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Abstract

Recent studies have highlighted the importance of interconnectivity in a large range of molecular and human disease-
related systems. Network medicine has emerged as a new paradigm to deal with complex diseases. Connections between
protein complexes and key diseases have been suggested for decades. However, it was not until recently that protein
complexes were identified and classified in sufficient amounts to carry out a large-scale analysis of the human protein
complex system. We here present the first systematic and comprehensive set of relationships between protein complexes
and associated drugs and analyzed their topological features. The network structure is characterized by a high modularity,
both in the bipartite graph and in its projections, indicating that its topology is highly distinct from a random network and
that it contains a rich and heterogeneous internal modular structure. To unravel the relationships between modules of
protein complexes, drugs and diseases, we investigated in depth the origins of this modular structure in examples of
particular diseases. This analysis unveils new associations between diseases and protein complexes and highlights the
potential role of polypharmacological drugs, which target multiple cellular functions to combat complex diseases driven by
gain-of-function mutations.
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Introduction

The complex interweave of interactions between proteins plays

a key role for many cellular processes. Protein complexes emerge

as temporally stable compounds to perform precise biological

functions through the association of proteins by means of non-

covalent protein-protein interactions. The fact that relatively

similar genome sizes give rise to drastically different organism’s

complexity [1] has raised the question of what mechanisms

constrain the huge number of possible protein complexes [2–4].

On the other hand, the information on protein-protein interac-

tions and protein complex formation does not only provide a

better understanding of molecular evolution [5], but it may also

improve our knowledge of human disorders and lead to new

strategies for therapeutic intervention.

Since the number of discovered single-target drug is not

increasing as fast as could be expected based on our current

knowledge of the genome, several novel approaches have been

suggested such as the development of multi-target drugs. One of the

drawbacks for the fast development of such drugs is that it is not easy

to experimentally test the response of a complex system to a multi-

target drug, unless in vivo experiments are performed. But beyond

experimental constraints, several works have suggested that multiple

but partial attacks on specific targets can be more efficient that the

knockout of a single target [6]. In Ref. [7], several studies on human

system-drug interactions were discussed. Drug-target networks have

recently been extensively investigated [8–11]. Moreover, the human

disease-gene network was reported in [12], and the interactions

between therapy and drugs at different ATC levels studied in [13].

The regulation of drug targets by miRNA was also extensively

analyzed [14]. But in spite of their importance, the intricate web of

interactions defined by the human associations of protein complexes

and all available drugs remains uncharacterized. This network

represents a higher level view of the interactions between drugs and

life molecules since each molecular complex is also composed of

individual proteins as subunits. As shown by Ref. [7], networks with

higher complexity could also be explored by considering drug –

symptoms and drug – patients associations.

While previous works have focused on specific complexes that

lead to human disorders, until recently protein complexes were not

identified and classified in a sufficiently comprehensive way for a

systematic analysis of the human protein complex system to be

performed. We here present a large-scale analysis of the global set

of relationships between all available drugs and human protein

target complexes. By using the resulting network, it should be

possible to elucidate to what extent complexes interact with drugs

as well as to uncover specific links between diseases and protein

complexes. Related approaches have dealt with the problem of

providing a global, network-based method for prioritizing disease

genes and inferring protein complex associations [15] and large-

scale disease gene discovery by identifying human protein

complexes containing known disease genes [16].

Since a first glimpse of non-random structures and dynamic

behavior was observed a decade ago, a rich variety of global

PLoS ONE | www.plosone.org 1 January 2012 | Volume 7 | Issue 1 | e30028



measures have been suggested to uncover the organizing principles

behind complex networks [17]. Networked structures can emerge

at different levels, from single node characteristics and the

tendency of pairs of nodes to connect to each other, to the

patterns exhibited by associations of three or more nodes known as

motifs. These motifs are also assembled with each other defining

modules and communities, which constitute an intermediate scale

between single nodes and the whole networked structure.

The existence of higher order structures like modules and

communities is a signature of a non-random system and provides

insights into their functional organization [18]. A module

represents a densely connected group of nodes that, however, is

weakly connected to the remaining network. The presence of

modular structure may drastically change dynamical processes

that occur in networks. Spreading processes like virus epidemics

and synchronization strongly depend on network modularity [19].

Moreover, modularity itself is heterogeneous and modules may

have a variety of density of edges, sizes and structural features in

general [20]. This large variety of features and patterns makes the

detection of modularity an important albeit challenging problem.

In this work, we focus on a network that combines protein

functionality information with drug interactions, in an attempt to

unveil new strategies and structural features to combat complex

diseases. Proteins interact with each other and define protein

complexes. Protein complexes have a rich variety of functions in

cells and play a key role in many human disorders. However, in

spite of their importance, network studies based on protein

complexes in human are still lacking. Moreover, an investigation

of the interactions between all available drugs and all discovered

protein complexes has not been attempted to our knowledge. The

existence of modularity in this bipartite graph may lead to develop

new strategies to deal with key diseases from a systemic point of

view, shifting the focus from targeting individual genes or proteins

to disrupting protein complexes formation. It is worth noticing,

however, that several works have investigated protein complexes

networks in model organisms such as yeast [21,22]. Authors used

an integrative approach in the context of gene association studies.

In contrast, here we focus on human protein complex and drug

associations and our methodology relies on module identification

via maximization of a modularity objective function.

We used a simulated annealing algorithm to identify modules in

the protein complex – drug network. The principle of this

algorithm is to maximize the modularity using simulated annealing

in an attempt to find low-cost configurations of structures without

being trapped by high-cost local minima [23]. The algorithm

mimics the cooling process of a material to improve its crystal

structure. Although there have been several suggested algorithms

for maximizing a modularity objective function, we selected a

simulated annealing-based algorithm because it offers the highest

accuracy in the detection of modularity in bipartite networks

comprising up to a few thousands of nodes [24]. In very large

networks, faster algorithms like greedy search, extremal optimiza-

tion or spectral methods are better suited to deal with sizes of

millions of nodes [18,25]. See also the reviews [20,26] for a

detailed description of the state-of-the art in community detection.

The algorithm was able to detect modules in the protein complex

– drug network consisting of less than 1500 nodes and determine

the global average modularity. The computation of modularity

using network projections as well as the bipartite graph itself

suggests that protein complexes as well as drug networks are not

random networks and contain a rich and heterogeneous internal

structure. The network of interactions between protein complexes

and drugs reveals novel associations between key molecular

compounds and diseases. The non-randomness characteristic of

this network opens the possibility to explore the implications of the

high modularity in the protein complex – drug space in order to

unravel new pharmacological strategies. In this work, we consider

the strategy of targeting a protein complex whose mutation is

associated with a disease that results from a gain of function or

aberrant increased activity of proteins. In the case of a disease

driven by loss-of-function mutations though, additional informa-

tion will need to be incorporated with the present approach in

order to distinguish between increased or decreased activity.

Methods

Network construction
CORUM is a comprehensive database of mammalian protein

complexes [27]. Entries are manually curated and annotated,

including information on protein complex function, localization,

subunit composition, references to Entrez gene identifiers and

literature.

DrugBank is an online database of drug data, targets and action

information [28]. It includes all drugs approved by the U.S.

Federal Drugs Administration, as well as a large number of

experimental drugs. All entries are richly annotated providing

detailed information about drug chemical, pharmacological and

therapeutic properties, as well as target sequences, structures and

functions.

To construct a bipartite network of drugs and protein

complexes, we extracted the list of protein subunits for each

complex in the CORUM database, which were referenced by

their SwissProt identifier. The same operation was conducted for

all drug targets in the DrugBank database, resulting in a list of

protein targets for each drug. The total number of drug – protein

target interactions was 11950. An edge was created between a

drug and a protein complex if at least one protein target of the

drug was also a subunit of the protein complex. The resulting

bipartite network comprised 1419 nodes (680 drugs and 739

complexes) and 3690 edges.

In all our figures colors are attributed to modules on an

arbitrary basis, so that each module has a specific color. These

colors are kept consistent across all figures, so that the same

module appears with the same color in all figures. All network

visualizations were produced using the Cytoscape software [29].

Network projections
Each bipartite network composed of two types of nodes can be

projected (i.e. transformed) onto two networks, called projections

of the original bipartite network (Figure 1). Each projected

network is then composed of only one type of nodes. A bipartite

graph for protein complexes and drugs can be formally defined as

G= (P, D, E), where P is a set of protein complexes, D a set of

drugs and E a set of edges that links two nodes from D and P.

Gp= (P, Ep) represents the P-projection of the graph G in which

nodes of P are linked together if they have at least one neighbor (D)

in common in the graph G. The set of edges Ep can be defined as:

Ep~ffp,p’g (j Ad[D) : ((d,p)[E ^ (d,p’)[D) ^ p=p’g ð1Þ

The D-projection Gd is defined dually.

Modularity in network projections
A common characteristic of proposed algorithms to identify

modularity in networks is the maximization of a modularity

function. An objective function that describes modularity is usually

based on the concept that the density of edges in the network is

highly heterogeneous. Modules are therefore specific parts of a

Protein Complex-Drug Interactions
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network where the density of edges is significantly higher than the

random expectation [18,30].
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In a given network with NM modules, the modularity can be

computed using equation 2. In this expression, L indicates the

number of edges in the network, ls is the number of edges between

nodes in the module s, and ds is the sum of degrees of the nodes in

module s. The fraction ls/L represents the fraction of edges within

a module and (ds/2L)
2 is the fraction of edges that may be inside a

module by random expectation. We used a simulating annealing

algorithm to find the set of modules (i.e. partition) that maximizes

modularity as shown in equation 2.

The algorithm is initialized by considering that each individual

node belongs to a different module (i.e. each module is composed

of exactly one node). A computational temperature T is introduced

to simulate the cooling process in materials. By starting at high

temperature the systems evolves through different modularity

stages overcoming local cost barriers. Maximizing modularity is

equivalent to minimize a cost function defined as C=2M.

At each temperature the membership of nodes is randomly

changed and updated according to the following probability: p=1

if Cf#Ci and p~exp {

Cf{Ci

T

� �

if Cf.Ci where Ci and Cf are

the costs before and after updates, respectively. The cooling down

factor was set to 0.995.

Modularity in bipartite networks
It is worth mentioning that when a projection is performed, a

fraction of the information contained in the original bipartite

network is lost. In order to avoid a loss of information, the

modularity can be computed directly in the bipartite network

itself. However, in this case an alternative definition of modularity

is needed to deal with bipartite structures. As in [25], let us define

nodes of type P (protein complexes) and nodes of type D (drugs)

and consider a modularity functional form as follows:

MB~

X
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P
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where tDi indicates the total number of protein complexes a drug

Di interacts with, mp indicates the number of drugs linked to the

protein complex p, and cDiDj indicates the number of protein

complexes that are simultaneously targeted by drugs Di and Dj; NM

is the number of modules and s is the module index as in equation

2. The reasoning behind equation 3 is that the average number of

protein complexes in which Di and Dj are expected to appear

together is

P

p

mp(mp{1)

P

p

mp

 !2
tDi

tDj
ð4Þ

Then, using this equation, we could define the bipartite

modularity as the cumulative deviation from the random

expectation by considering that the expected number of times a

drug Di belongs to a protein complex linked to mp drugs is

mp

tDi
P

p
mp
.

In some cases, unweighted projections may lead to different

results since, as mentioned above, much information rooted in the

Figure 1. Example of bipartite and projected networks. (a) A bipartite sub-network extracted from the complex-drug network. (b) The drug
and protein complex projected networks. Drugs are denoted by diamonds and complexes by circles.
doi:10.1371/journal.pone.0030028.g001
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bipartite structure may disappear after projection [25]. The

computation of modularity in the bipartite network is expected to

be more accurate than in the projections. Furthermore, besides the

highest accuracy of this algorithm for networks of a few thousands

nodes, the method is able to identify not only an optimal

attribution of the nodes into modules, but also the number of

modules and their sizes. Therefore, this algorithm was selected to

investigate the modularity of the protein complex-drug network

(composed of less than 1500 nodes) in both the bipartite networks

and their projections.

Relationships between complexes and diseases
In order to establish connections between protein complexes

and diseases, a list of Entrez gene identifiers was extracted for each

complex, as downloaded from the CORUM database. The full list

of genes associated to complexes was entered in the FunDO tool,

which searches for associations based on the Disease Ontology

[31]. This search returned a list of gene – disease associations. We

conserved all associations with a Bonferroni-corrected p-value

lower than 1024. The list was made of 57 diseases, ranging from

cancer (246 genes, p=26102109) to Down syndrome (19 genes,

p=861025). All genes were eventually re-associated to the

complexes their proteins belonged to.

Results

Bipartite network of protein complexes and drugs
The bipartite network of protein complexes and drugs contains

1419 nodes (680 drugs and 739 complexes) and 3690 edges. Its

structure resembles a scale-free topology, with a small number of

nodes connected to many edges and the majority of nodes

connected to few edges (Figure 2). Hubs can be seen among both

drugs and complexes (Table 1). The most connected nodes are two

drugs, flavopiridol, which is used for the treatment of leukemia,

and vorinostat, which is used for the treatment of lymphoma, both

interacting with over 90 complexes. A number of complexes

interact with over 40 drugs, including several closely related

complexes involving ER-alpha, BKCA-beta and ESR1. The

degree of top drug hubs decreases faster but a number of drugs

interact with 20 to 40 complexes. The network data file is provided

in Information S1.

Modularity in the protein complex – drug network
Modularity is one of the emerging properties of complex

networks. Modularity is not only associated to sets of nodes with

specific structural functionalities but also plays a key role in the

dynamic behavior of systems. Modularity is also responsible for

degree correlations observed in many real-world networks.

Here, we address the problem of identifying modularity in the

bipartite protein complex – drug network. The computation of

modularity can be performed using either the bipartite graph itself

or the projected networks. Although several works have pointed

out that modularity is more reliable when computed using the

bipartite approach, we computed both results for comparison. In

general, it is expected that drugs will belong to the same module if

they share many protein targets, regardless of whether the protein

complexes themselves belong to the same module. To evaluate the

statistical significance of the modularity of each network, we

constructed an ensemble of randomized networks using a

switching algorithm [32,33]. This algorithm preserves the degree

sequence of both drugs and protein complex nodes. It randomly

selects pairs of edges, and the end points of the edges are switched

preserving the degree sequence of each node.

While the drug projection with 657 nodes shows a modularity of

0.7755 (0.145960.0010), the protein complex network with 723

nodes has a modularity of 0.6500 (0.119160.0016). Values of the

modularity and standard deviations for a trial of 20 randomized

networks with the same degree sequences as the original networks

are shown in parentheses. These values show that the analyzed

networks have a significantly higher modularity than expected by

chance. The number of modules in the drug projection is 23, while

17 modules were detected in the protein complexes projection. It is

worth noticing that in spite of the increasing density of edges in the

projected networks, the modularity is still much higher than what

we could expect in a random network. The values of modularity in

the randomized networks are still around six times lower than in

the real projected networks, giving high statistical significance to

the result in projections (p,10230).

Network analysis shows that the drug projection is characterized

by a high mean degree ,k.=15.48 and a diameter d=7. It also

shows a small average shortest path length ,l.=2.8 and a high

mean clustering coefficient C=0.84 compatible with a small-world

network. Analysis of the protein complex projection leads to

similar values, with a slightly higher mean degree ,k.=20.7 and

diameter d=8. Similar values are found for average shortest path

,l.=2.34 and clustering degree C=0.84.

Visualizations of these projections with the identified modules

are shown in Figures S1 and S2. Moreover, we were able to

compute the modularity using the original bipartite graph. Both

projections are not extremely dense, therefore it is expected that,

in this case, both approaches should lead to similar results for the

average modularity. However, memberships of nodes as well as

the number of modules may differ. As general rule, when

projections are too dense, the computation using bipartite

graphs is preferable. The results computed in the bipartite

network show a modularity of 0.8244 and 0.7615 for drugs and

protein complexes, respectively. We obtained 48 modules of

drugs and 42 modules of complexes in the bipartite network. As

expected, the modularity values show a good correlation

between both approaches. Figure 2 shows the modules identified

in the bipartite network (mappings between database identifiers

and names of drugs and complexes are provided in Information

S2 and S3). The modularity analysis reveals that these networks

are strongly different from random networks and are character-

ized by a highly modular structure. It is worth noticing that

although the overall modularity in projected and bipartite

networks are very close, around 0.75 in average, a larger

number of modules are isolated by computation in the bipartite

graph. This is in part a consequence of the smaller number of

edges in the original bipartite graph, which tends to increase the

accuracy of module detection. For example, a large module can

potentially be more precisely identified as two weakly connected

modules. Furthermore, there is a large number of modules

composed of a single node.

Hierarchy and centrality measures
In order to get a clearer view of the identified modularity

structure, we can shrink all nodes that belong to the same module

into one node, with its size proportionate to the number of

members in the module (Figures 3 and 4). This transformation

represents a projection of the modules into a higher layer,

simplifies the structure and allows us to obtain a global view of its

hierarchy [34]. A network analysis based on centrality measures

of both complex and drug projections reveals a correlation with

node degree highlighting the non-random nature of the

modularity observed in our analysis (Figure 5). Here, we examine

the betweenness centrality (Bi) that characterizes a network

Protein Complex-Drug Interactions

PLoS ONE | www.plosone.org 4 January 2012 | Volume 7 | Issue 1 | e30028



beyond local information and reflects the role played by a node in

the global network architecture. It is calculated as the fraction of

shortest paths between node pairs that pass through a given node.

In contrast, the closeness centrality (Ci) measures how close a

node i is to all others in the same network and is defined as the

average mean path between a node i and all other nodes

reachable from it.

The distribution of betweenness centralities reveals distinctions

between a few modules occupying highly central positions and a

majority of more peripheral modules. Among modules of complexes,

the LSD1 module has a strikingly high betweenness centrality (0.42)

compared to other modules. This complex contains hubs such as the

LSD1 complex, the Kaiso-NCOR complex and the HCF-1 complex,

which have major functions in controlling the cell cycle and DNA

processing. Differences are less marked among modules of drugs, but

high betweenness centralities are exhibited by the ethylene glycol

module (0.24) and rifabutin module (0.22). The distribution of

closeness centralities is more even but again the LSD1 module

exhibits a privileged central position with a closeness centrality of

0.88. These high centrality values suggest the existence of bridging

nodes, a non-random feature of networks. Recently, this feature was

considered in detail in [35] showing that bridging nodes may play a

crucial role in network regulation. Similarly, links that bridge modules

could also be examined in detail in combination with gene expression

profiles, offering a new way to exploit the intrinsic modularity and

topological features of the drug – protein complex network.

Figure 2. Bipartite network of protein complexes and drugs, and associated modules. A drug is connected to a protein complex if at least
one protein target of the drug is also a subunit of the protein complex. Complexes are represented by circles and drugs by diamonds. Colors are
attributed to modules on an arbitrary basis, so that each module has a specific color. Drugs and protein complexes are labeled by their DrugBank and
CORUM identifier, respectively; mappings between these database identifiers and common names are provided in Information S2 and S3.
doi:10.1371/journal.pone.0030028.g002
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Table 1. Top drug and complex hubs in the bipartite protein complex – drug network.

Drug ID Drug name Degree Complex ID Complex name Degree

DB03496 Flavopiridol 93 1004 RC during S-phase 49

DB02546 Vorinostat 91 2470 p130Cas-ER-alpha-cSrc-kinase- PI3-kinase p85-subunit 47

DB03431 Adenosine-59-Diphosphate 44 0668 BKCA-beta2AR-AKAP79 signaling 46

DB01169 Arsenic trioxide 39 0672 BKCA-beta2AR 46

DB00054 Abciximab 30 5809 GABAA receptor 46

DB00775 Tirofiban 30 1439 PTGS2 homodimer 43

DB01254 Dasatinib 25 2657 ESR1-CDK7-CCNH-MNAT1-MTA1-HDAC2 42

DB01867 Ethylene Glycol 23 2699 ER-alpha-GRIP1-c-Jun 42

DB02010 Staurosporine 22 2700 ER-alpha-c-Jun 42

DB02116 Olomoucine 22 1003 RC 41

DB02733 Purvalanol 22 2670 ER-alpha-p53-hdm2 40

DB03428 SU9516 22 5559 CDC2-CCNA2-CDK2 40

5862 CAV1-VDAC1-ESR1 40

doi:10.1371/journal.pone.0030028.t001

 

Figure 3. Projected network of complex modules. Each module of the protein complex – drug bipartite network was shrunk into a node and
the complex projection of the resulting network is represented. Modules are named according to a representative complex hub inside the module;
only names of large modules are displayed for clarity. Colors are attributed to modules on an arbitrary basis, so that each module has a specific color.
The size of nodes is proportional to the number of complexes in each module; a size scale is displayed on the right-hand side of the figure. To assign
names to condensed nodes, we chose a representative member of each module by selecting the drug with the highest degree inside the module.
doi:10.1371/journal.pone.0030028.g003
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Linking protein complex modules to protein-protein
interactions
In previous sections, we have constructed a set of functional

modules of protein complexes based on identified associations

with drugs. Since proteins linked by drug associations should in

principle be involved in related disorders, the proteins within

such modules are expected to interact preferably with one

another than with other proteins. To test this hypothesis, we

analyzed the relationship between modules of protein complexes

and a generic protein-protein interaction (PPI) network. The core

dataset of human protein-protein interactions from the Database

of Interacting Proteins (DIP, version 2010-10-10) [36] was used

as a reference. The computation of the shortest path lengths

between proteins is a measure of the proximity of proteins in a

PPI [37]; we thus use this network metric to evaluate whether the

identified modules of protein complexes have a biological

interpretation. If the proteins that belong to identified modules

appear in highly interlinked local regions of the PPI network, the

average shortest paths between these proteins would be smaller

than the average shortest path between other proteins in the PPI.

In Figure 6a, the blue curve shows the distribution of shortest

paths between proteins in the entire PPI network; the green curve

shows the distribution of shortest paths between the subset of

proteins involved in complex formation, which is only slightly

shifted towards smaller weights compared to the original

distribution; the red curve shows the distribution of shortest

paths between proteins involved in complex formation and

belonging to the same protein complex module, and the orange

curve shows the subset of these proteins belonging to the same

module but not to the same protein complex. The comparison

shows a significant shift of protein-protein pairs belonging to the

same module (red curve) towards smaller weights (p=0.001);

almost half of these proteins are adjacent in the PPI. The

observation that protein-protein pairs that are in the same

module but not in the same protein complex are also shifted

toward smaller weights (p=0.001) indicates that the shift is not

only due to protein pairs within the same complex, but also to

proteins connected through other forms of interactions. In

Figure 6b, we furthermore compare the average shortest path

in the latter network to a random control of 100 networks of the

same size preserving the degree distribution; the observed

characteristic shortest path between proteins belonging to the

same module (red arrow, 1.942) is significantly smaller than the

expected value for the random control (p=0.003). These findings

highlight the biological significance of modules identified in the

protein complex – drug network.

Figure 4. Projected network of drug modules. Each module of the protein complex – drug bipartite network was shrunk into a node and the
drug projection of the resulting network is represented. Modules are named according to a representative drug hub inside the module. Colors are
attributed to modules on an arbitrary basis, so that each module has a specific color. The size of nodes is proportional to the number of drugs in each
module; a size scale is displayed on the right-hand side of the figure. To assign names to condensed nodes, we chose a representative member of
each module by selecting the complex with the highest degree inside the module. In the case of protein complex names formed by association of
numerous protein names, we selected the protein occurring most frequently in complexes connected to the complex of highest degree.
doi:10.1371/journal.pone.0030028.g004
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Relationships to diseases
Since the modularity analysis in the protein complex – drug

bipartite network revealed a high modularity and a striking non-

randomness, these modules are likely to be related to common

factors, in this case common diseases. To unravel the relationship

between such modules and diseases, we investigate the origin of

this modularity in two particular examples. It is important to note

that our approach is targeted towards gain-of-function mutations,

where the disease results from aberrant increased activity of

proteins.

Example 1: Leigh disease. Leigh disease is an inherited

neurometabolic disorder that affects the central nervous system,

causing degradation of motor skills and eventually death. The

disease has been linked to mutations in mitochondrial DNA,

affecting energy production and causing a chronic lack of energy

in cells [38].

The network of protein complexes connected to Leigh disease

reveals two major and clearly distinct components (Figure 7). On

the one side, a module of highly related and interconnected

protein complexes related to the respiratory chain I, connected to

anaesthetic drugs such as fluranes and halothane. On the other

side, the large CDC5L complex, formed by the assembly of 30

proteins [39]. A large number of drugs are associated to this

complex, however the association between CDC5L and Leigh

disease has not been mentioned so far. A multitherapeutic strategy

involving both targeting respiratory chain complex I and CDC5L

formations could thus be envisaged for a more comprehensive

targeting of the factors associated to Leigh disease.

Example 2: Parkinson disease. Parkinson disease is one of

the biggest health issues facing many nations with an ageing

population. It is a degenerative disorder of the central nervous

system that impairs several motor-related functions and cognitive

processes. There is no known cure for the disease, but several

drugs are used to provide relief from the symptoms. Parkinson

disease is a typical example of a complex disease, whose causes are

multifactorial and whose treatment requires new polypharma-

cological approaches [40]. Mutations of specific protein complexes

have been linked to Parkinson disease [41].

Interestingly, the network of protein complexes and drugs

connected to Parkinson disease (Figure 8) presents similar

characteristics as the Leigh disease network, albeit on a larger

scale. On the one side, a module of strongly interconnected

complexes can be observed, which are mainly linked to ESR1

and ER-alpha. These complexes are connected to a module of

about 40 drugs, including for example desogestrel, progesterone

and letrozole. On the other side, a few isolated complexes are

connected to the disease, which are themselves targeted by a large

number of drugs; these are principally the RC S-phase, RC G2/

M phase, PTGS2 homodimer, CTCF-nucleophosmin-PARP-

HIS-KPNA-LMNA-TOP and MMP-9-TIMP-1-LRP complexes.

Figure 5. Network metrics in projected networks of modules. Top panels are from the drug projection and bottom panels from the complex
projection. Left side panels represent betweenness centrality and right side panels closeness centrality.
doi:10.1371/journal.pone.0030028.g005
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In addition, a group of 21 complexes are connected to the

disease, which are not targeted by any drug; this group includes

for example the ITGAV-ITGB1-SPP1 and the TSC1–TSC2

complexes. In this example, the network highlights a certain bias

of current pharmacological approaches, which tend to focus on a

few targets for which multiple drugs are developed, while on the

other side other potential components involved in the disease

are not targeted. More comprehensive treatments of complex

diseases such as Parkinson may require more systematic ap-

proaches attempting to target all the factors contributing to the

disease.

For example, flavopiridol is seen to be connected to five

different complexes associated to Parkinson disease, which are the

RC S-phase, RC G2/M-phase, p16-cyclin D2-CDK4, CDK8-

MED6-PARP1 and ESR1-CDK7-CCNH-MNAT1-MTA1-

HDAC2 complexes (Figure 8). Interestingly, the potential role of

flavopiridol in inhibiting cyclin-dependent kinase cdk5, which is

inappropriately elevated by neurodegenerative conditions, has

already been sug-

gested [42] but the drug is not currently used in this context.

Vorinostat, constitutes a module on its own in this network with

high betweenness centrality, highlighting its unique position as an

interactor between complexes involved in different cellular

functions, which are the DNMT1-RB1-HDAC1-E2F1, ESR1-

CDK7-CCNH-MNAT1-MTA1-HDAC2, RB1-HDAC1-BRG1

and Rb-HDAC1 complexes. So far none of these complexes was

associated to Parkinson disease; however aberrant activation of the

RB1-E2F pathway was observed to mediate neuronal cell death

and its inhibition was proposed as a possible strategy for

neuroprotection [43]. These examples show how a network

integration of heterogeneous datasets can highlight drugs with

important polypharmacological properties and offer new insights

into possible ways to combat complex diseases.

Discussion

In this work, we have considered both network projections and

the bipartite graph structure to investigate the modularity of the

complex – drug interacting space. Network projection is a useful

technique in graph theory that allows the transformation of

bipartite networks into unipartite graphs, where standard network

metrics can be easily applied. However, since real-world data are

rich in multipartite relationships, it is desirable to compute

network metrics such as modularity in the original graph. In

addition to the loss of information when a projection is performed,

each protein complex of degree k in the bipartite graph generates

k(k21)/2 edges in the drug projection in our network, which leads

to a sharp increase in edge density in the projected network [44].

This does not only makes the computation of modularity less

accurate but also drastically increases the computational time. Our

approach has been successful in considering modularity derived

from the bipartite structure.

Network analysis has provided insights into the non-random

nature of the system under study. The fact that the drug-protein

complex network is non-random has allowed us to identify

modules that can be associated to particular diseases. In a random

network, the finding of modules would not have any significance,

since each node carries almost the same topological information.

The existence of modularity implies that the network has intrinsic

features that could be exploited in future molecular therapies. The

finding that the drug – protein complex network exhibits non-

random metrics and high modularity opens a therapeutic option

when the system is linked to particular diseases.

Several recent works have analyzed the topology of a network as

a preliminary stage to consider possible medical applications. In

[45], the modularity in protein interaction networks was linked to

the prediction of breast cancer outcome. They combined

Figure 6. (a) Distribution of shortest distances in the entire protein-protein interaction network (blue curve) and in interactions between all proteins
involved in complexes (green curve); interactions between proteins involved in complexes and belonging to the same module are shown by the red
curve, and these belonging to the same module but not to the same protein complex are shown by the orange curve. (b) Observed characteristic
path length (red arrow) and distribution of characteristic path lengths for the random control (blue curve). We generated 100 independent samples
by randomly shuffling protein associations while keeping each node degree unchanged.
doi:10.1371/journal.pone.0030028.g006
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topological analysis with gene expression data and examined the

difference in modularity in two breast cancer patients. As a result,

this work encouraged the search for multi-modal therapies

targeting hubs in the network that displayed altered modularity

in disease. This example illustrates the importance of having non-

random structures in the current human interactome. In our

study, we could potentially merge our networked structure with

gene expression profiles to detect co-expression of hub partners

and perform similar analysis for several disease stages or disorders.

Additional examples of the utility of network analysis for

therapeutic approaches can be found in [46]. In general,

molecules involved in a specific biochemical process or disease

may have similar neighbors that also participate in the same or

closely related pathways or disorders. A well-defined neighbor-

hood of the interactome is then referred as a ‘‘disease module’’. In

[12], Goh et al., identified a high number of physical interactions

between the products of genes associated with the same disorder,

representing a tenfold increase relative to random expectation.

Similar observations were made in [47,48]. Analogous compar-

isons to random expectation were done in our study with drug –

complex networks. Furthermore, in our case a probabilistic

algorithm that maximizes the modularity of the whole network

identified each module as well as the global network modularity.

Identification of communities and modules is computationally

challenging and represents a central issue in network science [26].

The problem is that there are several possible definitions of

modularity and there is not yet an agreement on which one may

lead to a better representation of the same phenomena. This is

particularly true in the case of bipartite and directed networks.

One of the issues of modularity detection is the overlapping. The

existing deterministic and stochastic methods used for large

networks are able to find separated communities, whereas several

of the actual networks are made of overlapping cohesive groups of

nodes [26]. Several algorithms like CFinder [49] and ModuLand

[50] have recently been proposed to identity modules with

overlapping structure. This problem affects the nodes located at

the boundary of modules, and a node may then belong to several

modules. Farkas et al. also showed that bridging nodes may play a

crucial role in network regulation [35]. In our work, we have

focused on a bipartite network and computed the modularity in

their projected networks but also in the bipartite network itself. For

technical reasons, like the growing density of nodes in the

projections, the computation of network metrics in the bipartite

network is usually preferable [25]. Here, we have used a simulated

annealing algorithm that detects modules with high accuracy in

networks comprising up to a few thousands of nodes according to

computational experiments done in [24]. Furthermore, there is no

version of the CFinder algorithm to detect modularity with

overlapping in bipartite networks. Therefore, we did not use

CFinder for our analysis. In overlapping algorithms, some nodes

Figure 7. Tripartite network of drugs and protein complexes connected to Leigh disease. Links between the disease node and protein
complexes represent associations between genes involved in these complexes and the named disease, as specified by the Disease Ontology. Links
between protein complexes and drugs are the same as in our bipartite network, meaning that a drug is connected to a protein complex if at least one
protein target of the drug is also a subunit of the protein complex. Complexes are represented by circles and drugs by diamonds. Colors are
attributed to modules on an arbitrary basis, so that each module has a specific color. The disease node is represented by a yellow circle. The size of
nodes is proportional to the degree of each node; a size scale is displayed on the right-hand side of the figure.
doi:10.1371/journal.pone.0030028.g007

Protein Complex-Drug Interactions

PLoS ONE | www.plosone.org 10 January 2012 | Volume 7 | Issue 1 | e30028



may be assigned to different or several modules simultaneously.

Moreover, another issue is that there is still no consensus about a

quantitative definition of the concept of overlapping community,

and most definitions depend on the method adopted [26]. This

question could certainly be the object of further study together

with the identification of bridging nodes and links between the

determined modules. We could then examine whether the two

end-nodes of these bridging links may have any biological

importance in a similar way as done in [35].

Connections between protein complexes and diseases have been

suggested for decades [51], and several recent studies have linked

the formation of specific protein complexes to human disorders.

The Crumbs complex participates in various human diseases,

including blindness and tumour formation [52]. Alzheimer’s

disease is characterized by amyloid plaques, which are built by a

high molecular weight protein complex containing presenilin (PS),

nicastrin, Aph-1 and Pen-2 [53]; presenilins are thought to be

important drug targets for this disorder [54]. Mutations in genes

encoding structural subunits of complex I, a mitochondrial

complex involved in energy production in the form of ATP

through the process of oxidative phosphorylation, have been

identified as a cause of devastating neurodegenerative disorders

with onset in early childhood [55]. The IKK complex is an

essential regulator of NF-kappa-B activation, which is a major

regulator of the defense against pathogens, antigen-specific

adaptive immune responses or chemical stress. Dysregulated NF-

kappaB signaling was linked with the onset or progression of

various diseases, including cancer, chronic inflammation, cardio-

vascular disorders and neurodegenerative diseases [56]. Protein-

protein interactions and complex formation were also named as

highly promising drug targets for trypanosome induced diseases,

due to the low sequence identities between some parasite proteins

and human ones [57].

For those reasons, protein complexes are increasingly consid-

ered as potential targets for novel therapies to treat complex

diseases. In opposition to the predominant single drug – single

target – single disease paradigm, complexes necessarily involve

multiple proteins, thus multiplying the possibilities for disrupting

 
 

Figure 8. Tripartite network of drugs and complexes connected to Parkinson disease. Links between the disease node and protein
complexes represent associations between genes involved in these complexes and the named disease, as specified by the Disease Ontology. Links
between protein complexes and drugs are the same as in our bipartite network, meaning that a drug is connected to a protein complex if at least one
protein target of the drug is also a subunit of the protein complex. Complexes are represented by circles and drugs by diamonds. Colors are
attributed to modules on an arbitrary basis, so that each module has a specific color. The disease node is represented by a yellow circle. The size of
nodes is proportional to the degree of each node; a size scale is displayed on the right-hand side of the figure.
doi:10.1371/journal.pone.0030028.g008
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their formation. There are already several successful examples of

inhibitors of protein-protein interactions and this approach is

considered with interest by the pharmaceutical industry [58].

Network-based approaches can help to identify promising targets

since they enable us to consider the complete set of relationships

between protein complexes and related diseases. One of their

advantages is to reveal associations across heterogeneous datasets;

for example we have shown that vorinostat has multiple

associations with Parkinson disease which were not previously

reported although individual associations between the drug’s

targets and neuronal cell death were known. The integration of

heterogeneous datasets can highlight drugs with important

polypharmacological properties and thus offer new insights into

possible ways to combat complex diseases. We also highlighted the

non-randomness and high modularity of this network, and

described how such modules are linked to diseases. We observed

that protein pairs belonging to the same module tend to be more

closely connected through general protein-protein interactions.

Additional assessment of the biological significance of modules

could be obtained by integrating other types of high-throughput

datasets to the network, such as gene expression data.

The distinction between types of diseases driven by gain- or loss-

of-function mutation will influence drug development strategies. In

our approach, we consider the strategy of targeting a protein

complex whose mutation is associated with a disease that results

from a gain of function or aberrant increased activity of proteins.

In the case of a disease driven by loss-of-function mutations

though, additional information will need to be incorporated with

the present approach in order to distinguish between increased or

decreased activity. The application of treatment strategies without

considering this distinction could cause further inhibition of

function of an affected complex that already has a deleterious

effect. We here illustrated our strategy by the examples of Leigh

and Parkinson diseases. In the case of Leigh disease, there is

currently no known drug to treat that disease, treatments aim at

alleviating its symptoms mainly by providing thiamine or other

vitamins to stimulate mitochondrial metabolism. There is

currently no cure for Parkinson disease either, in the sense that

drugs cannot eliminate the disease but mainly slow its progression

and relieve its symptoms. Most existing anti-Parkinson drugs act as

neuroprotectants by increasing the level of dopamine or reducing

the level of acetylcholine [59]. While our approach can be

extended to other diseases, it is worth noting that targeting

functional protein complexes is only one potential aspect in the

design of therapies for complex diseases. In many cases, diseases

result from non-functional proteins, and drugs are needed that

alleviate those symptoms and not drugs that directly target those

affected proteins. Developing new therapeutic strategies involves

taking these multiple aspects into account, which is where systems

biology and tools of network medicine [46] can play a role by

providing novel approaches to integrate these vast amounts of

heterogeneous information, thereby enabling a more global

interpretation.

Supporting Information

Information S1 Data of the drug – complex bipartite

network. This file can be readily imported into the Cytoscape

software for visualization by using the ‘‘Import Network from

Table’’ command. Each row in the data file represents a connection

between a drug and a complex. Column 1 contains DrugBank drug

identifiers, column 2 contains CORUM complex identifiers.

(TXT)

Information S2 Mapping between DrugBank identifiers

and common names of drugs.

(XLS)

Information S3 Mapping between CORUM identifiers

and common names of protein complexes.

(XLS)

Figure S1 Projection of the drug – complex bipartite

network into the space of protein complexes. Complexes

are labeled by their CORUM identifier; the mapping between

database identifiers and common names of complexes is provided

in Information S3.

(PDF)

Figure S2 Projection of the drug – complex bipartite

network into the space of drugs. Drugs are labeled by their

DrugBank identifier; the mapping between database identifiers

and common names of drugs is provided in Information S2.

(PDF)
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