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Abstract
The mechanisms by which modularity emerges in complex networks are not well understood but
recent reports have suggested that modularity may arise from evolutionary selection. We show that
finding the modularity of a network is analogous to finding the ground-state energy of a spin system.
Moreover, we demonstrate that, due to fluctuations, stochastic network models give rise to modular
networks. Specifically, we show both numerically and analytically that random graphs and scale-
free networks have modularity. We argue that this fact must be taken into consideration to define
statistically significant modularity in complex networks.

Statistical, mathematical, and model-based analysis of complex networks have recently
uncovered interesting unifying patterns in networks from seemingly unrelated disciplines
[1-5]. In spite of these advances, many properties of complex networks remain elusive, a
prominent one being modularity [6,7]. For example, it is a matter of common experience that
social networks have communities of highly interconnected nodes that are poorly connected
to nodes in other communities. Such modular structures have been reported not only in social
networks [6-8], but also in biochemical networks [9], food webs [10], and the Internet [11]. It
is widely believed that the modular structure of complex networks plays a critical role in their
functionality [9]. There is therefore a clear need to develop algorithms to identify modules
accurately [6,7,11-13].

More fundamentally, the mechanisms by which modularity emerges in complex networks are
not well understood. In biological networks—both biochemical and ecological—researchers
have suggested that modularity increases robustness, flexibility, and stability [9,10]. Similarly,
in engineered networks, it has been suggested that modularity is effective to achieve
adaptability in rapidly changing environments [14]. It may therefore seem that evolutionary
pressures make networks modular, implying that any successful model of complex networks
should take into account external factors that enhance modularity. Recently, however, Solé
and Fernàndez have pointed out that models without any external pressure are able to give rise
to modular networks [15].

In this paper, we show that Erdös-Rényi (ER) random graphs, in which any pair of nodes is
connected with probability p [16], have a high modularity. We show numerically and
analytically that this high modularity is due to fluctuations in the establishment of links, which
are magnified by the large number of ways in which a network can be partitioned into modules.
Furthermore, we show that one obtains similar results when considering scale-free networks
[2]. We conclude by discussing how these results should be taken into consideration to define
statistically significant modularity in complex networks.

Following the first quantitative definition of modularity [7,12], several groups have proposed
heuristic algorithms to detect modules in complex networks. For a given partition of the nodes
of a network into modules, the modularity ℳ of this partition is defined as [7]
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(1)

where r is the number of modules, L is the number of links in the network, ls is the number of
links between nodes in module s, and ds is the sum of the degrees of the nodes in module s.
This definition of modularity implies that ℳ≤1 and that ℳ=0 for a random partition of the
nodes [7]. We define the modularity M of a network as the largest modularity of all possible
partitions of the network M =max{ℳ}.

The problem of finding the modularity of a network with S nodes is therefore analogous to the
standard statistical mechanics problem of finding the ground-state energy of the Hamiltonian
ℋ=−Lℳ. Specifically, one can map the network into a spin system by defining the variables
si ∈{1,2,…,S} as the module to which node i belongs and the couplings Jij as being 1 if nodes
i and j are connected in the network and 0 otherwise. Then, from Eq. (1), one can demonstrate
that

(2)

This Hamiltonian corresponds to an S-state Potts model with both ferromagnetic and anti-
ferromagnetic terms, and two-, three-, and four-spin interactions. Therefore, it seems difficult
to apply methods used in problems that are similar but formally simpler, like the graph coloring
problem [17]. Rather, we propose here a heuristic estimation of the modularity for a number
of interesting graph models, namely low-dimensional regular lattices, ER random graphs
[16] and scale-free networks [2].

Low-dimensional regular lattices
Consider a one-dimensional lattice with S nodes, each one connected to its two neighbors
[20]. This case is particularly simple because the modules comprise only contiguous nodes
and, therefore, the number of between-module links equals the number r of modules. Assuming
that all modules have approximately the same size n=S/r, the modularity of a partition with r
modules is

(3)

where we have used the fact that the number L of links is L≈S. Under these assumptions, the
problem of finding the modularity of a regular one-dimensional lattice is reduced to finding
the optimal number r* of modules, that is, the number of modules that yields the maximum
modularity. One can show that , and the modularity is

(4)

Note that the only assumption in the calculation is that all modules have approximately the
same number of nodes. Numerical results confirm that this is a sensible assumption.

One can generalize this result to one-dimensional lattices in which each node is connected to
z nodes on the left and z on the right. In this case, the leading contributions to the modularity
are

(5)
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Similarly, one can calculate the modularity of d-dimensional cubic lattices in which each node
is connected to 2z nodes in each one of the d directions, to obtain that [18]

(6)

Random graphs
In ER random graphs [16], each pair of nodes is connected with probability p. As for d-
dimensional lattices, we assume that the partition of the network with highest modularity
consists of r modules with approximately the same number of nodes n=S/r, the same number
of within-module links ki, and the same number of links ko to other modules. In the S⪢1 limit,
we can assume that the total number of links is S2p/2 and, therefore, ki and ko are related by

(7)

Hence, for S⪢1, the modularity of such a partition is simply

(8)

Under these assumptions, the problem of finding the modularity of a random graph is reduced
to finding a partition of the graph with the following properties: (i) The partition consists of
r equal modules, each one with ki within-module links; (ii) the partition typically exists in a
random graph; and (iii) the partition yields the maximum modularity relative to the other
partitions that typically exist.

In a random graph with S nodes and linking probability p, the average number  of different
partitions with r identical modules, each with ki links, is (S,p;r,ki). A certain partition
typically exists if (S,p;r,ki)≥1. Among all the partitions that typically exist, we are interested
in the one whose modularity is maximum. In other words, given a certain number r of modules,
we want a partition with as many within-module links as possible. Therefore, if one finds a
very common partition (S,p;r,ki)≥1, it must be possible to find another partition with the
same r and  that has larger modularity. This new partition will be rarer than the former

one . By iterating this argument, one concludes that the partition
we are interested in must satisfy

(9)

where  is the maximum number of within-module links that one can typically find in
a partition with r identical modules.

To calculate (S,p;r,ki), we use the following process. First, we calculate the number 1 of
ways in which a module of size n=S/r, with ki within-module links and ko(r,ki) external links,
can be separated from the rest of the graph:

(10)

where

(11)

Guimerà et al. Page 3

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2008 June 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(12)

The next step is to separate the second module from the remaining set of S−n nodes. It is
important to note that the second module only needs to establish ko(1−n/(S−n)) external links,
because the remaining kon/(S−n) are already established with the first module. Therefore,

(13)

Repeating this separation process, one can see that the general term is of the form

(14)

Finally, (S,p;r,ki) is the product of all the individual module separations

(15)

so that Eq. (9) can be solved numerically to obtain  using Eqs. (11), (12), (14), and
(15).

Once we find  for a given value of r, we use Eq. (8) to obtain the modularity. Finally,
we select the optimal number of modules r=r*(S,p) and the modularity MER(S,p) of the ER
random graph is

(16)

In Fig. 1(a), we compare the modularity of ER graphs obtained through optimization of Eq.
(1) using simulated annealing [19], with the predictions of Eq. (16). We find good agreement
in the relevant region of sparse but connected graphs, that is, 2/S,<p⪡1.

Equation (16) enables us to obtain the modularity of large random graphs, something that would
not be possible using simulated annealing because of the computational cost. In Fig. 1(b) we
show that for S→∞ the modularity only depends on pS

(17)

To obtain a closed expression for MER for any value of S, we note that at the percolation point
pS=2 the random graph contains essentially no loops, that is, the graph is a tree [16]. In this
case, one can find partitions in which the number of between-module links equals the number
of modules r as in the simple one-dimensional case, and the modularity is

(18)

We propose the simplest ansatz that verifies Eqs. (17) and (18) simultaneously

(19)

In Fig. 1(a), we show that Eq. (19) is in good agreement with values obtained using simulated
annealing.
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Our analytic treatment allows us to explain the origin of the modularity in random graphs. The
typical partition of an ER graph into modules of size n is very unlikely to have a number of
within-module links ki larger than the average pn(n−1)/2, expected for a random partition of
the nodes. However, the number of possible partitions S!/(n!r) is so large that, typically, there
exists a partition whose ki is much larger than the average. For example, for a network with
S=200 and p=0.02 one typically finds a partition with r=7 modules and ki≈ instead of the value
ki≈8 expected for a random partition.

Remarkably, the modularity of a random graph can be as large as that of a graph with modular
structure imposed at the onset [6]. In such a graph, nodes are divided into modules and each
pair of nodes is connected with probability pi if they belong to the same module, and with
probability po>pi otherwise. Using the same example as before, the modularity of an ER graph
with S=200 and p=0.02 is the same as the modularity of a graph with m=7 modules, pi≈0.09,
and po≈0.004.

Scale-free networks
So far, we have considered d-dimensional regular lattices and ER random graphs, in which all
nodes have essentially the same degree. However, many complex networks display scale-free
degree distributions [4], meaning that some nodes have degrees that are orders of magnitude
larger than the average. Since the results presented for ER graphs rely on the fact that there are
many partitions of the network and implicitly on the fact that nodes are exchangeable, it is
worth asking whether “random” scale-free networks also display modularity.

To answer this question, we use the scale-free model proposed in [2]. In the model, the network
grows by the addition of new nodes. Each time a new node is added, it establishes m preferential
connections to nodes already in the network. In Fig. 2, we show the modularity of scale-free
networks as a function of the network size S for different values of m. As before, we find the
modularity by optimizing Eq. (1) using simulated annealing. As for ER graphs, the modularity
approaches a finite value for large S and decreases with the connectivity m.

We are unable to derive a general expression for the modularity of scale-free networks.
However, for m=1 the scale-free network is a tree. Thus,

(20)

For larger values of m, we find numerically that, at a fixed network size, the modularity is a
linear function of 1/m. The simplest possible ansatz for the modularity that verifies this
condition and Eq. (20) simultaneously is

(21)

As we show in Fig. 2, this approximation works well for a=0.165±0.009.

Conclusions
We have shown that modularity in networks can arise due to a number of mechanisms. We
have demonstrated that networks embedded in low-dimensional spaces have high modularity.
We have also shown analytically and numerically that, surprisingly, random graphs and scale-
free networks have high modularity due to fluctuations in the establishment of links.

Recently, several works have reported the existence of modules in complex networks and
suggested that some evolutionary mechanism must enhance modularity. This statement is
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based, in the best cases, on the fact that the modularity is large enough, and relies implicitly
on the assumption that random graphs have low modularity.

Our results enable one to define statistically significant modularity in networks. We argue that,
just as it is already done for the clustering coefficient and other quantities, the modularity of
complex networks must always be compared to the null case of a random graph. The analytical
expressions we have derived provide a convenient way to carry out such a comparison.
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FIG. 1.
Modularity in Erdös-Rényi random graphs. (a) Comparison of numerical results of the
modularity as a function of the linking probability, and the predictions of Eqs. (16) and (19).
The numerical results are obtained by maximizing the modularity, Eq. (1), using simulated
annealing [19]. (b) Modularity as a function of pS for large networks, as predicted by Eq. (16).
Both in (a) and (b), numerical problems in the solution of Eq. (9) prevent us from obtaining
values of the modularity for larger values of p.
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FIG. 2.
Modularity in scale-free networks. Numerical results of the modularity as a function of the
network size S for different values of m. These results are obtained by maximizing the
modularity, Eq. (1), with simulated annealing. The lines are the predictions of Eq. (21), with
a=0.165±0.009 in all the cases.
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