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Modularity of Galois Representations 
and Langlands Functoriality

1 Introduction
In this article, we survey some recent work on 
Langlands reciprocity and functoriality in which 
Galois representations play a central role. No 
attempt has been made to give a comprehensive, 
or historically minded account—for the recent 
history, Calegari’s  survey20 of modularity lifting 
theorems since the proof of Fermat’s last theo-
rem is recommended.

The main goal of the final Sect. 5 of this article 
is to introduce the reader to some of the main ideas 
in the author’s work with Thorne on symmetric 
power  functoriality73, 74. For an alternative intro-
duction to our work, see Thorne’s recent  article94.

Before we get there, in Sects. 2 and 3, we review 
the circle of ideas connecting Galois representa-
tions, automorphic forms and arithmetic geometry, 
and very briefly discuss recent developments in this 
area. In Sect. 4, we introduce modularity lifting the-
orems and the Taylor–Wiles method.

2 �An�Introduction�to Galois�
Representations�and Langlands�
Reciprocity

In this section, we introduce one of the main 
subjects of this article. We recommend Taylor’s 
 article90 to the reader for a more detailed sur-
vey on Galois representations and Emerton’s 
recent  survey43 for an introduction to Langlands 
reciprocity.

2.1  Notation and Preliminaries
We will be interested in continuous finite-dimen-
sional representations of the profinite Galois 
group GQ = Gal (Q/Q) , where Q , the field of 
algebraic numbers, is the algebraic closure of the 
rational numbers.
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For each prime p, we can embed Q in the 
algebraic closure Qp of the field of p-adic num-
bers. Each choice of embedding identifies 
GQp = Gal (Qp/Qp) with a closed subgroup of 
GQ ; for any two choices of embedding, we obtain 
conjugate subgroups.

There is a natural surjective homomorphism 
GQp → GFp from GQp to the absolute Galois 
group of the residue field Fp . The kernel of this 
map is the inertia group IQp ⊂ GQp . The Galois 
group GFp is a free profinite group generated by 
the p-power map Frobp(x) = xp.

If S is a finite set of primes, we can also con-
sider the Galois group GQ,S = Gal (QS/Q) , where 
QS is the maximal subfield of Q which is unrami-
fied at primes not in S. This means that the image 
in GQ,S of an inertia group IQp is trivial when 
p /∈ S and we have an element Frobp ∈ GQ,S . This 
element depends on the choice of embedding 
Q →֒ Qp , but its conjugacy class is independent 
of this choice. It is a consequence of the Chebo-
tarev density theorem that the unionA of these 
Frobenius conjugacy classes is dense in GQ,S (for 
the profinite topology).

All of this generalizes in a straightforward way 
to Galois groups of number fields, or other global 
fields.

We can now say that a linear representation 
(ρ,V )B of GQ is unramified at a prime p if the 
inertia subgroup IQp acts trivially on V. Note that 
this notion depends only on p, not on the choice 
of embedding Q →֒ Qp . We say ρ is almost every-
where unramified if there is a finite set of primes 
S such that ρ is unramified at all primes p /∈ S . 
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Equivalently, ρ can be identified with a represen-
tation of GQ,S.

When ρ is unramified at p, we have 
a well-defined conjugacy class of endo-
morphisms ρ(Frobp) and a polynomial 
Pρ,p(t) := det(1− tρ(Frobp)|V ) associated 
with itC. If ρ is continuous and almost every-
where unramified, these characteristic polyno-
mials determine the semisimplification of ρ (by 
the Brauer–Nesbitt theorem and density of the 
Frobenius conjugacy classes).

At this point, we should say something about 
the fields over which our representations are 
defined. The most classical kind of Galois repre-
sentation are Artin representations. These are con-
tinuous representations of GQ on complex vector 
spaces. The matrix groups GL n(C) have ‘no small 
subgroups’. More precisely, there is an open neigh-
borhood of the identity in GL n(C) which contains 
no non-trivial subgroup (this can be seen using the 
exponential map from the Lie algebra, for exam-
ple). On the other hand, the identity has a neigh-
borhood basis of open subgroups in the profinite 
topology on GQ . This means that an Artin repre-
sentation necessarily has finite image and factors 
through the quotient GQ → Gal (F/Q) for a finite 
Galois extension F/Q.

A richer theory is obtained by considering 
p-adic Galois representations for a prime p. These 
are continuous representations of GQ on vector 
spaces over the p-adic numbers Qp (or an exten-
sion field K/Qp ). Note that the p-adic matrix 
group GL n(Qp) is locally profinite (an open, 
profinite, subgroup is given by GL n(Zp) ), so 
unlike the case of Artin representations the image 
of a p-adic Galois representation can (and usually 
will) be infinite.

Here are some examples of Galois representa-
tions arising ‘in nature’: 

(1) Finite order characters By the Kro-
necker–Weber theorem, for any continu-
ous finite order character χ : GQ → C× 
there is a positive integer N and a Dir-
ichlet character χ̃ : (Z/NZ)× → C× such 
that χ is given by composing χ̃ with the 
map GQ → Gal (Q(ζN )/Q) ∼= (Z/NZ)× 
( ζN ∈ Q is a primitive Nth root of unity). 
These give all the continuous representa-
tions of GQ on a one-dimensional complex 
vector space.

(2) The p-adic cyclotomic character For any 
prime power pr , we have a homomorphism 
GQ → Gal (Q(ζpr )/Q) ∼= (Z/prZ)× . Tak-
ing the limit over r gives a continuous homo-
morphism χp : GQ → Z×

p , the p-adic cyclo-
tomic character. It is characterized by the 
property that σ(ζ ) = ζχp(σ ) for any p-power 
root of unity ζ ∈ Q . This gives a one-dimen-
sional p-adic representation of GQ.

(3) Tate modules of abelian varieties For an 
abelian variety A/Q of dimension g and a 
prime p, the Tate module 
Tp(A) := lim←−r

A(Q)[pr] defined using the 

p-power division points is a free rank 2g Zp

-module with a continuous action of GQ . 
This gives us a 2g-dimensional p-adic Galois 
representation.

(4) Cohomology of algebraic varieties If X 
is an algebraic variety defined over Q , its 
p-adic étale cohomology groups Hi(XQ,Qp) 
are p-adic Galois representations.

(5) Automorphic Galois representations We 
will return to this example later!

We can apply all the standard representation-
theoretic constructions to obtain more Galois 
representations: for example, tensor products of 
representations, duals, alternating or symmetric 
powers.

2.2  p‑adic and Mod p Galois 
Representations

It is often very useful to consider the residual rep-
resentation of a p-adic Galois representation. Sup-
pose we start with a continuous representation

It is convenient to work with representations val-
ued in Qp , to avoid keeping track of coefficient 
fields. However, one thing which is good to know 
is that the image of ρ is necessarily contained in 
GL n(E) for E/Qp a finite extension  (see31, 86 for 
two different proofs). The compactness of GQ 
implies that it moreover stabilizes an OE-lattice in 
En . So, a conjugate of ρ has image contained in 
GL n(Zp) , and we can reduce this conjugate mod 
mZp

 to give the residual representation

whose isomorphism class is well defined up to 
semi-simplification (another application of the 
Brauer–Nesbitt theorem).

ρ : GQ → GL n(Qp).

ρ : GQ → GL n(Fp),

C It is more convenient to use this inverse characteristic poly-
nomial when making the connection with L-functions
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2.3  Compatible Systems
The examples of p-adic Galois representations 
introduced in the last section all naturally live in 
a family of representations, one for each prime 
p. To make this a bit more precise, we introduce 
a notion due to  Taniyama88 and  Serre84.D Sup-
pose E is a number field and we have a collection 
of continuous representations (ρ�)� of GQ on E�
-vector spaces, one for each finite place � of E. We 
will write l for the residue characteristic of �.

We say that (ρ�)� is a compatible system (with 
coefficients in E) if there is a finite set S of primes 
such that: 

(1) For every p /∈ S ∪ {l} , ρ� is unramified at p 
and the polynomial Pρ�,p(t) ∈ E�[t] in fact 
has coefficients in E.

(2) Moreover, for any two finite places �, �′ 
of E, we have Pρ�,p(t) = Pρ�′ ,p(t) for all 
p /∈ S ∪ {l, l′}.

We say that a compatible system is irreducible if 
each ρ� is absolutely irreducible (i.e., remains 
irreducible after extending coefficients to the 
algebraic closure E�).

Note that the second condition implies that 
the dimension of a representation ρ� in the com-
patible system is independent of �.

The examples of Galois representations we 
listed above all give rise to compatible systems 
with coefficients in Q , with the proviso that we 
assume the algebraic variety X in example (4) is 
proper and smooth.E

We might ask if all (irreducible) compatible 
systems are of geometric origin; to make this 
notion precise, we can say that a compatible sys-
tem (ρ�) is of geometric origin if each ρ� appears as 
a subquotient of

for a proper smooth variety X/Q , a cohomo-
logical degree i, and an integer r, all independ-
ent of � . Assuming the Tate conjecture (in the 
form of Conjecture 1.2 in Taylor’s  article90) this 
is equivalent to the existence of a subspace W of 
the singular cohomology group Hi(X(C),E) such 

Hi(X , r)l := Hi(XQ,E�)⊗Qℓ(χ
r
l )

that, having chosen an embeddingF Q ⊂ C , for 
every � , the E�-subspace

is GQ-stable and isomorphic to ρ�χ
−r
l  as a repre-

sentation of GQ.
Serre  proved84 that irreducible compatible 

systems are indeed of geometric origin when the 
representations in the compatible system fac-
tor through the abelianization of GQ . This result 
does not actually have much to do with compat-
ible systems, it applies to a single ρ� satisfying the 
rationality condition (1) above and relies on a 
result in transcendence theory due to Lang.G

2.4  Geometric Galois Representations
Compatible systems of geometric origin satisfy an 
additional subtle property: for each � , the l-adic 
representation ρ�|GQℓ

 is de Rham in the sense of 
Fontaine. This reflects the remarkable fact that 
the Hodge filtration on algebraic de Rham coho-
mology of a proper smooth variety X/Qℓ can be 
naturally recovered from the Galois action on the 
l-adic étale cohomology using the de Rham com-
parison  theorem44.

Following Fontaine and  Mazur45, we will say 
that a p-adic representation ρ of GQ is geometric 
if it is ramified at only finitely many primes and 
its restriction to GQp is de Rham.H We will usually 
denote the set of primes at which ρ is ramified by 
S. Similarly to the case of compatible systems, we 
say that ρ is of geometric origin if it appears as a 
subquotient of

for a proper smooth variety X/Q , a cohomologi-
cal degree i, and an integer r.

Conjecture 2.4.1 (Fontaine–Mazur) Suppose 
ρ : GQ → GL n(Qp) is an irreducible geometric 
Galois representation. Then ρ is of geometric origin.

In combination with the Tate conjecture, this 
also predicts that geometric Galois representa-
tions should lie in compatible systems.

W ⊗E E� ⊂ Hi(X(C),E�) ∼= Hi(XQ,E�)

Hi(XQ,Qp)⊗Qp(χ
r
p)

D Our version of compatible system is called strictly compat-
ible by Serre.
E The Riemann Hypothesis over finite fields can then be used 
to extract the polynomials Pρl ,p(t) from the Zeta function of 
the reduction mod p of X, when p is a prime of good reduc-
tion for X, showing that they have rational coefficients and are 
independent of l.

F which allows us to compare étale and singular cohomology
G The same proof works for Abelian representations of GF for 
general number fields F, using a more general transcendence 
theorem of Waldschmidt.
H When we are interested in a single Galois representation, 
we will use p to denote the residue characteristic of the coef-
ficient field.
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�Remark 2.4.2

Naturally, one might first consider the case n = 1 . 
In this case, it follows from a theorem of Tate (as 
explained  in84, Ch. III]) that geometric Galois rep-
resentations are locally algebraic. For representa-
tions of GQ this simply means that the composition 
of ρ with the Artin reciprocity map Q×

p → Gab
Qp

 is 

given by x  → xr for r ∈ Z and x in a sufficiently 
small open neighborhood of 1 ∈ Q×

p  . Equivalently, 
χ−r
p ρ is potentially unramified at p, which means 

that there is a finite extension F/Q such that 
χ−r
p ρ|GF is unramified at every place of F dividing 

p. Finiteness of the class group now implies that ρ is 
the product of χ r

p and a finite order character. This 
gives the Fontaine–Mazur conjecture in this case, 
since finite order characters can be found in the 
cohomology of 0-dimensional varieties. The same 
strategy extends to one-dimensional p-adic repre-
sentations of GF for number fields F,  see79, Theo-
rem 2.3.13 for details. We note that the transcend-
ence results used by Serre to show that rational 
representations are of geometric origin are not 
required here.

We say more about progress on this conjec-
ture in dimension 2 in Sect. 3.3.

2.5  Langlands Reciprocity and the 
Fontaine–Mazur Conjecture

To continue the story, we need to say some-
thing about automorphic representations and 
their connection with Galois representations. 
Automorphic representations (for the algebraic 
group GL n/Q ) are representations of the adelic 
group GL n(A) , where A is the ring of adèles 
R× (Ẑ⊗Q) . Rather than explaining the defini-
tion of a cuspidal automorphic representation 
of GL n(A) , we refer  to90, §3 for this, and restrict 
ourselves to mentioning some important fea-
tures of a cuspidal automorphic representation π 
which will play a role later in this survey:

•   π is determined by a collection of local fac-
tors π∞ , πp (one for each prime p). The lat-
ter are irreducible smoothI representations of 
GL n(Qp) on complex vector spaces.

•   For all but finitely many p, the representation 
πp is unramified, i.e., it has a non-zero space 
of invariants under GL n(Zp) . Unramified rep-
resentations πp of GL n(Qp) are classified by 

semisimple conjugacy classes c(πp) in GL n(C) 
(Satake parameters).J Such a conjugacy class is 
determined by the inverse characteristic poly-
nomial: Pπ ,p(t) = det(1− tc(πp)).

•   When c(πp) = [diag(α1,α2, . . . ,αn)] , 
we define a local L-factor: 
L(πp, t) =

∏n
i=1(1− αit)

−1 = Pπ ,p(t)
−1.

•   Just as a Galois representation is determined 
by the characteristic polynomials of Frobenius 
elements at unramified primes, a cuspidal 
automorphic representation π is determined 
by the polynomials Pπ ,p(t) (or equivalently, 
by the Satake parameters c(πp) ). This follows 
from the strong multiplicity one theorem of 
Piatetski-Shapiro, Jacquet and  Shalika56.

•   π has an L-function, a holomorphic function 
in a complex variable s defined for Re(s) ≫ 0 
by L(π , s) =

∏
p L(πp, p

−s) . We have only 
defined the local L-factors at primes p where 
π is unramified, but the definition can be 
extended to cover all primes.

•   L(π , s) has an analytic continuation to an 
entire holomorphic function on C , except 
if n = 1 , when possibly it may have a simple 
pole.K

A cuspidal Hecke eigenform f of weight k, level 
N and character ǫ : (Z/NZ)× → C× has an 
associated automorphic representation π(f ) 
of GL 2(A).

L For p ∤ N  , the Satake param-
eter of π(f )p is given by [diag(αp/

√
p,βp/

√
p)] 

where αp,βp are the roots of the polynomial 
X2 − ap(f )X + ǫ(p)pk−1.

The connection with Galois representations 
is that an automorphic representation π satis-
fying a certain algebraicity condition (defined 
by  Clozel28) is predicted to have an associated 
compatible system of geometric Galois rep-
resentations. Particular examples of algebraic 
automorphic representations are given by the 
π(f ) coming from Hecke eigenforms. As we can 
already see in this special case, we need to do 
some kind of renormalization if we want the field 
of definition of the Satake parameters to reflect 

I each vector has an open stabilizer

J Generically, this classification is given by taking the conju-
gacy class of diag(α1,α2, . . . ,αn) to the normalized parabolic 
induction from the Borel subgroup Ind GL n

B (χ1 ⊗ χ2 · · · ⊗ χn) , 
where χi(·) = α

vp(·)
i  . In general, we take the unique unramified 

subquotient of this parabolic induction.
K For example, when π is the trivial representation of GL 1(A) , 
in which case L(π , s) is the Riemann zeta function.
L We normalize things so that the central character of π(f ) is 
the product of a finite order character and | · |2−k . This is the 
natural normalization when we use the Eichler–Shimura iso-
morphism to think of f as an element of H1(Ŵ1(N), Sym

k−2C2).
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the rationality properties of π.M So, our Galois 
representations will be directly related to the 
Satake parameters of the twisted automorphic 
representation π ′ := π | det(·)| 1−n

2 .
More precisely, the prediction is that there is a 

number field Eπ ⊂ C containing the coefficients 
of the polynomials Pπ ′,p(t) for all unramified p 
and a compatible system of semisimple Galois 
representations (ρπ ,�) with coefficients in Eπ such 
that

for all � and p /∈ S ∪ {l}.N
If a compatible system of Galois representa-

tions matches up with a cuspidal automorphic 
representation in this way, we will say that the 
compatible system is automorphic.

Thinking about individual Galois represen-
tations rather than compatible systems, for any 
choice of isomorphism ι : Qp

∼= C we expect the 
existence of a geometric Galois representation ρπ ,ι 
such that the polynomials ιPρπ ,ι,l(t) match with 
the Satake polynomials Pπ ′,l(t) . If a p-adic Galois 
representation ρ is isomorphic to ρπ ,ι for some π 
and ι , we say that ρ is automorphic.O We can also 
associate an L-function to a geometric Galois rep-
resentation and a choice of ι . If ρ is unramified 
outside S, we have

where the factor LS(ρ, s) at the ramified primes is 
defined  in90, §2. When ρ ∼= ρπ ,ι is automorphic, 
we have L(ρ, s) = L(π ′, s).

Langlands’s reciprocity conjecture predicts 
that Galois representations of geometric origin 
are in fact automorphic (this prediction is also 

Pρπ ,�,p(t) = Pπ ′,p(t)

L(ρ, s) = LS(ρ, s)
∏

l /∈S∪{p}
ιPρ,l(l

−s)−1,

made precise  in28). Combining this with the Fon-
taine–Mazur conjecture, we obtain:

Conjecture 2.5.1 (Fontaine–Mazur–Lang-
lands) Suppose ρ : GQ → GL n(Qp) is an irre-
ducible geometric Galois representation. Then ρ is 
automorphic.

In particular, the L-function L(ρ, s) has analytic 
continuation to the whole complex plane (when 
n > 1 ) and a functional equation.

2.6  Potential Automorphy and the Sato–
Tate Conjecture

Langlands reciprocity is closely intertwined with 
Langlands functoriality—the transfer of auto-
morphic representations from one group to 
another (along a homomorphism of Langlands 
dual groups). A particular example we will be dis-
cussing in this survey is symmetric power functo-
riality. For n ≥ 1 , the nth symmetric power of the 
standard representation of GL 2 (and a choice of 
basis) gives a homomorphism

Suppose we start with a cuspidal Hecke eigen-
form f. We have an associated two-dimensional 
geometric Galois representationP ρf ,ι = ρπ(f ),ι 
and composing with the symmetric power 
map, we get a geometric Galois representation 
Sym nρf ,ι with dimension n+ 1.

When the eigenform f has weight at least 2 
and is not a CM form,Q it follows from a result of 
 Ribet81 that the representations Sym nρf ,ι are irre-
ducible for all n. Indeed, Ribet shows that under 
this assumption ρf ,ι is irreducible on restriction 
to any open subgroup of GQ . It follows from the 
classification of algebraic subgroups of GL 2 that 
the largest closed algebraic subgroup of GL 2/Qp 
containing the image ρf ,ι(GQ) is GL 2 , and the 
irreducibility of Sym nρf ,ι is now a consequence 
of the irreducibility of Sym n as an algebraic rep-
resentation of GL 2.

The Fontaine–Mazur–Langlands conjecture 
then predicts that the symmetric power represen-
tations are automorphic:

Sym n : GL 2(Qp) → GL n+1(Qp).

M In the language  of8, we, like Clozel, will focus on C-alge-
braic automorphic representations of GL n(AF ).
N Here S is the set of ramified primes for π , which should 
also be the set of ramified primes for the compatible system 
of Galois representations.
O If we can show that ρ is automorphic, we will also show 
that the coefficients of Pρ ,l(t) are contained in a number field 
E ⊂ Qp , independent of l. Our somewhat disconcerting choice 
of isomorphism ι can then, a posteriori, be replaced by a 
choice of embedding ι : E →֒ C . Moreover, whenever we can 
show the existence of the field of rationality Eπ for π , we can 
also construct ‘conjugate’ automorphic representations πσ for 
any σ ∈ Aut (C) so that P(πσ )′ ,l(t) = σPπ ′ ,l(t) . This means that 
if ρ is automorphic, there is a suitable π for any choice of ι.

P cf. section 3 for more remarks on the existence of Galois 
representations associated with automorphic representations.
Q A CM form is one which is equal to its twist by some quad-
ratic Dirichlet character. On the Galois side, this means that 
the representation ρf ,ι is induced from a character of an index 
two subgroup of GQ.
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Conjecture 2.6.1 (Symmetric power functori-
ality) The Galois representation Sym nρf ,ι is auto-
morphic for every n ≥ 1.

In other words, for each n there should be 
a cuspidal automorphic representation π of 
GL n+1(A) with ρπ ,ι ∼= Sym nρf ,ι . If the conjec-
ture is proved for one choice of p and ι , then it 
holds for all choices of p and ι , since the compat-
ible system of Galois representations associated 
with π matches the compatible system coming 
from the symmetric powers.

The existence of the symmetric power lifting 
π was proved for n = 2 by Gelbart and  Jacquet47, 
and for n ≤ 4 by Kim and  Shahidi59, 65. These 
results are proved using converse theorems and 
apply much more generally: they construct sym-
metric power liftings for cuspidal automorphic 
representations of GL 2(AF ) for arbitrary number 
fields F, without any algebraicity condition.R

Langlands’s seminal  article69 describes 
(in a more general context) how symmetric 
power functoriality can be used to deduce the 
Ramanujan–Petersson conjecture, which pre-
dicts that the roots αp,βp of the polynomial 
X2 − ap(f )+ ǫ(p)pk−1 have complex abso-
lute values p(k−1)/2 . This was, of course, proved 
by Deligne as a consequence of the Riemann 
hypothesis over finite fields (with an idea inspired 
by Langlands’s method). Moreover, it is explained 
in Serre’s  book84 (cf. the Appendix to Chap-
ter 1) that symmetric power functoriality can 
also be used to prove an equidistribution result 
for the Satake parameters (αp,βp) , the Sato–Tate 
conjecture.

The Sato–Tate conjecture (for modular forms) 
was proved by Barnet-Lamb, Geraghty, Harris 
and  Taylor13 (see  also11, 26, 54, 91), by proving some-
thing a little weaker than the symmetric power 
functoriality conjecture—potential automorphy 
of symmetric powers:

Theorem 2.6.2 13 For each n ≥ 1 , there is a 
Galois totally real number field F/Q and a cuspidal 
automorphic representation πF of GL n+1(AF ) such 
that Sym nρf ,ι|GF

∼= ρπF ,ι is automorphic.

The proof of this theorem involved significant 
developments in modularity lifting theorems, in 

the construction of automorphic Galois repre-
sentations, and in the trace formula (including 
Laumon and Ngô’s work on the fundamental 
lemma)—we discuss the first two topics in a lit-
tle more detail over the next few pages, but we 
refer the reader to Harris’s much more extensive 
 survey51 of what goes into the proof of Theo-
rem 2.6.2. The latter part of the present article 
will review part of the author’s proof with Thorne 
of Conjecture 2.6.1.

More recent developments in modularity lift-
ing  theorems23 and the construction of automor-
phic Galois  representations53, 82 have broadened 
the scope of the methods used to prove potential 
automorphy results. Using a crucial geometric 
breakthrough of Caraiani and  Scholze32, it has 
been possible to establish potential automorphy 
of symmetric powers of certain two-dimensional 
representations of GF when F is a CM number 
fieldS1. This gives a proof of the Sato–Tate con-
jecture for elliptic curves over CM fields. In this 
work, we also use Langlands’s method directly to 
prove the Ramanujan–Petersson conjecture for 
certain automorphic representations of GL 2(AF ) 
(again for a CM field F).

Another recent breakthrough, again using the 
work of Calegari and  Geraghty23, is the proof of 
the potential automorphy of the p-adic Galois 
representations given by the p-adic Tate modules 
of Abelian surfaces over totally real  fields7.

3 �Automorphic�Galois�Representations
We now say a little more about the construc-
tion of compatible systems of Galois represen-
tations associated with algebraic automorphic 
representations. We understand best the case of 
regular algebraic cuspidal automorphic represen-
tations. These are automorphic representations 
which contribute to the cohomology of arith-
metic groups, or equivalently to the cohomol-
ogy of arithmetic locally symmetric spaces which 
are quotients of contractible symmetric spaces by 
arithmetic groups.

What this means in practice is that for a regu-
lar algebraic cuspidal automorphic representation 
π of GL n(A) , we have the following objects which 
capture the Satake parameters of π:

•   A locally symmetric space Y, a real manifold 
which is a disjoint union of quotients 

S i.e., a totally imaginary quadratic extension of a totally real 
field

R We have used Galois representations to characterize the 
symmetric power lifting, which only makes sense in the alge-
braic case, but it can be described purely automorphically, for 
example by specifying the Satake parameters of the symmetric 
power lifting.
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 for finite index subgroups Ŵ of SL n(Z).
•   A local system of abelian groups V on Y 

determined by an algebraic representation of 
SL n(Q) (for the trivial representation, we get 
the trivial coefficient system Z).

•   A commutative ring T of endomorphisms 
of the finitely generated abelian group 
H∗(Y ,V) := ⊕iH

i(Y ,V) (the ring of Hecke 
operators).

•   Explicit polynomials PT,l(t) ∈ T[t] for the 
primes l where π is unramified.T

•   A T-stable direct summand 
H∗(Y ,V)[π ] ⊂ H∗(Y ,V)⊗ C on which there 
is an identity PT,l(t) = Pπ ′,l(t) for all primes l 
where π is unramified.

We can rephrase the final point as saying that 
the coefficients of the Pπ ′,l(t) appear as eigenval-
ues of Hecke operators. A nice algebraicity result 
follows immediately; there is a number field Eπ 
which contains the coefficients of Pπ ′,l(t) for all 
unramified l. Indeed, these coefficients are eigen-
values of a commuting family of operators on 
H∗(Y ,V)⊗ C which preserve the rational struc-
ture H∗(Y ,V)⊗Q.

When n = 2 , the situation is quite classi-
cal. The locally symmetric spaces Y are modular 
curves, and Eichler and Shimura explained the 
relationship between the cohomology of these 
curves and modular forms of weight at least 2. 
This amounts to computing the cohomology 
groups H∗(Y ,V)⊗ C in terms of differentials on 
Y. Moreover, the action of SL 2(R) on P1(C) by 
Möbius transformations identifies SL 2(R)/SO(2) 
with the complex upper half-plane. The mani-
folds Y can therefore be equipped with a complex 
structure and moreover they can naturally be 
viewed as the set of complex points of an alge-
braic curve defined over Q . This means that the 
construction of Galois representations can be 
done using the machinery of étale  cohomology37. 
If we fix ι : Qp

∼= C , then we have an isomor-

phism H∗(Y ,V)⊗ C
id⊗ι−1

−−−−→ H∗(Y ,V)⊗Qp and 
the right hand side is equipped with a continuous 
action of GQ . The subspace H∗(Y ,V)[π ] is stable 
under the Galois action and this is the Galois rep-
resentation ρπ ,ι.

U

YŴ = Ŵ\( SL n(R)/ SO (n)) When n > 2 , the construction of Galois rep-
resentations is much more difficult, since the 
symmetric spaces have no natural complex struc-
ture. When π is essentially self-dualV it is possi-
ble, with a lot of work, to transfer the problem to 
automorphic representations of a unitary group. 
In this setting, there are complex structures and 
algebraic models (Shimura varieties) for the rel-
evant locally symmetric spaces. This leads to the 
construction of Galois representations in the 
essentially self-dual case (which is due to many 
people, beginning with Clozel and Kottwitz, cf. 
Shin’s survey  paper85).

More recently, amazing progress was made 
on the construction of Galois representations in 
the general regular algebraic case. Harris, Lan, 
Taylor and  Thorne53 constructed these represen-
tations—in fact, their work extends to the case 
of automorphic representations of GL n(AF ) for 
any totally real or CM field F. Scholze gave a dif-
ferent, but related,  construction82 which goes 
further; if H∗(Y ,V)⊗ Fp contains a non-zero 
simultaneous eigenvector for all the Hecke opera-
tors, with eigenvalues given by a homomorphism 
θ : T → Fp , then he constructs a continuous 
semisimple representation

with the characteristic polynomial of Frobenius 
det(1− tρθ (Frobl)) given by applying θ to the 
polynomial PT,l(t) ∈ T[t] for each prime l. The 
existence of such Galois representations had been 
conjectured by  Ash4, and forms an essential input 
to Calegari and Geraghty’s extension of the Tay-
lor–Wiles  method23. The existence of the Galois 
representations ρθ cannot be deduced directly 
from the construction of (characteristic 0) auto-
morphic Galois representations, since in general 
the cohomology groups H∗(Y ,V) contain torsion 
elements whose Hecke eigenvalues are not the 
‘reduction mod p’ of systems of Hecke eigenval-
ues in H∗(Y ,V)⊗ C.

When π is not essentially self-dual, the strat-
egy to construct the representation ρπ ,ι is to first 
construct the essentially self-dual representation 
ρπ ,ι ⊕ 1⊕ ρ∨

π ,ι as a p-adic limit of Galois repre-
sentations ρ�,ι with � an automorphic represen-
tation of GL 2n+1(A) . The summand ρπ ,ι can then 
be extracted from this larger representation. One 
point worth noting is that the representations ρ�,ι 
can often be found in the étale cohomology of 

ρθ : GQ → GL n(Fp)

T In reality we may have to choose to either omit one of these 
primes or to replace Y by an orbifold.
U or at least a direct sum of copies of this Galois representa-
tion

V this is equivalent to asking that each Satake parameter 
(viewed as a conjugacy class in PGL n(C) ) is equal to its own 
inverse



868

J. Newton

1 3 J. Indian Inst. Sci.| VOL 102:3 | 861–884 July 2022 | journal.iisc.ernet.in

Shimura varieties, but the representation ρπ ,ι can-
not (except in certain degenerate situations)—
this was observed by Clozel and Harris, and is 
expanded on in work of Johansson and  Thorne57.

The representations ρπ ,ι are expected to be 
geometric. This has been verified in many  cases1. 
Work in progress of the author and Caraiani 
extends these methods to cover more cases, and 
there is also unpublished work of Varma using the 
construction of Harris, Lan, Taylor and  Thorne53. 
This gives us many geometric Galois representa-
tions which are known to be automorphic, but 
we seem very far from showing that they are of 
geometric origin—once we have left the world of 
Shimura varieties we have no systematic supply 
of algebraic varieties whose cohomology can be 
directly related to automorphic representations. 
At this point it seems fair to say that the evidence 
for the Fontaine–Mazur–Langlands conjecture 
is stronger than the evidence for the Fontaine–
Mazur conjecture.

3.1  Reciprocity for More General p‑adic 
Galois Representations?

One feature which makes the world of geomet-
ric Galois representations more flexible than the 
world of algebraic varieties and their cohomol-
ogy is that, for a chosen prime p, we can consider 
geometric Galois representations inside the larger 
ambient category of p-adic Galois representations 
(we will always assume that our representations 
are unramified at almost all primes). A question 
which lies at the heart of the p-adic Langlands 
programme is to describe a comparable larger 
category of p-adic automorphic representa-
tions which contains the algebraic automorphic 
representations.

There is not yet a satisfactory definition 
of a p-adic automorphic representation, but 
there is a natural way to enlarge the p-adic part 
H∗(Y ,V)⊗ Zp of the cohomology groups which 
we considered above; this is Emerton’s theory of 
completed cohomology.

The interested reader will find an excellent 
introduction to this topic in Emerton’s ICM pro-
ceedings  article42. We will be very brief here. The 
definition involves a tower Yr+1 → Yr → Yr−1 of 
locally symmetric spaces whose limit 
Y∞ = lim←−r

Yr has an action of GL n(Qp) and is a  

GL n(Zp)-torsor over the base locally symmetric 
space Y = Y0 . The mod pm coefficient systems 
V ⊗ Z/pmZ become trivial at some level in the 
tower, so for each m the group

is a smooth representation of GL n(Qp) which 
interpolates the finite cohomology groups with 
varying coefficient systems.

Finally, the completed cohomology groups are 
defined by taking an inverse limit:

All these cohomology groups get a natural action 
of the ring of Hecke operators T . It was proved 
by Scholze that the mod p or p-adic systems of 
Hecke eigenvalues θ : T → Fp or θ : T → Qp 
appearing in completed cohomology have associ-
ated mod p or p-adic Galois representations ρθ . In 
general, the p-adic Galois representations will not 
be geometric, as we can see in the following sim-
ple (but perhaps instructive) example:

�Example 3.1.1

In the case of GL 1 , examples of the spaces Yr 
are the finite sets (Z/prZ)× . We then have 
H̃0(Y∞,Z/pmZ) = Ccts(Z

×
p ,Z/p

mZ) and 
H̃0(Y∞,Zp) = Ccts(Z

×
p ,Zp) , where both source 

and target in the latter space of continuous func-
tions have the profinite topology.

The Hecke operators are given by (
�l�f

)
(z) = f (lz) for primes l  = p , and their 

simultaneous eigenvectors in Ccts(Z×
p ,Zp)⊗Qp 

are scalar multiples of continuous homomor-
phisms χ : Z×

p → Q
×
p  . These homomorphisms 

are all of the form χ(z) = χ0(z)(z/[z])t , where χ0 
is a finite order character, t ∈ Zp and [z] denotes 
the finite order element of Z×

p  which is congruent 
to z modulo p.

Each such character χ has a corresponding 
Galois representation ρχ : GQ → Q

×
p  which is the 

product of a finite order character correspond-
ing to χ0 and 

(
χp/[χp]

)t
 . Here, [χp] : GQ → Z×

p  
is the finite-order character which is congruent to 
χp modulo p. The p-adic Galois representation ρχ 
is geometric if and only if t is an integer.

There seem to be only two restrictions on 
the Galois representations ρθ : GQ → GL n(Qp) 
associated with Hecke eigenvalues appearing in 
completed cohomology: 

(1) The ρθ are continuous and unramified at all 
except finitely many primes.

H̃ i(Y∞,Z/pmZ) = lim−→
r

Hi(Yr ,Z/p
mZ)

H̃ i(Y∞,Zp) = lim←−
m

H̃i(Y∞,Z/pmZ).
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(2) If c ∈ GQ is a complex conjugationW, then 
trρθ (c) = 0 if n is even and trρθ (c) ∈ {−1,+1} 
if n is oddX. We call representations satisfying this 
condition odd (as in, e.g.,18, §6).

The fact that the second condition holds is a 
theorem of Caraiani and Le  Hung27 (and was 
proved by  Taylor92 and Taïbi87 in most essentially 
self-dual cases). The following version of p-adic 
Langlands reciprocity seems reasonable (and is 
suggested by Calegari and  Emerton22): all irre-
ducible p-adic Galois representations satisfying 
conditions (1) and (2) are associated with Hecke 
eigenvalues appearing in completed cohomology. 
This is essentially completely known for n ≤ 2 , 
but is wide open beyond that.

How might one approach this kind of reci-
procity conjecture? We can first consider what 
kind of structure we can give to the collection of 
p-adic Galois representations. Looking back at 
the one-dimensional example, we have a discrete 
parameter, the finite order character χ0 , and for 
each χ0 a continuous p-adic family in the variable 
t given by multiplying by (χp/[χp])t.

A similar parametrization, which works well 
in general, is to first fix a semisimple residual mod 
p Galois representation (continuous and unrami-
fied away from a finite set of primes S)

and then consider the continuous representations

which lift the fixed ρ mod mZp
 and which are also 

unramified away from S. Mazur’s fundamental 
work on the deformation theory of Galois repre-
sentations shows that these lifts biject with local 
homomorphisms R�

ρ → Zp of local W (Fp)-alge-
bras ( W (Fp) is a DVR with residue field Fp ). The 
lifting ring R�

ρ  is a complete Noetherian local 
W (Fp)-algebra. We can therefore think of lifts as 
being parametrized by a geometric object: the 
formal scheme Spf (R�

ρ ) or, if we prefer, its rigid 
analytic generic fiber.

To give a little more feeling for these lifting rings, 
we mention that the reduced tangent space at the 

closed point of Spec (R�
ρ ) , 

(
m
R
�
ρ
/(mOE

+m2

R
�
ρ

)

)∗
 , 

ρ : GQ → GL n(Fp)

ρ : GQ → GL n(Zp),

can be identified with the group of continuous cocy-
cles Z1(GQ,S , ad(ρ)) valued in the adjoint represen-
tation ad(ρ).Y

3.2  Deformations of Galois 
Representations

It may seem more natural to parametrize isomor-
phism classes of representations, rather than 
matrix valued homomorphisms. This is perfectly 
reasonable, but the corresponding functor is not 
always representable by an affine formal scheme. 
Essentially, we want to take the quotient of 
Spf (R�

ρ ) by the action of PGL n corresponding to 
conjugation of lifts. When ρ is reducible, this 
action will usually have non-trivial stabilizers, 
and so this quotient is naturally a (formal alge-
braic) stack. On the other hand, if ρ is irreduci-
ble, the action is free and the quotient is 
representable by an affine formal scheme, 
Spf (Rρ) . The ring Rρ  is Mazur’s deformation 
ring. Its reduced tangent space (
mRρ /(mOE +m2

Rρ
)

)∗
 can be identified with the 

continuous cohomology group H1(GQ,S , ad(ρ)).
In the residually reducible setting, an impor-

tant role is played by pseudorepresentationsZ 
which describe ‘representations up to semisim-
plification’ with general coefficient rings (in 
particular, there is a well-defined characteris-
tic polynomial for every element of the group 
being pseudorepresented). The idea goes back 
to  Wiles98 and  Taylor89 and has been general-
ized by  Chenevier25 and  Lafforgue68. For a fixed 
ρ , there is an associated pseudodeformation ring 
Pρ  parametrizing pseudorepresentations which 
lift the pseudorepresentation associated with (the 
semi-simplification of) ρ . The pseudodeforma-
tion ring is closely related to the ring of invariants 
(R�

ρ )PGL n97.

3.3  Fontaine–Mazur–Langlands 
and p‑adic Reciprocity in Dimension 
Two

Now we could try to establish p-adic Lang-
lands reciprocity in two steps. The first is to 
show that each ρ is isomorphic to the residual 
representation of ρπ ,ι for an automorphic rep-
resentation π . Such a statement would be a gen-
eralization of Serre’s conjecture, proven by Khare 

W i.e., it is the restriction of complex conjugation under an 
embedding Q →֒ C
X in other words the number of +1 and −1 eigenvalues of c are 
as close as possible

Y i.e., End (F
⊕n
p ) equipped with the GQ action given by ρ and 

conjugation.
Z Sometimes known as pseudocharacters or determinants.
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and  Wintenberger66, that when n = 2 every odd 
ρ arises from a modular form. The second step is 
to show that if one lift of ρ is automorphic, then 
every suitable lift of ρ is associated with Hecke 
eigenvalues appearing in completed cohomol-
ogy. In the case n = 2 , this is also known in most 
cases, using work of Böckle14 in the residually 
irreducible case, and work of  Pan76 in the residu-
ally reducible case.

Emerton went further and proved many cases 
of the Fontaine–Mazur–Langlands conjecture 
using completed  cohomology41. He is able to 
compare the condition that the lift is geomet-
ric with the condition that its associated system 
of Hecke eigenvalues appears in the cohomol-
ogy of a modular curve at finite level (not just in 
the limit which defines the completed cohomol-
ogy groups). This uses work of Berger, Breuil 
and Colmez on the p-adic local Langlands cor-
respondence. An alternative method, proving a 
similar result (with slightly different technical 
conditions), and also using the p-adic local Lang-
lands correspondence, is due to  Kisin62.

Recently,  Pan76 carried out a (very extensively) 
modified version of Emerton’s strategy using 
Paškūnas’s work on p-adic local  Langlands78, 
which includes the residually reducible case. This 
enables him to prove the Fontaine–Mazur–Lang-
lands conjecture for all odd two-dimensional 
geometric p-adic representations ρ of GQ with 
distinct Hodge–Tate weights (this means that 
they will be associated with Hecke eigenforms of 
weight at least 2), when p ≥ 5 . Recent work of 
Paškūnas and  Tung80 should permit the extension 
of this result to small values of p.

The case of equal Hodge–Tate weights 
deserves its own survey, and is closely related to 
the strong Artin conjecture for two-dimensional 
complex representations of GQ . There are three 
different approaches here which have yielded 
almost complete results. First, Buzzard and Tay-
lor’s approach using overconvergent modular 
 forms16 (more recent developments have been 
surveyed by  Kassaei58), second Calegari and 
Geraghty’s application of their modified Tay-
lor–Wiles  method23, and most recently Pan using 
a description of the contribution of weight 1 
overconvergent modular forms to completed 
 cohomology77.

3.4  Beyond the Regular Algebraic Case
Beyond the regular algebraic case, we only know 
how to construct automorphic Galois repre-
sentations in limited situations. The most clas-
sical is the case of weight 1 modular  forms39. 

Generalizing this, Galois representations have 
been constructed corresponding to Hecke eigen-
values appearing in the coherent cohomology of 
Shimura  varieties15, 48. This relies on finding con-
gruences to Hecke eigenvalues for regular alge-
braic automorphic representations.

The simplest cases where a general construc-
tion of automorphic Galois representations is 
not known are for Maass wave forms (non-hol-
omorphic modular forms). A certain family of 
these forms generate algebraic automorphic rep-
resentations, conjecturally with algebraic Hecke 
eigenvalues and associated (geometric) Galois 
representations. In fact they should have associ-
ated evenAA Artin representations.

4 �Modularity�Lifting�Theorems
First introduced as part of Wiles's proof of Fer-
mat’s last theorem, modularity lifting theo-
rems and the Taylor–Wiles  method96, 99 provide 
a robust technique for proving that geometric 
Galois representations are automorphic. The 
method was modified and significantly extended 
by Calegari and  Geraghty23, so that now it can, in 
principle, be applied whenever the target auto-
morphic representations contribute to the coho-
mology of a locally symmetric space, or to the 
coherent cohomology of a Shimura variety (note 
that the Maass forms mentioned in Sect. 3.4 do 
not fall into either of these families of cases). 
We recommend Calegari’s recent  survey20 to the 
reader who is interested in the development of 
modularity lifting theorems and the Taylor–Wiles 
method since the proof of Fermat’s last theorem.

In this section, we will sketch what a modu-
larity lifting theorem looks like, together with an 
outline of how the proofs of such theorems go. 
We incorporate ideas of Diamond, Fujiwara and 
Kisin which made the Taylor–Wiles method more 
flexible.

4.1  A Prototype Statement
The typical shape of a modularity lifting theorem 
is as follows:

Theorem 4.1.1 (Theorem prototype) Sup-
pose ρ : GQ → GL n(Qp) is a geometric Galois 
representation with residual representation 
ρ : GQ → GL n(Fp) . Suppose moreover that 
there exists an automorphic representation π and 
ι : Qp

∼= C with residual representation ρπ ,ι iso-
morphic to ρ.

AA complex conjugation acts with determinant 1
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Assume various things about ρ, ρ,π , . . .
Then ρ is automorphic: there exists an automor-

phic representation σ of GL n(A) with ρσ ,ι ∼= ρ.
The ‘lifting’ part of the theorem is that we start 

from the assumption that the residual representa-
tion ρ is automorphic and then lift this to deduce 
automorphy of the p-adic representation ρ.

4.2  Modularity Lifting and ‘ R = T’
In this subsection and the next, we try to explain 
the essence of the Taylor–Wiles method (as 
revised by Diamond and Fujiwara). For simplic-
ity, we restrict to two-dimensional Galois repre-
sentations, but the same ideas can be applied to 
higher dimensional cases with the proviso that 
we restrict to self-dual (up to twistAB) Galois 
 representations26. As we have mentioned, Calegari 
and Geraghty extended the scope of the method 
to go beyond the self-dual case. We will also 
assume that ρ is irreducible, so we have a defor-
mation ring Rρ  . It is now useful to fix a finite 
extension E/Qp as a coefficient field. E is chosen 
so that the images of ρ and ρπ ,ι in Theorem 4.1.1 
are contained in GL n(OE) (this is possible, at 
least after conjugating the representations) and 
reduction modulo the maximal ideal mE gives the 
same representation ρ : GQ → GL n(kE).

We start out with a module M, finite free over 
OE , equipped with an action of a Hecke algebra 
T ⊂ End (M) , generated as an OE-algebra by a 
commuting family of Hecke operators. The set up 
will be such that applying ι to the eigenvalues of T 
on M ⊗OE Qp gives (complex) Hecke eigenvalues 
for a collection of automorphic representations. 
For example, we could take M = H1(Y ,Zp) for a 
modular curve Y, and we would then see Hecke 
eigenvalues for holomorphic modular forms of 
weight two and a fixed level.

We are assuming that we have a fixed residual 
Galois representation ρ , which is automorphic, 
so it corresponds to a system of Hecke eigenval-
ues θ : T → kE . We, therefore, have a maximal 
ideal m = ker(θ) ⊂ T . We can take the localiza-
tion Mm , which is a direct summand of M. The 
systems of Hecke eigenvalues in Mm ⊗OE Qp 
come from automorphic representations whose 
residual Galois representation is isomorphic to 
ρ . The existence of Galois representations asso-
ciated with each of these automorphic repre-
sentations gives a homomorphism Rρ → Tm 

from a deformation ring (in this case, a complete 
Noetherian local OE-algebra), which is necessar-
ily surjective because the characterizing property 
of the automorphic Galois representations (pre-
scribed characteristic polynomials of Frobenius 
elements) implies that the Hecke operators which 
generate T appear in the image of Rρ .

Moreover, we know (or assume) that the 
Galois representations associated with Hecke 
eigensystems in Mm are geometric.AC This means 
that the map Rρ → Tm will factor through a cer-
tain quotient R

geo
ρ  of Rρ  having the property that 

homomorphisms R
geo
ρ → Qp correspond to geo-

metric p-adic Galois representations.AD The quo-
tient is defined using work of  Kisin61.

To prove a modularity lifting theorem, we 
need only to show that every such homomor-
phism factors through Tm . Indeed, the Galois 
representations corresponding to homomor-
phisms R

geo
ρ → Qp are geometric representations 

ρ which lift ρ and satisfy some other conditions 
going into the definition of R

geo
ρ  . The statement 

that every such representation is associated with 
a Hecke eigensystem θ : Tm → Qp , or in other 
words to an automorphic representation contrib-
uting to Mm , is precisely the statement of a mod-
ularity lifting theorem.

So we can re-phrase Theorem 4.1.1 as:
Theorem 4.1.1*. The OE-algebra homomor-

phism R
geo
ρ → Tm induces a bijection between 

OE-algebra homomorphisms R
geo
ρ → OE and 

Tm → OE.
We immediately see that to prove this result it 

is sufficient to show that the map R
geo
ρ → Tm is 

an isomorphism. We can get by with something a 
little weaker, for example that R

geo
ρ → Tm has nil-

potent kernel. This is equivalent to asking for the 
support of Mm as an R

geo
ρ -module ( R

geo
ρ  acts via 

Tm ) to be all of Spec (R
geo
ρ ).

In general, it seems hopeless to directly analyze 
R
geo
ρ  and compare it with Tm . By construction, the 

Hecke algebra Tm is a finite local OE-algebra. On 
the other hand, at the moment the only general 
way to show that R

geo
ρ  has Krull dimension 1 (as it 

should, if it is to have a chance of being isomor-
phic to Tm ) is to first prove a modularity lifting 
theorem and then deduce this as a consequence.

AB When we talk about ‘self-dual’ Galois representations, we 
always mean up to twist by a character, but we will usually 
suppress this.

AC In practice, we will need more precise p-adic Hodge-theo-
retic information about these representations.
AD To be more precise, we also need to fix Hodge–Tate 
weights and an inertial type.
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4.3  The Taylor–Wiles Method
In a sentence, the goal of the Taylor–Wiles 
method is to ‘smoothen out’ the deformation ring 
R
geo
ρ  by allowing ramification at auxiliary sets of 

primes. In favorable circumstances, we will then 
be able to make a comparison with a similarly 
smoothened out version of the Hecke algebra Tm . 
We will give a brief sketch of some of the details 
here. For the reader who has not previously been 
exposed to these ideas, two more recent texts we 
recommend are Gee’s Arizona Winter School 
 notes46 and Calegari’s CDM  lecture19.

We recall that R
geo
ρ  classified geometric rep-

resentations that are unramified outside a finite 
set of primes S. So for any finite set of primes Q, 
disjoint from S, we have a deformation ring R

geo
ρ,Q 

which admits R
geo
ρ  as a quotient and classifies the 

same representations as R
geo
ρ  , except for allowing 

ramification at primes in Q.
In good situations, we will be able to choose 

sets of primes Q such that:

•   The deformation rings R
geo
ρ,Q admit a surjective 

map from a fixed ring R∞ (independent of Q).
•   Varying the set Q, we can ‘fill out’ all of R∞.

The first point is arranged by choosing primes Q so 
that a ‘dual Selmer group’, related to the reduced tan-
gent space of R

geo
ρ,Q by global Tate duality, vanishes. 

This allows the dimension of the reduced tangent 
space to be computed by a local calculation. Being 
able to choose suitable primes requires an assump-
tion that the image ρ(GQ(ζp)) is sufficiently large 
(usually it suffices for ρ|GQ(ζp)

 to be irreducible).
The second point is achieved by choosing 

different sets of primes Q = Qn for every n ≥ 1 
which satisfy

•   q ≡ 1 mod pn

•   ρ(Frobq) has distinct eigenvalues

for each q ∈ Qn , and then taking a limit over n 
to obtain a ring which we will call Rpatch . The 
limit has to be taken in a rather unnatural way, 
since there are no natural maps between the 
R
geo
ρ,Qn

 as n varies. Scholze re-interpreted this in 
terms of  ultraproducts83. Since each R

geo
ρ,Qn

 is 
quotient of R∞ , Rpatch is too. To show that we 
do indeed fill out all of R∞ requires a lower 
bound on the size of Rpatch—this is deduced 
from an input from the side of automorphic 
forms, which we will come back to.

The conditions on each set of Taylor–Wiles 
primes Qn make it easy to understand the differ-
ence between R

geo
ρ,Qn

 and R
geo
ρ  . For each q ∈ Qn , 

when we restrict a representation lifting ρ to 
the local decomposition group GQq , we obtain 
a direct sum of characters χ1 ⊕ χ2 and the 
restriction to the inertia subgroup Iq ⊂ GQq fac-
tors through the tame fundamental character 
Iq → F×

q  . This means we can equip R
geo
ρ,Qn

 with 
the structure of a S∞ = OE[[Zr

p]]-algebra, where 
r = 2|Qn| ; this structure depends on a choice of 
generator of (the maximal p-primary quotient 
of) F×

q  for each q ∈ Qn . The OE-algebra S∞ (iso-
morphic to a power series ring over OE ) comes 
with an augmentation S∞ → OE , and quotient-
ing out by the kernel of the augmentation gives 
an OE-algebra R

geo
ρ,Qn

⊗S∞ OE which is isomor-
phic to R

geo
ρ .

On the automorphic side, we can also allow 
ramification at auxiliary primes by modify-
ing the level structure at these primes. It can 
be arranged that we have Hecke modules MQn , 
for each n, which are simultaneously S∞-mod-
ules and Rρ,Qn-modules (the latter ring acts via 
a Hecke algebra, S∞ acts via Hecke operators at 
the primes q ∈ Qn ). In parallel to the isomor-
phism R

geo
ρ,Qn

⊗S∞ OE
∼= R

geo
ρ  on the Galois side, 

we have MQn ⊗S∞ OE
∼= Mm . A crucial property 

of our Hecke modules is that when we take the 
limit over n, we get a finite free S∞-module M∞ . 
This limit also has an action of Rpatch , coming 
from the action of R

geo
ρ,Qn

 on MQn for each n. 
There is an isomorphism Rpatch ⊗S∞ OE

∼= R
geo
ρ  

and a commutative diagram:

Now, the crucial numerical coincidence we will 
need to arrange is

Assuming this, we note that both the depth and 
dimension of M∞ as an S∞-module are equal to 
dim(S∞) = dim(R∞) . The depth and dimension 
are unchanged by viewing M∞ as an R∞ mod-
ule (the action is via Rpatch ). So M∞ is a maxi-
mal Cohen–Macaulay R∞-module. In particular, 
it follows from a standard result contained in 
 EGA49 (cf. Chapter 0, Proposition 16.5.4) that 
its support in Spec (R∞) is a union of irreducible 
components.

Suppose we know that Spec (R∞) is irreduc-
ible. Then M∞ has full support in Spec (R∞) and 
the quotient map R∞ → Rpatch has nilpotent ker-
nel. We can deduce that M ⊗S∞ OE = Mm has 
full support in Spec (R

geo
ρ ).

Rpatch EndS∞(M∞)

Rgeo
ρ EndOE

(Mm) = EndOE (M∞ ⊗S∞ OE)

dim(R∞) = dim(S∞).
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The situation is even better if R∞ is a regular 
local ring. We can then deduce from the Aus-
lander–Buchsbaum theorem that M∞ is free over 
R∞ , therefore Mm is free over R∞ ⊗S∞ OE . Since 

this ring acts on Mm via its quotient R
geo
ρ  , we 

deduce that Mm is free over R
geo
ρ  . In particular, we 

have an isomorphism R
geo
ρ

∼= Tm , and we deduce 
that Mm is free over the Hecke algebra Tm . If 
R∞[1/p] is a regular domain, a similar argument 
shows that R

geo
ρ [1/p] ∼= Tm[1/p].

4.4  Presenting Rgeoρ,Q  as a Quotient of R∞
We did not say anything about what we take 
for the ring R∞ . For the original version of the 
Taylor–Wiles method, it is a power series ring 
OE[[x1, . . . xg ]] , with g equal to (an upper bound 
for) the dimension of the reduced tangent space 
of R

geo
ρ,Q . Controlling the size of these tangent 

spaces, which are subspaces of the Galois coho-
mology group H1(GQ,S∪Q, ad(ρ)) , requires set-
ting up the correct local conditions at primes 
in S and using the Greenberg–Wiles formula99, 
(cf. Proposition 1.6). This is particularly delicate 
at p.

Kisin introduced a more flexible  method63, 
which instead considers R

geo
ρ,Q as an algebra over a 

local deformation ring and considers the relative 
tangent space.

For example, assume for simplicity that 
ρp := ρ|GQp

 is absolutely irreducible. We have a 
local deformation ring Rρp which classifies lifts of 
ρp up to isomorphism, and a natural map 

Rρp → Rρ  corresponding to restricting represen-
tations to GQp . The relative tangent space (
mRρ /(mRρp

+m2
Rρ
)

)∗
 can be identified with the 

kernel of the map

Supposing this kernel has dimension gp , we 
deduce that Rρ  is a quotient of the ring 
Rρp [[x1, . . . , xgp ]] . By definition, R

geo
ρ  is a tensor 

product Rρ ⊗Rρp
R
geo
ρp

 , and therefore R
geo
ρ  is a 

quotient of R∞ = R
geo
ρp

[[x1, . . . , xgp ]] . We can 
then hope to deduce modularity lifting theorems 
from knowledge about R

geo
ρp

 . In particular, if 

Spec (R
geo
ρp

) is irreducible, then Spec (R∞) is irre-

ducible and we are in good shape to apply the 
argument sketched in the previous subsection. 
This variant of the Taylor–Wiles method looks 
like some kind of ‘local-to-global’ principle.

H1(GQ,S , ad(ρ)) → H1(GQp , ad(ρp)).

4.5  Adjoint Selmer Groups
If ρ : GQ → GL n(E) is a geometric Galois rep-
resentation with absolutely irreducible residual 
representation ρ , it defines a prime ideal pρ 
of the deformation ring R

geo
ρ  , and the tangent 

space 
(
(pρ/p

2
ρ)⊗ κ(pρ)

)∗
 is a finite dimensional 

E-vector space, which can be identified with a 
subspace H1

g (GQ,S , adρ) ⊂ H1(GQ,S , adρ) of the 
Galois cohomology group. This subspace, defined 
by Bloch and Kato, corresponds to extensions of 
the trivial representation by adρ which are geo-
metric. In fact, this subspace is expected to van-
ish: conjectures of Bloch and Kato predict that 
the dimension of this Selmer group is equal to 
the order of vanishing of an adjoint L-function at 
s = 1 . When ρ is automorphic, this L-function is 
non-vanishing at s = 155 (cf. Proposition 3.6).

Moreover, a non-split geometric extension of 
the trivial representation by adρ is also ruled out 
by the ‘yoga of motives’ (since there should be no 
non-trivial extensions between motives of the 
same weight).

If we can prove R
geo
ρ [1/p] ∼= Tm[1/p] (as dis-

cussed above, this can be proved using the Tay-
lor–Wiles method in certain cases), then it follows 
that R

geo
ρ [1/p] is a finite E-algebra, and the tan-

gent space H1
g (GQ,S , adρ) vanishes for all repre-

sentations corresponding to homomorphisms 
R
geo
ρ → E .  Allen2 was able to generalize this to 

prove vanishing of an adjoint Bloch–Kato Selmer 
group for self-dual automorphic Galois represen-
tations ρ with just an assumption that the image 
of ρ(GQ(ζp)) is sufficiently large.AE The author 
and Thorne recently proved a similar vanishing 
result replacing this large image assumption with 
a (much milder) large image assumption on the 
characteristic 0 representation ρ  itself75. We use 
an idea due to Lue Pan (it appears in the work we 
have already mentioned on the Fontaine–Mazur 
conjecture in the residually reducible case) which 
allows us to carry out a version of the Taylor–
Wiles method up to a bounded p-power torsion 
error term, which disappears when we invert p. 
Thorne subsequently improved our result to only 
require irreducibility of ρ|GQ(ζp∞ )

93. Vanishing of 

adjoint Selmer groups is an essential input to two 
different approaches to proving automorphy of 
Galois  representations73, 74, which are discussed in 
the next section.

AE The Selmer group has to be modified so that it is equal to 
the tangent space for a self-dual deformation space.
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5 �Symmetric�Power�Functoriality
In what remains of this survey, we will discuss 
some of the ideas of the  works73, 74 which estab-
lish symmetric power functoriality (Conjec-
ture 2.6.1) for holomorphic modular forms. 
Crucial inputs come from some other  works3, 5, 75.

We recall that for a Hecke eigenform f (of 
weight ≥ 2 and without CM), we want to show 
that Sym nρf ,ι is automorphic for some choice 
of p and ι . Modularity lifting theorems (12, for 
example) can be used to prove automorphy if we 
know that the residual representation Sym nρf ,ι is 
automorphic, as long as this residual representa-
tion has big enough image. There is some tension 
here, because we have no idea how to prove that 
a ‘generic’ (n+ 1)-dimensional mod p represen-
tation of GQ is automorphic. Potential automor-
phy (e.g., Theorem 2.6.2) involves dealing with 
this by finding an extension field F/Q over which 
a particular residual representation becomes 
automorphic.

However, often the representation Sym nρf ,ι 
will not have big image. For example, when 
p ≤ n , it is always reducibleAF. In a series of 
three  papers33–35, Clozel and Thorne were able to 
exploit this reducibility to prove:

Theorem 5.0.1 (Clozel–Thorne) Sym nρf ,ι is 
automorphic for n ≤ 8.

For example, if we let p = 7 , then we have an 
isomorphism

Here, the subscript σ denotes composition with 
the Frobenius automorphism on the coefficients 
of the representation.

Tensor product functoriality (in this case due 
to Ramakrishnan), the Sym 4 lifting, and Lang-
lands’s theory of Eisenstein series now implies 
the automorphy of this residual representation. 
It is then possible to apply a modularity lifting 
theorem for a residually reducible representa-
tion, such as a theorem of  Thorne95 (and a later 
 generalization3). To apply such a theorem, Clozel 
and Thorne must construct a congruence to a 
cuspidal automorphic representation (satisfying a 
ramification condition at an auxiliary place—this 
is the level raising congruence alluded to in their 
title). The strategy explained by  them33 estab-
lishes symmetric power functoriality as a conse-
quence of a family of (still conjectural) cases of 

Sym 8ρf ,ι
∼= (σ ρf ,ι ⊗ ρf ,ι)⊕ (det ρf ,ι)

2 ⊗ Sym 4ρf ,ι.

tensor product functoriality and the existence of 
suitable level raising congruences.

5.1  Relative Modularity Lifting
In each of our  articles73, 74, we introduce a new 
method for proving the automorphy of a sym-
metric power representation Sym nρf ,ι . Crucially, 
neither method requires the (n+ 1)-dimensional 
residual representation Sym nρf ,ι to be irreduc-
ible. We will start by explaining the method in the 
second  article74, because the main technical result 
of that paper can be stated as a modularity lifting 
theorem following the template of Theorem 4.1.1 
and the idea of proof is a variation of the Tay-
lor–Wiles method. We first state a version of this 
main technical result, for representations of GQ (a 
similar statement for representations of GF with F 
totally real can also be  proved74).

Theorem 5.1.1 (N–Thorne) Suppose f , f ′ are 
two cuspidal Hecke eigenforms of weight 2. Fix a 
prime p, an integer n ≥ 1 and an isomorphism 
ι : Qp → C , and suppose the following conditions 
hold: 

(1) There is an isomorphism ρf ,ι
∼= ρf ′,ι.

(2) Neither f nor f ′ has CM and neither of the 
Hecke eigenvalues ι−1(ap(f )), ι

−1(ap(f
′)) is a 

p-adic unit.
(3) For each prime l dividing the level of f or f ′ , 

π(f )l is a character twist of the Steinberg rep-
resentation if and only if π(f ′)l is.

(4) There exists a ≥ 1 such that pa > 2n− 1 and 
there is a sandwich

up to conjugacy in PGL 2(Fp).
AG

(5) Sym nρf ′,ι is automorphic.

Then Sym nρf ,ι is automorphic.
Note that although this theorem includes the 

‘big image’ condition (4) which depends on n, the 
representation Sym nρf ,ι will be reducible for all 
n ≥ p . Let’s indicate where each of the assump-
tions in this theorem comes from:

PSL 2(Fpa) ⊂ Projρf ,ι(GQ) ⊂ PGL 2(Fpa),

AF since Sym nF
2
p is a reducible representation of GL 2(Fp)

AG Projρ f ,ι(GQ) denotes the image of ρ f ,ι(GQ) in PGL 2(Fp) . It 
follows from Dickson’s classification of finite subgroups of 
PGL 2(Fp)

36 (cf. Theorem 2.47) that if Projρ f ,ι(GQ) contains a 
conjugate of PSL 2(Fpb ) for some pb > 2n− 1 , then condition 
(4) is satisfied.
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•   Condition (1) is what we expect in any mod-
ularity lifting theorem. It also implies that 
Sym nρf ,ι

∼= Sym nρf ′,ι.
•   Condition (2) allows us to work with a local 

deformation or lifting ring R
geo
ρp

 which is a 

domain (thanks to a theorem of  Kisin63).
•   Condition (3) ensures that we can work with 

deformation rings for p-adic representa-
tions of l-adic Galois groups which are also 
domains.

•   Condition (4) ensures that Sym nρf ,ι(GQ) 
contains a regular semisimple element of 
GL n+1(Fp) . This is used when choosing sets 
of Taylor–Wiles primes.

•   Condition (5) is again what we expect in any 
modularity lifting theorem. We are propa-
gating automorphy along the congruence 
Sym nρf ,ι

∼= Sym nρf ′,ι mod p.

To prove this theorem, we avoid applying the 
patching method directly to the (n+ 1)-dimen-
sional representations lifting Sym nρf ,ι . Instead, 
we patch in the two-dimensional case, construct-
ing a quotient Rpatch of R∞ and a finite free S∞
-module M∞ as described in §4.3. However, at 
the same time as doing this, we take compat-
ible limits for deformation rings and modules of 
automorphic forms in the (n+ 1)-dimensional 
setting.

For the deformation rings, since Sym nρf ,ι 
may be reducible, we have to work with a pseudo-
deformation ring P

geo
Sym nρf ,ι

 (parametrizing self-

dual geometric pseudodeformations). Going 
from a two-dimensional representation to its nth 
symmetric power naturally induces a map

The output of our ‘relative’ patching method is 
the following: 

(1) S∞-algebras Ppatch , Rpatch with isomor-
phisms Ppatch ⊗S∞ OE

∼= P
geo
Sym nρf ,ι

 and 

Rpatch ⊗S∞ OE
∼= R

geo
ρf ,ι

.

(2) A surjection R∞ → Rpatch , where R∞ is a 
domain with dim(R∞) = dim(S∞).

(3) A Ppatch-module, N∞ and a Rpatch-module 

M∞ , both finite free over S∞ . The P
geo
Sym nρf ,ι

-module N∞ ⊗S∞ OE is isomorphic to a 
Hecke module N Sym n

m which contains the 
Hecke eigenvalues of certain self-dual auto-

Sym n : Pgeo
Sym nρf ,ι

→ R
geo
ρf ,ι

.

morphic representations of GL n+1(A) . The 
R
geo
ρf ,ι

-module M∞ ⊗S∞ OE is isomorphic to 
Mm as before.

(4) The maps Ppatch → P
geo
Sym nρf ,ι

 and 

Rpatch → R
geo
ρf ,ι

 coming from (1) fit into a 

commutative square of OE-algebra maps: 

Note that we do not attempt to find a surjection 
from P∞ → Ppatch with dim(P∞) = dim(S∞) . 
This would involve controlling the dimension of 
the reduced tangent space of a pseudodeforma-
tion ring for Sym nρf ,ι (e.g by allowing ramifica-
tion at auxiliary primes to force vanishing of a 
dual Selmer group), which is what we are trying 
to avoid.

We have x, x′ ∈ Spec (R
geo
ρf ,ι

) prime ideals cor-

responding to the Galois representations ρf ,ι, ρf ′,ι . 
Pulling back by Sym n , we get 
y, y′ ∈ Spec (P

geo
Sym nρf ,ι

) . Since Sym nρf ′,ι is 

assumed automorphic, we will be able to arrange 
things so that y′ is in the support of the ‘automor-
phic module’ N Sym n

m.
The localization Py′ of P

geo
Sym nρf ,ι

 at y′ is a 

Noetherian local E-algebra whose tangent space 
at the closed point is a subspace of a Galois coho-
mology group, and vanishing of an adjoint 
Selmer  group75 shows that this tangent space van-
ishes. In other words, Py′ is simply E! Of course 
this is what we expect if P

geo
Sym nρf ,ι

 is isomorphic 

to a Hecke algebra which acts semisimply on 
characteristic 0 vector spaces of automorphic 
forms.

These preparations leave us ready to explain 
the (rather simple) technical heart of the proof of 
Theorem 5.1.1. In a few words, we prove that the 
support of N∞ in Spec (Ppatch) contains the 
image of every irreducible component of 
Spec (Rpatch) passing through x′ (thought of as a 
point of Spec (Rpatch) using the closed immersion 

Spec (R
geo
ρf ,ι

) →֒ Spec (Rpatch) ). In fact, the usual 

Taylor–Wiles method shows that Spec (Rpatch) is 
irreducible, so we can move from x′ to x and 
deduce that y is also in the support of N∞ . This 
shows that Sym nρf ,ι is automorphic.

The key step in the proof is to use vanishing of 
an adjoint Selmer  group75 to show that y′ defines 
a regular point of Spec (Ppatch).

P patch Rpatch

P geo
Symn ρf,ι

Symn

Rgeo
ρf,ι

(1)
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Proposition 5.1.2 The prime ideal 
y ∈ Spec (P

geo
Sym nρf ,ι

) is in the support of N Sym n
m . 

As a consequence, Sym nρf ,ι is automorphic.

�Proof By the arguments we explained in Sect. 4.3, 
since R∞ is a domain, we know that M∞ has 
full support in Spec (R∞) and the quotient map 
R∞ → Rpatch is an isomorphism.

The same argument tells us that N∞ is a 
Cohen–Macaulay Ppatch-module. This means that 
its support in Spec (Ppatch) is equidimensional of 
dimension dim(S∞) . Writing y′∞ for the image of 
y′ in Spec (Ppatch) , we know that y′∞ is in the sup-
port of N∞ . We are going to show that (Ppatch)y′∞ 
is a regular local ring of dimension dim(S∞)− 1 . 
On the one hand, we have a lower bound for the 
Krull dimension of (Ppatch)y′∞ , as we now explain. 
Since y′∞ is in the support of N∞ it is contained in 
an irreducible subset of Spec (Ppatch) of dimen-
sion at least dim(S∞) , corresponding to a mini-
mal prime pmin ∈ Spec (Ppatch).

As Ppatch is a catenary local ring (it is a quo-
tient of a power series ring over OE ), we deduce 
that there is a chain of prime ideals refining 
pmin ⊂ y′∞ ⊂ mPpatch of length at least dim(S∞) . 
Since y′∞ has height 1, it follows that there is a 
chain of prime ideals joining pmin and y′∞ with 
length at least dim(S∞)− 1 . This shows that 
(Ppatch)y′∞ has dimension at least dim(S∞)− 1.

On the other hand, quotienting out by the 
augmentation ideal of S∞ in (Ppatch)y′∞ (i.e., quo-
tienting out by dim(S∞)− 1 variables) brings 
us to Py′ which, as we remarked above, is just 
the coefficient field E. So the maximal ideal in 
(Ppatch)y′∞ can be generated by dim(S∞)− 1 ele-
ments. This shows that (Ppatch)y′∞ is a regular 
local ring of dimension dim(S∞)− 1.

It follows that there is a unique irreducible 
component of Spec (Ppatch) containing y′∞ , and it 
has dimension dim(S∞) . Since the support of N∞ 
is equidimensional of dimension dim(S∞) , this 
irreducible component is contained in the sup-
port of N∞ . Because Spec (R∞) = Spec (Rpatch) 
is irreducible, the image of Spec (Rpatch) in 
Spec (Ppatch) , which contains y′∞ , is contained in 
the support of N∞ . This implies that the image 
y∞ of y in Spec (Ppatch) is contained in the sup-
port of N∞ . By Nakayama’s lemma, this is equiva-
lent to y being in the support of N Sym n

m . �

5.2  The Eigencurve
Our second method for proving automorphy 
of symmetric power representations is for-
mally similar to Theorem 5.1.1, but propagates 
automorphy of symmetric powers along finite 
slope p-adic families of modular forms. We have 
already seen one way to p-adically interpolate sys-
tems of Hecke eigenvalues for modular forms—
Emerton’s completed cohomology. Earlier work 
of Hida and Coleman used different methods 
to interpolate (respectively) ordinary and finite 
slope modular forms. A Hecke eigenform f is ordi-
nary if ap(f ) is a p-adic unit and finite slope if 
ap(f )  = 0.AH

Coleman and  Mazur29, and, in more general-
ity,  Buzzard17 constructed p-adic analytic spaces 
called eigencurves, interpolating Hecke eigenval-
ues arising from finite slope modular forms.

Fix a level N and a prime p ∤ N  . An eigencurve 
is a p-adic analytic space Ep(N ) , equidimen-
sional of dimension 1, containing a Zariski-dense 
set of points corresponding to pairs (f ,αp) , 
f ∈ Sk(Ŵ1(N )) a Hecke eigenform, αp one of the 
roots of X2 − ap(f )X + ǫf (p)p

k−1.
More generally, if f ∈ Sk(Ŵ1(Np

r)) is a Hecke 
eigenform, for some r ≥ 1 , with non-zero Up 
eigenvalue αp = ap(f ) , there is a corresponding 
point (f ,αp) of Ep(N ) . We call all these points 
coming from modular forms the classical points 
of Ep(N ) . The space Ep(N ) comes with a map 
w : Ep(N ) → W to a weight space W which 
parametrizes p-adic characters of Z×

p  . The image 
w(f ,αp) of a classical point is determined by 
weight and the p-part of the character of f:

The space W is very simple: it is a finite disjoint 
union of p-adic open unit discs. When p is odd 
the connected components correspond to the 
restriction of the character to µp−1 ⊂ Z×

p  and a 
co-ordinate on the disc is given by evaluating a 
character at 1+ p.

To explain more about the eigencurve, 
we’ll describe its construction using deforma-
tion rings of Galois representations. We fix 
a mod p (semisimple) Galois representation 
ρ : GQ → GL 2(Fp) which we assume arises from 
a Hecke eigenform of level N.

We have a pseudodeformation ring Pρ  para-
metrizing pseudodeformations of ρ which are 
unramified at primes not dividing Np, and we 
can construct from this a p-adic analytic space Xρ  

w(f ,αp)(x) = xk−2ǫf ,p(x).

AH The slope is the p-adic valuation of ap(f ).
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(the construction is due to  Berthelot38AI). Con-
sidering a pair (f ,αp) as above, we get a ‘classical 
point’

if ρf  has mod p reduction isomorphic to ρ . 
Taking the Zariski-closureAJ of the classi-
cal points gives a closed analytic subspace 
Ep(N )ρ ⊂ Xρ ×W ×Gm . Taking a disjoint 
union of the Ep(N )ρ  over modular (level N) 
residual representations ρ gives one construc-
tion of the eigencurve Ep(N ) . It is entirely unclear 
from this construction that Ep(N ) has dimen-
sion one! This is proved using Coleman’s theory 
of families of overconvergent modular forms, 
which gives an automorphic construction of the 
space Ep(N ) and in particular proves that Ep(N ) is 
quasi-finite and flat over W.

Each point z ∈ Ep(N )ρ ⊂ Xρ ×W ×Gm has 
an associated Galois pseudorepresentation, com-
ing from the image of z in Xρ  . Supposing that this 
pseudorepresentation is irreducible, we get a con-
tinuous representation

Kisin proposed an extension of the Fontaine–
Mazur conjecture which would characterize those 
Galois representations coming from points of the 
eigencurve. In particular, they should be points 
where the local Galois representation ρz|GQp

 is 
trianguline.

5.3  Trianguline Representations and the 
Eigencurve

To say something about these trianguline repre-
sentations and their connection with the eigen-
curve, we first consider the p-adic analytic space 
Xρp associated with the pseudodeformation ring 
Pρp of the local residual representation 
ρp = ρ|GQp

 . Each classical point (f ,αp) of Ep(N )ρ  
gives us a point of Xρp ×W ×Gm , where αp is an 
eigenvalue of the Frobenius operator on the crys-
talline Dieudonné module Dcris(ρf |GQp

) and 
w(f ,αp) can be read off from det(ρf |GQp

) using 
local class field theory. This means we can define 
(purely locally) a subset of points in 
Xρp ×W ×Gm coming from certain de Rham 
lifts ρ of ρp and a non-zero eigenvalue of Frobe-
nius on Dcris(ρ) ; this subset will contain the 

(ρf ,w(f ,αp),αp) ∈ Xρ ,×W ×Gm

ρz : GQ → GL 2(Cp).

image of all the classical points in Ep(N )ρ  . Taking 
a Zariski-closure, we obtain a closed analytic sub-
space X tri

ρp
⊂ Xρp ×W ×Gm with a map 

Ep(N )ρ → X tri
ρp

.

As with the eigencurve, the definition of the 
space X tri

ρp
 by a closure construction is not espe-

cially illuminating. With much more work the 
points of X tri

ρp
 can be intrinsically characterized as 

representations which are trianguline (in the 
sense of  Colmez30); this follows from a result of 
 Kisin60 on analytic continuation of crystalline 
periods. The simplest family of trianguline two-
dimensional representations are those which are 
reducible. More generally, there are representa-
tions which are irreducible but which become 
reducible when passing to a category of (φ,Ŵ)
-modules over a Robba ring.

Having constructed the local trianguline 
space, we can define a global version using a fiber 
product:

We then have a closed immersion Ep(N )ρ →֒ X tri
ρ  . 

This is the analogue of the closed immersion 
Spec (Tm) →֒ Spec (R

geo
ρ ) which we consider 

when thinking about modularity lifting.
Kisin’s extension of the Fontaine–Mazur con-

jecture implies that Ep(N ) is essentially isomor-
phic to X tri

ρ —more precisely, it will be a union 
of irreducible components in X tri

ρ  which we can 
describe by imposing extra conditions on the 
ramification at primes dividing N in the Galois 
representations parametrized by Xρ  . Emerton’s 
approach to the Fontaine–Mazur conjecture also 
proves this statement in many  cases41.

5.4  Analytic Continuation of Modularity
In this subsection, we will sketch the strategy 
 used73 to prove the following:

Theorem 5.4.1 (N–Thorne) Suppose 
f , f ′ are two cuspidal Hecke eigenforms, 
both with weight at least two and a com-
mon level N. Fix a prime p ∤ N  and let αp and 

α′
p be roots of X2 − ap(f )X + pkf −1ǫf (p) and 

X2 − ap(f
′)X + p

kf ′−1
ǫf ′(p) respectively. Fix an 

integer n ≥ 1 and an isomorphism ι : Qp
∼= C , and 

suppose the following conditions hold: 

(1) (f ,αp) and (f ′,α′
p) lie on a common irreduc-

ible component of Ep(N ).

X tri
ρ := (Xρ ×W ×Gm)×Xρp×W×Gm X

tri
ρp
.

AI For example, the p-adic analytic space associated with the 
formal power series ring Zp[[t]] is the open unit disc.
AJ That is, the smallest closed analytic subspace containing 
these points.
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(2) Neither f nor f ′ has CM and neither of the 
Hecke eigenvalues ι−1(ap(f )), ι

−1(ap(f
′)) is a 

p-adic unit.
(3) The conjugacy classes Sym n(π(f )p) and 

Sym n(π(f ′)p) are regular (i.e., there are n+ 1 
distinct eigenvalues).

(4) Sym nρf ′,ι is automorphic.

Then Sym nρf ,ι is automorphic.
A few remarks on the theorem: 

(1) The first condition automatically implies 
that ρf ,ι

∼= ρf ′,ι . So we can view this theo-
rem as another ‘relative modularity lifting 
theorem’, but with a stronger condition on 
the relationship between ρf ,ι and ρf ′,ι . One 
significant gain, in comparison to Theo-
rem  5.1.1, is that we have no condition on 
the image of ρf ,ι.

(2) To make condition (3) more explicit, 
note that Sym n(π(f )p) is regular if and 
only if, writing αp and βp for the two roots 
of X2 − ap(f )X + pkf −1ǫf (p) , we have 
(αp/βp)

i  = 1 for i = 1, . . . , n . An amusing 
argument with congruences mod 5 and 7 
shows that a level 1 Hecke eigenform satis-
fies this condition for all n when p = 2.

(3) The precise statement in our paper cor-
responding to this result is a bit more gen-
eral, allowing classical points with p dividing 
the level.AK We also prove a version of the 
theorem where f and f ′ are ι-ordinary, in 
other words when ι−1(ap(f )) and ι−1(ap(f )) 
are p-adic units.

1 �Proof

The idea of proof is formally similar to the proof of 
Theorem 5.1.1. However, we do not (directly) use 
Taylor–Wiles patching at all.AL Instead the role of 
the patched deformation ring Rpatch is played by the 
space of trianguline Galois representation X tri

ρf ,ι
 and 

the patched module M∞ is replaced by the eigenva-
riety Ep(N )ρf ,ι . The ring S∞ controlling ramifica-
tion at auxiliary primes is replaced by the weight 
space W.

In other words, instead of allowing ramifica-
tion at auxiliary Taylor–Wiles primes and 

mapping the Galois representations ρf ,ι and ρf ′,ι 
to points of an irreducible scheme Spec (R∞) , we 
enlarge the class of local Galois representations 
we permit at the prime p and map ρf ,ι and ρf ′,ι 
(with the extra data coming from the choice of 
refinements αp , α′

p ) to points of X tri
ρf ,ι

 . Assumption 

(1) in the theorem means that these points lie in a 
common irreducible subspace.

We need versions of Ep(N )ρf ,ι and X tri
ρf ,ι

 which 

will interpolate self-dual automorphic represen-
tations and Galois representations lifting 
Sym nρf ,ι . We denote these by Ep, Sym nρf ,ι

 and 

X tri
Sym nρf ,ι

 , respectively. They fit into a commuta-

tive diagram with closed immersions for the ver-
tical maps from the automorphic to Galois 
spaces:

There are several different ways to construct 
the eigenvariety Ep, Sym nρf ,ι

 . For example, using 
Hansen’s general construction for cohomologi-
cal automorphic representations of reductive 
 groups50. The construction which was most con-
venient for us was to change contexts so that we 
are working with automorphic forms on definite 
unitary groups of rank 2 and n+ 1 , and then use 
Emerton’s representation-theoretic eigenvariety 
 construction40 as in the work of Breuil, Hellmann 
and  Schraen9.

The trianguline space X tri
Sym nρf ,ι

 parametrizes 

n+ 1-dimensional, (self-dual) p-adic representa-
tions of GQ , lifting the fixed pseudorepresentation 
Sym nρf ,ι . It is a closed analytic subspace of a 
product of spaces X Sym nρf ,ι

× T  , where T  para-
metrizes characters of the diagonal torus in 
GL n+1(Qp).

AM Its construction and the existence 
of a closed immersion from the eigenvariety in 
this higher rank case has been established in dif-
ferent contexts by people including Bellaïche and 
 Chenevier6,  Hellmann52, Kedlaya–Pottharst–
Xiao.64 and  Liu70. In fact, this is usually done 
under the assumption that Sym nρf ,ι is irreduci-
ble (although Hellmann’s  preprint52 does not 
include this assumption). For this reason, we do 
not literally use a space X tri

Sym nρf ,ι
 , and instead 

Ep(N)ρf,ι
Ep,Symn ρf,ι

Xtri
ρf,ι

Xtri
Symn ρf,ι

i j

Symn

AK This generality is important when we apply the theorem to 
establish automorphy of symmetric powers of level 1 eigen-
forms.

AL We do crucially use our  results75 on vanishing of adjoint 
Selmer groups which in turn are proved using the Taylor–
Wiles method.
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work with an open neighborhood of X tri
Sym nρf ,ι

 at 

a point with an irreducible associated Galois rep-
resentation. This means that the difference 
between pseudorepresentations and representa-
tions can be safely ignored. The idea of the argu-
ment is easier to explain with a global space 
X tri

Sym nρf ,ι
 , so we will do this here.

To complete the proof, following the pattern 
of the proof of Theorem 5.1.1, we first need to 
show: 

(REG) X tri
Sym nρf ,ι

 is regular of dimension equal 

to dim(Ep, Sym nρf ,ι
) at the point y′ associated 

to Sym nρf ′,ι and the refinement α′
p.

We will come back to the proof of this later. A 
consequence of (REG) is that there is a unique 
irreducible component C of X tri

Sym nρf ,ι
 passing 

through y′ , and it has dimension equal to 
dim(Ep, Sym nρf ,ι

) . It contains an irreducible com-
ponent of Ep, Sym nρf ,ι

 , and since the eigenvariety is 
equidimensional we see that the closed immer-
sion Ep, Sym nρf ,ι

→֒ X tri
Sym nρf ,ι

 identifies C with an 

irreducible component of Ep, Sym nρf ,ι
 . Since x and 

x′ are points of an irreducible subspace of 
Ep(N )ρf ,ι , the image y of x in X tri

Sym nρf ,ι
 is also con-

tained in the irreducible component C. We 
deduce that y is a point of the eigenvariety 
Ep, Sym nρf ,ι

 . To conclude, we need to show that y is 
in fact a classical point. If the slope vp(αp) is suffi-
ciently small, this follows from a ‘small slope 
implies classical’ theorem generalizing Coleman’s 
theorem for overconvergent modular forms. 
However, since we are assuming f is non-ordinary, 
for big enough n we will not be able to apply this 
result. Instead we use a slightly more precise clas-
sicality theorem which follows from ideas of Che-
nevier and Breuil–Hellmann–Schraen9, 24, and 
shows that a point of Ep, Sym nρf ,ι

 with a de Rham 
associated Galois representation which is suffi-
ciently generic (‘every refinement in non-criti-
cal’) is classical. The idea goes back to Coleman, 
who proved that an overconvergent eigenform f 
of weight k ≥ 2 which is not classical has a ‘com-
panion form’ in weight 2− k with Hecke eigen-
values equal to a twist of those of f—more 

precisely, the eigenvalue of Tl for l ∤ Np is 
l1−kal(f ) . Supposing that ρf  is de Rham, the 
existence of the companion form forces the rep-
resentation ρf  to have a special property: the local 
representation ρf |GQp

 is a direct sum of two 
characters.

Finally, we go back to the proof of (REG). This 
follows an idea due to Kisin in the two-dimen-
sional  case60, which was generalized by Bellaïche 
and  Chenevier6. Again the vanishing of a Bloch–
Kato adjoint Selmer group is crucial. This is used 
to give an upper bound for the dimension of the 
tangent space of X tri

Sym nρf ,ι
 at a classical pointAN. 

On the other hand, the existence of the closed 
immersion j gives a lower bound on the dimen-
sion of the local ring at this point. Since these 
bounds coincide, we get regularity. �

5.5  Symmetric Power Functoriality: the 
Rest of the Proof

Theorems 5.1.1 and 5.4.1 combine to allow us to 
prove:

Theorem 5.5.1 Let n ≥ 2 be an integer and suppose 
that the nth symmetric power lifting exists for at least 
one cuspidal Hecke eigenform of level 1. Then the nth 
symmetric power lifting exists for every cuspidal Hecke 
eigenform without CM and of weight k ≥ 2.

 Proof The argument proceeds in three steps. 
First, we show that automorphy of the nth 
symmetric power for one level 1 cuspidal Hecke 
eigenform implies automorphy of the nth 
symmetric power for all level 1 cuspidal Hecke 
eigenforms. To prove this, we are going to apply 
Theorem 5.4.1, but for this to be of any use we 
need some information about the irreducible 
components of an eigencurve. For this reason, we 
take p = 2 and use a beautiful explicit description, 
due to Buzzard–Kilford10, of a large part of the 
eigencurve E2(1) . This allows us to show that any 
two classical points on the eigencurve E2(1) can be 
connected by a sequence of moves of two types:

•   moving along an irreducible component
•   jumping from a classical point (f ,α) to (f ,β) 

when f has level 1 and α,β are the two roots of 
X2 − a2(f )X + ǫf (2)2

k−1 ; more generally, we 
can jump from (f ,α) to its ‘twin’ point (f ′,β) 
where f ′ is a character twist of f. In either 

AN satisfying the regularity assumption 3

AM Note that the W ×Gm which appears in the two-dimen-
sional case can be viewed as parametrizing characters of Q×

p .
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case, vp(α)+ vp(β) = k − 1 , where k is the 
weight of f.

It is clear that the second kind of move preserves 
automorphy of symmetric powers. Moving along 
irreducible components preserves automorphy 
of symmetric powers by Theorem 5.4.1. So these 
moves allow us to propagate automorphy of the 
nth symmetric power to all level 1 eigenforms.

For the second step, we apply a version of 
Theorem 5.4.1 where p is allowed to divide the 
level N of the modular forms. This allows us to 
extend automorphy of the nth symmetric power 
to eigenforms of squarefree level, or more gener-
ally to those eigenforms whose associated auto-
morphic representation has no supercuspidal 
local factor. These are precisely the eigenforms 
which (after possible twisting by a Dirichlet char-
acter) appear as classical points of eigencurves. 
A technical point arising here is that we need to 
deal with a version of the regularity condition in 
Theorem 5.4.1—in general, it is not known if the 
polynomial X2 − ap(f )X + pkf −1ǫf (p) has dis-
tinct  roots21. To do this, we use the Taylor–Wiles 
method to construct a congruence modulo a 
large auxiliary prime to an eigenform which does 
satisfy this regularity condition and then use an 
automorphy lifting  theorem12 to reduce to the 
regular case.

Finally, for the third step, we need to deal with 
eigenforms with supercuspidal local factors. We 
can reduce to the case of weight  212. Suppose p 
is a prime where our eigenform f has a supercus-
pidal local factor. We find a congruence mod p 
between f and a non-ordinary eigenform g with 
a (ramified) principal series factor at p. Using the 
modularity lifting Theorem 5.1.1, we can then 
deduce automorphy of Sym nρf ,ι from the auto-
morphy of Sym nρg ,ι . This time we need to ensure 
that the condition on the image of our mod p 
Galois representation in Theorem 5.1.1 is satis-
fied. To do this, we follow an idea of Khare and 
Wintenberger which they apply to deduce Serre’s 
conjecture in general from the level 1 case, using 
congruences (modulo a prime l  = p ) to modu-
lar forms with ‘good dihedral’ ramification at 
auxiliary primes which forces them to have large 
image. �

With this theorem in hand, it remains to find 
one example (for each n) of a level 1 cuspidal 
Hecke eigenform for which the nth symmetric 
power exists. The strategy here is similar to Clozel 
and Thorne’s, but instead of using reducibility of 
the mod p Galois representations for small p, the 
idea (suggested by Clozel) is to consider modu-
lar forms which are congruent to a CM form θ 

mod p, which means that the associated mod p 
Galois representations are dihedral (induced from 
GK  for K/Q the imaginary quadratic field rel-
evant for θ ). In particular, the symmetric powers 
of these Galois representations decompose into 
1- and 2-dimensional pieces, so it follows from 
Langlands’s theory of Eisenstein series that they 
are associated with a (non-cuspidal) automor-
phic representation πn(θ) . There is a great deal 
of work needed to complete the proof from here, 
but the ingredients include:

•   Modularity lifting theorems allowing residu-
ally reducible Galois  representations95,3.

•   A construction of congruences between the 
Eisenstein series πn(θ) and cuspidal automor-
phic representations with appropriate ramifi-
cation at an auxiliary prime. These level rais-
ing congruences are needed in order to apply 
our lifting  theorem3. One family of level rais-
ing congruences comes from the work of Ana-
stassiades and  Thorne5.

•   Another kind of level raising result established 
in our  work73 takes up a significant part of 
that paper. The construction is founded on 
the unipotent cuspidal representation of a 
finite unitary group in three variables, and a 
lot of results from the local and global theory 
of automorphic forms are applied, including 
Moeglin’s classification of discrete series rep-
resentations of p-adic unitary  groups72, base 
change for automorphic representations of 
unitary groups (proved using Arthur’s sim-
ple trace  formula67) and results of Lust and 
 Stevens71 which allow us to understand some 
of the local behavior of this global base change 
in terms of Moeglin’s classification.
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