127

Eiter, T., Fink, M., Tompits, H., Woltran, T.: Simplifying Logic Programs under Uniform and
Strong Equivalence. In: Proceedings of the 7th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR'03). Volume 2923 of LNAI, Springer (2004)
87-99

Eiter, T., Tompits, H., Woltran, S.: On Solution Correspondences in Answer-Set Program-
ming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence
(IJCAI'05), Professional Book Center (2005) 97-102

Faber, W., Greco, G., Leone, N.: Magic Sets and Their Application to Data Integration. In:
Proceedings of the 10th International Conference on Database Theory (ICDT'05). Volume
3363 of LNCS, Springer (2005) 306—-320

