TITLE:

Modularization and Abstraction in
Logic Programming

AUTHOR(S):

Furukawa, K.; Nakajima, R.; Yonezawa, A.

CITATION:

Furukawa, K. ...[et al]. Modularization and Abstraction in Logic Programming. 24T HF
IOFEAZTER 1983, 482: 296-310

ISSUE DATE:
1983-03

URL:
http://hdl.handle.net/2433/103400

RIGHT:

REHAEFNWRILS BY %
il

KURENAI

Kyota University Research Information Repository

BRI RFTER R
482 & 1983 £ 296-310

296

Modularization and Abstraction in Logic Programming

-extended abstract-
Dogen : {K. Furukawa, ICOT
R. Nakajima, Kyoto Universty

A. Yonezawa, Tokyo Institute of Technology}

In knowledge information processing, structuring of knowledege
and’ algorithm is one of the key issues. The goal of this work is to
introduce the concepts and mechanisms of abstraction, modularization
and parameterization into 1logic programming which 1is one of the
preliminary steps toward the kernel langage of the fifth generatioh

computer systems.

1. Introduction

To break the complexity barrier of software, modularization seems

to be one of the most effective means.

The idea of "program modularization through abstraction®
[Dijkstra, Hcare, Dahl 70] has seen its success in the scene of
conventional imperative (von Neuman styie) prograhming. This idea has
promoted the development of languages such as CLU [Liskov 79] and Iota
[Nakajima 80] whose primal modularization mechanisms are the defining-

facilities of abstract data types.

297

On the other hand, 1little work has been done to introduce
modularization mechanisms in the design of 1lcgic programming
1anguages. (An exception is Mprolg and its software support system
LDM (Farkas 8271, but they seem to limit themselves to providing some
grouping facilities in their language.) Based on our experiences 1in
writing large software in Prolog, we assert that introduction of
modularization by way of abstraction mechanisms especially data

abstraction is highly useful or even necessary in logic programming.

A lcgic programming language called Himiko, which we are
currently designing, provides data abstraction and mocdularization

mechanisms as language constructs.

2. 'Data types, Modules

HIMIKO ;s based on a many-sorted logiec. Namely HIMIKO includes
data type concepts, where a type is a collection of terms which are
generated in an explicitly specified manner. This mechanism can
reduce the possibility of errors which are caused by mismatching
between term structures during wunification procedures and enhance
readability of programs at the cost of some inflexibilities. Note
that we assume that the language is to be embedded in an integrated
programming system which will include powerful programming support and
validation facilities and lighten the burden of the programmers due to
the introduction of strict programming disciplines.

There are two kinds of data types in Himiko; types and patterns.
Types correspond to abstract data types whose term structures are

encapuslated into their defining modules and to which access 1is

298
possible only through a set of "menu"ed operations (Section 3). On
the other hand, patterns are those whose term structures are shown to
outside of the modules. Both types and patterns are parametrized with
respect to data types. For instrans the type of queues of arbitrary
elements are given in Himiko by a type QUEUE(T) where T is a data type
parameter. By passing an actual type or pattern to T, one can get a
type of queues consisting of elements df a definite data type. We do
not, however, get into details of patterns or type-parametrization in

this version of the report.

A program in HIMIKO 1s written as a hierarchy of modules.
Semantically a module defines a chunk of theory and syntactically it
consists of interface that declares the relations and data types as
well as realization that gives the logic programs. The syntax for
modules is designed under the assumption that a modular programming
system will be ©provided for HIMIKO with which construction and

management of modules are supported by module data base facilities.

A module is the minimal wunit to which abstraction and

parameterization (as described below) are applied.

239

3. Abstraction

The notion of data abstraction is based on the view that a data
type 1is characterized by a set of operations which are basic on the
type and that access to any object of the type is allowed only thrcough
those operations. A module in HIMIKO encapuslates the types that it
defines. Namely the concrete strucfure of the terms which form the
type is not visible from the outerbmodules. Suppose a modole M define
a type tt and relations q and r on tt. The terms of the type tt are
Supposed tc be generated only by g and r and therefore satisfy a
certain invariance condition whose preservation is often essetial for
algorithm correctness. If an object of £t was accessed from another
module N directly without referring to g or r, the condition would be
violated to result in a logical error in the program. Therefore the
only legal access to objects of tt from N should be through g and r.
Moreover 1in the text of N the arguments of q and r of type tt can
appear as variables, 1i.e. q(x,y) ,not g(f(2,x),f(4,y)). Al1l

necessary unification procedures to terms of tt are restricted to M.

A module in Himiko consists of an interface part and a
realization part (see Figure A4). An interface part specifies the
names and functionality (argument types) of the relations which are
defined by the module and which are accessible from outside the
module. ri, r2,... 1in Figure A are such relations, If abstract data
types are defined by the module, their names are given in the
interface part and the names of the relations which characterize the
abstract data types are also given in the interface part together with
their functicnality. In Figure A, n1, n2, n3 are the nameé of the

abstract data types which are defined by the module.

300

The realization part of a module defines the relations whose
names are given in the corresponding interface part. (Relations are’
defined in the form of Horn clause.) To define the relations, the
realization part may contain the definitions of relations that are not
named in the interface part. Such relations cannot be wused outside
the module. When names of abstract data types are given in the‘
interface part, their representations must be specified as "term®
structures 1n the-corre§ponding realization pért. The equations that

follow repr in Figure A specify such representations.

Note that a group of abstract data types are characterized by
mutual "relations" among types in the group. Thus, a mecdule in Himiko
may define more than oné abstract data type simultaneousiy, which is
different from the corresponding notions in Iota and Clu. A mecdule in
Himiko may define a collection of relations which are utilized to
accomplish a single task, or a collection of relations which are
packaged as a unit. In such cases, only the relations whose names are
given in the interface part can be accessible (or called) from cutside

the module.

301

module

interface
type <nl1>, <n2>, <n3>

rel
ri(<n1>, <n2>, <n3>)
r2(<n1>, <integer>, <n2>)

realization

repr
<M1> = ...term structure...
<n2> = ...Lerm structure...
<{<n3> = ...term structure...
clause
ri(eeee)s
rie..e) 1= 81000, s2(...).
re....).

r2(....) 1= s3(...),
r2(e...) 1= 85(...),

end-of-module

Figure A. Module Structure

To show how programs in Himiko are structured through the notion
of modules, we consider (a fragment of)} the Himiko programs depicted
in Figure C,D,E which implement a sihplified version of a T-Prolog
interpreter. (T-Prolog 1is a 1logic-based programming language for

simulation.) The interpfeter takes a goal list as input and a final

302

state as output, and it simulates events described in the goal 1list,

The module for the interpreter (Figure E) defines a relation "executet

which is defined in terms of a relation "executel™, The definitions
of these relations are given in the realization part. This module
uses a module which defines an abstract data type "state". (See

Figure D.) This type is an abstraction of the state of the simulated
world. The relations {(or operations)‘that are basic to this type aré
those for creating a state, recording state changes, simulated actions
of processes and so on. The definitions for M"execute" and "executel®

are described in terms of the relations defined by the state-process.

As specified in the realization part, the abstract data type
"state" 1is represented as a term structure whose functor name is
'state’'. This term consists of three subterms which correspond to a
queue for waiting processes, &a queue for blocked processes and an
identifier for the currently active process. The subterms
corresponding to gueues are constructed from variables of an abstract
data type queue. The definitions of relations (operations) basic to
gueues and the data representatién for the type queue are described in
the module depicted in Figure E. HNote that this module contains two
realization parts, one describing the 1list implementation of a queue,
the other the d-list (difference 1ist) implementation of a queue.
{(The hierarchy of the modules for the interpreter -programs 1is

illustrated in Figure B.)

303

- ———— ———

- e Em e e o e ma mm e e R I T

Figure B

An interesting point in our language design for program . modules
is that term structures are allowed 1in definitions of relations.
Namely, the term strauctures alsc plays a rocle of basic type
constructors such 'as 1list and thus substerms (which correspond to
componemts of data structures) are extracted or modified by
unification procedures, preserving a powerful feature of the Prolog
type 1logic programming. (This, in turn, implies that some of

arguments for a relation do not have to be typed.)

Note that [Kowalski 79] introduced the idea of separation of data
structure from programs to increase their readability and reliability,
but he did not extend his idea to design a 1language which supports

modularity.

304

module queue-module
interface
type <queue>

rel create-q(<gqueue>) ;create an empty queue.
en-q{(<item>,<queue>,<{queue>)
;put an <item> at the end of queue.

de-q(<item>,<queue>,<queue>)
;delete the item at the top of the queue

realization(1)

repr
<{queue> = <list> ;a8 queue 1s implemented as a usual list.
clause create=q([1]).
en-q(X,Q,Q1) :- append(Q,[X1,Q1).
de-q([1,[1,0[1).
de-q(X,(X1Q1,Q).

relaization(2)
repr

{queue> = d(<list>,<1list>)
;ja queue 1s implemented as a d-list.

clause create-q(d(Q,Q)).
en-q(X,d(Q,[XiQ11),d(Q,Q1)).
de-q(X,d([X1Q1,Q17),d(Q,Q1)).

end-of-module

305

module state-process-module

rel create-state(<state>) ;create an initial state.
get-active~-process(<process-id>,<state>) :

;get the currently active process.
new-active-process(<{process-id>,<{(state>,<state>)

;make the <{process-id> active
make-process-await(<{process>,<{state>,<{state>)
make-process-=blocked{<process>,<condition>,<{state>,<state>)
awake-waiting-process(<process>,<stated>,<{stated)

realization:,
repr _ L _
{state> = state{waiting(<queue>),
blocked(<queue>),
active(<process-id>))

clause ' . ,
create-state(state(waiting(Q1),blocked(Q2),active(self))

:-create-q(Q1),create-q{(Q2y.
get-active-process(ID,state(, ,active(ID))).
new-active-process(ID,state(W,B,),state(W,B,active(ID))).
make-process-await ({(PGL,ID), - ‘

_state(waiting(QW),BPQ,AP),
state(waiting(QW1),BPQ,AP))

: = en-q((PGL,ID),QW,QW1).
make-process-blocked{((PGL,ID),C,state(WPQ,blocked(QB),AP),

- " state(WPQ,blocked(QB1),AP))

:- en-q((PGL,C,ID),QB,QB1). ‘

awake-waiting-process((PGL,ID), o
state(waiting(QW), BPQ,AP),
state(waiting(QW1),BPQ,AP))

t- de-q((PGL,ID),QW,QW1).

end-of-module

Figure D

306

module interpreter

interface
rel execute{<<goal-list>, <stated>)

<goal-1lis> is a raw term being represented as:
{gcal-1lis> = nil | (<goal>,<goal-list>)
<goal> = new(<goal-list>,<process-id>)

| wait(<econdition>) |

we we wo ws

end

realization
clause execute(GL,FS) ;FS stands for the final state.
:- create-state(IS),executel(GL,IS,FS).

;IS gets an initial state.

execute1((new(PGL,ID),GL),S1,82)
;if the head of the goal list is the form new(¥,¥),
:- get-active-process(AP,S1),
make-process-await ((GL,AP),S31,S3),
new-active-process(ID,S3,34),
!, execute(PGL,34,32).

executel((wait(C),GL}),S1,532)
:=- (C,execute1(GL,S1,32))
;if a condition C holds
;then executel(...)
or
get-active-process(AP,S1),
make-process~blocked((GL,AP),C,S1,33),
', call-sv(S3,82).

call-sv(S1,52)
T - ,activate~-waiting-process(85,32).

activate-waiting-process(sS1,52)
:- awake-waiting-process{((GL,ID),S1,83),

new-active-process{(ID,S3,34),
!,execute1(GL, S4,82).

end-of-module

Figure E

307

4. Logical viewing of terms

In logic programming all data structures are terms and procedures
on them are given by unification mechanisms. Often a single data
object can be viewed as more than one term structures on which
different unification procedures are conveniently applied. For
instance we have a string of characters "abe...k" which actually is
represented as a list of characters:
cons(a, cons(b,(cons(k, nil))..).

On the other hand it is convenient to regard it as a page which 1is a
sequence of lines where a 1line is a sequence of characters with a

certain ending character. Namely

line(k1, line(k2, line(....))..)

is. another view with each ki standing for a line.

The transformation between those two term structures is given by

the following Prolog-like program.

specification.

<PAGE1> = cons(eop,nil) | cons(<CHAR1>, <PAGE1>)
<PAGE2> = cons(eop,nil) | line(<LINE>, <PAGE2>)

<LINE> = cons(eol,nil) | char(<CHAR2>, <LINE>)

<{CHAR1> = <CHAR2> | eol

transformation.

trans(cons(eop,nil),cons(eop,nil)).
trans(cons(eol,PAGE1),line(cons(eol,nil),PAGE2))

- trans(PAGE1,PAGE2).
trans(cons(X,PAGE1),line(char(X,LINE),PAGE2))

:— trans(PAGE1,1ine(LINE,PAGE2)).

HIMIKO utilizes such transformation rules to conduct virtual
unification, that 1is, to unify an abstract tefm to an actual term.

Most cases it is not necessary to transform the entire structure at a

time but to perform only part of transformation at the time of the

308

unification procedure. The lazy evaluation technique (e.g. by [Clark

81]1) can be well embedded in HIMIKO to meet this gcal.

5. Optimization

Modularization often introduces some inefficiency into programs
at the cost of getting them well structured. Let us consider another
éxample of an abstract data type representing a Rubik cube. Figuré F
shdws a rule to manipulate the cube, which is written using directly

thé;following concrete representation of the cube:

cube(front({F1,F2, ... ,
back([B1,B2, ... ,
lside([L1,L2, ... ,
rside([R1,R2, ... ,
top([T1,T2, ... ,
bottom({01,02, ... ,

prod rule(move_to_front_north:
[X = cube(front([FC} 1),
back([_, ,TC;

?

?ép([TC,_,FC:_]);

D

?

found(X)1

=>
fapply([1_up,b_ccw,l_down,t_rightl,X,Y),
replace(X,Y),
print_cube change(X,Y)1).

Figure F. A Rubik cube rule written using a conc?ete'representation.

303

a part of upper module

prod rule(move tc front north:

B [a_cube(X),
color(front:center of X, FC),
color(back:north of X, TC),
color(top:center of X, ¢y,
coler{top:north of X, FC),
found(X)]
=> . A

(apply([1l_up,b_ccw,l_down,t rightl,X,Y),
) -

lower module

mocdule cube

interface
type <cube>

rel a _cube{(<cube>)
color(<face>:<position> of <cube>, <color>)

realization
repr
{cube> = vector(vector(<F1>,KF2>, ... ,<Fg>},
vector (<B1>,<B2>, ... ,<B9>),
vector (<L1>,<L2>, ... ,<L9>),
vector(<R1>,<R2>, ... ,<R9>),
vector(<T1>,<T2>, ... ,<T9>),
vector(<Ci>,<02>, ... ,<09>))

clause a cube(vector(vector(_, , , , , , 4 5)y

vector(,

vector ("
vector(

color(front:Position of vector(F, , , , ,), C)'F

:- p_color(Position, F, C).

color(back:Position of vector(,B, , , ,), c)
‘ _ p_coler(Position, B, C). ' :

- p_color(ecenter, vector(C; , , , , , , -), C).

p_color(north west, vector(,C, , , , , , ;°), C).

end of module

Figure G. A modularized version of a part of the Rubik cube program.

310

The modularized version of the rule as well as the 1lower

realization module for the abstract data "cube" is show in Figure G.

Here, the single procedure call "X = cube(front(I{FC} 1),
back({_, ,TC{ 1), _, _, top([TC, ,FC! 1), ,)" in Figure F is divided
into four calls and makes the program inefficient. To avoid this
defect, we use partial evaluation technique. If we partly perform the
program in advance to the actual run, we can obtain the value of X in

a_cube(X), which will result to:

X = vector(vector(FC, , , , , , 5 4 J,

vector‘(_,_,TC, v v)

’

This is equivalent to the literal in the original program (in Figure

F) directly manipulating the actual representation in Figure G.

Reference

[Clafk 811 Clark, K. L. and Gregory, S. "A relational language for
parallel ©programming®”, In Proc. of the ACM Conference on Functional
Programming Languages and Computer Architecture, ACM, October (1981)

[Farkas 82] Farkas, Z. et al. ™"LDM: a program specification support
system", In Proc. of the First 1International Logic Programming
Conference, Marseille, France {1982)

[Furukawa 82] Furukawa, K. et al. "Problem Solving and Inference
Mechanisms" in Fifth Generaticon Computer Systems (Ed. Moto-oka, T.),
JIPDEC - North-Holland (1982)

[Kowalski 797 Kowalski, R. Logic for Problem Solving, North-Helland
(1979) '

[Liskov 77] Liskov, B. H. et al. "Abstraction Mechanisms in CLU™,
CACM, VOL., 20, NO. 8, 564-576 (1977)

[Nakajima 801 Nakajima, R. et al. "Hierarchical Program

Specification and Verification - a Many-sorted Logical Approach", Acta
Informatica 14, 135-155 (1980)

