
Modularization and

Specification of

Service-Oriented Systems

Modularization and

Specification of

Service-Oriented Systems

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus Prof. K. C. A. M. Luyben
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op dinsdag 5 juli om 15:00 uur

door

Linda Iris TERLOUW
ingenieur in de technische informatica en bedrijfsinformatietechnologie

geboren te Tilburg

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. ir. J. L. G. Dietz

Samenstelling promotiecommissie:

Rector magnificus, Technische Universiteit Delft, voorzitter

Prof. dr. ir. J. L. G. Dietz, Technische Universiteit Delft, promotor

Prof. dr. ir. A. Verbraeck, Technische Universiteit Delft

Prof. dr. R. J. Wieringa, Universiteit Twente

Prof. dr. J. Verelst, Universiteit van Antwerpen

Prof. dr. ing. J. B. F. Mulder MBA, Universiteit van Antwerpen

Prof. dr. H. A. Proper, Radboud Universiteit Nijmegen

Dr. dipl.-ing. A. Albani, Universiteit van St. Gallen

Prof. dr. Y. H. Tan, Technische Universiteit Delft, reservelid

Verspreid door:

Linda Terlouw

Martinus Nijhoffhove 2

3437 ZR Nieuwegein

Nederland

linda.terlouw@icris.nl

ISBN: 978-94-6108-182-7

SIKS Dissertatiereeks nr. 2011-21

Het in dit proefschrift vermelde onderzoek is uitgevoerd onder de auspiciën

van SIKS, de Nederlandse School voor Informatie- en KennisSystemen.

Druk: Gildeprint Drukkerijen - Enschede

Omslagontwerp: Jeroen Advocaat

Gezet in LATEX, diagrammen in OmniGraffle

2011 Linda Terlouw. Alle rechten voorbehouden.

Acknowledgments

Pursuing a PhD is a painful, yet rewarding experience. Every PhD student
and promotor will confirm that the only good dissertation is a done disser-
tation. After six years of research I am happy to present the final results.
The research is conducted at the Delft University of Technology in a research
group consisting of hybrids; people who work in industry with an academic
interest and people who work in academia with a wish to put theory into
practice. Combining research with a ‘day job’ as IT consultant is a drawback
as well as a benefit. The drawback is the chronic lack of time and focus. The
benefit is a continuous reality check on the relevance of the research.

Though writing a dissertation seems like a very lonely process, many peo-
ple in fact contributed to it. First of all, I thank my promotor Jan Dietz, who
guided me through the jungle of academic research. My daily supervisor,
Antonia Albani, taught me the very specific writing style used in academic
papers and gave valuable feedback on my draft papers that helped in get-
ting the papers accepted. Also, I would like to express my gratitude to the
other members of my dissertation committee for reading the dissertation and
providing feedback.

The CIAO! doctoral consortia gave me an opportunity to present my work
in an early phase to the CIAO! board members and the fellow doctoral stu-
dents. Presenting at such an event was never easy; interruptions started at
the first slide and razor-sharp comments were made by the board members.
But these events contributed highly to the selection of an appropriate research
topic and to building the research on strong theoretical foundations.

In this dissertation three case studies are presented. I would like to thank
the case study participants at the Port of Rotterdam, De Lage Landen and
Air France/KLM for giving me the opportunity to validate my findings in
practice and for providing valuable new insights. Especially, I would like to

v

thank the persons who took the time and effort to arrange the interviews and
workshops: Edwin de Werk and Kees Eveleens Maarse (Port of Rotterdam),
Rens Voogt (De Lage Landen), and Frank Rappange (Air France/KLM).
TeamSupport supported these case studies by providing a license for group
decision support software.

I would like to express my appreciation to Paul Weghorst, Reggie Maas-
Schellekens, and Eric van der Ende who supported my PhD research when I
was working at Ordina. Furthermore, I am grateful to all the members of the
former SOA Focus Team of Ordina for all the interesting discussions. Thanks
Bart Pruijn, Art Ligthart, Jan-Willem Hubbers, Marco Brattinga, Willem
van Pruijssen, Hermen Grievink, and Lex Haket.

For giving tips and tricks on how to combine life as a PhD student and
an entrepreneur I would like to thank Wiebe Hordijk.

My parents always supported me in my academic activities and encouraged
me to bring out my best. I owe my career as an IT consultant as well as my
(just-starting) academic career to them. Also, I would like to thank my
brother Joeri with whom I had the pleasure of writing a brother-sister paper.

Finally, I would like to thank my husband André for standing by me at
all times during this PhD process and for accepting the consequences of PhD
research in terms of time and attention.

Linda Terlouw, 2011

vi

Summary

Modularization and Specification
of Service-Oriented Systems

Rationale and Objective

Modern day enterprises face a dilemma. On the one hand they want to be
able to respond rapidly to market changes, i.e. they want to be agile. On the
other hand they want (or actually need) to introduce complexity in their orga-
nization because of strategic choices like the mass-customization of products
and services, the introduction of more complex products and services, and
the participation in interorganizational networks. For example, getting an
overview of their business processes and their supporting software systems
is quite a challenge due to their sheer size and their interwoven structure.
An even bigger problem is that ‘the rules’ for designing enterprises are still
ill-understood or at least ill-documented.

In general systems theory modularity is proposed as a means for dealing
with complexity. The objective we wanted to achieve through this disserta-
tion is to provide practitioners with a better understanding of how to deal
with modularity of enterprises and their supporting software systems by ap-
plying service-orientation. Currently, most practitioners (usually enterprise
architects) make decisions based on gut feeling and experience. Our intention
was to make this design knowledge more fundamental and explicit. We based
our research on literature from the field of software engineering as well as
from the organizational sciences.

vii

First, we sought to find criteria for decomposing service-oriented systems
into coarse-grained modules. These modules can comprise humans and/or
software systems. So we did not focus on how to structure a single software
system, but we focused on how to structure the complete set of services of
an enterprise. Advantages of introducing this modularity are, among others,
making the total enterprise more comprehensible and minimizing the effect
that changes in one module may have on other modules. To minimize interde-
pendencies between modules it is important to take into account the principle
of ‘maximum cohesion and minimal coupling’. This led to the question how
we can conform to this maximum cohesion and minimal coupling principle.
And are any other criteria important for module identification? Moreover, are
these criteria only software engineering principles or maybe (also) organiza-
tional criteria? We answered these questions in our ‘laboratory’, i.e. real-life,
large organizations with complex IT environments.

Second, we saw that current service specification approaches are very im-
mature. This poses a problem, because confusion arises when parties have
different interpretations of each other’s syntax, semantics, or responsibili-
ties. For example, providers and consumers will not be able to exchange
any useful information if one party only speaks English (or XML) and the
other only Dutch (or EDIFACT). Also, problems can occur when the provider
thinks the height of a product is in centimeters while the consumer specifies
height in inches. Or maybe provider and consumer do not call the same side
of a product ‘height’, because it can be positioned on the floor in different
ways. Another type of problem comes into life when the consumer expects the
provider to deliver a product at the highest possible quality level while the
provider actually delivers the cheapest, low-quality product. To structure the
information about a service we wanted to design a specification framework.
This framework supports the provider in describing his services by stating
what aspects need to be specified to enable the service consumer to find the
service, to access it, and to judge whether or not the service meets his re-
quirements. We derived the framework from the Ψ-theory, in order to base it
on appropriate scientific foundations.

Summarizing, we aimed at two things: (i) to formulate criteria for delim-
iting coarse-grained modules of a service-oriented system and (ii) to design a
framework for specifying services.

viii

Research Approach

For the design of the service specification framework we followed the design
science research methodology. The theoretical part of our research is based on
the notions of Enterprise Ontology and Enterprise Architecture, as adopted by
the Enterprise Engineering community (www.ciaonetwork.org). We designed
a service specification framework based on the Ψ-theory, the theory that un-
derlies the notion of Enterprise Ontology. The Generic System Development
Process (GSDP), which clarifies the notion of architecture, gives guidance
in the design process by proposing a clear and consistent terminology. We
specialized the GSDP for service-orientation, the most recent paradigm for
information system modularity. Subsequently, we verified whether practition-
ers agree that the service specification framework is complete and that it does
not contain irrelevant aspects. In our case studies we used semi-structured
interviews, because written questionnaires about complex matters are often
not filled in very thoughtfully (‘just get it done with’). Also, we do not want
to structure the interviews completely to give the interviewees the chance to
elaborate on what they think is important. A last step in conducting the case
studies was to organize a workshop. During this workshop the interviewees
could respond to each other’s ideas.

We did not only use our case studies for evaluating the service specifica-
tion framework, but also for deriving criteria for modularization from practice.
Our goal was to get an overview of criteria that are important for the iden-
tification of coarse-grained modules of service-oriented systems. Though we
used BCI-3D as a starting point, our goal was not to validate BCI-3D as
an identification method. Instead, we tried to discover criteria that can be
used as an input for BCI-3D (for determining the weights). So we did not
only use our case studies for the evaluation step in the design science research
methodology; they were also exploratory case studies (Yin, 2002).

Results

Because the Ψ-theory describes the interaction between a requesting party
and an offering party in a formal way, it provides a basis for formalizing the
notion of service. We defined a service using the complete transaction pattern
as a basis. Though a service has many similarities with a transaction in the
Ψ-theory, they are not equal. While the transaction includes all acts of the

ix

initiator and the executor, the service concept only regards the executor side.
We therefore defined a service as a part of a transaction rather than a whole
transaction. So a service is a pattern of coordination and production acts,
performed by the executor of a transaction for the benefit of its initiator, in
the order as stated in the complete, universal pattern of a transaction. When
implemented it has the ability:

to get to know the coordination facts produced by the initiator and

to make available to the initiator the coordination facts produced by
itself.

We made a distinction between the following types of services: ontological
human services, infological human services, datalogical human services, onto-
logical IT services, infological IT services, and datalogical IT services. In two
case studies we asked business architects and technical architects what criteria
they value for the delimitation of coarse-grained modules of service-oriented
systems. In both case studies architects aimed to find modules with maximum
cohesion and minimal coupling. In the first case study, at De Lage Landen,
these modules were coarse-grained IT modules called autonomous environ-
ments. In the second case study, at Air France/KLM, these modules were
coarse-grained business modules (consisting of people and IT systems) called
domains. Both companies agreed that coarse-grained IT modules should not
be defined based on the boundaries of existing IT systems or COTS systems
as this limits the possibility to replace systems. Also, they agreed that the
organizational structure is not a good starting point as these structures tend
to be unstable and highly influenced by organizational politics. BCI-3D can
be used to define coarse-grained business modules as well as coarse-grained
IT modules independent of current IT systems and organization structures
by applying the principle of maximum cohesion and minimal coupling. How-
ever, BCI-3D needs to be extended with design principles for determining the
weights of different dependencies. These weights are inputs for the algorithms
that determine the modules. In the case studies we found examples of crite-
ria that can determine these weights. For instance, the criterion ‘autonomous
environments are built around business objects (base administrations)’ leads
to a relatively high weight for relations between business objects. The crite-
rion ‘life cycle decoupling’ entails that it should be possible to deliver services
independently of the products in which they are used, i.e. services should not
be tightly coupled to the product as a whole. This implies that child transac-
tions should not be allocated to the same module as their parent transactions.

x

Instead, a decomposition structure of modules similar to the transaction tree
should be defined. This can be realized by giving a very low weight to rela-
tions between initiations among transactions. Especially if one transaction is
initiated by multiple other transactions (‘reuse of the transaction’) the weights
should be set low.

The figure below depicts our generic service specification framework, which
is derived from the Ψ-theory.

!"#$%&"'()"&*+,#

!"#$%&'$()

*$+#,"#&-+.$%/,#0$+

-,.+#/&+'01+%,.2

!"#$%&"'3#,4*&+%,.

!"#$%&"'-,,#4%./+%,.

1%$23"#0$+&!"#

1%$23"#0$+&-+.$%/,#0$+&45)2

1%$23"#0$+&6,"#

*$$%20+,#0$+&!"#5

*$$%20+,#0$+&70+2

1%$#$"$(

1%)"$+20#0$+5

1%$23"#0$+&8$%(2&9)/,+#0"5

1%$23"#0$+&70+2

1$5#"$+20#0$+5

:$",#0$+

1%0")&;3,(0#<&*$/=0+,#0$+

;3,(0#<

1%0")

We evaluated our service specification framework in three case studies
(the Port of Rotterdam, De Lage Landen, and Air France/KLM). The service
specification framework covers the vast majority of aspects that are required

xi

in practice, but according to practitioners it needs to be extended with some
aspects that cannot be derived from the Ψ-theory. First of all, not only one
location is needed, but multiple locations should be specified. If an enter-
prise develops its own software, either with or without the assistance of an
external IT service provider, it generally requires four types of locations: the
development, test, acceptance, and production environment. Some of the in-
terviewees referred to this type of information as ‘the lifecycle of a service’.
Next to this, according to several interviewees our framework should include
a versioning aspect. In one of the case studies also the way of interacting with
the service (request/reply or pub/sub) was seen as a necessary specification
aspect.

Future Research

In this dissertation we did not see service-orientation as a technical paradigm,
but as a paradigm for structuring the complete enterprise. Modules of service-
oriented systems can be defined using BCI-3D as a method. We gathered
criteria for the delimitation of coarse-grained modules in two case studies.
Some of these criteria can be used for formulating design principles that define
the weights between relationships. These weights are used by the algorithms
of BCI-3D. This means that these criteria can be used to tune BCI-3D to
the specific wishes of the enterprise. However, we cannot be sure whether the
criteria we found are specific to the two enterprises we studied or whether
they can be applied to a broader range of organizations. We need to study a
large number of companies and see whether or not applying BCI-3D combined
with the proposed criteria results in more flexibility for the enterprise.

Another important topic to study in future research is the sensitivity of
the weights, i.e. do small changes in the weights lead to large changes in the
outcome of the delimitation of the coarse-grained modules. This can be done
by applying BCI-3D a large number of times to the same model using small
differences in weights and comparing the results.

Furthermore, we designed a generic service specification framework. This
framework can be used for specifying human services as well as IT services. It
was our intention to determine what aspects should be described in a service
specification. Future research should focus on how these aspects should be
specified. How an aspect is specified will be different for human services and
IT services. For instance, the location of a human service is usually a physical

xii

location or a telephone number, while the location of an IT service is usually
a URL. The input of an IT service is usually specified in fields with a certain
type (e.g. ‘string’ or ‘integer’) and a certain length, while a human service can
interpret more free format input descriptions. Sometimes industry standards
for human service specification exist. For example, in the Dutch healthcare
sector Diagnose Behandel Combinaties (DBC’s) are used to define a certain
medical treatment and to allocate a price to it. Usually human services are
specified using natural language. For IT services more formal descriptions
are used. It does not make sense to define a complete new standard for
specifying all aspects of the specification framework, because this would be
a massive effort and already many standards are available. Instead, it is
advisable to look into what existing standards can be used and how they can
be combined (if possible). Some of the standards worth investigating are (non-
limitative list): UML-OCL and Rule-ML for pre- and postconditions, OWL
and ISO/IEC 11179 for semantics, WSDL-S for annotation of input/output
structures with semantics, and WSLA and WS-agreement for service level
agreements.

When a standardized way of specifying the aspects of the service specifica-
tion framework (i.e. the ‘how part’) is available, quantitative research can be
conducted. We would like to compare the time required to build services us-
ing our service specification framework and using other approaches to service
specification. Also, we would like to measure the discovery time for potential
consumers of our framework compared to others.

xiii

xiv

Contents

I Introduction 1

1 Background 3
1.1 Enterprise Engineering . 3
1.2 Modularization in Software/Enterprises 5
1.3 Service-Oriented Architecture . 7

2 Research Questions and Approach 9
2.1 Research Objective and Questions 9
2.2 Research Approach . 11
2.3 Outline . 15

II Theoretical Foundations 17

3 About Modularity 19
3.1 Introduction . 19
3.2 Defining Modularity . 20
3.3 Reasons for (not) Applying Modularity 23
3.4 Modularity of IT Systems . 25
3.5 Modularity from Enterprise Perspective 29
3.6 Conclusions . 33

4 Defining the Service Notion 35
4.1 Introduction . 35
4.2 The Ψ-theory . 37
4.3 Defining Service Based on the Ψ-theory 42
4.4 Conclusions . 44

xv

CONTENTS

5 The Development Process for Service-Oriented Systems 45
5.1 Introduction . 46
5.2 The GSDP . 46
5.3 Specializing the GSDP . 49
5.4 Using BCI-3D for Construction 55
5.5 Conclusions . 64

6 Positioning Methodologies for Service-Orientation 67
6.1 Introduction . 67
6.2 Related Work . 68
6.3 The Methodologies . 69
6.4 Positioning the Methodologies . 77
6.5 Examples for Applying the Meth. to an Insurance Company . . 80
6.6 Conclusions . 92

7 Deriving a Service Spec. Framework from the Ψ-theory 95
7.1 Introduction . 95
7.2 Related Work . 97
7.3 Generic Service Specification Framework 99
7.4 Insurance Case Example . 103
7.5 Conclusions . 110

III Theory Meets Practice 113

8 Case Study 1: The Port of Rotterdam 115
8.1 Introduction . 115
8.2 Case Study Background . 116
8.3 Case Study Results . 117
8.4 Improvements to the Service Specification Framework 130
8.5 Conclusions . 130

9 Case Study 2: De Lage Landen 133
9.1 Introduction . 134
9.2 Document Data Gathering . 134
9.3 Interview Results . 138
9.4 Workshop Results . 147
9.5 Conclusions . 151

xvi

CONTENTS

10 Case Study 3: Air France/KLM 153
10.1 Introduction . 154
10.2 Document Data Gathering . 155
10.3 Interview Results . 168
10.4 Workshop Results . 175
10.5 Conclusions . 181

IV Conclusions 185

11 Reflections on Case Studies 187
11.1 Introduction . 188
11.2 Analyzing the Criteria . 188
11.3 Enterprise Ontology and Align. of Diff. Types of Modularity . 192
11.4 Evaluation of the Service Specification Framework 194
11.5 Conclusions . 199

12 Answers to Research Questions 201
12.1 Research Questions Revisited . 201
12.2 Outlook for Further Research . 208

V Appendices 211

A Invitation Letter for Case Study 213

B Questionnaire 215

C Workshop Agenda 219

xvii

CONTENTS

xviii

Part I

Introduction

1

Chapter 1

Background

In this dissertation we focus on the delimitation of coarse-grained modules
and the specification of services of service-oriented systems. In this chapter
we explain the central notions of this dissertation, viz. Enterprise Engineering
(1.1), modularization (1.2), and Service-Oriented Architecture (SOA) (1.3).
These notions form the basis of the central research question posed in chapter
2.

1.1 Enterprise Engineering

Modern day enterprises face a dilemma. On the one hand they want to be able
to respond rapidly to market changes, i.e. they want to be agile. On the other
hand they want (or actually need) to introduce complexity in their organiza-
tion because of strategic choices like the mass-customization of products and
services, the introduction of more complex products and services, and the
participation in interorganizational networks. For example, getting insight
into their business processes and their supporting software systems is quite a
challenge due to their sheer size and their interwoven structure. An even big-
ger problem is that ‘the rules’ for designing enterprises are still ill-understood
or at least ill-documented.

Weinberg (2001) explains why we need systems thinking for understand-
ing and (re)designing enterprises and software systems by means of Figure
1.1. Region I, ‘organized simplicity’ comprises machines, or mechanisms. In
this area complexity as well as randomness is low and the behavior of every
element can be predicted using an analytical approach. Region II, ‘unorga-
nized complexity’, comprises populations, or aggregates. In this region the

3

CHAPTER 1. BACKGROUND

!!!"#$%&'()*+,#-./01+2)34#

56463+/67

!!"#8(.%&'()*+,#-./01+2)34#

5'&&%+&'3+67

!"#$%&'()*+,#

6)/01)-)34#

5/'-9)(+67

:
'
(
,
.
/
(
+
6
6

;./01+2)34

<#=('143)-'1#3%+'3/+(3

<#>3'3)63)-'1#3%+'3/+(3

Figure 1.1: Medium numbers of organized complexity (Weinberg, 2001)

4

CHAPTER 1. BACKGROUND

amount of randomness is high enough to rely on averages. This justifies tak-
ing a statistical approach for making predictions. In region III, ‘organized
complexity’, we face a problem with both the analytical and the statistical
approach, because we are dealing with medium numbers. In this region we
find too much complexity for analysis and too much organization for statis-
tics. Weinberg calls this ‘yawning gap in the middle’ the region of systems. He
proposes to take a systems thinking approach for dealing with the organized
complexity as found in modern enterprises.

The emerging field of Enterprise Engineering (Dietz and Hoogervorst,
2007) is grounded on systems thinking. It aims at combining (relevant parts
from) the traditional organizational sciences and the information systems sci-
ences, and to develop emerging theories and associated methodologies for the
analysis, design, engineering, and implementation of future enterprises (Dietz,
2008). Dietz (2008) proposes two fundamental notions as a basis for this field:
Enterprise Ontology and Enterprise Architecture. The notion of Enterprise
Ontology and the accompanying DEMO methodology (Dietz, 2006b) provide
a means for modeling enterprises in a very precise way at a high level of ab-
straction. By making the ontological model of an enterprise we can quickly
get an understanding of the essence of this enterprise. Enterprise Architec-
ture is defined as the whole set of design principles that an enterprise applies
in (re-) designing itself. We need this notion to limit design freedom, which
would otherwise be undesirable large.

The Generic System Development Process (GSDP) (Dietz, 2008) defines
the relationships between architecture, functional design, and constructional
design for any type of system. It therefore is applicable to enterprises as well
as software systems. The Extensible Architecture Framework (xAF) (Dietz,
2008) elaborates on the concept of architecture by providing a generic frame-
work that enables comparison and evaluation of existing frameworks. The
GSDP and xAF give guidance in design by proposing a clear and consistent
terminology and a way of structuring design principles.

1.2 Modularization in Software/Enterprises

In this dissertation we strive to use service-orientation as a means of deal-
ing with complexity of enterprises and their supporting information systems.
We define a service-oriented system as an enterprise, consisting of people and
usually (but not necessarily) also IT systems, that offers services to its en-

5

CHAPTER 1. BACKGROUND

vironment and that is structured in a modular way. In such an enterprise it
does not matter whether a certain service is executed by a human being or
by an IT system: they both deal with a certain request and provide a result
that is described in a service specification (we will provide a definition of the
notion of ‘service’ in chapter 4). To give an overview of the topic modularity
we discuss some of the work done in this area the last decades.

Modularization has been proposed in the early days of software engineer-
ing by McIlroy (1968) and Parnas (1972). Its advantages are: (i) making
the total software system structure more comprehensible, (ii) enabling easy
replacement of components of the software system, (iii) making it possible
to divide work between groups of developers without them needing to be
aware of the structure of the total software system, and (iv) minimizing the
effect that changes in one part of the system have on the other parts. Par-
nas (1972) introduced the criterion of information hiding, i.e. each module
hides the manifestation of certain design decisions from the other modules.
Interfaces between modules are chosen to reveal as little as possible about
their internal operations. Also, he mentions some advisable specific example
decompositions, e.g. “a data structure, its internal linkings, accessing proce-
dures and modifying procedures are part of a single module”. McIlroy (1968)
envisioned a mature software industry in which a purchaser can consult a
catalog to search for software components that he can regard as black boxes.

During the ’90s the focus of modularization shifted towards finding the
right objects (Rumbaugh et al., 1991; Booch, 1994; Jacobson, 1995). Nowa-
days, we are also dealing with identifying the right components (Vitharana
et al., 2003; Levi and Arsanjani, 2002; Albani and Dietz, 2006) and services
(McGovern et al., 2006; Zhang et al., 2005; Henkel et al., 2004; Erradi et al.,
2006a). Mannaert and Verelst (2009) propose the concept of normalized sys-
tems, which is defined as software systems that are stable with respect to a
defined set of anticipated changes. By the identification of the ‘atoms’ of soft-
ware systems they aim at achieving a better evolvability of software systems.
These atoms can be used as building blocks for more coarse-grained modules.

Simon (1969) states that the concept of modularity does not only apply to
software systems, but in fact to all man-made artifacts, including enterprises.
Te Winkel et al. (2008) elaborate on applying modularity to organizations as
a strategy to reduce bureaucracy and thereby enable innovation. The concept
of the described cell-based structure was first (and successfully) applied by the
Dutch IT services provider BSO, which was later acquired by Philips in 1996
(Wintzen, 2007). Te Winkel et al. (2008) see three advantages of this mod-

6

CHAPTER 1. BACKGROUND

ularized structure for Topicus, a Dutch IT company. First, it reduces man-
agement complexity. Second, the organizational structure becomes flexible
as modularity accommodates uncertainty and spin-offs are easier to write off
than business units. Third, by creating spin-offs for specific networks, Topicus
finds new opportunities. The fourth advantage of organizational modularity
the authors mention is being able to work on different parts concurrently.
Baldwin and Clark (2000) propose six operators that can be applied to mod-
ular systems: splitting, substituting, augmenting, excluding, inverting, and
porting. These operators are actions that change existing structures in new
structures in well-defined ways. Op ’t Land (2008) combined the field of en-
terprise engineering and modularity and studied the splitting operator. He
defines eleven criteria for keeping actors together and formalizes these criteria
as organizational construction rules. These actors are subjects fulfilling actor
roles. Actor roles are elementary chunks of authority and responsibility Dietz
(2006b). The criteria include, for instance, keeping them together if they use
the same language/culture or if they need comparable competencies.

1.3 Service-Oriented Architecture

The latest widely used paradigm in information system development is Service-
Oriented Architecture (SOA). Many ideas in SOA are not really new and have
an origin in component-based design, message-oriented middleware, object-
oriented middleware, and workflow. However, two new things attribute to
the popularity of SOA. First, the widely accepted web service standards
(W3C, 2004) - even though they are still under development - enable speci-
fying the interface of services in a standardized way. Secondly, the concept
of service-orientation has a great appeal on business people. The high level
of granularity of services and their non-technical description have a better fit
to their mindset of business processes than traditional Enterprise Application
Integration (EAI) concepts that follow a more technical approach. In SOA
the question is not so much how to structure a single software system, but how
to structure the complete enterprise and its supporting information systems.
To minimize interdependencies among modules it is important to take into
account the principle of ‘maximal cohesion and minimal coupling’ (Parnas,
1972). This leads to the question how we can conform to this maximum cohe-
sion and minimal coupling principle. And are any other criteria important for
module identification? Moreover, are these criteria only software engineering

7

CHAPTER 1. BACKGROUND

principles or maybe (also) organizational criteria?
Albani and Dietz (2006) combine the ideas of Enterprise Ontology, modu-

larity and SOA by proposing Business Component Identification 3D (BCI-3D),
a method for identifying business components, i.e. coarse-grained modules of
a service-oriented system, and the services required for interaction between
business components. In this dissertation we build on this foundation.

After an enterprise has identified the services it wants to offer to the mar-
ket and the services for interaction between its coarse-grained modules, the
enterprise faces another question, i.e. “How can a service be described in such
a way that one is able to find a service and to know what the service does?”.
A service catalog is in fact quite similar to the idea proposed by McIlroy
(1968) (the catalog to search for software components). The specification of a
service has three different goals. First, the specification acts as requirements
to which the design of the internals must conform. Secondly, the specification
enables potential service consumers to find the services they need by using
aspects from the service as search items. Thirdly, the service consumer can
use the specification to check whether or not the service will act according to
the behavior he expects.

8

Chapter 2

Research Questions and
Approach

In this chapter we elaborate on how we achieve our results. We discuss the re-
search objective and the research questions in section 2.1. Section 2.2 presents
the research approach. Section 2.3 provides the outline of this dissertation.

2.1 Research Objective and Questions

The objective we want to achieve in this dissertation is to provide practitioners
with a better understanding of how to construct and specify service-oriented
systems. As stated in the previous chapter, we define a service-oriented sys-
tem as an enterprise, consisting of people and usually (but not necessarily)
also IT systems, that offers services to its environment and that is structured
in a modular way. In such an enterprise it does not matter whether a cer-
tain service is executed by a human being or by an IT system. Currently,
most practitioners (usually enterprise architects) make decisions about mod-
ularization based on gut feeling and experience. This dissertation shows how
coarse-grained modules of a service-oriented system can be delimited in an
objective way. Next to this, it presents a service specification framework that
prescribes the aspects that need to be specified for getting an understanding
of the external behavior of a service. The service specification framework can
be used for specifying the services delivered to the environment as well for the
services for interaction among the modules of the service-oriented system.
The notions of Enterprise Ontology and Enterprise Architecture provide a
firm theoretical basis for reaching our objective. The first notion encom-

9

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

passes that the organization of an enterprise is the layered integration of
three aspect organizations: the B-organization, the I-organization, and the
D-organization (Dietz, 2006b). By the realization of an enterprise is under-
stood the thorough integration of these aspect organizations (Dietz, 2006b).
By implementation is understood the making operational of the organization’s
realization by means of technology (Dietz, 2006b). Architecture is defined as
the normative restriction of design freedom (Dietz, 2008) as explained earlier
in chapter 1.
We start out with the basic understanding of a service that it has two key
properties: (i) a service is always offered by a provider to a consumer and
(ii) it hides the internals of a system from the consumer. We wish to clar-
ify this service concept further using the notions of Enterprise Ontology and
Enterprise Architecture.

This leads to our central research question: how can service-oriented sys-
tems be constructed and specified in practice by founding service-orientation
on the notions of Enterprise Ontology and Enterprise Architecture? In or-
der to answer this central research question we have formulated the following
subquestions:

RQ1: How can service-orientation be founded on the notions of Enter-
prise Ontology and Enterprise Architecture?

(a) How can the Ψ-theory which underlies the notion of Enterprise
Ontology be used to define the concept of service?

(b) How can the notions of Service-Oriented Design (SoD) and Service-
Oriented Architecture (SOA) be defined on the basis of the Generic
System Development Process (GSDP)?

RQ2: How can coarse-grained modules of service-oriented systems be
delimited based on notions of Enterprise Ontology and Enterprise Ar-
chitecture and on the needs of practitioners?

(a) How can coarse-grained modules of a service-oriented system be
delimited by applying the principle of maximum cohesion and min-
imal coupling on its ontological model?

(b) What criteria do practitioners regard as important for delimiting
coarse-grained modules of service-oriented systems?

10

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

(c) How can the criteria proposed by practitioners be included in
the proposed approach for delimiting coarse-grained modules of
service-oriented systems?

RQ3: How can the external behavior of a service be specified based on
the Ψ-theory and on the needs of practitioners?

(a) How can a service specification framework be derived from the
Ψ-theory?

(b) Which aspects of the service specification framework derived from
the Ψ-theory do practitioners specify in their own organization
and/or regard as useful for getting an understanding of the external
behavior of a service?

(c) What aspects is the service specification framework derived from
the Ψ-theory lacking according to practitioners?

In RQ2 we choose BCI-3D as a starting point. The reason behind this
choice is that BCI-3D is the only modularization approach (that we know of)
that uses the Enterprise Ontology as a basis.

2.2 Research Approach

The goal of Information Systems (IS) research is to produce knowledge that
enables the application of information technology for managerial and orga-
nizational purposes (Hevner and March, 2003). Looking at the IS research
field, we see a distinction between (explanatory) behavioral science research
(‘problem understanding paradigm’) and design science research (‘problem
solving paradigm’) (Becker et al., 2008). Figure 2.1 shows the process model
of the Design Science Research Methodology (DSRM) of Peffers et al. (2007).
The DSRM is based on seven papers about design science research including
the paper describing the most widely accepted framework for design science
research proposed by Hevner et al. (2004). The process model shows the steps
involved in design science research, viz. identify problem and motivate, define
objectives of a solution, design and development, demonstration, evaluation,
and communication. Also, the figure shows that we have four possible entry
points: problem-centered initiation, objective-centered solution, design and
development centered initiation, and client/context initiated.

11

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

!"
#$
%$
"
&
$

'
(
$
)
%*

+
)
,
-.
)
-/
"
)
,
0$
1
2
$

3
$
.%
4&
5
6-
7
"
8
0*
5
45

/
"
)
,
0$
1
2
$

9
45
&
4:
04"
8
%*

/
"
)
,
0$
1
2
$

;%)<0$=>
?$".$%$1-
!"4.48.4)"

@<A$&.4B$>
?$".$%$1-
C)0D.4)"

9$542"-E-
9B0):=$".-
?$".$%$1-
!"4.48.4)"

?04$".F
?)".$G.-
!"4.48.$1

;)554<0$-H$5$8%&(-I".%*-;)4".5

;%)&$55-!.$%8.4)"

J)=4"80-
:%)&$55-
5KD"&$

!"#$%&'()
*+,-.#/)

0)
1,%&23%#
!"#$"%
&'()*"+
,-(.%

/+&('01$2"

4#5$#)
6-7#8%&2#9)

,')3)
:,.;%&,$
3-10%.(4*5%
1%)"00"'%
1'0/6120%

122(+&*/7-
8

4#/,$<
9%+3%&,$
9/$5%

74/01)*"%
2($0":0
;7"%

1'0/6120%0(%
7(*<"%

&'()*"+

=23.;3<
%&,$

=)7"'<"%
-(.%

"66"20/<">%
"6#2/"$0
?0"'10"%
)12@%0(%
5"7/A$

>,//;$&<
83%&,$
,2-(*1'*B%
&4)*/210/($7
C'(6"77/($1*%
&4)*/210/($7

4#9&?$)0)
4#2#.,@<
/#$%
D'0/6120

Figure 2.1: DSRM process model Peffers et al. (2007)

For the design of the service specification framework we take a problem-
centered initiation as our research entry point and we follow the nominal
sequence. Our theoretical basis for designing the service specification frame-
work is the Ψ-theory. In the evaluation step we verify in case studies whether
practitioners agree that the service specification framework is complete and
that it does not contain irrelevant aspects. In the case studies we use semi-
structured interviews, because written questionnaires about complex matters
are often not filled in very thoughtfully (‘just get it done with’). Also, we
do not want to structure the interviews completely to give the interviewees
the chance to elaborate on what they think is important. A last step in con-
ducting the case studies is to organize a workshop. During this workshop the
interviewees can respond to each other’s ideas. Multiple ways of organizing a
workshop are available. One way to prevent that certain people dominate the
workshop by talking too much and to enable people to express controversial
ideas by guaranteeing their anonymity is the use of Group Decision Software.
TeamSupport, a supplier of Group Decision Software, is willing to support our
research by providing their software for free. Because this software provides
a structured way to assemble data and to vote on the importance of things,
this software can assist us in achieving our workshop goals.

We do not only use our case studies for evaluating the service specification

12

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

framework, but also for deriving criteria for modularization from practice.
Our goal is to get an overview of those criteria that are important for the
identification of coarse-grained modules of service-oriented systems. Though
we use BCI-3D as a starting point, our goal is not to validate BCI-3D as an
identification method. Instead, we try to discover criteria that can be used
as an input for BCI-3D (for determining the weights). So we do not only
use our case studies for the evaluation step in the design science research
methodology; they are also exploratory case studies (Yin, 2002). While many
articles have been written about combining design science research with case
study research (e.g. by Becker et al. (2008) and Pries-Heje et al. (2008)), no
final broadly accepted answer on how to achieve this is available. We choose
to use the guidelines of Hevner et al. (2004) to provide an overview of our
research (see Figure 2.2).

All in all, our research aims at producing two design artifacts, viz. (i)
criteria to delimit coarse-grained modules of a service-oriented system and
(ii) a service specification framework that prescribes the aspects that need to
be specified for getting an understanding of the external behavior of a service.
We derive our service specification framework from theory and evaluate it in
practice (deductive approach). The criteria for modularization are derived
from practice (inductive approach).

13

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

1 Design as an Artifact: Our artifacts are criteria for the modulariza-
tion of service-oriented systems and a service specification frame-
work.

2 Problem Relevance: First, enterprises are better manageable when
they are structured in modules. However, currently we lack insight
into the criteria that need to be applied for this modularization.
Second, often only the interface (in terms of input, output and er-
rors) of the services used for interaction between modules is speci-
fied. This can lead to serious misinterpretations on what the service
actually does.

3 Design Evaluation: We used an observational design evaluation
method for evaluating the service specification framework, i.e. case
studies.

4 Research Contributions: The contributions of this research are a
theoretical foundation of service-orientation on the notions of En-
terprise Architecture and Enterprise Ontology, criteria for the mod-
ularization of service-oriented systems derived from practice, and a
standardized way of specifying services based on theory and vali-
dated in practice.

5 Research Rigor: We used the GSDP (Dietz, 2008) and the Ψ-theory
(Dietz, 2006b) as a theoretical basis. Both theories are published in
multiple academic papers.

6 Design as Search Process: We performed three case studies in which
we aimed at acquiring new insights.

7 Communication: The artifacts have been presented to six large or-
ganizations. Scientific and professional articles are published.

Figure 2.2: Applying the guidelines of Hevner et al. (2004)

14

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

2.3 Outline

Figure 2.3 represents the structure of this dissertation graphically. Back-
ground information about Enterprise Engineering, modularization, and SOA
was provided in chapter 1. This chapter (chapter 2) explained our research
questions and approach. After this introductory part, three more parts fol-
low: Theoretical Foundations, Theory Meets Practice, and Conclusions. The
first chapter of the theoretical foundations, chapter 3, provides a literature
overview of the notion of modularity and of different types of modularity.
This chapter only contains existing theory. In chapters 4 to 7 we present new
theory. First of all, the notion of ‘service’ is defined in chapter 4 (answer to
RQ1.a). Chapter 5 explains the GSDP and founds the notions of SoD and
Service-Oriented Architecture (SOA) on the GSDP (answer to RQ1.b). Also,
it explains how BCI-3D can be applied to delimit coarse-grained modules of
service-oriented systems (answer to RQ2.a and RQ2.c). We further explain
our terminology by comparing several approaches to service-orientation in
chapter 6. After this, chapter 7 elaborates on how we derive the service spec-
ification framework from the Ψ-theory (answer to RQ3.a). The next part of
this dissertation presents the practical part of the PhD research. We elaborate
on the results of our case studies in chapters 8, 9, and 10 (answer to RQ2.b,
RQ3.b, and RQ3.c). We conclude this dissertation by reflecting on the case
studies in chapter 11 and by answering the research questions in chapter 12.

15

CHAPTER 2. RESEARCH QUESTIONS AND APPROACH

Dissertation

Part I:
Introduction

Part II:
Theoretical

Foundations

Part III: Theory
Meets Practice

Part IV:
Conclusions

1. Background

2. Research
Questions and

Approach

3. About
Modularity

4. Defining the
Service Notion

5. The
Development
Process for

ServiceM
Oriented
Systems6. Positioning

Methodologies
for ServiceM
Orientation

7. Deriving
a Service

Specification
Framework from

the ψMtheory

11. Reflections
on Case Studies

12. Answers to
Research
Questions

8. Case Study 1

9. Case Study 2

10. Case Study 3

Figure 2.3: Structure of this dissertation

16

Part II

Theoretical Foundations

17

Chapter 3

About Modularity

Abstract Modularity is an important concept in system design. This chapter
presents a formal definition of the notion of subsystem and shows that a mod-
ule is subsystem with strong cohesion. Next, it explains the advantages and
disadvantages of modular systems. As a service-oriented system is an enter-
prise (consisting of human services as well as IT services), we did not only look
into literature from the field of computer science, but also into literature from
the organizational sciences. From this we have learned that the organizational
sciences distinguish between product modularity, organizational modularity,
process modularity, and knowledge modularity (knowledge modularity is en-
countered less often in literature than the other types of modularity and the
term is not well-defined).

3.1 Introduction

Modularity is an important notion in the field of general systems theory. Two
of the most early, influential works on this subject are those of Alexander
(1964) and Simon (1969). Although they do not use the word modularity,
they both speak about dealing with complex systems by decomposing them
into smaller parts. They do not limit themselves to a particular field. Instead,
they discuss a broad range of system types that have a modular structure,
e.g. biological systems, buildings, and enterprises.

In the same period McIlroy (1968) and Parnas (1972) proposed modular-
ization as a means for dealing with complexity in software systems. Parnas
(1972) introduced the criterion of information hiding, i.e. each module hides
the manifestation of certain design decisions from the other modules. Inter-

19

CHAPTER 3. ABOUT MODULARITY

faces between modules are chosen to reveal as little as possible about their
internal operations. Also, he mentions some advisable specific example de-
compositions. McIlroy (1968) envisioned a mature software industry in which
a purchaser can consult a catalog to search for software components that he
can regard as black boxes: service-orientation avant la lettre.

One of the main premises of service-orientation is organizational flexibility.
By organizational flexibility we refer to flexibility of the construction of the
enterprise. In practice we often see the terms ‘business flexibility’ and ‘busi-
ness agility’ (Bloomberg, 2003; Marks and Bell, 2006) used more or less as
synonyms. As should be clear, we cannot limit ourselves to literature from the
software engineering field to draw conclusions about organizational flexibility.
That is why we also include literature from the organizational sciences.

The remainder of this chapter is structured as follows. In section 3.2 we
define the notion of modularity. In section 3.3 we study the reasons that
drive towards modular systems, and, equally important, those that prevent
one from designing systems in a modular way. After that, in section 3.4, we
have a look at different types of module cohesion and coupling identified in the
field of software engineering. To see how modularity and business flexibility
are related we analyze different types of modularity from the organizational
studies in section 3.5. The conclusions are contained in section 3.6.

3.2 Defining Modularity

Ulrich (1995) defines a modular product design as one that “includes a one-to-
one mapping from functional elements in the function structure to the physical
components of the product and specified de-coupled interfaces between com-
ponents”. Watson and Pollack (2005), who build on the work of Simon and
focus on evolutionary biology, disagree with this definition. They emphasize
the difference between the structural modularity and the functional behavior
of the system. Baldwin and Clark (2000) also state that modularity has to do
with relationships among structures, and not functions and therefore do not
adopt the definition of Ulrich. We agree with the last two authors and believe
it is important not to intertwine functional and structural aspects of a sys-
tem. We refer to the first as the teleological system notion and to the second
as the ontological system notion (Dietz, 2006b). Baldwin and Clark (2000)
provide us with a better definition, which they adapted from McClelland and
Rumelhart (1995). They say a module is “a unit whose structural elements

20

CHAPTER 3. ABOUT MODULARITY

are powerfully connected among themselves and relatively weakly connected
to elements in other units” (they use powerfully as a synonym for strongly).
They add to this definition that there clearly are degrees of connection, thus
there are gradations of modularity. Let us try to rephrase this definition in a
more formal way.

Definition 1 shows us the definition of the construction of a system pro-
vided by Dietz (2006b) (following Bunge (1979)). The following two special
symbols are used:

≺ means “is part of”:

▷ means “acts upon”; x acts upon y if and only if x influences the
behavior of y; if both x ▷ y and y ▷ x hold, we say that x and y
interact.

Definition 1. Let σ be a system and Γ a class of things, called the category
of σ. Then, the composition C of σ is defined as
C(σ) = { x ∈ Γ ∣ x ≺ σ }
the environment E of σ is defined as
E(σ) = { x ∈ Γ ∣ x ∉ C(σ) ∧ ∃y: y ∈ C(σ) ∧ (x ▷ y ∨ y ▷ x)}, and
the structure S of σ is defined as
S(σ) = { < x,y > ∣ (x ▷ y ∨ y ▷ x) ∧ (x,y ∈ C(σ) ∨ (x ∈ C(σ) ∧ y ∈ E(σ)))}
The composition, environment, and the structure are collectively called the
construction of the system. Thus the construction consists of the elements
in the composition and the environment, as well as the relationships in the
structure. The construction is a connected graph, i.e. for every element
(of the composition or environment) there is a walk to any other element.

Dietz also provides us with a formal definition of a subsystem, i.e.:

Definition 2. Let there be a system σ1 with the construction < C(σ1), E(σ1),
S(σ1) > and a system σ2 with the construction < C(σ2), E(σ2), S(σ2) >. Then
system σ2 is a subsystem of σ1, if and only if

C(σ2) ⫅ C(σ1)

E(σ2) ⫅ (C(σ1) \ C(σ2) ∪ E(σ1))

S(σ2) ⫅ S(σ1)

21

CHAPTER 3. ABOUT MODULARITY

Now let us revisit the definition of Baldwin and Clark. They state that
a module is a unit whose structural elements are strongly connected among
themselves and relatively weakly connected to elements in other units. We
define a module (unit) of a system σ1 as a subsystem σ2 of this system. When
we try to formalize their definition we face a problem, because ‘strongly’
and ‘weakly’ are not absolute criteria. For instance, we can define a strong
connection as the condition that every element in a module interacts with
more elements in the module than outside the module during a certain period.
Or, more formally:

Let σ1 be a system and let σ2 be a subsystem of σ1. Let N(x,y,τ)
be the number of times element x ∈ C(σ1) influences the behavior
of element y ∈ C(σ1) or vice versa during a period τ and let sum(L)
be a function for calculating the sum of the numbers in list L.

σ2 has strong cohesion during period τ if:
∀ x ∈ C(σ2) : (sum{N(x,y,τ) ∣ y ∈ C(σ2) ∧ x ≠ y } > sum{N(x,z,τ)
∣ z ∈ (C(σ1 \ C(σ2)})

But we could also define it in a weaker way, e.g. that the total number of
acts upon relations in period τ among elements in the module is higher than
the number of connections between elements in the module and elements in
the environment of the module during τ , viz.:

σ2 has strong cohesion during period τ if:
sum{N(x,y,τ) ∣ x ∈ C(σ2) ∧ y ∈ C(σ2) ∧ x ≠ y } > sum{N(x,z,τ) ∣
x ∈ C(σ2) ∧ y ∈ (C(σ1 \ C(σ2)}

We see that it is not possible to create hard criteria on the degree of
modularity from this definition.

Next, we face a second problem. Not only the number of connections
are relevant, but also the nature of the connections. When two modules in a
system have a relation, this relation itself can be stronger or weaker. The acts
upon relation can lead to very small or very large changes in the behavior of
another module. All in all, we lack the general criteria to determine whether
or not a system is structured in ‘the best modular way’. Nevertheless, we can
define a module as a subsystem that has high cohesion and low coupling with
other subsystems of the same system. But for getting a better understanding
we need to dive further into literature on specific system types. In our study
on modularity of service-oriented systems we are interested in modularity of

22

CHAPTER 3. ABOUT MODULARITY

IT systems as well as modularity of enterprises. We give a literature overview
on the first subject in section 3.4 and on the second in section 3.5. But first,
we have a look at what why one should or should not choose for a modular
design in section 3.3.

3.3 Reasons for (not) Applying Modularity

Many researchers, e.g. Parnas (1972), Baldwin and Clark (2000), Sanchez
and Mahoney (1996), bring up one or more of the following advantages of
modularization: (i) making the total system structure more comprehensible,
(ii) enabling easy replacement of components, (iii) making it possible to divide
work between several groups of designers without them needing to be aware of
the structure of the total system, and (iv) minimizing the effect that changes
in one part of the system have on the other parts of the system. However,
a great degree of modularity does not only pose benefits in system design.
Schilling (2000) presents a general theory of modular systems from a market
perspective. She draws on systems theory from many disciplines. In this
theory she answers the question of what drives some systems toward increasing
modularity and others toward increasing integration. According to her, the
balance between the gains achievable through recombination (of modules) and
the gains achievable through specificity (of the system as a whole) determines
the pressure for or against the decomposition of a system (Schilling, 2000).

Schilling defines different forces that drive toward or away from modular-
ity. First, the heterogeneity of inputs drives towards modular systems. With
input the author does not refer to the input of an interface, as computer scien-
tists usually do. But she refers to the number of components (modules), that
are available to compose a system. The more heterogeneous the inputs are
that may be used to compose a system, the more possible configurations are
attainable through recombinability enabled by modularity (Schilling, 2000).
When many components of a certain type are available vendor lock-in can
easily be prevented. Another positive force for modularity is heterogeneity of
demands. This means when customers of a certain product have very different
needs, then it is difficult to find a ‘one size fits all’ integrated solution. The
forces of heterogeneity of inputs and heterogeneity of demands reinforce each
other. A factor that negatively impacts the choice for modularity is syner-
gistic specificity. She states that if customers need very specific components,
the costs of making specialized interfaces would be very high. Also, the de-

23

CHAPTER 3. ABOUT MODULARITY

gree of difficulty customers face in assessing the quality and interaction of
components and in assembling the components will be negatively related to
increasing (interfirm) product modularity. Schilling (2000) mentions techno-
logical change and competitive intensity as some of the primary factors that
create urgency. In both cases suppliers need to be able to rapidly reconfig-
ure their products. So urgency directly contributes to a need for modularity.
Also, urgency reinforces the heterogeneity of inputs and the heterogeneity of
demands.

When we apply this framework to an information system as a product,
we can easily explain the popularity of the modular service-orientation ap-
proach. For this type of product, the end user organization of the enterprise is
the customer. The supplier(s) can be external companies and/or the internal
IT department(s). We see a heterogeneity of inputs in the many suppliers
of different parts of an information system, e.g. for CRM systems we have
different solutions like Siebel, SAP CRM, Microsoft CRM, and custom devel-
oped solutions. Also, we see a heterogeneity of demands. There are no ‘one
size fits all’ information systems for (large) enterprises. Even ERP systems,
of which the vendors make such a statement, require a lot of tweaking and
tuning. Often even so much that these ERP systems end up more like custom
developed systems, than COTS systems. We recognize urgency as a driver
too. Technology evolves fast in the IT world and organizations want to extend
or replace parts of their information system with subsystems written in new
programming languages and/or based on new software paradigms. IT suppli-
ers feel a competitive intensity, because their clients demand more business
flexibility. They do not have any problem with moving to another supplier
or to outsource their IT department. All in all, we see many forces that
drive toward a modular approach in information system design. However, we
also recognize the negative forces of synergistic specificity. Sometimes orga-
nizations demand very specific information systems. Usually, this results in
custom made software development. Assessing the quality of different sub-
systems can be hard. At the moment we see many organizations struggling
in their SOA projects to make everything ‘fit together’.

Arnheiter and Harren (2006) add some other negative aspects of modu-
larity to the list: the limitation of creativity of design because of the need
for well-defined interfaces, the overuse of the same module across too many
product lines, less than optimal system performance due to use of generic
modules, unnecessary time and expenses of replacing an entire module when
only a single component within the module is faulty. We do not agree with

24

CHAPTER 3. ABOUT MODULARITY

the last statement as being a disadvantage of modularity, since in our eyes
this ‘component’, i.e. submodule, is just a module at a lower level and there
is no reason why submodules cannot be available on the market.

Concluding, we see that modularity has advantages as well as disadvan-
tages. Table 3.1 exhibits the main advantages and disadvantages of modular
systems as found in literature. The advantages are that the total structure
is more comprehensible: modularity contributes to making a system intellec-
tually manageable. Because interfaces of modules are specified, modules can
be easily replaced by other ones. Modularity also contributes to the process
of building/changing a system. People working on one part of the system
do not have an overview of the complete system. When making changes to
the system one knows what changes will and will not affect other parts as
the system, as only changes of a module that affect the interface can affect
other parts. Because often several different implementations of a module con-
forming to a certain interface are available, one can choose between different
configurations of a system. This standardization also prevents vendor lock-in.
Disadvantages are the higher costs involved in making a modular system in
comparison to making a non-modular one. Next to this, the task of integrat-
ing the different modules can be complex. One has to assess the quality and
interaction of different modules and letting everything work together can be
hard. Designers can be limited in their creativity as they have to conform to
the interface and it can lead to less variation in products as all products use
the same modules. Finally, the total system performance may be suboptimal.

3.4 Modularity of IT Systems

In this section we describe the research on modularity performed in the field of
software engineering. We start by looking at imperative systems in subsection
3.4.1. Then we move to object-oriented systems in subsection 3.4.2. Lastly,
we look at service-oriented systems in subsection 3.4.1.

3.4.1 Imperative Systems

In the field of software engineering McIlroy (1968) and Parnas (1972) were
the first authors to propose modularization as a means for dealing with com-
plexity. Several years later Myers (1978) introduced the concept of clustering.
As depicted in Figure 3.1 he plots the coherence of program statements of an

25

CHAPTER 3. ABOUT MODULARITY

Advantages
Total structure is more comprehensible (Sanchez and Mahoney, 1996; Par-
nas, 1972; Baldwin and Clark, 2000; Arnheiter and Harren, 2006).
Modules can be easily replaced (Sanchez and Mahoney, 1996; Parnas, 1972;
Baldwin and Clark, 2000; Arnheiter and Harren, 2006).
Work division possible without everyone having overview of complete sys-
tem (Parnas, 1972; Baldwin and Clark, 2000; Arnheiter and Harren, 2006).
Effect of changes of one part of system to other parts are minimized
(Sanchez and Mahoney, 1996; Parnas, 1972; Baldwin and Clark, 2000; Arn-
heiter and Harren, 2006).
Many different configurations of the system are possible (Schilling, 2000;
Sanchez and Mahoney, 1996; Baldwin and Clark, 2000; Arnheiter and Har-
ren, 2006).
Vendor lock-in is prevented due to standardization (Schilling, 2000).
Disadvantages
For very specific modules the cost of making interfaces can be high
(Schilling, 2000).
For assemblers (integrators) it can be difficult to assess the quality and
interaction of different modules (Schilling, 2000; Arnheiter and Harren,
2006).
It can be difficult to assemble (integrate) the modules (Schilling, 2000;
Arnheiter and Harren, 2006).
The design creativity of a module designer can be limited because he needs
to conform to the interface (Arnheiter and Harren, 2006).
Less variation in products because of overuse of the same modules (Arn-
heiter and Harren, 2006).
Total system performance may be suboptimal (Arnheiter and Harren,
2006).

Table 3.1: Advantages and disadvantages of modular systems

26

CHAPTER 3. ABOUT MODULARITY

Figure 3.1: The ideal module boundaries according to Myers (redrawn version
of figure by Myers (1978))

existing program based on their functional relationship (i.e. are they part of
the same function or different ones) and on their data relationship (i.e. do
they reference the same variables, different fields in the same structure or
completely unrelated data). When these points representing the statements
are plotted in a graph, according to Meyers one can define the ideal module
boundaries by a clustering approach. Myers proposed the methodology of
composite design as a means to get foresight on how to define these clusters.

Myers defines different categories of module strength, i.e. the cohesion of a
module. These categories are, from highest to lowest strength: informational
strength (equal level as functional strength), functional strength (equal level
as informational strength), communicational strength, procedural strength,
classical strength, logical strength, and coincidental strength. Myers stresses
that the scale does not imply that a program with a lower-type of strength
than functional strength is undesirable. He does, however, say that this clas-
sification provides a designer with a means to identify the type of module
strength. It allows him to make a tradeoff between module strength and
other considerations.

Yourdon and Constantine (1979), two other researchers from the struc-
tured design paradigm, define ‘initialization’ and ‘termination’ modules as
another type of cohesion: temporal cohesion. This type of cohesion entails
that statements that are always executed at the same time are grouped in
a module. Besides this, they introduce sequential cohesion. In this type of
module output data from one function serves as input data for the next one.

27

CHAPTER 3. ABOUT MODULARITY

3.4.2 Object-Oriented Systems

Later, as the paradigm of object-orientation gained territory, several researchers
continued the work of Myers, Yourdon and Constantine. Briand et al. (1998)
present a literature survey on different studies on cohesion for object-oriented
systems. They compared six different frameworks: the frameworks by Eder
et al. (1994), Chidamber and Kemerer (1991, 1994), Hitz and Montazeri
(1995), Bieman and Kang (1995), Henderson-Sellers (1996), Lee et al. (1995),
Briand et al. (1993), and Briand et al. (1994). Eder et al. distinguish be-
tween three types of cohesion in an object-oriented system: method, class
and inheritance cohesion. For method cohesion Eder et al. define the same
degrees of cohesion as Myers. Also, they define degrees of cohesion specific
to classes. An example of the application of one of their principles is that
a class Employee having the attributes DayOfBirth, MonthOfBirth, YearOf-
Birth, DayOfHire, MonthOfHire and YearOfHire would be better off with
making the concealed data abstraction ‘date’ a separate ‘Date’ class.

Chimdamber and Kemerer base their work on that of Bunge (1979), which
we already used in this chapter to define the notion of system. They define
the cohesion of a class as the degree of similarity of its methods, i.e. the
number of attributes used in common by all methods. The approaches of
Hitz and Montazeri and of Bieman and Kang are based on that of Chidamber
and Kemerer.

Henderson-Sellers defines cohesion measures based on how many attributes
of a class each method within the class references as attributes.

Lee proposes a set of cohesion measures based on information flow through
method invocations within a class. This means that for a method in a class,
its cohesion is the number of invocations to other methods implemented in
this class, weighted by the number of parameters of the invoked methods.

Briand et al. measure cohesion based on the interactions of data struc-
tures, which can be either attributes within the class or types of a different
class. By interaction they mean that a change in one data declaration may
cause a change in another one. Next to this, they measure data/method in-
teraction; such an interaction exists if a data interaction interacts with at
least one data declaration of the method.

28

CHAPTER 3. ABOUT MODULARITY

3.4.3 Service-Oriented Systems

Now let us move on to the more recent field of SOA in which the notions of
cohesion and coupling play an important role. Table 3.2 exhibits an overview
of tight versus loose coupling different levels of a distributed software system
according to Krafzig et al. (2004). This work does not so much give us in-
sight into how to define services, but it shows how IT systems that use each
other’s services can be as independent from each other as possible. First, ser-
vice consumer and provider need to be decoupled at a physical level, usually
message queues are used for this purpose. Next, to achieve loose coupling
communication between consumer and provider should be asynchronous, i.e.
they must be able to communicate while not being available at the same
time. In a strong type system input and output arguments of the services (or
functions) are directly coupled and have a compile-time dependency. In weak
type system the services receive input and produce output in messages. The
structure of these messages can be changed without having to recompile the
services. Of course one still must know how the changes in the message affect
the services. But one has more flexibility in changing messages (e.g. optional
data structures) that are used by multiple services. On the interaction pat-
tern level there is a difference between tight object-oriented style navigation
and data-centric, self-contained messages. By the first style the authors mean
that a consumer has to understand not only the logic of each individual ob-
ject, but also the way to navigate across objects. In message-based systems
navigation is much simpler. Next, in tightly coupled systems (e.g. monolithic
ERP systems) process logic is centralized, i.e. all processes, subprocesses,
and transactions are stored in one location. In loosely coupled systems this
can be distributed. Finally, in really loosely coupled systems binding of a
service should be dynamical. Finally, of course, services should not have any
dependencies on the operating system or programming language.

3.5 Modularity from Enterprise Perspective

The phrase ‘loose coupling’ that we encounter so often in the field of service-
orientation was introduced in the organizational sciences by Weick (1976).
Weick read about this loose coupling in works of Glassman (1973) and March
and Olsen (1975) and defines it as “the image that coupled events are respon-
sive, but that each event also preserves its own identity and some evidence of
its physical or logical separateness”. He applies this notion to the context of

29

CHAPTER 3. ABOUT MODULARITY

Level Tight coupling Loose coupling
Physical coupling Direct physical link re-

quired
Physical intermediary

Communication style Synchronous Asynchronous
Type system Strong type system

(e.g., interface seman-
tics)

Weak type systems
(e.g. payload seman-
tics)

Interaction pattern OO-style of navigation
of complex object trees

Data-centric, self-
contained messages

Control of process logic Central control of pro-
cessing logic

Distributed logic com-
ponents

Service discovery and
binding

Statically bound ser-
vices

Dynamically bound
services

Platform dependencies Strong OS and pro-
gramming language de-
pendencies

OS and programming
language independent

Table 3.2: Tight versus loose coupling in service-orientation

educational organizations. In the literature of the organizational sciences, we
also find the notions of loosely coupled, autonomous, and reconfigurable in
the work of other authors (Hoetker, 2002; Adamides et al., 2005; Sanchez and
Mahoney, 1996; Brusoni and Prencipe, 2001). The concept of interface is men-
tioned by multiple authors, e.g. Brusoni and Prencipe (2001) and Salvador
et al. (2002).

In literature from the organizational sciences a distinction is made between
different kinds of modularity:

product modularity

organizational modularity

process modularity

knowledge modularity

Product modularity refers to the type of modularity we most often speak
of. Arnheiter and Harren (2005) distinguish between hard and soft modules,
based on the work of O’Grady (1999). Hard modules have a physical appear-
ance, whereas soft modules have a limited physical presence. Arnheiter and

30

CHAPTER 3. ABOUT MODULARITY

Harren mention software, financial products or insurance policies as examples
of soft modules. They define a modularity typology containing four different
types that holds for hard as well as soft modules:

1. manufacturing modularity
In this type of modularity suppliers are able to produce products by
using only a handful of pre-manufactured subassemblies (modules).

2. product use modularity
In this type of modularity the user is able to use modules for product
customization.

3. limited life modularity
In this type of modularity a distinction between modules is made based
on their life span. Modules that have a limited life time (e.g. batteries)
should be easily replaceable.

4. data access modularity
In this type of modularity the data storage is realized in data access
modules, e.g. CDs, USB sticks etc. These data access modules can be
used in different system types, e.g. a PC or a camera.

Todorova and Durisin (2008) distinguish between internal and external product
modularity depending on whether design and integration activities take place
within the same organization or whether they are all distributed in a network
of different organizations. Other authors call this external product modular-
ity interfirm modularity (Baldwin and Clark, 2000; Schilling, 2000; Langlois
and Robertson, 1992). Ulrich (1995) defines three different types of product
modularity: slot, bus, and sectional. Each of the interfaces between compo-
nents in a slot architecture is of a different type than the others, so that the
various components in the product cannot be interchanged. An automobile
radio is an example of a component in a slot architecture. The radio imple-
ments exactly one function and is de-coupled from surrounding components,
but its interface is different from any of the other components in the vehi-
cle (e.g. radios and speedometers have different types of interfaces to the
instrument panel). In a bus structure the connections are the same for each
component. In a sectional structure component can be added or removed
freely, in a Lego-like manner.

Organizational modularity deals with modularity in the organizational
structure. In modular organizational structures, small component develop-
ment and manufacturing units or business units can function autonomously

31

CHAPTER 3. ABOUT MODULARITY

and innovate concurrently under the coordination of the product blueprint
(Todorova and Durisin, 2008). Organizational modularity can be applied to
one company as well as to an organizational network or supply chain. Topics
in this area include the organization of project teams, outsourcing, alliances
etc.

Process modularity (Kusiak, 2002; Bask et al., 2009; Ding and Jie, 2008)
refers to breaking down a business process into standardized subprocesses (i.e.
process modules). So process modularity is about standardizing process to
enable the rearrangement of different process configurations (Todorova and
Durisin, 2008). These subprocesses may be performed at different locations
and by different companies. This type of modularity can, for instance, be
applied to assemble the complete process at the last moment (Just in Time) to
enable very efficient production. Usually, process modularity is accompanied
by product modularity.

Though we encountered the term knowledge modularity several times (e.g.
Brusoni and Prencipe (2001) and Bohn (2005)), we could not find a good
definition. It somehow deals with knowledge structures of enterprises, i.e.
who has what knowledge about the product and its components. But we
have some difficulties in seeing this as a separate type of modularity, since it
is very closely related to process modularity; to perform certain activities one
has to have certain knowledge.

Sanchez and Mahoney (1996) state that “standardized component inter-
faces in a modular product architecture provide a form of embedded coordina-
tion that greatly reduces the need for overt exercise of managerial authority
to achieve coordination of development processes, thereby making possible
the concurrent and autonomous development of components by loosely cou-
pled organization structures (Orton and Weick, 1990)”. They call these or-
ganization structures modular organization designs. Hoetker (2002) argues
that product modularity may not lead firms to move activities from hierar-
chy to more loosely coupled organizations to the degree that the literature
(including the article of Sanchez and Mohoney) has assumed. Brusoni and
Prencipe (2001) study how product modularity, organizational modularity,
and knowledge modularity correlate. Regarding knowledge modularity, they
build on the work of (Arora and Gambardella, 1994), who contend not only
that the production of new products can be conceived in terms of the pro-
duction and combination of modules, but also that the knowledge underlying
such products is a matter of ‘mixing and matching’ modules.

One of the main premises of SOA is to achieve organizational flexibil-

32

CHAPTER 3. ABOUT MODULARITY

ity. However, many approaches to Service-Oriented Architecture (SOA) are
very much focused on technology and only spend little attention on services
executed by human beings. The main error in reasoning is that product mod-
ularity of a supporting product alone (the IT system) is sufficient to enable
flexibility of the complete enterprise. Instead, it is only conditional. The lat-
ter means that business decisions, e.g. outsourcing, mergers and acquisitions,
selling new product types, are no longer withheld by limitations of IT sys-
tems. Also, software engineering principles are not the only thing to consider
when structuring information systems. Consider, for instance, the principle
‘customer data must be stored only once’. This makes perfect sense from a
software engineering perspective, because this is efficient and prevents data
inconsistencies. However, there can be legal restrictions that prohibits the
reuse of customer data from one department (e.g. pension management de-
partment) by another department (e.g. insurance selling department). Con-
cluding, we can say that it is too simple to say that more flexible IT systems
lead to more flexible enterprises.

3.6 Conclusions

In this chapter we studied the concept of modularity. The most widely ac-
cepted definition in general systems theory is that of Baldwin and Clark. They
define a module as a unit whose structural elements are strongly connected
among themselves and relatively weakly connected to elements in other units.
Unfortunately, the terms ‘strongly’ and ‘weakly’ are open to interpretation.
Therefore this definition only provides guidance instead of clear criteria to
determine the degree of modularity of a system. In software engineering lit-
erature more precise classifications of modularity are proposed in the ’70s by
Myers and Constantine. Specifically for service-oriented systems Krafzig et
al. give an overview of the difference between tight and loose coupling. In
our research we want to find out how we can define coarse-grained modules of
service-oriented systems to profit from the advantages of modularization. Af-
ter studying literature about modularization from the organizational sciences
we can draw two conclusions. Our conclusion is that modularization of IT
systems is not sufficient to create more flexible enterprises. Many approaches
on SOA only focus on IT systems. As we have seen in literature from the
organizational sciences, this is insufficient for achieving business flexibility.
In the remainder of this thesis we aim to get a better understanding of the

33

CHAPTER 3. ABOUT MODULARITY

principles that play a role in the structuring of service-oriented systems by
looking at human as well as IT services.

34

Chapter 4

Defining the Service Notion

Abstract The contribution of this chapter is a precise and unambiguous
definition of the notion of ‘service’. We base this definition on the Ψ-theory.
This theory originates from the scientific fields of Language Philosophy and
Systemic Ontology and underlies the notion of Enterprise Ontology. Accord-
ing to this theory, the operation of organizations is all about communication
between and production by social actors. The service definition presented
in this chapter is based on the complete transaction pattern in the Ψ-theory.
Though a service has many similarities with a transaction, they are not equal.
While the transaction includes all acts of the initiator and the executor, the
service concept only regards the executor side. We therefore define a service
as a part of a transaction rather than a whole transaction. We can classify
services based on two criteria. The first criterion is the type of production
fact delivered. This production fact can be either ontological, infological, or
datalogical. The second criterion is the type of implementation; a service can
be implemented by a human being or an IT system. We therefore distinguish
between the following six types of services: ontological human services, in-
fological human services, datalogical human services, ontological IT services,
infological IT services, and datalogical IT services.

4.1 Introduction

Before thinking about how we can specify services in a service specification
framework, we need to define what a service is. Economists and business
scientists have been debating about this ‘service’ notion for more than two
centuries (Gadrey, 2000). Often, the definitions in business literature limit

35

CHAPTER 4. DEFINING THE SERVICE NOTION

the service notion to the delivery of immaterial goods. The adoption of the
notion of ‘service’ by computer scientists and IT practitioners has been more
recent. In both the business science field (Zeithaml et al., 1993; Gallouj and
Weinstein, 1997; Hart, 1988; Goldstein et al., 2002) and the computer science
field (OMG, 2006; OASIS, 2006a; The Open Group, 2006; W3C, 2006b) a
service is regarded as an interaction between a requesting party (often called
consumer or customer) and an offering party (often called provider or sup-
plier). The offering party is able to produce a certain value that is requested
by the other party. But even with this common notion a precise definition
and mutual understanding of the term service is missing. Let us have a look
at the definition given by the Open Group (The Open Group, 2006). It says
that a service:

is a logical representation of a repeatable business activity that has a
specified outcome (e.g., check customer credit; provide weather data,
consolidate drilling reports),

is self-contained,

may be composed of other services, and

is a ‘black-box’ to consumers of the service.

This definition is as vague as the other definitions mentioned above and
one could discuss every single statement of the definition. E.g., what is a busi-
ness activity? The Open Group mentions ‘check customer credit’ or ‘provide
weather data’ as business activities, but are these really business activities or
are they only computational acts? What about a business activity concern-
ing the ‘manufacturing of a car’? Such a business activity has a completely
different granularity as the ones mentioned in the definition. What is self-
contained? If a service is composed of other services is it still self-contained?
What is precisely meant by a black-box when a service is also defined to be
an activity? What about communication activities e.g., to call the service or
to accept/reject the requested result?

We start this chapter with further explaining the Ψ-theory in section 4.2.
Subsequently, we provide our service definition and six different types of ser-
vices in section 4.3. Section 4.4 provides the conclusions of this chapter.

36

CHAPTER 4. DEFINING THE SERVICE NOTION

4.2 The Ψ-theory

The Ψ-theory (Dietz, 2006b) finds its roots in the scientific fields of Language
Philosophy, in particular the Language Action Perspective (LAP) (Flores
and Ludlow, 1980; Goldkuhl and Lyytinen, 1982), and in Systemic Ontol-
ogy (Bunge, 1979). It focuses on the use of language to achieve agreement
and mutual understanding (Weigand, 2003). By applying the Ψ-theory one
can disentangle the essential knowledge of the construction and the operation
of the organization of an enterprise, by which we mean a commercial or non-
profit company as well as a network of enterprises. This essential enterprise
model is called the ontological model. The theory consists of several axioms
and one theorem. In this section we give a short summary of the Ψ-theory.
We only discuss the parts of the theory that we need for developing a service
specification framework, viz.: the operation axiom, the transaction axiom,
the distinction axiom, and the organization theorem. A complete overview of
the theory is available in the book (Dietz, 2006b) and the papers (Dietz and
Hoogervorst, 2008; Dietz and Albani, 2005; Dietz, 2006a; Dietz and Hooger-
vorst, 2007).

4.2.1 The Operation Axiom

The first axiom, the operation axiom, focuses on the different types of acts
that actors in organizations (people, also called subjects) perform and the
results of these acts. It states the following (Dietz, 2006b):

Axiom 1. Actors perform two kinds of acts: production acts and coordina-
tion acts. These acts have definite results: production facts and coordination
facts respectively. By performing production acts, actors contribute to bring-
ing about the function of the organization. By performing coordination acts,
actors enter into and comply with commitments regarding production acts. An
actor is a subject fulfilling an actor role. Actor roles are elementary chunks
of authority and responsibility.

What are these so-called production and coordination acts the axiom
speaks about? And why do we need to distinguish between them? First,
let us look at the production acts. Production acts are acts that deal with
the delivery of material or immaterial goods by actors to their environment.
Their results are production facts. Examples of production acts dealing with
material goods are manufacturing and transporting. Their corresponding

37

CHAPTER 4. DEFINING THE SERVICE NOTION

production facts are ‘Product P has been manufactured’ and ‘Product P has
been transported’. For immaterial goods, examples are deciding and judg-
ing. Their corresponding production facts are ‘Decision D has been made’
and ‘Judgment J has been made’. Coordination acts serve a totally different
purpose than production acts, though they are executed by the same actors.
They do not directly contribute to the production of goods, but they coordi-
nate the execution of production acts. An example of a coordination act and
its corresponding fact is the request for manufacturing a product and ‘The
production fact “Product P has been manufactured” has been requested’. In
the next paragraph we will see that the different types of coordination acts
form a limitative list.

4.2.2 The Transaction Axiom

The second axiom, the transaction axiom, further looks into the coordination
acts. It states the following (Dietz, 2006b):

Axiom 2. Coordination acts and production acts always occur in particu-
lar patterns. These patterns are paths through one universal pattern, called
transaction. The result of carrying through a transaction is the creation of a
production fact.

A transaction evolves in three phases, the order phase (O-phase), the ex-
ecution phase (E-phase) and the result phase (R-phase), see Figure 4.1. Two
actor roles are involved in such a transaction, the initiator, who starts and
completes the transaction, and the executor, who performs the production
act. In the order phase the initiator and the executor try to reach agreement
about the intended result of the transaction, i.e., the production fact that the
executor is going to create as well as the intended time of creation. In the ex-
ecution phase this product is created by the executor, and in the result phase
both actors try to reach agreement about the fact that has been produced.
The so-called basic transaction pattern consists of the request, promise, state,
and accept coordination acts. An example of this basic pattern looks as fol-
lows.

1. person A requests person B to manufacture a car

2. person B promises person A to manufacture a car

3. <actual delivery of the manufactured car>

38

CHAPTER 4. DEFINING THE SERVICE NOTION

4. person B states to person A that he has manufactured a car

5. person A accepts from person B that he has manufactured a car (the
car conforms to his expectations)

Figure 4.1: Standard transaction pattern

Transactions will conform to this basic transaction pattern in a happy
scenario, i.e. everything goes as it should go. However, in reality the initiator
and executor may dissent in two of the states; (i) the requested state and (ii)
the stated state. In the first case, the executor may (instead of promising)
respond to a request by declining it. In the second case, the initiator may
(instead of accepting) respond to a statement by rejecting it. By allowing
these acts, a transaction can end up in a discussion state. Dietz describes
that in this situation the two actors must sit together, discuss the situation
at hand, and negotiate about how to get out of it. When the basic pattern
is expanded with these two dissent patterns, we get the standard transaction
pattern. The standard transaction pattern is the pattern already introduced in
Figure 4.1. The complete transaction pattern is constituted by the standard
pattern and four cancellation patterns. Cancellation patterns concern the
revocation of a request act, promise act, state act, or accept act.

39

CHAPTER 4. DEFINING THE SERVICE NOTION

4.2.3 The Distinction Axiom

The third axiom, the distinction axiom, is concerned with the different abil-
ities of a human being that are involved in the activities they perform. The
axiom states the following (Dietz, 2006b):

Axiom 3. Three distinct human abilities play a role in the performance of
coordination acts and production acts: the forma, informa and performa abil-
ities.

How are these human abilities relevant for coordination acts on the one
hand and production acts on the other hand? The forma ability deals with
the form aspects of communication and information. Applying this to co-
ordination acts, this means actors should have a way to utter and perceive
information. Information should be expressed in a particular language or code
scheme that both the initiator and the executor of a transaction understand.
This is also known as syntactic (or significational) understanding. One might
think, for instance, of information written in English. The informa ability
concerns the content aspects of information and communication. In order to
communicate, the initiator should formulate information in a way that the
executor can interpret. In other words, the initiator and the executor should
semantically be in agreement with each other and share the same thoughts.
This is also called intellectual understanding. The performa ability states
that new information and knowledge can be created through communication
between the initiator and executor. Looking at coordination acts, this means
that actors can expose and evoke commitments and it indicates social under-
standing between the initiator and executor. For the production acts we see
a similar distinction. The forma ability is concerned with the form aspects
of information in terms of information transmission and storage. This type
of production acts are known as datalogical acts. Transactions that contain
a datalogical act are called datalogical transactions (D-transactions). The in-
forma ability states that information can be reasoned, computed or deduced.
Those activities are known as infological acts. Transactions are called info-
logical transactions (I-transactions) if they include this type of production
act. The performa ability concerns making decisions, judgments, or creat-
ing material things such as products. This is what we call ontological acts.
Transactions that include ontological acts are known as ontological transac-
tions (B-transactions).

40

CHAPTER 4. DEFINING THE SERVICE NOTION

4.2.4 The Organization Theorem

We just presented three of the axioms of the Ψ-theory. Together with the
composition axiom, which we did not discuss, they provide the basis for the
organization theorem. This theorem provides a concise, comprehensive, co-
herent, and consistent notion of enterprise, such that the (white-box) model
of an enterprise may rightly be called its ontological model (Dietz, 2006b). It
states the following (Dietz, 2006b):

Theorem 1. The organization of an enterprise is the layered integration of

three aspect organizations: the B-organization, the I-organization, and the

D-organization.

Figure 4.2: The three aspect organizations

Figure 4.2 shows the three aspect organizations. The B-organization

concerns the essence of the enterprise. It consists of actors who directly
contribute to the enterprise’s goals and functions by performing ontological
production acts. These actors are known as B-actors and are able to per-
form B-transactions, the ontological transactions we defined in the previous
paragraph. B-actors are, for instance, consultants or sales persons. The I-

organization embraces the content aspects of information and knowledge in
the enterprise (Dietz, 2006b). Actors in the I-organization, who are called
I-actors, bring changes to information and knowledge by performing infologi-
cal production acts. In other words, I-actors perform I-transactions. Business
controllers are typical actors in the I-organization producing infological things.
The D-organization deals with the documentation of information in the en-
terprise and only takes into account the form of information. To achieve this,

41

CHAPTER 4. DEFINING THE SERVICE NOTION

actors in the D-organization perform datalogical production acts and thus
D-transactions. These actors are known as D-actors, who are for instance
archivists.

4.3 Defining Service Based on the Ψ-theory

According to the Ψ-theory, the previous paragraphs have shown, the opera-
tion of organizations is all about communication between and production by
social actors. Is not the main concern of service-orientation to support the
operation of an organization and therefore also to support the communication
between and production by social actors? Because the Ψ-theory describes the
interaction between the requesting party and the offering party in a very for-
mal way, it provides a basis for formalizing the notion of service. Based on
this theory we have elaborated on the notion of service (Albani et al., 2009)
and we will summarize in the next paragraphs the main results which are of
relevance for the specification of services.

The definition of service is based on the complete transaction pattern.
Though a service has many similarities with a transaction in the Ψ-theory,
they are not equal. While the transaction includes all acts of the initiator and
the executor, the service concept only regards the executor side. We therefore
define a service as a part of a transaction rather than a whole transaction.

Definition 3. A service is a pattern of coordination and production acts,
performed by the executor of a transaction for the benefit of its initiator, in
the order as stated in the complete, universal pattern of a transaction. When
implemented it has the ability

to get to know the coordination facts produced by the initiator and

to make available to the initiator the coordination facts produced by
itself.

By universal we mean that this pattern applies to interaction between
actors in all types of organizations (non-profit and commercial) and in all
countries and cultures of the world.

When looking at the complete transaction pattern, everything except the
coordination acts of the initiator (request, quit, reject and accept) are part
of the service. But in order to communicate with the executor of the service,
the initiator needs to be aware of the complete transaction pattern.

42

CHAPTER 4. DEFINING THE SERVICE NOTION

Additionally, we call a service a composite service, if the execution of the
service requires the executor to initiate certain other services. This happens
exactly then, when a transaction is enclosed in some other transaction.

This definition of a service just given is a very generic one, since it holds
for two kinds of actors, human actors and IT systems and three kinds of
production acts, namely datalogical, infological and ontological.

Services executed by human actors or IT systems only differ in the way
they are implemented; human services are implemented by human beings,
whereas IT services are implemented by IT systems. IT systems assist hu-
man actors in their activities. For both human actors and IT systems we can
distinguish between communication acts and production acts on the datalogi-
cal, infological, and ontological level as described in the organization theorem
4.2.4 (though at ontological level machines can only mimic the behavior of
the responsible human actors, because machines can never reach true social
understanding and cannot create really new, original things). Examples of
datalogical production acts are storing, copying, transmitting of documents or
data. Acts such as reasoning, computing, deriving or reproducing knowledge
are examples of infological production acts and the acts concerning the cre-
ation of original new things, such as creating material products or making
judgments are examples of ontological production acts.

The basic concept of dealing with coordination and production aspects
between an initiator and an executor party as defined in Ψ-theory and in
the generic service definition given above allow us to distinguish between six
different types of services:

ontological human service

infological human service

datalogical human service

ontological IT service

infological IT service

datalogical IT service

All service types conform to the definition of service given above, following
the same service pattern and the described abilities. They only differ in the
way they are implemented, either by human actors or by IT systems and in

43

CHAPTER 4. DEFINING THE SERVICE NOTION

the different kinds of coordination and production acts as described above.
In chapter 7 we will see that we can use the same specification aspects for
specifying all six types of services, though the way of specification is different
for human and IT services.

4.4 Conclusions

In this chapter we provided a definition of the notion of service and introduced
six different types of services, based on the Ψ-theory: ontological human
services, infological human services, datalogical human services, ontological
IT services, infological IT services, and datalogical IT services. The first
distinction is between human services, i.e. services executed by human beings,
and IT services, i.e. services executed by IT systems. The second distinction
corresponds to the three aspect organizations, as proposed by the organization
theorem: the B-organization, the I-organization and the D-organization.

44

Chapter 5

The Development Process for
Service-Oriented Systems

Abstract Definitions of both the notion of Service-Oriented Architecture
(SOA) and Service-Oriented Design (SoD) are often not clear or seem to
be ambiguous, which makes it hard to compare the various SOA and SoD
methodologies. To get a better understanding of SOA and SoD, we apply the
Generic System Development Process, a conceptual framework for developing
systems of any kind, and specialize it for service-orientation. As a result, we
define SOA as a coherent set of design principles that need to be taken into
account in the development process of service-oriented systems. SoD deals
with the design of service-oriented systems, which are enterprises consisting of
humans and often (though not necessarily) also of IT systems. We distinguish
between two activities in SoD: function design and construction design of
the service-oriented system. Function design deals with designing the black-
box model of the service-oriented system, i.e. specifying its externally visible
behavior. Construction design deals with the design of the highest-level white-
box model and with the decomposition of the highest-level white-box model
to the lowest-level white-box model. An important constructional principle in
service-orientation is modularization. We show that a service-oriented system
consists of modules, which are also service-oriented systems themselves, i.e.
they are subsystems. These modules interact by using each other’s services.
We distinguish between three types of modules based on the types of services
they contain; they can contain either ontological services, infological services,
or datalogical services.

45

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

5.1 Introduction

In chapter 4 we defined the notion of ‘service’. We made a distinction be-
tween ontological, infological, and datalogical services based on the type of
production fact they bring about. Services can either be implemented by hu-
man beings (human services) or by IT systems (IT services). Now we know
what a service is, we can look deeper into the concepts of Service-Oriented
Architecture (SOA) and Service-Oriented Design (SoD). Comparing different
methodologies for service-orientation is quite a challenge because they lack a
common view of SOA, SoD and the steps involved in design. The contribution
of this chapter is to present a clear terminology for SOA and SoD based on
the Generic System Development Process (GSDP) (Dietz, 2008; Hoogervorst
and Dietz, 2008). The GSDP has been devised for the sake of understanding
the mental activity of designing systems of any kind more profoundly than it
is commonly the case. One could consider the GSDP as a holistic theorem
about designing. Such a theorem was needed for the emerging discipline of
Enterprise Engineering (Hoogervorst, 2009). Our goal is not to create a com-
plete method for the development of service-oriented systems. It would be
impossible to use the GSDP for this purpose as the detailed steps involved in
designing a system depend on the type of system under consideration. Rather
we want to use the GSDP to determine the scope of different methodologies
for service-orientation. The results of the analysis and positioning of various
state-of-the art methodologies for service-orientation is presented in chapter
6.

The remainder of this chapter is structured as follows. We explain the
GSDP in section 5.2. Section 5.3 presents the specialization of the GSDP
for service-orientation. In section 5.4 we show how Business Component
Identification 3D (BCI-3D) can be used to delimit coarse-grained modules
of service-oriented systems. Finally, we draw our conclusions in section 5.5.

5.2 The GSDP

Many definitions of SOA (OASIS, 2006b; OMG, 2006; The Open Group,
2006; W3C, 2006a) mention the notion of architecture, architectural style or
paradigm, but they lack a clear definition of these notions. Next, when a
definition of architecture is provided, it is usually the descriptive definition,
meaning that architecture is conceived as high-level models, referred to by

46

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

names like ‘high-level components’ or ‘blue prints’. Among others, The Zach-
man Institute for Framework Advancement (2007) uses this notion: “Archi-
tecture is that set of design artifacts, or descriptive representations, that are
relevant for describing an object, such that it can be produced to requirements
as well as maintained over the period of its useful life”. Another definition
that is often, explicitly or implicitly, adopted in the context of SOA is the
definition from the IEEE 1471 standard (Maier et al., 2001): “the fundamen-
tal organization of a system embodied in its components, their relationships
to each other, and to the environment, and the principles guiding its design
and evolution”. This makes the exact relationship between architecture and
design unclear.

Figure 5.1 exhibits the GSDP. This process depicts the most basic steps
that need to be taken in designing a system of any kind. The GSDP is based
on the prescriptive notion of architecture, i.e. it defines architecture concep-
tually as the normative restriction of design freedom. Architecture comes in
addition to requirements. Such a restriction is necessary and useful because
the design freedom of designers, particularly in the field of software engineer-
ing, is undesirable large. Practically, architecture is seen as a consistent and
coherent set of design principles that embody general requirements” (Dietz,
2008).

Whether the system is a software system, a car, or an enterprise, accord-
ing to the GSDP two different perspectives can and must always be distin-
guished: the function perspective and the construction perspective (Dietz,
2006b, 2008). Taking the function perspective, one ‘sees’ the function and
the (external) behavior of a system; the corresponding type of model is the
black-box model. Taking the construction perspective, one ‘sees’ the construc-
tion and the operation of a system; the corresponding type of model is the
white-box model. In developing a system both the function perspective and
the construction perspective are relevant. The GSDP defines the most basic
steps in a development process. The starting point is the need by some system,
called the using system (US), of a supporting system, called the object system
(OS). A clear distinction between the US and the OS is often neglected, lead-
ing to blurred discussions about the functionality of the OS. In the GSDP,
the US is the stable starting point for the development process. One must
have an appropriate understanding of the US in order to successfully design
an OS. By nature, this understanding must be constructional understanding,
since it is the construction of the US that is going to be supported by the
function of the OS. So one starts with conceiving a white-box model of the US.

47

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

Figure 5.1: The generic system development process (Dietz, 2008).

Preferably it is an ontological model (Dietz, 2006b), since otherwise one can
easily become confused by irrelevant implementation issues of the US. From
the white-box model of the US one determines the functional requirements
for the OS (function design). These requirements are by nature formulated in
terms of the construction and operation of the US. Consequently, they need
to be fully independent of the construction of the OS. The next basic de-
sign step is to devise specifications for the construction and operation of the
OS, in terms of a white-box model of the OS (construction design). For this
design phase, the US may provide constructional requirements. A thorough
analysis of the white-box model of the OS must guarantee that building the
OS is feasible, given the available technology. The GSDP also includes the
important experience from practice that designing is an iterative process: the
final result of every design process is (or should be) a balanced compromise
between reasonable functional requirements and feasible constructional spec-
ifications (Dietz and Albani, 2005). For the sake of simplicity, however, we
did not include it in the figure. In addition to the functional and construc-
tional requirements, there may be functional and constructional principles
respectively. These design principles are the operational shape of the notion
of architecture. They generally hold for a class of systems. An example of
a functional principle is that man-machine dialogs must comply with some

48

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

standard. An example of a constructional principle is that the applications
must be component-based. Ideally the construction design phase results first
into an ontological model of the OS, i.e. a white-box model that is completely
independent of its implementation. Gradually this ontological model is trans-
formed into more detailed (and more implementation dependent) white-box
models, the last one being the implementation model. This process is called
engineering. If the OS is a software application, then the implementation
model would be the source code in some programming language. The act of
implementing consists of assigning appropriate technological means to the im-
plementation model, e.g. running the source code on an appropriate platform
(also often called deployment).

5.3 Specializing the GSDP

In the previous section we explained the GSDP. In this section we will show
how the GSDP can be used for clarifying the notions of service-orientation
by specializing the GSDP for service-oriented systems.

5.3.1 Design of Service-Oriented Systems

As we have seen in chapter 4, services can be implemented by human be-
ings or IT systems. A service-oriented system is an enterprise consisting of
humans and often (though not necessarily) also of IT systems. Both the
black-box model and the white-box model of an enterprise are relevant to
service-orientation: the black-box model for specifying and using services of-
fered by a service-oriented system and the white-box model for building or
changing services offered by a service-oriented system. We can decompose
a service-oriented system into coarse-grained modules. These modules are
again service-oriented systems that offer each other services. So they can also
be regarded from a black-box and white-box perspective.

As explained in the previous chapter the organization of an enterprise is
the layered integration of three aspect organizations: the B-organization, the
I-organization, and the D-organization. These organizations offer ontological
services, infological services, and datalogical services, respectively. We can
apply the GSDP for designing all three service-oriented organizations. When
we apply the GSDP to the B-organization, the using system is the market to
which the enterprise offers its services (Dietz, 2008) and the B-organization

49

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

is the object system. We see two different activities in SoD: function design
of the service-oriented system and construction design of the service-oriented
system. Function design deals with identifying and specifying the services
offered by the service-oriented system. Service identification is in our view
the first step in function design. It deals with determining what services are
offered by the service-oriented system. In this case we are interested in what
services are offered by the B-organization to the market. Service specification
(including Quality-of-Service requirements) is part of function design as well,
since it specifies the external behavior of the offered services without caring
about it internals. The market requires specifications of these services to be
able to interact with the B-organization (see Figure 5.2). Once the specifica-
tions of the services that the B-organization offers to the market are available,
one can design its construction. The first step in the construction design of
the service-oriented B-organization is to create its ontological model. This
is the highest-level white-box model of the B-organization. The ontological
model of the B-organization provides an overview of all ontological services
of the enterprise (those offered to the market as well as those offered only
internally). The next step is to create lower level constructional models. This
is called the engineering of the service-oriented system. The main construc-
tional principle in service-orientation is modularity. That is why the following
step in construction design is to delimit coarse-grained modules of services.
Delimiting these modules is not an easy task. In this dissertation we will show
how this can be achieved by clustering. The identified modules can interact
by calling each other’s ontological services (see Figure 5.3). As we explained
earlier these modules are subsystems of the service-oriented system. After
the delimitation of these modules, the internals of the modules need to be
designed. The lower-level construction models are highly-dependent on the
type of implementation technology used, i.e. humans or IT systems. The
lowest-level construction model is also called the implementation model. In
practice, most IT services are not constructed completely in a top-down way
because not only new systems, but also existing systems, are used as building
blocks for IT services.

50

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

!"#$%&"'()"&*%+"

,-./0/1%+20()"&*%+"(/33"&"'(45(67/&12-%82.%/-(./(92&:".(

!"#$%&

'()#*"+,-"&,)+

Figure 5.2: Ontological services offered by B-organization to the market

!"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'

!"#$%$&'()%*+,-.'(,*$//,-,0*12*3$04%,*$/*56$-&)"'7)#'$"*

#$*$#8,-*3$04%,+*$/*56$-&)"'7)#'$"

9,:4'-,0*+,-.'(,

!"#$%$&'()%*+,-.'(,*$//,-,0*12*56$-&)"'7)#'$"*#$*3)-;,#*

+&$2/*

Figure 5.3: Decomposition of B-organization into coarse-grained modules

51

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

As depicted in Figure 5.4 the I-organization offers infological services to
the B-organization and the D-organization offers datalogical services to the
I-organization. When the construction of the B-organization is designed, the
I-organization can be designed. Again, the GSDP can be applied. Now the
using system is the B-organization and the object system is the I-organization.
When one starts with designing the function of the I-organization one needs
to determine what infological services are required by the B-organization. To
create the highest-level construction model of the I-organization all infological
services need to be defined. Based on this model, coarse-grained modules of
infological service can be defined (see Figure 5.5). The GSDP is applied for
the third time to determine the services that the D-organization needs to
offer to the I-organization (i.e. what is the function of the D-organization)
and to determine how the D-organization is constructed. So in applying the
GSDP now the using system is the I-organization and the object system the
D-organization.

5.3.2 Implementation of Service-Oriented Systems

The implementation of the object system is the assignment of technology to
the lowest-level white-box model (the implementation model). Hoogervorst
and Dietz (2008) use technology in the broadest possible meaning, e.g. hu-
man beings, software systems, electronic machines. In the context of service-
orientation this means that services are either allocated to human beings or to
IT systems. When speaking of IT services, this is usually called deployment.
Most enterprises have at least two test environments to deploy IT services
after they have been developed: a test environment for verification (checking
whether the service matches the specifications) and one for validation (check-
ing whether the service is useful to potential service consumers). Both tests
can lead to repeated execution of previous steps in the design process and
redeployment to the test environment. Finally, the services are deployed to
the production environment. For human services implementation means that
the humans who need to execute the services are informed about what they
need to do and educated if needed. Also, they need to receive the required
procedures that they need to follow.

52

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

!"#$%&"'()"&*%+"

,-./0/1%+20()"&*%+"(/33"&"'(45(67/&12-%82.%/-(./(92&:".(

!"#$%&

'()#*"+,-"&,)+

.()#*"+,-"&,)+

/()#*"+,-"&,)+

;-3/0/1%+20()"&*%+"(/33"&"'(45(;7/&12-%82.%/-(./(.<"(67/&12-%82.%/-(

=2.20/1%+20()"&*%+"(/33"&"'(45(=7/&12-%82.%/-(./(.<"(;7/&12-%82.%/-

Figure 5.4: Services offered by B-, I-, and D-organization

53

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

!"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'
+#,-./0#10

!"#$%&'()&*(#'

!"#$%$&'()%*+,-.'(,*$##,-,/*01*2$/3%,*$#*!4$-&)"'5)6'$"*

6$*$67,-*2$/3%,+*$#*!4$-&)"'5)6'$"

8,93'-,/*+,-.'(,

!"#$%$&'()%*+,-.'(,*$##,-,/*01*!4$-&)"'5)6'$"*6$*67,*:4$-&)"'5)6'$"*

2"#$%&'()&*(#'

+#,-./0#10

!"#$%&'()&*(#'

Figure 5.5: Decomposition of I-organization into coarse-grained modules

54

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

5.3.3 Service-Oriented Architecture

The architecture of a system consists of the (functional and constructional)
design principles that have been or are going to be applied in designing the
system. We define SOA as a consistent and coherent set of design principles
that need to be taken into account in the development process of service-
oriented systems. The functional principles deal with the external function
and behavior of a service-oriented system, e.g. “A service must be compliant
with the national law”. The constructional principles deal with the internal
construction and operation of the service-oriented system, e.g. “Modules must
be constructed with commercial-of-the-shelf components”.

Marks and Bell (2006) provide nine criteria that services must meet:
coarse-grained, well-defined service contracts, discoverable, business aligned,
re-usable, durable, loosely coupled, composable, and interoperable. Though
these criteria as well as the criteria mentioned by other SOA authors provide
some guidelines, they are often not precisely enough to make it possible to
test whether or not services conform to them. This is still a huge problem
in practice. In this research we aim at getting a better insight in different
criteria for delimiting coarse-grained modules of service-oriented systems and
identifying the services they offer by interviewing practitioners in several case
studies.

Table 5.1 shows how we can apply the terminology of the GSDP to service-
oriented systems. We can apply this terminology to a service-oriented system
as a whole as well as to its coarse-grained modules (which are also service-
oriented systems).

5.4 Using BCI-3D for Construction

As we have seen in chapter 3, we need to look at different types of modularity
from a business point of view to achieve organizational flexibility (product
modularity, process modularity, and organizational modularity). Alignment
of these different types of modularity is an important issue as we see in many
articles (e.g. Brusoni and Prencipe (2001) and Todorova and Durisin (2008)).
Unfortunately, a modular product does not automatically result in a modular
organization structure (Hoetker, 2002) and a wrong organization structure
can even lead to poor choices in product design as product designs tend to
‘follow’ the organization design (Conway, 1968).

55

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

Term Meaning End result

SOA a coherent set of design
principles that need
to be taken into ac-
count in the develop-
ment process of service-
oriented systems

not applicable

Function design of the
service-oriented system

the design of the ex-
ternal behavior of the
service-oriented system

the specifications of
the services that the
service-oriented system
offers

Construction design
of the service-oriented
system (including
engineering)

the design of the
highest-level white-
box model and the
decomposition of the
highest-level white-box
model to the lowest-
level white-box model
of the service-oriented
system

the design of the in-
ternals of the service-
oriented system

Implementation of
service-oriented sys-
tems

the mapping of the
lowest-level white-box
model of the service-
oriented system to
technology, i.e. the
deployment of services

the deployed services
(to human beings
and/or IT systems)
of the service-oriented
system

Table 5.1: Terminology derived from applying the GSDP to service-
orientation

Due to its transactional nature, business processes in the ontological model
of the enterprise are highly aligned with the (decomposable) product struc-
ture. Business Component Identification 3D (BCI-3D) is a method for iden-
tifying coarse-grained modules that uses a business model as input. These
coarse-grained modules can contain humans as well as IT systems. Several

56

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

papers are published (Albani et al., 2005; Albani and Dietz, 2006; Dietz and
Albani, 2009) on how to use the ontological model of the enterprise as input
for the method.

To further explain how the notion of Enterprise Ontology and BCI-3D can
help in delimiting modules we introduce the Design Structure Matrix (DSM)
(Browning, 2002), a general (so not IT-specific) means to deal with modular-
ity. DSMs are used by BCI-3D for analyzing the dependencies among transac-
tions, among information objects, and between transactions and information
objects. Browning (2002) explains how DSMs provide help in dealing with
product, process, and organization modularity. A DSM is a square matrix
with identical row and column labels. When reading down a column one
sees the input sources and reading across a row one sees the output sinks.
Figure 5.6 depicts an example in which module A provides input to module
C, module B to module A, and module C to module D. Browning (2002)
distinguishes between several different kinds of DSMs.

Figure 5.6: Example of a DSM

Figure 5.7 shows his DSM taxonomy (adapted from Browning (1999)).
Static DSMs represent elements that exist simultaneously and time-based
DSMs represent elements that ‘flow in time’. The two types of static DSMs
are called component-based DSM and people-based DSM. The first is used
for modeling components and their relationships, i.e. it deals with product
modularity. The second is used for modeling organization structures based
on people and/or groups and their interactions, i.e. it deals with organization
modularity. In time-based DSMs we find two subtypes: activity-based DSMs
and parameter-based DSMs. The first is used for modeling processes and
activity networks based on activities and their information flow and other
dependencies. The second is used for modeling low-level relationships between
design decisions and parameters, systems of equations, subroutine parameter
exchanges, etc. Browning states that gaining a better understanding between
product structures and organization structures is a promising area for further

57

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

research. As said before, the notion of Enterprise Ontology can contribute to
this to a large degree.

!"#$%&'()*+,)+*"'

-.)*$,"#'/!(-#0

().)$, 1$2"34.#"5

67287&"&)3

9.#"5'!(-

:"78;"39.#"5'

!(-

<,)$=$)>39.#"5'

!(-

:.*.2")"*3

9.#"5'!(-

Figure 5.7: DSM taxonomy of Browning (2002), adapted from Browning
(1999)

Let us show how BCI-3D uses the notion of DSMs by creating three matri-
ces as an example. The first matrix is an activity-based matrix based on the
ontological process model (see Figure 5.8). The second one is a component-
based matrix based on the ontological state model (see Figure 5.9). As de-
picted in the figures, BCI-3D adds the concept of weights to the matrix. In
the DSMs presented by Browning only dots are used to indicate a relation-
ship. BCI-3D distinguishes between different weights for the relationships
based on the Enterprise Architecture (using the normative definition, i.e. a
set a design principles). So we can see the matrices of BCI-3D as weighted
DSMs, as also proposed by Hoffman and Eugster (2008).

Also, we need a third matrix. This matrix defines the weights of the re-
lationships between the transactions from the ontological process model and
the information objects derived from the ontological state model (this ma-
trix is not depicted). We can get an overview of all relationships by using a
directed graph as a means for representation (see Figure 5.10). So three differ-
ent DSMs are combined (transactions/transactions, transactions/information
objects, and information objects/information objects). The transactions are
depicted as blue spheres and the information objects as red spheres (this
graph only represents a part of the complete graph of the enterprise). The
arrows depict the direction of the relationships and the label shows the weight
of the relationship. Taking the weights of the relationships as input, BCI-3D
can calculate modules that have maximum cohesion and minimal coupling.

As processes in the ontological model are automatically aligned to the
product structure, alignment between product modularity and process mod-
ularity is not an issue. Also, the ontology model can be used for checking

58

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

Figure 5.8: DSM transactions

Figure 5.9: DSM information objects

59

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

Figure 5.10: Graph representation of three DSMs

the alignment between product/process modularity and organizational mod-
ularity. Take, for instance, the result structure chart (Dietz, 2006b) depicted
in Figure 5.11. Figure 5.12 depicts one of the coarse-grained modules that is
the result of applying BCI-3D with high values for weights of relationships
among transactions. This module offers the service that is part of T02 to its
environment. This service needs to be called by the module that contains the
service that is part of T01.

Figure 5.13(a) shows how actors are clustered (an actor is located in the
module containing the transaction it executes). The example module pre-
sented in 5.12 corresponds with the grouping of actors in Figure 5.13(a) mod-
ule C. However, Op ’t Land (2008) states that communication lines as found
in the ontological model of the enterprise are not the only criteria for making
decisions about the grouping of actors. Additional criteria include, for ex-
ample, ‘keep actors together, when they use the same language/culture’ and
‘keep actors together, when they operate under the same regulatory, legal and
tax-regime’. So we see that criteria exist for structuring an organization that
are not directly related to the product or process structure of the enterprise.
When we also take these criteria (by assigning different weights to relations
of transactions performed by certain actors) into account we can get a dif-
ferent grouping. A possible example grouping is depicted in Figure 5.13(b).
The changes with the original grouping of actors are depicted in red. Fortu-
nately, as Op ’t Land also defines the transactional structure as one of the
most important criteria, there will be a lot of overlap between both ways of
actor grouping. Now let Figure 5.13(c) be the actual organization structure
of an organization. When we compare Figures 5.13(b) and 5.13(c), we can see
where ‘things go wrong’. The differences between the two figures are depicted

60

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

!"# !"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

Figure 5.11: Product structure

!"#$%&

'()

'(*

'(+

,-(.

,-(/

,-(+

'()

'(/

Figure 5.12: Example module of service-oriented system

61

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

!"#

!"$

!"% !"&!"'!"(

!")!"*

!+,-./0-1234/! !+,-./0-1234/5 !+,-./0-1234/6

!"7

(a) Actor clusters based on product structure

!"#

!"$

!"% !"&

!"'

!"(!")

!"*!"+

!,-./01.23450! !,-./01.234506 !,-./01.234507

(b) Actor clusters based on product structure taking into account principles Op
’t Land

!"#

!"$!"%

!"&
!"' !"(!")!"*

!"+

,-./012-314! ,-./012-3145 ,-./012-3146

(c) Actual organization structure

Figure 5.13: Clusters of actors

in blue.

Figure 5.14 shows screenshots on how a model is entered as input for
BCI-3D. We see that the relationships among transactions are captured in
the table funfun.csv. The relationships among information objects are spec-
ified in the table ioio.csv. Relations between transactions and information
objects are captured in the table iofun.csv. Also, we can specify which actor
executes which transaction (table actor.csv) and, if relevant, the relationships
with external modules (extern.csv). Figure 5.15 shows example parameter
settings of BCI-3D in which the different weights are defined. These weights
are used to define the strength of the relation. The result of the application
of BCI-3D is an overview of identified modules. Figure 5.16 shows a graph-
ical representation of this result. The transactions and information objects

62

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

that are grouped together in the three-dimensional graph belong to the same
module. In this example we see three modules: (i) the module consisting of
BPS 1, BPS 1.1, BPS 2, BPS 3.2, BPS 4.2, IO A, IO A2, and IO B, (ii) the
module consisting of BPS 3.1, BPS 4.1.1, BPS 4.1.2, BPS 5, BPS 6.1, BPS
6.2, BPS 7, IO A1, and IO C, and (ii) the external module BPS E. BPS is
an abbreviation for business process step (as BCI-3D can also be used with
other business modeling approaches). In our case the business process step is
a transaction. IO is short for an information object.

Figure 5.14: Tables of relationships used by BCI-3D (Birkmeier, 2008)

63

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

IO-IO
- related-to: 5
- part-of: 8
- evolution-of: 6
- state-of: 7
BPS-BPS
- standard (1..1): 20
- optional (0..1, 0..n): 15
- frequent (1..n): 25
- notify: 15
BPS-IO
- create: 10
- use: 5
ACT
- Actor: 20

Figure 5.15: Example parameter settings (Birkmeier, 2008)

Figure 5.16: Example graph produced by BCI-3D (Birkmeier, 2008)

5.5 Conclusions

Currently, most methodologies for service-orientation fail to make a clear dis-
tinction between the notions of SOA (Service-Oriented Architecture) and SoD
(Service-oriented Design). The main contribution of this chapter is an elu-
cidation of these notions based on the Generic System Development Process
(GSDP). SOA has been defined as a consistent and coherent set of design
principles that need to be taken into account in the development of service-
oriented systems. We have defined SoD as the design part of a development
process, according to the GSDP. It consists of producing successive concep-
tual models of the object system under consideration.

64

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

We introduced the following phases in the development process for service-
oriented systems: function design of service-oriented systems, construction
design of service-oriented systems (including engineering), and implementa-
tion of service-oriented systems. Also, we made a distinction between the B-
organization, the I-organization, and the D-organization. The B-organization
offers services to the market, the I-organization offers services to the B-
organization, and the D-organization offers services to the I-organization.

Function design refers to design of the external behavior of a service-
oriented system. This means identifying the services that the system offers
to its environment and making specifications of these services. Construc-
tion design refers to designing the internal structure of the service-oriented
system. These service-oriented systems can be constructed of modules that
offer services to each other. As these modules are also service-oriented sys-
tems, they also require function design (design of external behavior) and
construction design (design of internal structure). One way to delimit these
coarse-grained modules is by applying BCI-3D. This method uses the notion
of a Design Structure Matrix (DSM) to find modules with maximum cohesion
and minimal coupling. BCI-3D provides an overview of these modules and the
required interaction. It only provides a high-level white-box model of the in-
ternal structure of the modules. Implementation of a service-oriented system
refers to assigning human beings or IT systems to its lowest level white-box
model (implementation model). In this step we deploy the service to an IT
system or a human being.

As said, BCI-3D is a method to delimit coarse-grained modules of service-
oriented systems. This method, however, is not the only method available
for the development process of service-oriented systems and it does not cover
the complete scope of the development process. Using the high-level distinc-
tion of phases presented in this chapter we are able determine the scopes of
methodologies for service-orientation (which we will do in the next chapter).

65

CHAPTER 5. DEVELOPMENT PROCESS FOR SERVICE-ORIENTED SYSTEMS

66

Chapter 6

Positioning Methodologies for
Service-Orientation

Abstract We use the Development Process for Service-Oriented Systems to
analyze and position six state-of-the art methodologies for service-orientation.
Two criteria are applied for evaluating the methodologies. One is the coverage
of the system development process. The other criterion is the depth in which
each of the development phases are dealt with. Two of the methods cover
the whole development process, namely the methodology of Papazoglou en
van den Heuvel and SOMA. However, they do not elaborate all phases very
thoroughly. Some of the specialized methodologies provide an in-depth con-
tribution to specific steps of the development process, like SMART for the
construction of the internal structure of the modules offering services and the
Goal Driven Approach for delimiting modules and allocating services to them.
None of methodologies combines full coverage with full depth.

6.1 Introduction

In the previous chapter we specialized the Generic System Development Pro-
cess (GSDP) for service-orientation. We also showed how Business Compo-
nent Identification 3D (BCI-3D) can be used for delimiting coarse-grained
modules of service-oriented systems. BCI-3D, however, does not cover the
complete development process. In this chapter a positioning of six other state-
of-the-art methodologies for service-orientation is presented and discussed.
For this positioning we apply the coverage of the development process as a
criterion, i.e. we look to what extent the different methodologies cover all

67

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

activities within our GSDP-based process, as well as the depth with which
this is done.

This chapter is structured as follows. In section 6.2 we discuss work related
to the topic of this chapter. After that, we discuss several methodologies in
section 6.3. Section 6.4 presents their overall positioning in the GSDP. We
give examples on how to use these different methodologies using an insurance
case example in section 6.5. Section 6.6 concludes this chapter.

6.2 Related Work

Though much is written about methodologies for service-orientation, only
little literature is available on the comparison of these methodologies. The
most closely related research to our research is the work by Ramollari et al.
(Ramollari et al., 2007). They look into ten methodologies, including Service-
Oriented Modeling and Architecture (SOMA) (Arsanjani and Allam, 2006),
Service-Oriented Architecture Framework (SOAF) (Erradi et al., 2006b), and
the methodology of Papazoglou and van den Heuvel (Papazoglou and van den
Heuvel, 2006). The authors analyze the following aspects of the methodolo-
gies: (i) delivery strategy, (ii) lifecycle coverage, (iii) degree of prescription,
(iv) availability, (v) process agility, (vi) adoption of existing processes, tech-
niques, and notations, (vii) industrial application, and (viii) supported role(s).
Regarding the coverage of the lifecycle, the methods are classified in the fol-
lowing categories: ‘complete’, ‘analysis and design’, ‘analysis and design and
planning next phases’, ‘analysis and design and implementation’, and ‘initial
planning’. It remains unclear why the authors have chosen these specific cat-
egories. Also, no explanation is provided on the reason why a methodology
is classified in a certain category.

Other related work focuses on comparing approaches for executing very
specific steps in the service-oriented development process, e.g. service compo-
sition (Mantovaneli Pessoa et al., 2008) or the usage of semantic web service
approaches (Wahl and Sindre, 2009). Also, several comparison frameworks
for component-based development are proposed, e.g. the ones of Boertien
et al. (2005), Bunse et al. (2004), and Jisa (2004). Unfortunately, all of them
lack sufficient clarity and precision in the definition of the core concepts to
be useful for our research.

68

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

6.3 The Methodologies

This section presents state-of-the-art methodologies for service-orientation.
These methodologies appear to be either generic, i.e. having a broad scope
and focusing mainly on which steps to take and not how to execute the steps,
or specialized, i.e. focusing on a specific part and covering it in-depth. Exam-
ples of generic methodologies are the methodology of Papazoglou and van den
Heuvel (2006), the IBM methodology SOMA (Arsanjani and Allam, 2006),
and SOAF (Erradi et al., 2006b). Examples of specialized methodologies in
the area of module and service identification are the Goal Driven Approach
(Levi and Arsanjani, 2002) and Business Elements Analysis (McGovern et al.,
2006). In this section we apply the terminology as used by the authors of the
papers describing the methodologies. In section 6.4 we will map the design
steps of these methodologies to the steps of the GSDP. Hereafter the generic
methodologies are presented first, after which the specialized methodologies
follow.

6.3.1 SOAF

The consulting company Infosys Technologies developed Service-Oriented Ar-
chitecture Framework (SOAF). Our analysis of SOAF is based on the article
by Erradi, Anand and Kulkarni (Erradi et al., 2006b). The goal of SOAF is to
devise a systematic and repeatable process for implementing Service-Oriented
Architecture (SOA). SOAF combines top-down modeling of business pro-
cesses with the bottom-up analysis of the existing applications. The authors
do not mention the origins of SOAF explicitly, except for past experiences
with SOA in practice.

SOAF describes a number of activities that need to be performed for
migrating to a service-oriented environment. Also, it describes the inputs
required by a certain activity and the deliverables created by it. The activities
are grouped into five phases. From the total of 19 deliverables, 6 are marked
being most important. Not all of the activities are discussed in the article.

1. Information Elicitation
The goal of the information elicitation phase seems to be, though it
is not explicitly mentioned, to retrieve and analyze all information re-
quired for the service identification phase. Its activities are among oth-
ers business interviews, business process modeling, and (tool assisted)
application mining.

69

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

2. Services Identification and Matching
Service identification is the iterative process for arriving at an optimal
set of services. The authors advocate a hybrid approach combining top-
down domain decomposition along with bottom-up application portfo-
lio analysis. Matching is the process of determining how the top-down
identified services should be mapped to the services that existing appli-
cations can offer. Some services may need to be developed from scratch
and some applications may offer functionality that is not required in
the future business process model.

3. Services Realization
The service realization phase deals with making the identified services
operational. The authors provide a taxonomy of different service real-
ization approaches containing, for instance, screen scraping, rehosting,
and adapter-based wrapping.

4. Roadmap and Planning
The goal of this phase is to reduce disruptions to the business continuity
during the SOA roll-out. This phase involves the detailed planning of
projects to implement the transformation initiatives. Also, it deals with
identifying business and technical risks and defining migration strate-
gies.

6.3.2 P&H

Papazoglou and Van den Heuvel (University of Tilburg) propose the SoD
and Development methodology (Papazoglou and van den Heuvel, 2006). The
authors not only provide an overview of the activities required to migrate
to a service-oriented environment, but they also explain some of the archi-
tectural principles that apply to the functional and constructional design of
services, e.g. functional service cohesion, communicational service cohesion,
identity coupling, and communication protocol coupling. This methodology
is partly based on other related development models, such as Rational Uni-
fied Process (RUP) (Rational Software Corporation, 2001; Kruchten, 2003),
Component Based Development (Herzum and Sims, 2000) and Business Pro-
cess Modeling (Harmon, 2003). The authors’ starting point is the idea that a
good methodology for service-orientation is based on an iterative and incre-
mental process and that it concentrates on business processes. Although the

70

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

method originates from a university, the authors do not explicitly mention
their theoretical points of departure.

The phases of SoD and Development methodology (P&H) are:

1. Planning
According to the authors the planning phase of a methodology for
service-orientation is very similar to that of software development method-
ologies, including the RUP. This phase determines what the scope of
the service-oriented environment is and how feasible the wishes of the
organization are.

2. Analysis
The analysis phase deals with the requirements of the service-oriented
environment. Business process (re)design is the starting point of this
phase, which has as goal to reuse business process functionality, i.e.
application logic directly supporting the business process, in new com-
posite applications. The basis for the new business processes consist
of an as-is process model and a to-be process model. The organization
creates this to-be process model by designing, simulating, and analyz-
ing potential changes to the current application portfolio for potential
Return-On-Investment (ROI) before committing to any of the changes.

3. Service Design
The service design phase needs the results from the analysis phase as
an input, which are conceptual processes and services, and transforms
them into a set of related, platform-agnostic interfaces. This interface is
needed to construct the services by producing them from possibly pre-
existing components or from new components or by assembling services
out of other services. An important aspect of this phase is to think
about how to combine higher-level services from existing services. Two
main activities of this phase are (i) service specification and (ii) business
process specification.

4. Service Construction
In this phase the services are constructed either from scratch or by mod-
ifying existing services, or by constructing wrappers on top of existing
legacy applications.

5. Service Test
According to the authors, the most interesting type of testing for service

71

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

implementations is dynamic testing. Dynamic testing means running
the implementation and comparing its actual to its expected behavior
before it is deployed.

6. Service Provisioning
The authors see service provisioning as a central issue in making rev-
enue generating web services. The following aspects need to be taken
into consideration for service provisioning: (i) service governance, which
includes choosing between a central and distributed governance model,
(ii) service certification, which is concerned with properties of a services
that can predict end-to-end behavior of composite services, (iii) service
metering and rating including choosing a system for measuring the use
of services by service consumers, and (iv) service billing strategies which
includes deciding which services are offered for free and which services
have to be paid for.

7. Service Deployment
The deployment phase deals with rolling out the new processes to all the
participants in the service-oriented environment. Some of the activities
in this phase are publication of the service interface and deployment of
the services at the provider side.

8. Service Execution
The service execution phase means that all services are fully deployed
and operational, so the new processes can be and are actually carried
out by all participants in the service-oriented environment.

9. Service Management and Monitoring
The service management and monitoring phase is among others con-
cerned with service version control and the monitoring of Service Level
Agreements (SLAs).

6.3.3 SOMA

IBM proposes Service-Oriented Modeling and Architecture (SOMA) as a
methodology. The first version was presented in 2004. SOMA is an exten-
sion to existing IBM analysis and design methodologies, including the Global
Services Method, a methodology used by IBM Global Services personnel for
client engagements, and the Rational Unified Process, a method for software

72

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

development widely adopted in industry. SOMA started out as an IBMGlobal
Services Method. Meanwhile IBM was working on SOA specific extensions
to the Rational Unified Process. In 2006 the people working on both initia-
tives joined forces. In 2006 an overview of the method (Arsanjani and Allam,
2006), consisting of three phases, was published. More recently (2008), a
more detailed article (Arsanjani et al., 2008) on SOMA has been published.
Two additional phases were added: (i) implementation and (ii) deployment,
monitoring, and management. As far as we know, SOMA has no strong the-
oretical basis. Instead it is based on a large number of project experiences
over 2002-2004 (Arsanjani, 2006).

SOMA distinguishes between the following five major phases:

1. Identification
This phase deals with determining which services are required. It starts
with identifying the business domain that is the focus for transforma-
tion to SOA. The next step is to identify the key business processes
that support this domain. Candidate services are identified from three
inputs: the key business processes, the existing software assets, and
business goals.

2. Specification
In the service specification phase the details of the services are designed.
The priority of which candidate services to specify first is based on a
set of criteria.

3. Realization
The realization phase consists of different types of activities. These
activities include the exploration of technical feasibility, the building of
prototypes, and the selection of patterns for building the services.

4. Implementation
The implementation phase focuses on building the services, either by
building them from scratch, wrapping existing systems, or assembling
them from other services.

5. Deployment, Monitoring, and Management
This phase deals with packaging, provisioning, executing user accep-
tance testing, and deployment of services to the production environ-
ment.

73

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

6.3.4 Business Element Approach

McGovern et al. (2006) describe the Business Element Approach in their book
“Enterprise Service-Oriented Architectures”. Its main goal is to make it possi-
ble to trace changes to business processes or rules quickly and unambiguously
to one or more specific components. The Business Element Approach has its
roots in Component Based Development methodologies.

The following phases belong to the Business Element Approach:

1. Requirements Definition
The objective of this activity is to define precisely what services the
planned system should provide, how they are carried out, and what
business features it should exhibit.

2. Business Element Analysis
The Business Element Approach distinguishes between three kinds of
business elements that can be derived from resource and process models,
viz. Resource Business Elements (RBE’s), Service Business Elements
(SBE’s), and Delivery Business Elements (DBE’s). An RBE, which
groups the (information) resources, comprises a focus resource, being
independent (e.g. Customer) and its auxiliary resources (e.g. Address),
always belonging to a certain focus resource. An SBE consist of the
highest-level immediate steps. An intermediate process is a process of
which steps are required to complete as soon as possible, and whose
intermediate states are of no concern to the business in that they are
not required to be remembered after the process is completed. A DBE
is a grouping of Service and Resource Business Elements that together
deliver a business solution to a business problem, and which provides
services to requesters.

3. Mapping to Components
In this phase the business elements that capture important business
concepts are mapped to different types of components that are of im-
portance for structuring concepts in IT systems. The SBE’s are mapped
to Process Business Components, the RBE’s to Entity Components, and
the DBE’s to Application Components.

74

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

6.3.5 Goal Driven Approach

The Goal Driven Approach (Levi and Arsanjani, 2002) derives services from
business goals. The services are depicted in a Goal Service Graph and they
are allocated to enterprise components. This Goal Service Graph provides
traceability of IT services to business goals. These enterprise components are
identified by clustering highly interdependent (coupled) use cases. One of the
authors of the article on the Goal Driven Approach also co-authored the article
on SOMA we used in our paper. The Goal Driven Approach finds its basis
in the world of Component Based Development and Object-Oriented analysis
and design methods. Also, it builds upon formal grammar specification to
define domain-specific languages. SOMA (Arsanjani et al., 2008) mentions
this method as one of the possible methods for service identification.

The Goal Driven Approach consists of:

1. Domain Decomposition
This phase is meant for identifying business processes and dividing the
domain into functional areas based on department boundaries, business
process boundaries, and value chains.

2. Subsystem Analysis
After the functional areas of the major business process areas are iden-
tified, they are all broken down into their constituent business processes
or functional areas as defined by the business analysts and modelers.

3. Creation Goal Model
This phase comprises the identification of high-level business goals and
their refinement into sub-goals with explicit dependencies. The common
way to retrieve organizational goals is through interviewing people from
the business side of a project. Also, a verification of these goals with
executives is required since they may be different from what business
modelers think they are.

4. Service Allocation
After the structure of the components is identified in the domain de-
composition and subsystem analysis phases, it is time to match them to
their functions or services that are identified through the Goal Service
Graphs.

75

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

5. Specification of Enterprise Components
The specification phase focuses on three aspects: services (interfaces),
contracts, and manners.

6. Structuring Enterprise Components
Finally, the internals of the enterprise components are designed. The
authors explicitly mention their preference for reconfigurable compo-
nents that are composed of subcomponents in a soft-wired way.

6.3.6 SMART

Service-Oriented Migration and Reuse Technique (SMART) (Lewis et al.,
2006) is a methodology that describes in detail how to construct identified
services from legacy systems. SMART takes into account that in practice
it is often not easy to construct services from legacy systems. Since al-
most no organization has the luxury to build up its entire IT-environment
from scratch, it is important to recognize the risk involved in migrating to
a service-oriented environment. According to the SMART methodology an
organization needs to thoroughly assess the capabilities of its legacy systems
and carefully analyze the risk of migrating. SMART uses code analysis with
the ARMIN tool, a process which the authors call architecture reconstruction,
to determine the structure of the existing systems. SMART is developed by
the Software Engineering Institute (SEI). The US Department of Defense
(DoD) sponsored the work. SMART was derived from the Options Analysis
for Reengineering (OAR) method developed at the SEI. OAR is a system-
atic, architecture-centric means for mining existing components for a product
line or new software architecture. The method incorporates a set of scal-
able techniques and exercises to collaboratively analyze existing components,
determine viable mining options, and evaluate the most promising options
(Smith et al., 2002).

The phases of SMART are (Lewis et al., 2005):

1. Establish Stakeholder Context
The first step in the SMART methodology is to get information about
the stakeholders concerned with the migration to service-orientation.
These include the owners and end users of the legacy systems, the po-
tential end users of the services, the funders of the project, groups defin-
ing the target services, and verification and validation groups that will

76

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

certify the properties of the new services. The main goal of this activ-
ity is to gain information about who has knowledge about the legacy
systems and what the demand for future services is.

2. Describe Existing Capabilities
The goal of the second activity of SMART is to obtain descriptive data
about the components of the legacy system, including name, function,
size, language, operating platform, and age of the legacy components,
design paradigms, code complexity, level of documentation, module cou-
pling, interfaces for systems and users, and dependencies on other com-
ponents and commercial products. This phase is intended to gather
evidence about potential services that can be created from the legacy
components and to gather sufficient detail about the target SOA to sup-
port decisions about what services may be appropriate and how they
will interact with each other and the SOA.

3. Analyze the Gap between Service-Based State and Existing
Capabilities
The goal of the fourth activity is to identify the gap between the existing
state and the future state, and to determine the level of effort and cost
needed to convert the legacy components into services.

4. Develop Strategy for Service Migration
The final activity of SMART involves recommending one or more of
the options for mapping services to components, selecting a strategy to
achieve the goal, and presenting the SMART team findings.

6.4 Positioning the Methodologies

In the last section we presented six state-of-the-art methodologies for service-
orientation having either a generic or a specialized nature. In this section
we investigate to what extent the different methodologies cover the GSDP-
based development process for service-oriented systems. Table 6.1 exhibits
the mapping of the six methodologies to the service-oriented development
process derived from the GSDP. The vertical axis consists of the phases of
the methodologies as described in section 6.3. The horizontal axis comprises
the phases of the specialized version of the GSDP.

77

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

Methodology Phase F
u
n
c
ti
o
n

d
e
s
ig
n

C
o
n
s
tr
u
c
ti
o
n

d
e
s
ig
n

Im
p
le
m
e
n
ta

ti
o
n

Business Element Approach Requirements Definition O - -

Business Element Analysis O O -

Mapping to Components - O -

Goal Driven Approach Domain Decomposition - O -

Subsystem Analysis - O -

Creation Goal Model O - -

Service Allocation O O -

Specification of Enterprise Components O - -

Structuring Enterprise Components O -

SOAF Information Elicitation O - -

Services Identification and Matching O O -

Services Realization - O

Roadmap and Planning - - -

P&H Planning - - -

Analysis O - -

Service Design O - -

Service Construction - O -

Service Test O O -

Service Provisioning O - -

Service Deployment - - O

Service Execution - - -

Service Management and Monitoring - - -

SOMA Identification O - -

Specification O - -

Realization - O -

Implementation - O -

Deployment, Monitoring, and Manage-

ment

- - O

SMART Establish stakeholder context - - -

Describe existing capabilities - O -

Describe the future service-based state - O -

Analyze the gap - O -

Develop strategy for service migration - O -

Table 6.1: Classification of methodologies for service-orientation

78

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

The Business Element Approach and the Goal Driven Approach deal with
function design as well as construction design. The Business Element Ap-
proach focuses on function design in its requirements definition phase and in
its business element analysis phase. The requirements definition phase de-
fines what services are needed in the service-oriented system. In the business
element analysis phase modules are defined. In this phase it is also deter-
mined which service is delivered by which module. Additionally, a high-level
construction model is provided. Thus the business element analysis phase
deals with construction design to some extent. In the mapping to compo-
nents phase the construction is further defined by making a mapping of the
high-level construction models of modules to IT components. In the Goal
Driven Approach function design is done in the creation goal model phase.
Modules are defined in the domain decomposition and subsystem analysis
phases. In the service allocation phase services are allocated to modules, so
this is part of function design as well as construction design. The Business El-
ement Approach as well as the Goal Driven Approach deal with construction
of the service-oriented system and they identify services for the interaction
with the modules. Though they do provide assistance in constructing the
service-oriented system (enterprise) as a whole by delimiting modules, they
do not provide assistance in designing the internal structure of the modules.
The only specialized methodology that has a different focus is SMART. This
methodology focuses on constructing the internals of modules, since it looks
at how legacy systems can implement the identified candidate services. It as-
sumes other methodologies are applied for acquiring these candidate services.
The SMART phase of establishing stakeholder context is not really a design
activity; it takes place before the actual development process starts.

Looking at the generic methodologies, we see that P&H and SOMA have
the broadest scopes since SOAF does not cover the implementation phase.
Let us have a closer look at these three methodologies.

SOAF’s information elicitation and its service identification and matching
phase both deal with service function design. The latter, however, also deals
(though minimally) with service construction design as the ease of compo-
sition is also taken into account. The SOAF realization phase places more
emphasis on construction design and the decomposition of the highest-level
white-box model into lower-level white-box model, viz. service engineering.
The planning of the deployment of the service takes place in the SOAF
Roadmap and Planning phase. The phase does not deal with the deploy-
ment itself.

79

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

In the planning phase of P&H some decisions about the function and
construction of the services are taken like the business processes they need
to support and the existing systems that can be used for implementation.
The thorough function design of the services takes place in the analysis and
service design phases, after which the construction takes place in the service
construction phase. Testing belongs both to the function design and to the
construction phase as it is concerned with testing the function as well as the
construction (links between the components) of a service. The methodology
explicitly mentions the service deployment step (the service implementation
phase).

In the paper from 2006 (Arsanjani and Allam, 2006) SOMA consists of
three phases: identification, specification, and realization. In later work (Ar-
sanjani et al., 2008) two phases are added: implementation, and deployment,
monitoring, and management. However, these two phases are not discussed
in detail in the new paper (they are said to be out of scope). SOMA’s identifi-
cation phase as well as its specification phase both map to the function design
phase of the GSDP. The SOMA realization phase as well as its implementa-
tion phase deal with construction. Finally, the deployment, monitoring, and
management phase deals with the implementation phase of the GSDP.

In both SOMA and P&H the authors speak of activities like ‘monitoring’
and ‘management’. However, we do not consider these activities to be part
of the development process for services as defined in the GSDP. These activ-
ities deal with the operation of the system instead of with its development.
The amount of detail in which the phases of the generic methodologies are
described is the largest in P&H. Also, this methodology does not only deal
with the steps that need to be performed in the service design process, but
also emphasizes the principles applied during the design process. These six
design principles focus on minimizing coupling between services.

6.5 Examples for Applying the Methodolo-
gies to an Insurance Company

In this section we show some examples of applying the different methodologies
to the insurance company Protector. The business models from these case
are derived from a real-world insurance company. For the sake of simplicity,
we only show part of the models.

80

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

6.5.1 Introduction

Protector, an insurance company, sells three types of life insurance products.
The first type of product, the term life insurance, protects the beneficiaries
of a policy from the financial damage they suffer in case the insured dies
during the policy term. The second type, pension insurance, can be seen as
an insurance that protects the insured from a large income loss if he reaches
his pension age or that protects his life partner and young children from large
income loss after the insured (would have) reached his pension age in case of
the insured’s death. The third type, the capital sum insurance, is an insurance
for building up capital. When the end date of the policy is reached, then the
benefit will be paid in a single payment. This product type is, for instance,
suitable for saving money to pay off a mortgage. Protector offers multiple
products of each type.

Protector sells these products either to a company, i.e. collectively, or to
an individual person, i.e. individually. Some products may be sold both col-
lectively and individually, some only collectively or individually. An example
of a collective insurance is a pension insurance provided by a company to its
employees. An individual insurance could be a term life insurance related to
a mortgage. We use the word policy for the individual policy as well as for
a participation in a collective contract. An insurance policy has an insurant,
one or more insured, and one or more beneficiaries. The insurant is an orga-
nization or person that is responsible for the payment of the premium of a
policy. The insurant is the client of Protector. The insured is a person who
is the ‘insured object’. The beneficiary is a person who receives a payment if
the insurant has a right to a benefit according to the product rules of a pol-
icy. Figure 6.1 depicts the relationship between these and other information
objects in UML notation. When a certain insured person would cause a high
risk for Protector, because for example the insured amount is high, then the
policies are reinsured by a reinsurer. This means that a part of the insured
amount is insured by the reinsurer in order to spread the risk. A reinsurer can
be a ‘regular’ insurance company or an insurance company that is specialized
in insuring insurance companies. Sometimes reinsurance is legally obligatory,
sometimes it is a choice made by Protector itself.

Protector has two main business goals for the next 5 years: (i) standard-
izing their product portfolio and (ii) increasing customer satisfaction. Cur-
rently, the company tends to create new products for almost every corporate
client, which results in huge policy management problems. The company

81

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

!"#$%&

$'()*+'%,-
!*,.$).

$'()*+'%,-
/,',0$1

/,',0$1
!+&.,'1

!+*1&

%".!+'&

!,*("'

+2,'1

%"..$(($"'

!*"3)%1

!*"3)%1-
+34$%,

56-78959:7;-9<-
=787>9-<?

56-@<A7B7;-=C

=7:<8D6-9<-

56-@EF67-<?

56-@B7E9<B-<? 56-E;A567;-58

GEC6-?<B

586FBE89

586FB7;=787>@5EBC

=7:<8D6-9<-

56-6<:;-=C-

H

56-=E67;-<8-

IJJK
IJJK

IJJK

HJJKHJJK

HJJK H

HJJK

H

HJJK

H

H IJJK

H

IJJK

HJJK

IJJK

%"##,%1$4,-
!"#$%&-

%"'1*+%1

56-9L7-@<89BE@9-
L<:;7B

HIJJK

IJJH

IJJK

=7:<8D6-9<

HJJK

IJJK

@<8@7B86

Figure 6.1: Information object diagram for Protector

wants to improve its product management process and restrict the freedom
of sales employees in defining their own new products. Customer satisfac-
tion is low because it takes a long time to process changes to a policy. Also,
clients are complaining about the lack of support of self service through the
Internet. The client has to contact the company by phone or mail. Table 6.2
exhibits the six main software systems of Protector. Protector is considering
replacement of the legacy systems.

82

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

System Purpose

Siebel A CRM for managing data related to reinsur-
ers, insurants, beneficiaries, and insured per-
sons

InterAgent A custom-made system for managing data re-
lated agents, the advices they provide, and the
commission they receive

OmniPayment A custom-made system for paying insurance
benefits to beneficiaries, for paying reinsurance
premium to the reinsurer, and for pay commis-
sion to agents

DirectPolicy A newly acquired commercial system suitable
for pension and capital sum policy administra-
tion. This system can be used for self-service
over the internet.

DinoPolicy A legacy system for pension policy adminis-
tration that can only be used by employees of
Protector

TermPolicy A legacy system for term life and capital sum
policies that can only be used by employees of
Protector

Table 6.2: Software Systems of Protector

6.5.2 Function Design in the Business Element Ap-

proach

Services are identified by process decomposition. We first need to look at
the top-level immediate steps defined in the process model (i.e. a step “that
is required to complete as soon as possible, and whose intermediate states
are of no concern to the business in that they are not required to be remem-
bered after the process has completed”). After that, the subsidiary immediate
steps are defined. Services identified in this case are among others ‘Request

83

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

Quotation’, ‘Change Policy’, and ‘Add Product to Portfolio’. Let us have
a look at the ‘Request Quotation’ service. For this service we could define
the following Subsidiary immediate steps: ‘Validate Client Data’, ‘Record
Client Data’, ‘Validate Policy Related Data’, ‘Record Policy Related Data’,
and ‘Send Confirmation Letter’.

The method does not deal with service specification.

6.5.3 Function Design in the Goal Driven Approach

We can identify services using Goal Service Graphs. Working from the two
business goals mentioned in the case description, we construct the Goal Ser-
vice Graph as depicted in Figure 6.2. We decompose these business goals
until we get a set of services that will achieve a certain goal.

1. Standardize product portfolio

(a) Migrate expired policies to new standardized products
based policies

ConvertPolicy

(b) Apply strong product management

Check for duplicate products

Calculate risk for product

2. Increase customer satisfaction

(a) Decrease change processing time

Search for policy

Calculate effects of change

(b) Enable self service through the Internet

Request quotation

Request policy

Change policy

Figure 6.2: Goal Service Graph

When looking at the second step of function design (service specification),
the authors speak about Enterprise Component Specification. This is essen-
tially the same as the specification of all services of a module. They address

84

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

the following three key ingredients of such specification: services (interfaces),
contracts, and manners. Services (interfaces) specify “what capabilities the
component provides to support the business goals and processes, what it re-
quires to do so, and an abstract specification of the design of how the services
realize goals”. Contracts refer to the specification of pre- and post-conditions
of each service and the sum total of which services are provided and required
by the component. Manners specify “how the component in a given state
should behave within a given context; which subset of rules to check once an
event has been triggered”.

6.5.4 Function Design in SOAF

SOAF positions service identification as an iterative process for arriving at
an optimal set of services. The authors propose a hybrid approach combining
top-down domain decomposition along with bottom-up application portfolio
analysis. The activities result in a list of candidate services that further
needs to be rationalized and consolidated. The activities are not discussed in
sufficient detail for enabling us to apply the ideas to our case.

Service specification is called service description in SOAF. The follow-
ing aspects are considered to be part of the service specification: the service
interfaces and data types of exchanges messages, the behavioral model of
the service including the supported message exchange patterns (e.g. one-
way/notification or request-response), the supported conversation and tem-
poral aspects of interacting with the service, and the service policy. The
service ‘BindPolicy’ might comprise the specification elements exhibited in
Table 6.3.

6.5.5 Function Design in P&H

P&H deals with service identification, though not in much detail. We were
not able to identify services from our case using this methodology. The au-
thors, quoting Johnston (2005), mention the following service specification
elements: structural specification, behavioral specification, and policy speci-
fication. Structural specification refers to how the interface, specified in the
Web Service Definition Language (WSDL), is structured, e.g. messages, port
types, and operations. The paper does not discuss how this relates to service-
oriented environment that do not use Web services. The behavioral speci-
fication deals with understanding the effects and side effects of the services

85

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

Bind Policy

Exchange pattern Request-response
Input Id of policy data object
Output DateTime of the moment of

binding
Preconditions Policy pol has been created

Policy pol has been under-
written

Effect Policy pol is bound
Availability 99,5%
Required protocols XML Encryption

XML Signature

Table 6.3: Example of part of a service specification in SOAF

(called ‘operations’ by the authors) and the semantics of input and output
messages. In our case the behavioral specification of the service ‘Bind Policy’
could state how the consumer cannot be used if the policy is not created and
underwritten first. The policy specification denotes policy assertions and con-
straints on the service. These assertions may cover security, manageability,
etc. In our case policy specifications might be that the Bind Policy services
(i) uses XML Encryption and (ii) is available 99,5% of the time.

6.5.6 Function Design in SOMA

For the process of service identification SOMA mentions three main com-
plementary techniques: goal service modeling, domain decomposition, and
existing asset analysis. For the domain decomposition the authors refer to
a technique called variation-oriented analysis and design (VOAD). Existing
asset analysis takes a bottom-up approach; it looks at the existing applica-
tion portfolio and other assets and standards that may be used in identifying
good candidate services. We already explained the Goal Driven Approach in
subsection 6.5.3. In the paper we used as a source for writing this subsec-
tion, the mentioned goal service modeling and domain decomposition tech-
niques were combined. When applying the existing asset analysis approach,
we could suggest candidate services like ‘Pay Reinsurance Premium’ offered
by the OmniPayment application and ‘Create Term Life Policy’ offered by
the TermPolicy application.

86

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

SOMA addresses the importance of service specification. The specification
describes the following aspects of a service (called ‘operation’ in the paper):
non-functional requirements, input, output, and error messages. Also, the
authors mention a context diagram, i.e. “the service ecosystem for a group
of related services illustrating service consumers and service providers and
indicating the flow of messages between services and the various underlying
systems that implement them”. In our opinion the underlying systems that
implement the services would not belong to the service specification.

6.5.7 Construction Design in the Business Element Ap-

proach

The Business Element Approach uses the information objects model and the
process model to define ‘elements’, i.e. modules. The criteria for identifying
Resource Business Elements (RBE’s) are whether they are “real” and “in-
dependent”. “Real” means that a Subject Matter Expert (SME) both uses
and understands it. An “independent” resource is one that somebody can
talk about without first saying to what it belongs. As our information object
model is constructed together with SME’s all objects in it are “real”. The
policy object is an “independent” resource, the benefit payment, insurance
benefit, and insurance premium objects are not. In the example given by the
authors, roles are also explicitly modeled as objects, which is not the case in
our model. We can, therefore, also consider the following objects as auxiliary
resource elements: insurant, insured, and beneficiary. This leads to the RBE
depicted in Figure 6.3.

The services are grouped in SBE’s by grouping the steps by RBE. In our
case this lead to the results exhibited in Table 6.4.

A DBE is “a grouping of Service and Resource Business Elements that
together deliver a business solution to a business problem, and which provides
services to requesters”. In our case example DBE’s are Product Management,
which contains the Product Service SBE and the Product RBE, and Policy
Management, which contains the Policy Service SBE and the Policy RBE,
the Person RBE, and the Company RBE.

87

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

!"#$%&

!!"#$%&''
!"#$%&

!!(%)*+*(,-''
'()(*+,-.&/()+

!!(%)*+*(,-''
0)123.)%(,-3(/$2/

!!(%)*+*(,-''
0)123.)+

!!(%)*+*(,-''
0)123(4

!!(%)*+*(,-''
'()(*%$.3&

Figure 6.3: One of the RBE’s of Protector

6.5.8 Construction Design in the Goal Driven Approach

When applying the Goal Driven approach, we define the module boundaries
in terms of business processes. Exact criteria for making this division in
modules (called components in the article) are not given. A possible business
process division is:

Product Portfolio Management

Customer Relationship Management

Quotation

Policy Management

Reinsurance

In the E-bazaar example (Levi and Arsanjani, 2002) given by the authors,
these major business process areas are broken down into lower level business
processes. E.g., product portfolio management can be decomposed as follows:
Product Portfolio Management = {Product Development, Product Addition,
Product Removal}.

In the service allocation step we assign services to the modules. We can
map the ‘Calculate risk for product’ and the ‘Check for duplicate products’
services to the ‘Product Portfolio Management’ module. In the process of

88

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

SBE Service Subsidiary Immediate
Steps

Policy Service Request Quotation Validate Client Data
Record Client Data
Validate Policy Related
Data
Record Policy Related Data
Send Receival Confirmation
Letter

Change Policy Validate Requested
Changes
Calculate Risk Involved
With Changes
.....

.....
Product Service Add Product to Portfolio Check for Duplicate

Products
Insert Product

Remove Product from Port-
folio
.....
Develop Product Make Initial Product De-

sign
Calculate risk for product
Make Product Final
.....

Table 6.4: Two of the SBE’s of Protector

developing a new product, we need to calculate the risk involved in a certain
product (mostly by statistical analysis). The second service is used in the
process of adding new products to the portfolio to decide whether it is sensible
to start working on a new product.

6.5.9 Construction Design in SOAF

SOAF does not describe in detail what steps to take for construction de-
sign, but it does present a taxonomy of service realization approaches. The
precise steps depend on the approach taken. The taxonomy distinguishes be-
tween non-invasive and invasive approaches. Non-invasive service enablement
is defined as “a tactical approach to align existing systems to business needs
through wrapping by using new layers of flexible technologies such as Enter-

89

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

prise Application Integration (EAI) solutions, messaging tools, and recently
with standardized interfaces using web services”. Invasive transformation is
defined as “a strategic approach that aims to revitalize and streamline the
application portfolio to ease maintenance, extension, and interoperability”.
In our Protector case this means the following. Let us say we need a service
for ‘Policy Quotation’. A non-invasive approach would be constructing a ser-
vice by screen scraping a legacy application like DinoPolicy or by creating a
Java DataBase Connectivity (JDBC) adapter for an existing database to get
some additional required data. In an invasive approach, one would reconsider
the current application landscape. Examples are to reengineer Dinopolicy
to include the additional data or to buy a COTS system that comprises the
complete functionality.

6.5.10 Construction Design in P&H

The authors discuss the following possibilities for creating a service: (i) start-
ing from scratch, (ii) use an existing application to construct the service, and
(iii) compose a new service from other services. They discuss green-field de-
velopment, top-down development, bottom-up development, and meet-in-the-
middle development. Green-field development assumes that first the service
is constructed and then the service interface is generated. Top-down devel-
opment starts with a service interface after which the service is constructed.
Bottom-up development assumes the service interface is developed from an
existing application. Meet-in-the-middle refers to the mapping of an already
existing service interface (for which the service is already constructed) to a
new service definition.

6.5.11 Construction Design in SOMA

In the paper from 2006 (Arsanjani and Allam, 2006) SOMA consists of three
phases: identification, specification, and realization. In later work (Arsanjani
et al., 2008) two phases are added: implementation and deployment, mon-
itoring, and management. However, these two phases are not discussed in
detail in the new paper (they are said to be out of scope). We can conclude
from the paper that the following activities in the Realization phase belong
to construction design: Refine and detail components, Establish realization
decisions, Perform technical feasibility exploration. In our eyes, the contents
of the Detail SOA solution stack layer step are not very clearly described.

90

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

Also, the construct, generate and assemble services step of the Implementa-
tion phase belongs to construction design. During the technical feasibility
step prototypes are built that exercise the realization decisions and that have
the highest potential impact and risk to the non-functional requirements. In
our case we could imagine that an important decision for a Policy Quotation
Service is security, since the client has to deliver confidential data to Protec-
tor. The result of the Construct, generate and assemble service step is verified
in the steps Execute unit test and Execute integration and System test (also
belonging to the implementation phase).

6.5.12 Construction Design in SMART

SMART is a technique that “helps organizations analyze their legacy systems
to determine whether their functionality, or subsets of it, can reasonably be
exposed as services in an SOA”. It describes in a large amount of detail which
steps are required to analyze legacy systems. Some of the techniques used are
code analysis and architecture reconstruction. Let us assume OmniPayment
is an application written in an object oriented language. Example results
from the legacy analysis are exhibited in Table 6.5.

OmniPayment

of services covered 6
Total # of lines of code 13,284
of classes affected 22
of lines of code affected 5,392
Level of difficulty Medium
Level of risk Low
Use of coding guidelines Strictly followed
Use of design patterns Many violations found

Table 6.5: Example results from the legacy analysis in SMART

6.5.13 Implementation in P&H

The authors make a clear distinction between development and deployment.
They define deployment as “rolling out new processes to all the participants,
including other enterprises, applications and other processes” (a process being

91

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

a Business Process Execution Language (BPEL) process). The phase is not
discussed in detail, so we cannot apply it to our case.

6.5.14 Implementation in SOMA

As we already mentioned in section 6.4 and subsection 6.5.11, the articles we
used as sources do not describe the deployment, monitoring, and management
phase. Though the concept of service deployment is mentioned, the author
do not give any suggestions on how to deal with it. Therefore, we were not
able to apply it to our case.

6.6 Conclusions

In this chapter we looked into six methodologies for service-orientation. Two
of them cover the whole development process, namely P&H and SOMA. How-
ever, they do not describe all phases very thoroughly. Some of the specialized
methodologies provide an in-depth contribution to specific steps of the de-
velopment process, like SMART for the construction design phase. In the
previous chapter we have seen that we can apply function design and con-
struction design to the enterprise as a whole as well as to the coarse-grained
modules of the enterprise (which are subsystems). The methods investigated
in this chapter deal with IT systems only, so they do not take into account
human services. The Business Element Approach and the Goal Driven Ap-
proach focus on delimiting modules and allocating services to modules. They
are similar to the basic idea of BCI-3D: they deal with the construction of the
service-oriented system (enterprise) as a whole and identify services for inter-
action, but they do not focus on constructing the internals of the modules.
When applying SOAF, SOMA, as well as P&H to the case, we were left with
some questions. All three methodologies prescribe the steps to be executed,
but not clearly and completely. In contrast, SMART is very precise in how to
perform the service construction phase. Because SMART is the only method
we found that deals with the construction of modules in detail, we were unable
to compare it thoroughly.

All in all, the GSDP has been very helpful in discussing the coverage
of the investigated methodologies, and to elucidate and sharpen the core
notions in service-orientation. Next, the application of the methodologies to
the same case has shown the differences in the depth in which the activities

92

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

are described. None of the methodologies combines full coverage with full
depth.

93

CHAPTER 6. POSITIONING METHODOLOGIES FOR SERVICE-ORIENTATION

94

Chapter 7

Deriving a Service Specification
Framework from the Ψ-theory

Abstract In recent years, the WSDL and UDDI standards arose as ad-hoc
standards for the definition of service interfaces and service registries. How-
ever, even together these standards do not provide enough basis for a service
consumer to get a full understanding of the behavior of a service. In prac-
tice this often leads to a serious mismatch between the provider’s intent and
the consumer’s expectations concerning the functionality of the correspond-
ing service. Though additional standards have been proposed, a holistic view
of what aspects of a service need to be specified is still lacking. This chapter
proposes a service specification framework, which is based on a founded the-
ory, the Ψ-theory. This framework can be applied both for specifying human
services, i.e. services executed by human beings, and IT services, i.e. services
executed by IT systems.

7.1 Introduction

In service-orientation service providers interact with service consumers by
offering them services. In this interaction, both parties have certain expec-
tations of each other’s responsibilities. Serious problems can occur if these
expectations are not made explicit in a service specification. Let us consider
an example of a service called ‘consult legal expert’. We distinguish between
two different kinds of services, ‘human services’ and ‘IT services’. Human
services are tasks executed by human beings, whereas IT services are tasks
executed by IT systems. The example service ‘consult legal expert’ is of the

95

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

first type. The role of service consumer is fulfilled by an employee of a retail
company, the role of provider by an legal expert working for a law firm. The
employee of the retail company may expect the service to have the following
behavior: the expert deals with all his problems for the planned duration of
the visit, let’s say 30 minutes. The legal expert, however, may regard the
consultation as dealing with one specific problem with a maximum duration
of 30 minutes. When the legal expert is requested to deal with two unrelated
problems and the visit takes 29 minutes, the employee of the retail company
may be surprised to receive an invoice for two consultations instead of one.
Likewise, an ill-specified IT service can also lead to misunderstandings. Take
for example an IT service for calculating a mortgage amount. If we only know
the input and output of the service, then we have no idea how soon the results
are returned (e.g., within 2 minutes or 3 days). Also, we do not know whether
or not this calculation is legally binding when requesting a quotation for a
mortgage based on this calculation.

Though the Web Service Definition Language (WSDL) (W3C, 2001) stan-
dard enables provider and consumer to have a common view on the interface
of the service and the Universal Description Discovery Integration (UDDI)
(Clement et al., 2004) can be used as a means for publishing some service in-
formation, they together do not provide enough basis to deal with questions
regarding for instance the semantics of provided functionality, the semantics
of the input and output parameters, the availability of the service, and the
costs of calling the service. The original intent of the UDDI was to enable
worldwide run-time service discovery, but it even falls short in enabling good
design-time discovery.

The recognition of the importance of a comprehensive service specification
becomes clear when looking at the efforts of numerous standardization organi-
zations to develop service-related standards. Yet, the other side of the coin is
that this development has led to a morbid growth of specification standards.
In our eyes it is time to take a step back and focus on what one should specify
instead on how it should be specified. We take a different approach and base
our work on a solid theory: the Ψ-theory (Dietz, 2006b).

The main contribution of this chapter is therefore a generic service spec-
ification framework based on the service definition given in chapter 4. This
definition is based on the Ψ-theory. It recognizes human services as well as IT
services. Our generic framework therefore can be used by service providers for
specifying both human services and IT services to enable service consumers (i)
to find a certain service, (ii) to determine whether the provided functionality

96

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

corresponds to their needs and (iii) to know how to use a certain service.

The structure of this chapter is as follows. We start by discussing related
work in section 7.2. Section 7.3 presents our generic service specification
framework and its derivation based on the Ψ-theory. An example case of an
insurance company is used to show the application of the generic service spec-
ification framework in section 7.4. We conclude the chapter with a discussion
of the results and recommendations for further research in section 7.5.

7.2 Related Work

As mentioned in the introduction, the UDDI standard (Clement et al., 2004)
is currently most popular in practice as a standard for service registries. This
XML-based standard states both what to specify (to some extent) and how
to specify it. The UDDI only prescribes a very small set of information that
has to be specified. It has possibilities for describing the service function in
the T-Models, but these T-Models are unstructured. Therefore there is no
consistency across specifications, which makes automated discovery and also
manual discovery difficult. Also, in each individual case one again has to
think about which aspects to describe in the T-models.

In the web service standards community researchers and practitioners
state that the service contract consists of a interface definition (WSDL),
a message structure definition (XML Schema), and, if required, a policy
definition. These policies specify rules and constraints that must be met by
the consumer before it can access the web service. Policies are used to specify
aspects of a service that cannot be specified in WSDL or XML schema. These
aspects include among others technical limitations, choice of security proto-
col, privacy constraints, and type of reliable messaging used. These policies
do not prescribe what one should specify about a service, but they provide
a generic structure for specifying several aspects. WS-Policy (W3C, 2007)
is the proposed XML-based standard that allows providers to specify their
policies and that allows consumers to specify their policy requirements.

Also, two standards for specifying the Service Level Agreement (SLA)
are evolving; WSLA (Keller and Ludwig, 2003) proposed by IBM and WS-
agreement (Open Grid Forum, 2007) proposed by the Open Grid Forum
(OGF). These standards focus on specifying the agreements made by ser-
vice consumers and providers and the way to evaluate and measure these
agreements. In this sense they have a broader scope than only specifying the

97

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

service itself. However, they focus mainly on quality aspects like, for instance,
performance.

More comprehensive frameworks are the business component specification
framework (Ackermann et al., 2002) and the faceted specification approach
(Walkerdine et al., 2007). Though the aspects mentioned in these frameworks
seem plausible, there is no clear rationale why the frameworks are constructed
as they are. For instance, Ackermann et al. (Ackermann et al., 2002) propose
seven different levels in their framework. To us it is unclear why we need
these seven levels (why not three, five or eight?) and if there is a hierarchical
relationship between these levels like the name ‘level’ seems to imply. Addi-
tionally, these standards are not based on a founded theory, therefore it is not
clear why certain aspects need to be specified whereas others are not taken
into consideration.

Researchers in the area of Artificial Intelligence proposed semantic web
service standards like OWL-S (Colasuonno et al., 2006; Luo et al., 2006),
WSMO (WSMO, 2007), and WSDL-S (Rajasekaran et al., 2004) for extend-
ing the UDDI. The goal of semantic web services is thoroughly specifying
every aspect of a service in order to enable automatic matching of supply of
and demand for services. It takes a lot of effort (if feasible at all) for a large
enterprise to specify everything into so much detail that automatic matching
on run-time becomes possible. At this moment none of the semantic web
service approaches are popular in industry. Though industrial partners par-
ticipate in research projects, we see little (if any) semantic service registries
in real SOA environments. In practice the matcher of supply and demand is
still a human being and not a machine.

All in all, the work from Ackermann et al. and Walkerdine et al. is most
closely related to our work. We take a different approach by building our
approach on a sound theory enabling us to explain why we need to specify
certain aspects. Also, our work has similarities with the work from the se-
mantic web services world. But we do not try to realize automated discovery
on a world-wide scale. We aim at providing a framework for practitioners that
they can use as a reference for knowing which aspects of the service they need
to specify (with a clarification why they need them). They can use different
standards to actually specify these aspects. Summarized, we focus on what
aspects of a service need to be specified and not how they should be specified.

98

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

7.3 Generic Service Specification Framework

Figure 7.1 depicts our generic service specification framework. We base this
framework on the generic service definition provided in chapter 4. Our ratio-
nale for applying this generic approach is that in our eyes the same aspects
need to be specified for services executed by IT systems as for services exe-
cuted by human beings. Though the aspects themselves are equal for both
types of services, it may be the case that the form in which these aspects
appear is quite different. We will see some examples in section 7.4.

Now, let us explain why the framework looks like it does. When we recall
the service definition, we see that for calling a service basically three things
need to be known to the service consumer, namely information on (i) who
provides the service (the executor), (ii) which production fact is to be brought
about by the executor, and (iii) how to interact with the service executor by
executing and dealing with coordination acts. We translate these information
needs into three main aspect groups, i.e.: service executor, service production
and service coordination, respectively. As transactions can have a commercial
as well as a non-profit character, we add contract options as an additional
aspect group; the consumer needs to know what he has to pay for what
service.

The service executor aspect group defines who is the provider of the service
and contains two aspects, namely the actor role and contact information. The
actor role aspect specifies the role of the actor that takes final responsibility
for the service. In case of a human service this is the actor role of the human
executing the production fact, while in case of an IT service this is the actor
role of the human responsible for executing the production act, but who is
supported by an IT system. This information can be gained from two types
of diagrams provided by the ontological model of the enterprise, namely the
Actor Transaction Diagram or the Process Model. It would go far beyond
the scope of this chapter to introduce all the Enterprise Ontology models in
detail. In the example case given later in this chapter we introduce only the
most relevant ones. For further details we refer to the Enterprise Ontology
book (see Dietz (2006b)). Since the initiator could feel an urge to contact the
service executor, contact information of the executor needs to be provided
in the specification framework. We could consider, for instance, situations in
which a protocol error arises after calling an IT service and the fault condition
denotes to contact the service executor. Also, the initiator may still have some
questions about the service after reading its specification.

99

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

!"#$%&"'()"&*+,#

!"#$%&'$()

*$+#,"#&-+.$%/,#0$+

-,.+#/&+'01+%,.2

!"#$%&"'3#,4*&+%,.

!"#$%&"'-,,#4%./+%,.

1%$23"#0$+&!"#

1%$23"#0$+&-+.$%/,#0$+&45)2

1%$23"#0$+&6,"#

*$$%20+,#0$+&!"#5

*$$%20+,#0$+&70+2

1%$#$"$(

1%)"$+20#0$+5

1%$23"#0$+&8$%(2&9)/,+#0"5

1%$23"#0$+&70+2

1$5#"$+20#0$+5

:$",#0$+

1%0")&;3,(0#<&*$/=0+,#0$+

;3,(0#<

1%0")

Figure 7.1: The generic service specification framework

100

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

The service production aspect group focuses on the production act to be
performed by the executor. This is the actual value that the service executor
offers to the service initiator. It should expose the service properties needed
for choosing the right service by a potential service consumer. Unlike service
coordination, service production does not concern the communication be-
tween the service initiator and the service executor. The aspects which need
to be specified are production act, production information used, production
fact, pre- and postconditions, production kind, production world semantics.
The production act is gained from the Actor Transaction Diagram or the
Process Model of the ontological model of the enterprise. The information
which needs to be used in order to execute the actual production act is de-
scribed in the Action Model of the ontological model. This model defines for
every coordination act which information is required to deal with and there-
fore specifies the required input parameters. The execution of a production
act results in a production fact. This is the actual value requested by the
initiator. By having specified the production fact, which is gained from the
Transaction Result Table of the ontological model, the result provided by the
service has been defined. The Transaction Result Table defines the result type
of each transaction and therefore defines the resulting production fact type
for the service. Preconditions and postconditions state production facts that
should always hold prior to, respectively after the execution of the service.
These aspects are required to keep services autonomous. A provider should
not have to prescribe to a consumer which other services to call before (or af-
ter) calling the provider’s service. The provider only specifies the production
facts that need to be true before (or after) calling his service. The consumer
can choose which other services (if any) to call to meet preconditions. Infor-
mation about the pre- and postconditions are gained from the Action Model
of the ontological model. This model defines among others the operational
business rules of an enterprise. Since we distinguish between different kinds
of production acts – ontological, infological and datalogical – the production
kind aspect defines the kind of service we are specifying. To have a common
knowledge and understanding about the semantics of the service to be pro-
vided, the production world semantics need to be specified. This information
is modeled in the State Model of the ontological model of the enterprise and
can therefore be used for specifying the production world semantic aspect.

The service coordination aspect group has as goal to give the consumer all
information required for realizing successful communication with the provider.
As we have seen in section 4.1, the Ψ-theory states that communication be-

101

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

tween actors takes place by means of the coordination acts in a transaction.
We therefore specify the required coordination acts for communicating with
the executor. Next to this, for completely specifying the service coordination
aspect group, we require three aspects that are implementation-dependent.
Since the Enterprise Ontology models the essence of an enterprise in a com-
pletely implementation-independent way, we can not gain this information
from the Enterprise Ontology models. Though these aspects are also not ex-
plicitly mentioned in the Ψ-theory, they logically follow when one thinks about
how to access a service. First, a service consumer needs to know whether the
service is an IT service or a human service, because IT systems and humans
communicate in a different way. We call the related aspect coordination kind.
Second, the consumer has to apply a certain protocol for successful commu-
nication. Knowing the location of a service in itself is pretty useless for a
service consumer without knowing how he has to offer the service input to
and receive the service output from the service provider. Successful commu-
nication between the consuming service component and the providing service
component is enabled using protocols. Protocols define the rules governing
the syntax, semantics and synchronization of communication. Typical exam-
ples of protocols for IT services include Internet Protocol (IP), Transmission
Control Protocol (TCP), Hypertext Transfer Protocol (HTTP) and SOAP.
Though often less explicitly defined, human services require protocols too.
Take for example the service for ordering food in a five star restaurant versus
in a fast-food restaurant. Not only the quality of the product (the food) and
the quality of the service itself (the delivery time, the atmosphere etc) dif-
fer, but also the way in which the service consumer (the client) and provider
(the waiter) interact. In the five star restaurant etiquette play a far more
prominent role than in the fast food restaurant. Also, while in the five star
restaurant it is protocol to sit down and wait for the waiter to come to you,
you have to go to the counter to order in the fast-food restaurant. Finally, a
service consumer needs to know the location of the service. This location can
be either physical or logical. In IT services logical locations are preferred, e.g.,
a URL or TCP/IP hostname and port number. By using location addresses
one can easily change the physical server at which the IT services are hosted.
For human services physical locations are more usual. The location of a hu-
man service might be, for instance, the second floor room 2.110. Though less
common, the location of a human service can be specified as a logical location,
e.g., a phone number or an email address. Especially for IT service, the form
in which the location is specified is highly dependent on the communication

102

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

protocol used (Stal, 2006). Please note that these phone numbers and email
addresses play a conceptually different role from those specified in the service
provider contact information, though they can have the same value. The lo-
cation specifies where the service consumer can access the service, while the
service provider contact information specifies where the service consumer can
get information about the service.

When entering into commitments, e.g. by providing a service to a service
requester, the quality and the pricing of the provided service need to be
discussed between the providing and the requesting party. The results of such
negotiations, or predefined pricing and quality aspects, need to be specified in
the specification framework as part of the whole contract. In the specification
framework such price quality combination aspects are specified in the aspect
group called contract options. These aspects can not be derived directly
from the Ψ-theory, but the negotiation about such aspects can be modeled
in separate Enterprise Ontology models. The service contract option aspect
group specifies one or several contract options from which service consumers
can choose. The contract option aspect consists of a particular quality level
and the price for using the service with this particular quality level. The
service executor might define different quality levels in order to anticipate
on the various needs and financial positions of different consumers. Example
pricing mechanisms are memberships or paying per call.

7.4 Insurance Case Example

In the next paragraphs, we use the life insurance case example introduced in
chapter 6 in order to demonstrate how to apply the specification framework.
Let us have a look again at the Actor Transaction Diagram (ATD). Figure
7.2 shows a part of the Actor Transaction Diagram. For explaining how we
can apply the service specification framework, we have selected the subset
of the transactions of the life insurer that is of relevance for handling new
individual policies. We distinguish between the following four composite actor
roles: potential individual policy holder, individual policy holder, insurer, and
reinsurer. In our case, Protector fulfills the role of insurer. The reinsurer
insures persons that would cause a high risk for the insurer, for example
because the insured amount is high. This means that a part of the insured
amount is insured by the reinsurer in order to spread the risk. A reinsurer
can be another ‘regular’ insurance company or an insurance company that is

103

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

specialized in insuring insurance companies. Sometimes reinsurance is legally
obligatory, sometimes it is a choice made by the insurer itself.

The composite insurer actor role can be further decomposed into the fol-
lowing atomic actor roles: product advisor, policy quotator, policy binder,
reinsurance premium payer, policy underwriter, and commission payer. This
list is not complete as we only mention the roles that are related to handling
new individual policies. The product advisor is responsible for providing a
potential individual policy holder of advice of which products suit his needs.
If the potential policy holder is interested in one or more products, he can
request a quotation from the policy quotator. After that the potential policy
holder can request policy binding, which makes the policy legally binding.
The policy binder requests the policy underwriter to check whether or not
the risk is acceptable and if an additional premium fee is required. The risk
may be so large that the policy underwriter requests reinsurance. The indi-
vidual policy holder is responsible for premium payment and for some types
of products (e.g. pension insurance) he may make voluntary deposits. The
reinsurance premium payer pays the reinsurance premium to the reinsurer.

In the remainder of this section, we apply the generic service specification
framework to specify the service ‘policy underwriting’, which implements the
T27 transaction as shown in Figure 7.2, as an example.

Figure 7.2: Actor Transaction Diagram of Protector

104

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

7.4.1 Service Executor

As mentioned in section 7.3, the service executor aspect group specifies the
role of the actor that takes final responsibility for the service. So whether
it concerns an IT service or a human service, the same actor role remains
responsible. The only difference is that in case of an IT service the person
fulfilling the actor role is supported by an IT system. As shown in Figure
7.2, the policy underwriter is the actor role executing transaction T27 and
therefore responsible for the ‘policy underwriting’ service. The specification
of the service executor aspect group for Protector looks as follows:

Actor Role
Policy Underwriter

Contact Information
University Street 1A
8291 BN Insurancetown
555-492022
underwriting@protectorinsurances.com

7.4.2 Service Production

In the service production aspect group we specify the actual value that the
policy underwriter actor role (in this case the policy underwriter) offers to the
service initiator (in this case the policy binder actor role). The production
act in our example concerns policy underwriting, which is part of transaction
‘T27 Policy underwriting’. We define this act as follows:

Policy underwriting is the act of evaluating the risk and exposures
of potential insurants. It involves making the decision whether or
not the insurant can get coverage for the insured and what addi-
tional premium the insurant has to pay if the insured poses a larger
than average risk.

The information used aspect is derived from the Action Model. Table
7.3 shows which information is used in the different acts of ‘T27 policy un-
derwriting’. The notation of the process steps in the right column are as
follow: Transaction/Process step. E.g., T27/ex denotes the execution of the

105

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

production act in the transaction ‘policy underwriting’, and T27/ac denotes
the accept coordination act of the transaction ‘policy underwriting’.

Object class, fact
type, or result type

Process steps

POLICY T27/pm, T27/ex
INSURANT T27/rq, T27/pm,

T27/ex
party par is the insur-
ant of policy pol

T27/pm, T27/ex

minimal age T27/rq
INSURED T27/pm, T27/ex
person per is the in-
sured of policy pol

T27/pm, T27/ex

INSURANCE PRE-
MIUM

T27/ac

the payer of premium
pre is the insurant of
policy pol

T27/ac

INSURANCE BENE-
FIT

T27/ac

the beneficiary of in-
surance benefit ben is
the beneficiary of pol-
icy pol

T27/ac

Figure 7.3: Information used in different acts of transaction T27

As shown we need information about the insurant in the request process
step. Also, we need to know the minimal age for someone to act as an insurant.
During the promise step as well as during the production step the executor
needs to get information about the policy, the insured, and the insurant.
These data are required to enable him to make the underwriting decision.
The service initiator, namely the policy binder, requires information on the
insurance premium and insurance benefit to allow him to decide whether or
not to accept the production fact.

The production fact can be derived from the Transaction Result Table.
As we can see in Figure 7.4 the result type of the transaction ‘policy under-
writing’ is ‘policy underwriting for policy pol has been done’. The production

106

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

kind of this service is ‘ontological’, since it is part of the ontological model
of Protector. Examples of an infological respectively datalogical service are
‘calculate premium’ and ‘store calculation results’.

Transaction Result type
T01 Product advising product advice adv is created
T04 Policy quotation policy pol is quoted
T05 Policy binding policy pol is bound
T06 Premium payment the premium for policy pol for

period per is paid
T07 Voluntary deposit the voluntary deposit for policy

pol is made
T17 Reinsurance of
policies

the policy collection pco is rein-
sured for period per

T18 Reinsurance pre-
mium payment

the reinsurance premium for pol-
icy collection pco for period per
is paid

T26 Commission pay-
ment

commission com is paid

T27 Policy underwrit-
ing

the underwriting for policy pol
has been done

Figure 7.4: Transaction Result Table of Protector

We model the production world semantics in the State Model, which uses
an Object Role Modeling (ORM) based notation technique called World On-
tology Specification Language (WOSL) (Dietz, 2005). Figure 7.5 exhibits the
complete State Model of Protector. Please note: in this model we provide
more information than in the UML model depicted in chapter 6. In our ser-
vice example we only use parts of this model, so we only explain the most
important concepts. We use the term policy for the individual policy as well
as for a participation in a collective contract. An insurance policy has an
insurant, one or more insured, and one or more beneficiaries. The insurant is
an organization or person that is responsible for the payment of the premium
of a policy. The insurant is the client of Protector. The insured is a person
who is the ‘insured object’. The beneficiary is a person who receives a pay-
ment if the insurant has a right to a benefit according to the product rules of
a policy.

107

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

!"#"$%&%'()
%#*+(", %#*+('#-

.(/,+&-

'0"#-

1!"#"$%-1.')2"#-

%#*+('#&"1!"#"$%-

&/2.'#)

."(*/#

%#*+('#&"1.("2%+2

&/22%**%/#

.(/,+&-1',3%&" 456 789

7
9
:
;
<
=

7
9
:
>=
?

!"#

!"#$%&$'()!*)"

'+,

$%&$%&$-!%"

74@ ;<=

4
5
6
4
A
<

.)$'()!+($+/$
!"#$%&$!'(

$%&)%&$()0!("$/+($
&)11%23$*%+

.)$'!4&)$+/$!,$%&$-(.

.)$-!5)($+/$/()%&$*.)$
%2&4(!2*$+/$*%+

*.)$6)2)/%'%!(5$+/$-(.)
%&$*.)$6)2)/%'%!(5$+/$*%+

./B%&)

7
89
7
9
:

7
<
8
7
9
:

7
4
8
7
9
:

7
<
8
7
9
:

/%$%&$.)$-(+"4'*$+/$*%+

(/)%&$.)$
6)2)/%'%!(5$+/$*%+

(/)%&$.)$
%2&4()"$+/$*%+

!/)%&$.)$
%2&4(!2*$+/$*%+

.)$!"#%&)"$-(+"4'$%2$
!"#)%&)*/%

789

7:;

&/BB"&-%3"1./B%&)1&/#-('&-

C9
:C9
=

C9: C9D

$%&$%&$*.)$'+2*(!'*$.+1")($+/$
$%+

$%&)%&$()0!("$/+($
&)11%23$$%+

-+1
42")(0(%*%23$/+($*%+$.!&$

6))2$"+2)

7:<

%+$%&$=4+)"-+1

78>

%+$6)1+23&$+$%+

%+)%&$6+42"$/+($!$)(,$+/$
-)(%+"$*(/

78?

-+1
-)(

C9: 789

C9=E84CE1C9:1C9=C<8=?1
7895FCE1789

-+1
#+142*!(5$")-+&%*$%&$

,!")$/+($*%+

78<

./B%&)1&/BB"&-%/#

79: C9:
1111111111

1111111111111111179:>C@179:1;<:9=A?1E91
1111111111111111179:>C@1C9::<CE>9=17C9

$%)%&$()%2&4()"$/+($(/79<

()%2&4(!2')$-(),%4,$%&$
-!%"$/+($*$%$/+($*(/

79@
."(%/,

-)(
-'+

-()
-)(

*/($.!&$6))2$-!%"$/+($
-(),%4,$-)(%+")*(/

."(%/,

78;

-)(
-'+

!"# !"$

!"$ %"#

!

&'()*

Figure 7.5: State Model of Protector

In section 7.3 we stated that pre-and postconditions are gained from the
Action Model. The action rules in this model are written down in a pseudo-
algorithmic language. The following action rule, for example, specifies how
the actor decides whether or not he promises to underwrite the policy.

on requested T27(insurant)

if (type(insurant)=person AND age(insurant)<minimal age
) →
decline T27(insurant)
◇ not (type(insurant)=person AND age(insurant)<minimal age
) →
promise T27(insurant)

no

108

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

As becomes clear from this example the policy underwriter check whether
the insurant is a natural person or a company. For companies he always
promises to underwrite the policy, for persons only if the person is older than
the minimal age (which in this case is 18). So one of the preconditions of
the service states that if a person fulfills the role of insurant, he should have
a minimum age of 18. Likewise, an example of a postcondition is that the
insurance premium always is larger than 0.

7.4.3 Service Coordination

Within the coordination acts aspect group, the steps of a transaction which
deal with communication between the initiator and the executor need to be
defined. In our example, if the initiator calls the service ‘policy underwriting’
he wants to know whether the executor processes his request, or whether the
executor may also decline such a request. If the initiator does not receive
any notification, such as a promise or a decline, after having sent his request
he would be unsure about his request being processed or not. For the spec-
ification of the coordination aspect, we therefore use a transaction pattern,
which needs to be known and agreed upon by both parties. In section 4.2.2
three patterns have been introduced for describing the coordination between
two parties, namely the basic transaction pattern, the standard transaction
pattern and the complete transaction pattern. The most used pattern is the
standard transaction pattern, which we introduced in Figure 4.1, and which
we also used for the specification of the coordination acts in the Protector
case.

As explained in the section 7.3, the coordination kind states whether we
are specifying a human or an IT service. Because protocols and location
are implementation-dependent aspects, it makes a large difference for their
specification which type of service we are dealing with.

Let us assume ‘policy underwriting’ is a human service. The protocol
should in that case prescribe how to interact with the human being fulfilling
the role of service executor. We could imagine, for instance, the following
procedure:

1. send quotation to the policy underwriter by mail

2. receive confirmation from policy underwriter by mail

3. discuss additional questions by telephone with policy underwriter

109

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

4. receive final underwriting decision by mail

Following from this protocol, we see that we need to specify two types of
locations for accessing the service: the postal address and the phone number
of the policy underwriter. Keep in mind that though these data could have
an overlap with the service executor data, they serve a different purpose. The
location aspects specifies data required for the operational use of the service,
while the contact details in the service executor aspect group specifies data
required for the service initiator to contact the service executor about the
service. So these data can very well differ from each other.

Now let us think of ‘policy underwriting’ as an IT service. Example pro-
tocols for getting data across a network include HTTP or a queuing protocol
if guaranteed delivery is required. We can apply the WSDL standard for
structuring the messages exchanged. The location can be specified as a URL
or as an IP address, e.g. 165.34.2.113.

7.4.4 Service Contract Options

In the service contract options aspect group, we specify which quality of
service the service initiator gets for which price. Let us assume Protector
uses an internal costing calculation system as many large organizations do.
Protector distinguishes between two types of quality levels: ‘regular’ and
‘urgent’. The regular service call has a price of EUR 8 and the urgent service
call of EUR 12. For both IT services and human services we could specify
the accompanying quality aspect as follows:

regular: the maximum response time in 90% of the calls is 5 hours
urgent: the maximum response time in 90% of the calls is 2 hours

Usually, IT services tend to have quicker response times than human service,
though this does not have to be the case. Especially asynchronous services
can take a long time to finish: multiple weeks, days, or even years.

Besides response time, we could also take into account other quality as-
pects like security aspects, accuracy of data, availability etc.

7.5 Conclusions

In current literature, a complete framework for specifying services is missing.
As a consequence, insufficient information is provided to the service consumer

110

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

about the behavior of the respective service. In this chapter we addressed the
problem of service specification. Moreover, as we have based our research on
the rigorous Ψ-theory, we have also improved our understanding of services
by relating them to transactions. The function of the specification of a service
is to give all stakeholders the information about the service they need, e.g.
for service discovery, selection, and usage. Solely by specifying the input and
output aspects of a service, as is the current practice, the service consumer
does not get sufficient information to determine whether the service fits his
needs. These specification aspects only reflect part of the total externally
visible behavior of a service. Though many standards exist for specifying
certain aspects of a service, a holistic approach is still missing. The main
contribution of this chapter is the development of such a holistic framework,
which we call the generic service specification framework. As an example
for demonstrating the feasibility and the usefulness of the generic service
specification framework, we analyzed an insurance case. For this case we
provided two ontological partial models and discussed how these models can
be used to specify all aspects of a service, according to the service specification
framework.

111

CHAPTER 7. DERIVING A SERVICE SPEC. FRAMEWORK FROM THE Ψ-THEORY

112

Part III

Theory Meets Practice

113

Chapter 8

Case Study 1: The Port of
Rotterdam

Abstract This chapter describes the results of a case study conducted at the
Port of Rotterdam, a very large port in Europe. The goal of the case study is
to evaluate our Enterprise Ontology-based service specification framework for
its practical application. During a Rational Unified Process (RUP)-project at
the Port of Rotterdam we specified the required services for the first iterations
using this framework. The framework contributed to early error discovery
and awareness of important, but often overlooked, service aspects. Overall
the service specification framework fulfilled the needs of the project, whereas
some findings led to improvements in our framework.

8.1 Introduction

In this chapter we describe our first case study conducted at the Port of Rot-
terdam in 2008. We sought to evaluate our service specification framework
in a real-life situation. This case study contributed to our ultimate goal,
i.e. creating a generic service specification framework that is both founded
on a sound scientific theory and evaluated in several real-life projects. We
position this case study as the evaluation step of the design science research
approach (Hevner and March, 2003). In this case study we focused on the
use of the service specification framework in a component-based software
development project. We were not an observant outsider, but part of the
project team working on the software development. Our role in this project
was to specify the function of the services including the Web service files

115

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

(WSDL’s and XSD’s) using the service specification framework. Currently,
there is no general consensus on criteria for interpreting case study findings
in IS research. The criteria we apply for interpreting the results are as fol-
lows. Firstly, we consider data gathered by direct observation to be most
reliable. After that follow the data collected by respectively interviews and
participation-observation. Secondly, when a finding can only be supported by
opinions of people, we require at least two people having the same opinion to
support this finding. Finally, we take into account that the opinions of peo-
ple may change during the course of time. Since the opinions of the people
participating in the project may shift due to new insights during the course
of action, we value opinions of people at a later time higher than the opinions
of the same people at an earlier time.

The remainder of this chapter is structured as follows. In section 8.2 we
describe the background of this case study. After that, we discuss its results
in section 8.3. We show how these results lead to improvements in our service
specification framework in section 8.4. Section 8.5 presents the conclusions of
this chapter.

8.2 Case Study Background

The Port of Rotterdam Authority manages and develops the Rotterdam Port
and Industrial Areas. It aims to: (i) promote effective, safe and efficient
vessel traffic management, both within the port itself as well as in the coastal
area and (ii) develop, construct, maintain and exploit port areas. Vessel
traffic management is carried out by the Harbor Master Division, currently
consisting of about 560 people, led by the Harbor Master. To perform its task,
the Harbor Master Division has at its disposal: a central traffic management
location, three (in near future two) traffic control locations and 10 patrol
vessels. Furthermore, a shore based radar system supplies a complete view
of all vessels present in the port area. An extensive portfolio of information
systems support the Harbor Master Division in many of its tasks. Due to
the advanced age of the current main ‘backbone’ information system of the
Harbor Master Division resulting in costly maintenance and in long lead times
for processing change requests, the decision has been taken to develop a new
IT-system, named HaMIS (Harbor Master Information System).

Our evaluation took place in the Rational Unified Process (RUP) elabora-
tion phase. The goal of the elaboration phase is to mitigate the main risks by

116

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

testing the global design decisions, modeling the most important use cases,
and building functionality of some of the use cases having the highest prior-
ity or being technically complicated. Another thing to do in the elaboration
phase is setting up the development and test environment and preparing the
customer organization for testing, accepting, and using the software. The goal
of the service specifications is to allow the developers of different components
to work independently during the software development project; all the infor-
mation they require for the interaction with other components is documented
in the service specifications. Very good specifications were required because
the two development teams worked for two different IT services providers and
on two different locations (Rotterdam and Groningen).

8.3 Case Study Results

Like stated earlier we gathered data during five months through participation-
observation, i.e. we specified services ourselves using the framework, through
direct observations, i.e. we have looked what ‘happened’ and through inter-
viewing, i.e. we have evaluated the structure and contents of service specifi-
cations with a domain expert, a business analyst, four IT architects, and four
software developers. In this evaluation we were looking for the answer to the
following question: “To what extent do the aspects of the service specification
framework cover the information needs of the project members?”. For each
aspect we want to indicate whether it was useful as is, whether it was useful in
an adapted form, or whether it was considered not applicable to the project.
Also, we want to find if the framework is missing any aspects required for
service specification. In this section we first give an overview of the situation
by presenting some of the identified services (subsection 8.3.1). After that,
we discuss the evaluation results for each part of the framework (subsection
8.3.2 to 8.3.5).

8.3.1 Identified Services

Table 8.1 exhibits a selection of the services identified during the first iter-
ation of the RUP elaboration phase (this is not a limitative list). Some of
the services are related to searching information (SearchShipVisits, Search-
BerthVisits, SearchShipMovements, and SearchInspectionTasks), one is re-
lated to extracting information (GetShipVisit), and other services are related

117

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

to dealing with human tasks (ClaimInspectionTask, CompleteInspectionTask,
and ReleaseInspectionTask). In this project DEMO was not used for busi-
ness modeling. Traceability between IT services and business processes was
realized by specifying a relation between an IT service and a use case. This
use case is related to a business process.

Service name Service description

SearchShipVisits Search for ship visits using several input pa-
rameters

SearchBerthVisits Search for berth visits using several input pa-
rameters

SearchShipMovements Search for ship movements using several in-
put parameters

GetShipVisit Read the complete ship visit tree
SearchInspectionTasks Search for inspection tasks, either assigned to

the current user, available tasks, or, assigned
to other users

ClaimInspectionTask Assign an inspection task to current user or
other user (depending on authorization level)

CompleteInspectionTask Register the results of a ship visit inspection
task

ReleaseInspectionTask Undo the assignment of a certain inspection
task

Table 8.1: Services identified during first iteration.

8.3.2 Service Executor Part Evaluation

The service executor part (see Table 8.2) was not particularly useful in the
project, because only one service provider existed at that moment. It would
make little sense to specify the actor role or name of this person in all ser-
vice specifications. The architects argued that service provider information
will be required in a later phase of the project when the number of services
grows. When this occurs, they would indeed prefer to specify a certain role or
department instead of a person, since a person can work part time, become
sick etc.

118

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Service Executor Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Actor Role During the case study period, it was un-

necessary to specify the service provider
information explicitly because there was
only one person fulfilling the role of ser-
vice provider.

x
Contact Information The same finding holds for the service

provider contact details as for the actor
role.

Table 8.2: Evaluation of the Service Executor Aspects

8.3.3 Service Production Part Evaluation

The project members all agreed that the service production part covered the
aspects of the externally visible behavior of the service necessary for this
project. Table 8.3 exhibits the results per aspect of the service production
part.

Let us have a closer look at the SearchShipVisits service as an example. Its
production act is defined as follows: ‘to provide a list of ship visits conforming
to given search criteria. It returns all attributes of the ship visit, all attributes
of the ship belonging to the ship visit, a selection of the attributes of the
agent representing the ship visit, and zero or one ship movement identifiers’.
Its production fact is ‘searching for ship visits vis has been done’, where vis is
the set of ship visits conforming to the criteria of the production information
used. The production kind of this service is ‘infological’.

119

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Table 8.3: Evaluation of the Service Production Aspects

Service Production Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Production Act This aspect is used for giving a summary

of what the service does. Its use is to get
a quick picture of the behavior of a service
without having to read all the details.

x
Production Information Used We tried two ways of specifying the pro-

duction information used (input), viz.
specifying them using UML class diagrams
and in graphical representations of the
XML schema trees. It turns out that ar-
chitects prefer the first way of represen-
tation because they are only interested in
what information is exchanged and not
in the precise structure of the XML mes-
sages. Developers prefer the schema trees,
or, the textual representation of the XML
schemas. We used additional descriptions
in natural language to specify conditions
on the input parameters, e.g. if parame-
ter a is empty, then parameter b must be
filled.

x
Production Fact The same findings holds for the produc-

tion fact as for the production information
used.

120

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Table 8.3: (continued)

Service Production Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Production Kind Because in the project DEMO was not

used as a methodology, a distinction be-
tween ontological, infological, and datalo-
gical services was not made. Another ser-
vice classification was made, some example
types were search services, read services,
and task services. However, it was not
(yet) required in this project because the
number of services was still quite limited.
Searching for potential reuse will be impor-
tant when the number of services grows.

x
Production World Semantics To prevent inconsistency in the message

usage for interaction with different ser-
vices, we have designed a data model that
specifies all possible data elements used in
the interaction with the services. The pro-
duction information used and the produc-
tion fact of a services refer to data elements
in this data model. We guarantee compli-
ance between the messages and the data
model by only allowing the service mes-
sages being specified in terms of restric-
tions on the data model.

x
Preconditions We specified the preconditions in natu-

ral language. A discussion arose on how
to deal with preconditions and postcon-
ditions. The architect of the providing
component expected the consuming com-
ponent to check them, and the architect
of the consuming component expected an
additional check by the providing compo-
nent.

121

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Table 8.3: (continued)

Service Production Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Postconditions The same findings holds for the postcondi-

tions as for the preconditions.

Table 8.3: Evaluation of the Service Production Aspects

The XML Schema and WSDL standards are insufficient for specifying the
production information used (input) and production fact (output) parame-
ters. For instance, a requirement is that wildcards can only be used at the
end of a search term, e.g. ‘Ship = HMS Beag*’, and not in the center, e.g.
‘Ship = HMS*le’. The asterisk is a placeholder for zero or more characters.
To make sure queries do not take too much time not all queries are allowed.
Also, some input data needs to be conditional, e.g. if input item ‘Berth’ is
filled than also input item ‘StartDateTime’ and ‘EndDateTime’ should be
filled. Because the XML Schema standard lacks the means to specify these
details, we need some additional input and output descriptions in the service
catalog.

Table 8.4 shows the explanation of three of the terms from the terminology
aspect in the service production part. A class diagram (UML) was used to
depict the relations between the concepts. Regarding semantics there was a
discussion on the term ‘tonnage’ (of a ship). Its value is not always expressed
in thousands of kilograms, like the name seems to imply. Sometimes the value
is expressed in units of 1016 kg, 1.1 cubic meter, or 2.8 cubic meters depending
on the type of ship and on which maritime organization delivers the data.
A business analyst proposed to “just use an integer”, because the end user
has enough domain knowledge what the value means in a specific context.
It would not lead to problems because the only consuming component is
the GUI. However, it can lead to serious errors when another consuming
components start making calculations with the tonnage value having its own
assumptions on its semantics.

This service has no pre- or postconditions, but some of the other ser-
vices did. In the service catalog the pre- and postconditions were specified

122

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Ship
visit

a stay of a ship in a certain geographical area defined by the
harbor master.

Ship a water vessel, including water airplane, hydrofoil, hovercraft,
rig, production platform, dredger, floating crane, elevator,
pantoon, and every floating tool, object and installation.

Port An area for receiving ships and transferring cargo. It is usually
found at the edge of an ocean, sea, river, or lake.

Table 8.4: The production world semantics aspect of the service production
part

in natural language, since the software engineers are not familiar with more
formal approaches like UML OCL, Z, or Rule-ML. Despite the lack of pre-
cision of expressions in natural language, both the software engineer of the
providing component and the software engineer of the consuming component
have the same understanding of the semantics of the expressions themselves.
However, an architect of the providing component and an architect of the
consuming component started a discussion about how to deal with these pre-
and postconditions. The first architect argued that in a Design by Contract
the caller is completely responsible for checking the preconditions. Not ful-
filling them leads to undefined behavior (the service may or may not carry
out its intended work). The second voted against taking this approach. He
opted for a double check at the service provider side, making sure an unful-
filled precondition always results in an error message returned by the service
provider. His motivation was that an undefined output can jeopardize the
functioning of the complete HaMIS system. Though he sees the double work
for implementing condition checking at both sides, he sees undefined output
as an unacceptable risk. So it is not only important to specify the pre- and
postconditions, but also whether or not unfilled pre- or postconditions result
into an error message or undefined output.

8.3.4 Service Coordination Part Evaluation

Table 8.5 shows the results per aspect of the service coordination part. From
the interviews we found that the aspects of the service coordination part suf-
ficiently addressed the information needs of the architects and software devel-
opers the service consumer and service provider. The other project members
did not need the service coordination part as they were only interested in the
production part of the service.

123

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Table 8.5: Evaluation of the Service Coordination Aspects

Service Coordination
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Coordination Acts Specifying the error situations, i.e. decline

coordination acts, was regarded as one of
the most important aspects of the service
specification. The provider and consumer
need to create an understanding of what
can go wrong. When getting a certain er-
ror message the consumer needs to know
whether it is useful to call the service again
with the same input parameters, whether
he needs to change his input parameters, or
whether there is nothing he can do about it
(in that case he needs to contact the ser-
vice provider). In the case study we did
not deal with cancellation acts.

x
Coordination Kind Since all services in scope were IT services,

this aspect was not applicable.

124

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Table 8.5: (continued)

Service Coordination
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Protocol For accessing the service we used the

WSDL standard. A web service can be
built using RPC or document style bind-
ing. A few members of the project team,
viz. two architects, one developer, two in-
tegration specialists, and the service spec-
ifier chose to apply document literal style
web services for their message validation
capabilities, the possibility to define XML
schemas externally (outside the service in-
terface description) and their WS-I compli-
ance (conformation to standards) (Akram
et al., 2006). Though a drawback may
be a lesser performance, we thought the
benefits outweigh this drawback. Because
all services used a document style binding
we did not need to make this information
explicit in the individual service specifica-
tions. In our project we used two types of
transport layers: HTTP (for synchronous
service calls) and JMS (for asynchronous
service calls). Though the difference could
be seen in the binding part of the WSDL,
we also specified this in the service speci-
fication for making this information avail-
able to other stakeholders than developers.

x
Location In this project specifying only one location

for a service was deemed insufficient. In-
stead, we needed a Development, Test, Ac-
ceptance, and Production location.

Table 8.5: Evaluation of the Service Coordination Aspects

125

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Error code Error name Cause Error message
F00000001 NoSearchElement None of the input

search elements are
filled [unfulfilled con-
dition on input].

“The service requires
at least one search el-
ement as input”

F00000002 CharNotAllowed A string search ele-
ment contains charac-
ters that are not al-
lowed, e.g. a wildcard
in the middle of the
string or Russian char-
acters

“The name input ele-
ment contains a char-
acter that is not al-
lowed”

F00000003 UserNotAuthorized A task is being as-
signed to a service
that has no authoriza-
tion to perform this
task.

“The user is not au-
thorized to perform
this task”

Table 8.6: The errors codes of the coordination acts aspect of the service
coordination part

In automated systems, error situations lead to decline and reject coordina-
tion acts. Table 8.6 shows examples of the errors that can occur when calling
the service.

The SearchShipVisits service used SOAP and HTTP (as transport layer)
as protocols, because for searching for information we did not need asyn-
chronous communication or guaranteed message delivery. For the service
ClaimInspectionTask, for instance, we would need guaranteed message deliv-
ery and we would choose Java Message Service (JMS) as a transport layer.

The architects and software developers proposed a change to the service lo-
cation aspect. In our original service specification template ‘location’ referred
to just one location, in the project we needed to specify multiple locations.
In software development projects in general a clear distinction is made be-
tween the following type of physically separated environments: Development,
Test, Acceptance, and Production. They each have their own purpose within
the software development process. Something new or a change to existing
software should be developed in the Development environment. It should
be tested in the Test environment by the project members. After that it
should be tested by a selected group of end users in the Acceptance environ-
ment. If this group of end users accepts the software, it can be propagated
to the Production environment in which the software is used by the actual

126

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Environment URL
Development exampleserver1.portofrotterdam.com:5050/ShipVisit-

v1/Service?wsdl
Test exampleserver1.portofrotterdam.com:5060/ShipVisit-

v1/Service?wsdl
Acceptance exampleserver2.portofrotterdam.com:80/ShipVisit-

v1/Service?wsdl
Production exampleserver3.portofrotterdam.com:80/ShipVisit-

v1/Service?wsdl

Table 8.7: The location aspect of the service coordination part

end users. When tests fail in either the Test or Acceptance environment, the
software is demoted back to the Development environment and the process
restarts. Since the services play a role in all these environments, the locations
for all these environments need to be specified. Table 8.7 shows an example
specification for the different environments.

8.3.5 Service Contract Option Part Evaluation

Table 8.8 shows the evaluation of the service contract option part and Table
8.9 shows some of the QoS constraints to which the service conforms. Only
the quality of a service was specified and not its price, since there was no
mechanism for charging the use of services.

8.3.6 Overall Evaluation

All in all, the architects and software engineers from the providing as well as
the consuming party expressed their enthusiasm about the service specifica-
tions. The software engineers saved time because both parties agreed upon
the external behavior in an early stage. This enabled both parties to work in
parallel; the consumer used stubs of the actual service. Replacing the stub by
the actual service led to no or very few problems. When problems did occur,
it was always immediately clear by looking at the service specification which
party has caused the problem(s).

According to the interviewees not only the framework itself contributed
to the prevention of errors and early error discovery, but also the structured
specification process and the separate role of the ‘neutral’ service specifier.
By neutral we mean that the service specifier does not work on the design
or implementation of either the providing or the consuming components. Be-

127

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

Service Contract Option

Aspect

Comments of interviewees N
o
t
a
p
p
li
c
a
b
le

A
d
a
p
te
d

U
se
fu
l

x
Price Quality Combination QoS constraints are an essential part of the

service specification in the HaMIS project.
We have used the Extended ISO model
(van Zeist and Hendriks, 1996), an exten-
sion to the ISO 9126 model, as a basis for
specifying the QoS constraints. Not all el-
ements of this model are relevant, e.g. the
usability element only applies to user in-
terfaces and not to services. For this rea-
son we have made a selection of elements
of this model that need to be specified.
Time behavior, availability, and security
elements were regarded as the most impor-
tant QoS constraints.

Table 8.8: Evaluation of the Contract Option Aspects

Characteristic Sub characteristic Constraint

Efficiency Time behavior The maximum response time in
90% of the calls is 1,75 seconds.

Efficiency Resource behavior The service can be called 50 times
a minute.

Table 8.9: Quality part of price quality combination aspect of the contract
options part

cause of this we prevent component-specific constructs in the specification
(‘shortcuts’) for making the implementation easier.

We have seen that we can very well use the framework for determining
what aspects of a service need to be specified. However, when specifying
IT services it is insufficient to only specify information that we derive for
the ontological model of the enterprise. We need to add many additional
details such as information that is only relevant for processes at the infologi-
cal or datalogical level, such as data required for making calculation or data

128

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

required for making checklists and letters. Like we explained in chapter 7
our service specification framework is a generic one that can also be used for
specifying human services. Some details are less relevant for human services.
For instance, a human can easily interpret 1 pond (Dutch measurement for
mass) as 0.5 kilograms, so one does not have to specify this fully in advance in
this case. We can use the framework for determining what aspects to specify,
but we need additional standards to determine how to specify the information
(in detail).

Our framework was lacking two aspects that were needed in this case
study. The first aspect was the possibility to specify multiple locations of a
service. If an enterprise develops its own software, either with or without the
assistance of an external IT service provider, it in general requires four types
of locations; the development, test, acceptance, and production environment.
The first environment is used for developing the software. This environment
is used by software developers. The second environment is used for testing
the software (e.g. unit tests, integration tests, and stress tests) by software
developers themselves and testers. Some enterprises make an additional dis-
tinction between the test environment for developers and for testers. The
acceptance environment is required for user acceptance testing the software.
Only end users are allowed to access this environment. Lastly, the production
environment is used for actually using the software. End users are allowed to
use this environment and only software administrator can access it to solve
problems. When an enterprise buys its software (i.e. COTS), it usually only
requires an acceptance and production environment.

Secondly, we require a version aspect in our framework. Because during
a software development project services change quite often, a good service
versioning mechanism is crucial. DEMO does not give us any help on how
to deal with versioning. For this project we have applied the backwards
compatibility strategy as mentioned by Erl et al. (2008) to the data model
as well as the messages. This is a well-known versioning strategy, also used
before the days of service-orientation. This results into the following type of
version numbers: “x.y”, in which x represents a major version number and y
a minor version number. The terms major and minor relate to compatibility
with previous versions, for instance: version 5.3 is compatible with version
5.1, but not with version 4.8. This was considered to be sufficient.

129

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

8.4 Improvements to the Service Specification
Framework

As said in the previous section we need to add two things to our framework:
the possibility to specify multiple locations of our framework and the pos-
sibility to specify versioning information. We have to change the ‘location’
aspect to ‘locations’. We do not want to add the specifics about the devel-
opment, test, acceptance, and production environment, because the types of
location can differ per enterprise and these locations are not relevant for hu-
man services. When adding these location types to our framework we would
be jeopardizing the genericity of the framework. We have to add the ver-
sioning aspect to the contract options part. Before using the service, the
consumers want to be sure that the version of the service is the one he ex-
pects. Though we also recognize the concept of versioning in human services,
the term is not often used in this context. A new version of a human service
can, for instance, be changing the protocol in a restaurant (e.g. wearing a
tie), delivering faster response times (e.g. package delivery in one day instead
of one week), or introducing a new pricing structure.

8.5 Conclusions

In chapter 7 we presented a generic service specification framework that is
derived from the Ψ-theory, a theory that regards an enterprise as a purpose-
fully designed and engineered social system. To demonstrate the framework
we applied it to an insurance company case. Though this insurance company
case is based on a real world company, we then did not apply the framework
in practice at this company. So we only demonstrated the framework and
did not evaluate it yet. In this chapter, we sought to evaluate our service
specification framework in a real-life case study at the Port of Rotterdam.
This case study contributed to our ultimate goal, i.e. creating a generic ser-
vice specification framework that is both founded on a sound scientific theory
and evaluated in several real-life projects. We position this case study as the
evaluation step of the design science research approach (Hevner and March,
2003). In this case study we focused on the use of the service specification
framework in a component-based software development project.

The main contributions of this framework in the HaMIS project consisted
of early error discovery and awareness of important service aspects that are

130

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

often overlooked. These errors mainly included semantic errors and condi-
tions to the input messages that cannot be specified using XML schemas and
WSDL. The QoS constraints aspect in the service specification framework
made people aware that this is also externally visible behavior of a service. It
lead to negotiations about for instance response time, availability, and secu-
rity between service provider and consumer. Also, people became aware that
it is not only important to specify the ‘happy scenario’, but to also take into
account the specification of different types of error situations or exception
handling.

Overall the service specification framework fulfilled the needs of the HaMIS
project, though some findings require improvements in our framework. These
findings include the following: (i) the need for specification of multiple ser-
vice locations, and (ii) the need for a versioning aspect. Another thing we
found is that for IT services plain XML schemas are insufficient as a stan-
dard for specifying the production information used (input) and production
fact (output) of a service as they cannot specify conditional input and output
parameters. Next to this, it is important to make explicit how to deal with
unfulfilled preconditions.

131

CHAPTER 8. CASE STUDY 1: THE PORT OF ROTTERDAM

132

Chapter 9

Case Study 2: De Lage Landen

Abstract This chapter presents a case study conducted at De Lage Landen.
Data gathering took place in the months October and November 2009 by
means of documents, semi-structured interviews, a workshop supported by
group decision software, and questionnaires. The goal of the case study is
twofold; on the one hand we derive criteria for the modularization of service-
oriented systems, on the other hand we evaluate our service specification
framework. We asked the participants to give both the criteria and the service
specification framework aspects an importance rating. We found that criteria
that base the delimitation of the modules on organizational structures got
relatively low scores, e.g. 1.1 and 1.6. The criteria ‘maximum cohesion and
minimal coupling’ (8.5), ‘no functional overlap’ (9.3), ‘process clusters’ (8.7)
were valued the most by the participants.

In the evaluation of the service specification framework most of the speci-
fication aspects got a rating of 7.4 or higher on a scale from 1 to 10. The ones
that scored lower were ‘production kind’ (6.4), ‘coordination kind’ (6.6), and
‘price quality combination’ (6.6). An interesting finding emerged from the in-
terviews and questionnaires. We presumed that software systems are mainly
production-centric. It turned out De Lage Landen did value the aspect of
coordination acts, especially for services that reach beyond the boundaries of
the organization itself. Currently they have a lot of manual work in order
to correct the state of information systems after a cancellation or to ask for
the status of a process because promise acts are not explicit and therefore
interpreted in different ways. Nevertheless, they hardly specify or implement
these coordination acts (e.g. promise or state messages) in services at the
moment because they do not have a clear vision on how to do it.

133

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

9.1 Introduction

The second case study has been performed at De Lage Landen. De Lage
Landen is a global provider of leasing, business and consumer finance solu-
tions, including vendor finance and factoring (De Lage Landen, 2009). Its
main goal is to help its customers grow market share, enhance profitability
and achieve strategic goals by offering them asset-based financing programs.
De Lage Landen is a fully-owned subsidiary of the Rabobank Group. The
company operates internationally and its Dutch office is based in Eindhoven.
In 2008 De Lage Landen reported a net profit of e 235 million.

De Lage Landen has been working on SOA for a couple of years and
it is currently further introducing SOA governance within the organization.
Rens Voogt, Team Lead, Enterprise Integration Services (EIS), expects this
research to give a valuable insight into how different people within De Lage
Landen think about the delimitation of autonomous environments and into
what aspects of a service should be specified. The latter question is especially
of interest to De Lage Landen as they are currently looking into a migration
of the specification of services in various different Word templates to a service
registry/repository.

The remainder of this chapter is structured as follows. Section 9.2 presents
the results of the data gathering from documents. Next, section 9.3 provides
the results of the interview phase. The workshop, as discussed in section
9.4, forms the last part of the data gathering for this case study. Finally, we
conclude in section 9.5 with a summary of the findings of this case study.

9.2 Document Data Gathering

From the Lage Landen we received the following documents:

Integration Reference Architecture 1.1 - Marker Report, Date: Thurs-
day, January 24, 2008

A Single Business Service Catalog Shall Be Implemented, Date: not
provided

The first document contains a set of principles, the second document de-
scribes what information of a service should be specified. In the following
two subsections we discuss the contents of these documents.

134

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

9.2.1 Integration Reference Architecture

The integration architecture explicitly mentions SOA as one of the basic con-
cepts for integration. It defines SOA as a distributed computing concept in
which software functions are standardized in such a way that they can be
shared by dissimilar applications and technologies as services, both inside
and outside the company. According to De Lage Landen, there are four other
classifications that constitute the concept of SOA. First, within an SOA a
service exposes functionality through an abstract interface hiding the inner
complexity and implementation details. Second, an SOA provides business
agility by increasing reusability on a macro level; services can be composed, in
a loosely coupled fashion, into higher-level workflows. Third, autonomous en-
vironments acting in an SOA as consumer and/or provider of services become
collaborative while independent (we will define the notion of autonomous en-
vironment later). Fourth, communication between consumer and provider in
an SOA is in general bidirectional. These classifications also conform to our
vision on SOA provided in previous chapters; the autonomous environments
are modules of service-oriented systems containing only IT services.

De Lage Landen introduces the notion of a business service, defined as
follows.

Definition 4. A business service offers functionality of an autonomous envi-
ronment dedicated to support a certain well demarcated business function and
has the following properties:

clearly defined input, output, business functionality and error handling
defined in a contract (scheme, specification of service levels, interface
etc. in machine readable or documented format)

a business service is capable to act on an individual request once and
once only

service levels are clearly defined; availability hours, response times, costs
per transaction, incident handling procedure are minimum requirements

based on the message interface

can be invoked through common communication protocols, providing in-
teroperability and location transparency

defined with explicit interfaces, independent of service implementations

135

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

accesses business data, or facilitates a change in business data, from
one valid and consistent state to another

In chapter 7, in which we defined the notion of service, we deliberately
did not use the term ‘business service’ as it often leads to confusion. In
general, business people use this term for commercial propositions of the
enterprise, while IT people mean automated functions that directly support
the business process. In the definition above the latter is meant. This is more
or less synonymous to our notion of IT service as defined in chapter 7. As a
difference we see that the Ψ-theory does not elaborate the notion of business
functions, but only transactions and business processes. We clearly recognize
the concept of an interface (described in different wording multiple times), the
hiding of the implementation, and the agreements about Quality-of-Service.

As stated earlier the notion of an autonomous environment fulfills an im-
portant role at the Lage Landen. The notion is very similar to a component
in Component-Based Development and modularity in general; the wish to
decompose a complex environment into separate major building blocks that
can be changed (developed, replaced, reallocated) independently (in terms of
speed, technology) without requiring changes in other areas. These environ-
ment are called ‘autonomous’, because they are implemented using separate
databases, using separate application server instances, and using separate
servers.

Let us have a closer look at how De Lage Landen defines the notion of an
autonomous environment;

Definition 5. An autonomous environment is a clearly outlined and coherent
set of related IT functions that is offered using a determined collection of
IT-components and a determined set of corresponding system management
activities. It has the following properties:

one service owner is responsible for all functionality within the environ-
ment and fulfilling agreements with other environments and the outside
world in regard to generic services provided and used

the environment has clearly defined interfaces

the environment is location independent and must be transferable from
one location to another

the environment moves to a next release as a whole

136

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

a single team is responsible for the design and coordination on develop-
ment activities in the autonomous environment

there is only one production instance of an environment in the company

the environment interacts with other environments by loosely coupled
mechanisms

the environment supports one or more generic services

the data is in the environment is kept private, encapsulated behind busi-
ness logic, read and write access is controlled by business logic

the environment does not trust outsiders, it inspects requests, validates
fields, authenticates and possibly authorizes requests

database transactions (2PC) are only used within the environment and
not across environment boundaries

the environment implements a policy to cope with conflicts and incon-
sistency of incoming data related to the same objects entering the en-
vironment via different interfaces (e.g. an incoming message and user
input via the user interface update the same customer data).

An important property is that interaction across autonomous environments
shall be done in a loosely coupled fashion. In the document ‘Integration
Reference Architecture’ loose coupling refers to restricting the knowledge that
requester and provider need to know about each other. Furthermore De Lage
Landen provides the following definition on coupling:

Definition 6. Any aspect that is coupled between requester and provider
means that if change occurs it will imply a ripple of change across both par-
ties; changes to the aspect by one party requires corresponding changes by
other parties involved in interaction. Decoupling means that changes can be
done in consumer (i.e. requester), provider or intermediating infrastructure
with no subsequent consequences to other parties; changes to the aspect by one
party never require corresponding changes by other parties involved in inter-
action. Loosely coupled means achieving decoupling for the maximum number
of interaction aspects.

137

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

9.2.2 Business Service Catalog

The Lage Landen specifies the different aspects for specification of business
services in the document “A single business service catalog shall be imple-
mented”. According to this document, service specifications should provide
a ‘black box’ view of a service: internals of the service are not relevant for
the catalog nor potential consumers. This is in accordance with our view on
service specifications as presented in chapter 7. For each version of a service,
i.e. when a change to a service implicates changed behavior in interactions,
there needs to be a separate description. Next to describing the services them-
selves, De Lage Landen wants the business service catalog to provide insight
into (i) the relation of composite services using atomic services (please note:
this difference is not visible to consumers of the composite service!) and (ii)
functional dependencies between consumers and providers. In our view these
elements should not be part of a service catalog. The first aspect deals with
the internal design of the composite service and the second aspect deals with
the contracts between consumers and providers instead of the behavior of
the service itself. Table 9.1 depicts the mandatory and optional content of a
business service specification.

9.3 Interview Results

We scheduled the following interviews at the Lage Landen:

12 October 2009, 9.30 - 11.30, Arjan Jansen, Domain Architect Credit
Services

12 October 2009, 12.30 - 14.30, Tomi Santic, Application Consultant

15 October 2009, 9.00 - 11.00, Elice van den Bogaert, Designer/Domain
Architect Consumer Finance and Dirk van Gameren, Software Devel-
oper

15 October 2009, 11.00 - 13.00, Wido van Eersel, Enterprise Architect

15 October 2009, 13.30 - 15.30, Martijn Schiedon, Enterprise Architect

In the following subsections we describe the main findings from these inter-
views. These subsections mirror the structure of the interviews (see Appendix
B for the questionnaire). First, we discuss the rationale for and status of the

138

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Aspect Description
Mandatory

Id This aspect is a unique identifier of the service.
Descriptive Name This verb/noun/specifics construction describes the be-

havior of the service in a few words.
Version No explanation given
Category The category can either be ‘generic’ (business service

generally reusable, no consumer specifics, SOA level)
or ‘specific’ (business service has elements specific to a
consumer, EAI level).

Purpose of the Service This describes the functional why.
Functional Description This describes the functional what, including precondi-

tions and postconditions.
Technical Description This describes the technical aspects such as: correlation,

naming, headers, exception handling (error messages,
fall back, compensation), call sequences, language, char-
acter set and addresses.

Owner The owner is the job position that should be regarded
business owner of the service.

Manager The manager is the job position that should be regarded
IT owner of the service.

Status Values of the status can be: development, production,
migration (no longer used for new developments, current
consumers are to migrate to new version) or retired (no
longer used).

Expiration Date This date indicates when support on the service ends.
References to technical arti-
facts required by (potential)
consumers

No explanation given

Available Test Facilities This can be, for instance, XML samples or test scripts.
Provider This can be an autonomous environment or an external

party.
Optional

Service Levels This can be, for instance, availability windows, perfor-
mance limits, or scale limitations.

Support Contacts No explanation given
Charging No explanation given
Frequently Asked Questions No explanation given
Links to Data Dictionary No explanation given

Table 9.1: Specification aspects for services at De Lage Landen

139

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

SOA implementation (9.3.1). Next, we discuss the criteria for the modular-
ization of service-oriented systems that we found in conducting the interviews
(9.3.2). Finally, we present the preliminary results of the evaluation of the
service specification framework (9.3.3). These results will be further expanded
when we elaborate on the importance of the specification aspects in section
9.4.

9.3.1 Context of SOA Implementation

As early as 1995 De Lage Landen started working on applying application
integration in a structured way. They introduced a file-based bus using pro-
tocols like FTP, SMTP, X400, and SMB to prevent point-to-point coupling.
Also, De Lage Landen has experience with COM+ of Microsoft and Online
Transaction Processors (2 Phase Commit). More recently De Lage Landen in-
troduced Microsoft BizTalk as an Enterprise Service Bus (ESB). The concept
of a service was first introduced in a Business-to-Business (B2B) initiative
called Smart Universal Services Interface (SUSI), 5 to 6 years prior to this
case study and in 2006 the department Enterprise Integration Services was
founded. This department deals with enterprise-wide application integration.
In 2007 an important application called FREO that uses Web service technol-
ogy was taken in production. The department Independent Credit Services
(ICS) started building their first services in 2006/2007. Using these credit
services De Lage Landen can receive information like credit reports from ex-
ternal parties. Also, Straight Through Processing (STP), which is processing
without human intervention, is applied.

The Chief Information Officer (CIO) of De Lage Landen supports SOA
and is very focused on limiting the number of exceptions in the architecture
process. These exceptions are raised when designers/developers in a project
do not conform to the architectural principles. However, many of the decisions
are made in ‘small changes’. For these small changes no architect is involved.
This results in a gap between the architects and the designers/developers.
Business people within De Lage Landen mainly see SOA as a technical ap-
proach and prefer not to get involved. None of the interviewees says that
De Lage Landen has reached full maturity, though some other companies
(financials and consultancy firms) have told De Lage Landen that they are
relatively mature regarding the implementation of SOA in the Dutch market.

Figure 9.1 shows the different motivations for applying SOA at De Lage
Landen. Let us have a look whether or not these goals are met. Some of

140

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

!" #" $" %" &"

'()*+(",-./0(/-/+("(1230"

4-+.5.0-0("3(*6("-/)"(5.,./-0(")*75.+-0(6"

8-6("09("./0(:3-;2/"(1230"<23"(=0(3/-5"+2,,*/.+-;2/"

>(+2*75("-*02/2,2*6"-3(-6"

?-@("+2606"

A/+3(-6("B(=.C.5.0D"

!"#$%#"&'(")'%**+,-&.'/01'

E*,C(3"2<";,(6",(/;2/()"

Figure 9.1: Motivation for applying SOA

the interviewees indicate that flexibility has increased by realizing a plug-
and-play approach to some extent. By higher levels of standardization it
is easier to roll out new functionality to different countries. Processes can
be adapted quicker by using orchestration (compared to changing process
logic hidden inside applications). Software maintenance (and in fact also
development) became easier due to decoupling. For instance, in a project
some problems with the front-end occurred. Because front-end and back-end
were separated through a layer of services, the back-end team could go on with
development without having to wait till the front-end problems were solved.
Also, by making services autonomous it was easier to trace problems. Some
services are also consumed by the Rabobank, e.g. the Credit Check Service
and the Document Generation Service. The latter is a service for generating
documents in a uniform way. This service led to direct cost savings. Also,
the concept of SOA and the application of an Enterprise Service Bus provides
insight into the usage of IT, e.g. the amount of traffic between consumers and
providers and who uses what data. One of the interviewees did not think that
SOA contributed (yet). He said the implementations were still too small-scale
to see any real effects.

Of course the other interviewees also had some critical notes. One inter-
viewee questioned the future performance of the services as the use of XML
can cause more latency. But this has yet to be seen. Another note that
was mentioned several times is that the business departments do not embrace
the concept of SOA yet. According to the IT department they should see
themselves as suppliers of business services. In practice, they were not always
able to clearly define their semantics in data dictionaries. Also, they tended
to think too much in terms of existing applications, e.g. “when contract
identifier < 4, then the data originates from system x”. Furthermore, at his
moment the granularity of the services is not uniform, which makes it difficult

141

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

to really achieve the plug-and-play concept. Also, when the financial crisis
of 2008 hit, it became hard to get budget for things that are only profitable
in the long term. Another funding issue is posed because funding is usually
project-based. Because of this the necessary steps towards SOA can only be
taken in projects that realize new business requirements. Finally, for design-
ing and changing services communication between many different parties is
required. This takes a lot of time and the process is not really structured
yet. Services tend to be fine-grained and too specific to a certain purpose. De
Lage Landen is working on making services more generic; it is better to send
more information and let the consumer decide which information he actually
needs.

9.3.2 Criteria for Modularization and Service Design

The interviewees proposed several criteria for modularization. These princi-
ples are: “Maximum Cohesion and Minimum Coupling”, “Life Cycle Decou-
pling”, “Strategy and Technology Agnosticism”, “Value for Consumer and
Commercial User”, and “No Single Orchestration”. We discuss the mean-
ing of these criteria in the next section as we gained additional data in the
workshop phase.

9.3.3 Service Specification Framework Evaluation

Tables 9.2, 9.3, 9.4, and 9.5 depict the evaluation comments of the interviewees
regarding the specification aspects. There was little variation in the answers
of the interviewees; they all gave more or less the same answers. The one
thing that was mentioned as lacking in the framework was information about
the life cycle (e.g. ‘in production’ or ‘in test’) and versioning (e.g. ‘version
2.3’) of the service.

142

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Service Executor Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Actor Role De Lage Landen does not specify the ac-

tor role, but only the actual owner. A dis-
tinction is made between a functional and
technical owner. In practice, it is not al-
ways clear who the owner is or should be.
The functional owner is among others re-
sponsible for getting functional require-
ments from users, setting the price and the
funding of the service. The technical owner
is, for instance, responsible for the middle-
ware.

x
Contact Information End users only contact the service desk

for problems they encountered. The ser-
vice desk routes problems to the right
service owner. So only the service desk
would need this information for immedi-
ately problems. For inquiry purposes this
information would also be required by de-
velopers, architects etc.
Contact information of every employee can
be found in the business directory, so for
internal owners this would not need to be
specified separately in a service registry.
For external owners the information is ex-
plicitly written down.

Table 9.2: Evaluation of the Service Executor Aspects

143

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Table 9.3: Evaluation of the Service Production Aspects

Service Production Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Production Act This is sometimes, but not always speci-

fied. It would be useful to have this for
having a quick overview of what the ser-
vice does in search screens in the service
repository.
At De Lage Landen, a consumer often
needs to read the complete specification to
get this overview.

x
Production Information Used The input of a service is specified (includ-

ing complex constraints) in functional de-
signs. This is sufficient according to the
interviewees.

x
Production Fact The output of a service is specified (includ-

ing complex constraints) in functional de-
signs. This seems to be sufficient. How-
ever, some of the participants would like
to see a more formal and consistent way of
specifying this information.

x
Production Kind This is not specified as the organization

does not use the notion of Enterprise On-
tology nor does the organization propose
any other service taxonomy. The number
of services is not large enough at the mo-
ment to need such a taxonomy. The par-
ticipants do see a need for it (for search-
ing purposes) when the number of services
grows.

144

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Table 9.3: (continued)

Service Production Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Production World Semantics The business departments at De Lage Lan-

den use Excel-sheets for specifying seman-
tics. The interviewees would prefer to not
only specify the definitions of objects, but
also their relationship. However, the more
important and immediate problem is that
business people have difficulties in making
precise and unambiguous definitions.

x
Preconditions Preconditions are written down informally

and in different locations of specification
documents. This seems to be sufficient to
most of the interviewees. However, some of
the participants would like to see a more
formal and consistent way of specifying
this information.

x
Postconditions Postconditions are written down infor-

mally and in different locations of speci-
fication documents. This seems to be suf-
ficient to most of the interviewees. How-
ever, some of the participants would like
to see a more formal and consistent way of
specifying this information.

Table 9.3: Evaluation of the Service Production Aspects

145

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Service Coordination
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Coordination Acts This is not specified, but according to the

interviewees it would be useful to specify
it.

x
Coordination Kind Only IT services are specified in detail.

x
Protocol Protocols are usually not specified explic-

itly as they are almost always SOAP over
HTTP for internal communication and
SOAP over MQ for external communica-
tion.

x
Location The location is specified on an intranet

website. Here all servers in the service de-
velopment phase can be found (develop-
ment, test, acceptance, and production).

Table 9.4: Evaluation of the Service Coordination Aspects

Table 9.5: Evaluation of the Contract Option Aspects

Service Contract Option
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Price Quality Combination For external services the price is usually

documented.
Internally it is not always a wish to specify
prices for commercial and political reasons.

146

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Table 9.5: (continued)

Service Contract Option
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

Quality aspects are specified very basically.
This is not always sufficient; sometimes
consumer and providers get different ex-
pectations in this area due to lack of spec-
ification.

Table 9.5: Evaluation of the Contract Option Aspects

9.4 Workshop Results

Our workshop took place on 21 October, 2009. As described in chapter 1 the
goal of this workshop is to let interviewees respond to each other’s ideas and
to prioritize the criteria (for module identification) they propose. We chose
to use Group Decision Software instead of a regular flip over for two reasons.
First, we want to prevent the ‘biggest mouth wins’ effect. People who are less
talkative will probably be more likely to express their opinion when they don’t
have to attract attention to say something, but they can simply type in what
they want to say using a computer system. Second, we want to enable people
to express ideas that may be controversial by guaranteeing their anonymity.

Table 9.6 shows the criteria for delimiting autonomous environments pro-
posed in the workshop. Figure 9.2 shows the importance rating the partici-
pants gave to each criterion by providing the average rating and the standard
deviation. During the workshop it was not our intention to find anti-criteria
(criteria that should NOT be followed). Nevertheless, we did encounter some
criteria that got a very low rating from the participants, sometimes even also
of the participant who originally proposed the principle.

As shown in appendix C our initial workshop design comprised two parts.
The first part of the workshop took more time than expected. For practical
reasons (follow-up appointments of participants) we decided to get the input
for the second part in a different way; we sent questionnaires to the partic-

147

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

Criterion short name Criterion long name
Maximum Cohesion and Mini-
mum Coupling

Autonomous environments have maximum cohe-
sion and minimum coupling.

Knowledge Domain Autonomous environments reflect the structure of
knowledge domains, i.e. sets of actors having more
or less the same knowledge.

Business Disciplines Autonomous environments reflect the structure of
business disciplines, i.e. sets of actors working on
the same business function.

No Functional Overlap Autonomous environments do not have functional
overlap.

Responsibilities An autonomous environment falls under the re-
sponsibility of one business owner.

Process Clusters An autonomous environment reflects the struc-
ture of autonomous process clusters, i.e. an au-
tonomous environment delivers those services re-
quired by a certain (cluster of) business pro-
cess(es).

COTS An autonomous environment should be available
on the market as a COTS system.

Life Cycle Decoupling It should be possible to deliver services indepen-
dently of the financial products in which they are
used, i.e. services should not be tightly coupled to
the product as a whole.

Strategy and Technology Agnos-
ticism

The division of autonomous environments is inde-
pendent of strategy and technology.

Budgeting An autonomous environment reflects the budget-
ing structure of the enterprise.

Supporting Team An autonomous environment reflects the organi-
zation structure of the software development and
maintenance teams.

Long Term Strategy The division into autonomous environments is
based on the long term strategy of the enterprise.

Business Objects Autonomous environments are built around busi-
ness objects (base administrations).

Value for Consumer and Com-
mercial Usage

The service has an added value for its consumers.

No Single Orchestration If services always have to be called in the same
order, then the service need to be offered to the
consumer at a higher level of aggregation, i.e. the
set of services should in that case be offered as a
composite service.

Table 9.6: Criteria proposed by workshop participants

148

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

!"#$

%"&$

'"($

(")$

*")$

+"#$

'")$

&"#$

*"#$

&"'$

%"($

,"*$

'"'$

&")$

&"($

+"($

#",$

+"*$

+"'$

+"%$

+"#$

*"!$

+"%$

+"%$

+"($

+"($

#"'$

+"&$

+"+$

+"*$

#$ +$)$ *$!$ ($ %$ '$ &$,$ +#$

-.$/01234$567849:6;<.1$

=;3>4$?.6$@.19>A46$;1B$@.AA4670;3$C9;24$

D>901499$5EF47:9$

G.12$H46A$/:6;:42I$

/>JJ.6<12$H4;A$

D>B24<12$$

/:6;:42I$;1B$H4781.3.2I$K21.9<709A$

G0?4$@I734$L47.>J3012$

@5H/$

M6.7499$@3>9:469$

N49J.190E030<49$

-.$O>17<.1;3$5P463;J$

D>901499$L0970J30149$

Q1.R34B24$L.A;01$

S;T0A>A$@.8490.1$;1B$S010A>A$@.>J3012$

/:;1B;6B$L4P0;<.1$N;<12$

KP46;24$N;<12$

Figure 9.2: Rating of the proposed criteria

149

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

!"!#

$"%#

$"&#

!"!#

$"'#

$"!#

$"%#

$"!#

!"%#

("!#

("%#

$"$#

)"$#

)"%#

'"$#

*"'#

'")#

*"%#

'"!#

'"$#

'"$#

'"+#

*")#

'"+#

'"+#

*"&#

'")#

*"!#

'# *# &# ,# %# +# !#)# $# (# *'#

-./01#2345/67#89:;/<4=9<###

>904=9<#

-.969095#

899.?/<4=9<#@/<?#

899.?/<4=9<#A06B##

-9B609<?/=9<B###

-.109<?/=9<B##

-.9?30=9<#C9.5?#D1:4<=0B##

-.9?30=9<#@/<?##

-.9?30=9<#E406##

-.9?30=9<#F<G9.:4=9<#HB1?#

-.9?30=9<#A06##

89<6406#/<G9.:4=9<##

A069.#.951##

D64<?4.?#I1J/4=9<#K4=<L#

AJ1.4L1#K4=<L#

Figure 9.3: Rating of the service specification aspects

ipants to ask them about the rating of different aspects. Figure 9.3 depicts
the importance rating participants gave to the different specification aspects.
Unfortunately one of the participants did not return the form, so we only
have 5 replies instead of 6. The average ratings per person did not differ very
much (standard deviation of 0.5).

150

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

9.5 Conclusions

In this chapter we discussed a case study conducted at De Lage Landen. We
found fifteen criteria for modularization of service-oriented systems. Seven of
these criteria got a rating of 7.5 or higher, viz. ‘maximum cohesion and mini-
mal coupling’ (8.5), ‘knowledge domain’ (8.2), ‘business disciplines’ (7.7), ‘no
functional overlap’ (9.3), ‘process clusters’ (8.7), ‘life cycle decoupling’ (8.0),
and ‘business objects’ (7.5). An interesting finding is that the participants of
the workshop did not give criteria that base the modularity of service-oriented
systems on organizational structures a high rating. For instance, the criterion
‘budgeting’ (basing modules on budgeting structures in the organization) got
a score of 1.1 and the criterion ‘responsibilities’ (delimiting modules based on
the responsibilities of a business owner and basing these responsibilities on
the organizational structure) got a score of 1.6. Nevertheless, these criteria
are in reality applied very often at De Lage Landen.

In this case study we also validated our service specification framework.
The participants of De Lage Landen gave positive feedback about the service
specification framework. Most of the information they required did fit in this
framework. In fact, the only things that were really lacking was information
about the life cycle and the version of the service. Another comment was
that we should make a distinction between a functional and a technical owner
and therefore specify two different actor roles. One aspect from the business
service catalog that is not available in our service specification framework is
the FAQ. These are Frequently Asked Questions about the services. This
information is gathered during the time the service is actually used by the
participants.

151

CHAPTER 9. CASE STUDY 2: DE LAGE LANDEN

152

Chapter 10

Case Study 3: Air France/KLM

Abstract This chapter presents a case study conducted at Air France/KLM
between August and November 2010. Data is gathered by document analysis,
interviews, and a workshop supported by group decision software. Like the
previous case study its goal is twofold. We used the case study to derive
criteria for the modularization of service-oriented systems. Next to this, we
evaluated our service specification framework. The participants gave an im-
portance rating to the criteria for modularization as well as to the aspects of
the service specification framework.

We found that Air France/KLM applies the notion of modularity in her
business architecture by defining business domains. Business domains can be
decomposed into subdomains. The smallest subdomains are called business
areas. Interaction among domains and among business areas is realized by
automated or manual business services. The highest rated criteria for the
definition of domains are: (i) the delivery of results that are meaningful to
the environment (7,6), (ii) a high internal cohesion (6.8), and (iii) a uniform
definition of the syntax and semantics of information objects within a domain
(6.0). In 2007 Air France/KLM started a large-scale SOA program. Originally
this program started out with technical activities, namely the implementation
of an Enterprise Service Bus (ESB). Later Air France/KLM also included
activities for integrating this new technology in her Enterprise Architecture.
This new technology enables Air France/KLM to build IT services. Business
services that are automated and conform to several other criteria are called
SOA software services. The highest rated criteria for the definition of services
are: (i) the scope of the service is aligned with business responsibilities (8.8),
(ii) the description is sufficient for use (8.0), and (iii) the service is independent
of existing systems (7.6).

153

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Air France/KLM has a service registry that provides an overview of all
available IT services. Information about the services is mainly stored in two
documents: the Business Service Description (BSD) and Software Service
Description (SSD). The first document specifies information that is relevant
from a business point of view, while the second document focuses on infor-
mation relevant from a technical point of view. In the workshop we validated
our own framework. Aspects of the service specification with a rating higher
than 7.0 are: production information used (9.0), production fact (8.8), coor-
dination acts (7.6), price quality combination (7.6), preconditions (7.2), and
production act (7.2). The lowest rated aspects, having a rating of 6.0 or
lower, are: production kind (5.0), coordination kind (4.2), and protocol (6.0).
The participants proposed the following additional aspects that are currently
lacking in the framework: versioning information, life cycle information, and
an indicator whether the service has a request/reply or pub/sub interaction
style.

10.1 Introduction

The third case study is conducted at Air France/KLM, a worldwide airline
company based in France and The Netherlands. KLM was founded on 7
October 1919 and has Amsterdam Airport Schiphol as its home base. In 2004
KLM merged with Air France. In our case study we focused on the former
KLM company, i.e. the part of Air France/KLM based in The Netherlands. In
fiscal year 2009/2010 the KLM Group, which also includes KLM Cityhopper,
transavia.com and Martinair, transported 22.5 million passengers and more
than 540,000 tons of Air France and KLM cargo. The fleet comprises 205
aircrafts. In 2009/2010 the KLM Group employed more than 31,000 staff
(KLM, 2010).

The KLM applies DEMO as one of the methodologies for business mod-
eling and many of the employed architects are DEMO professionals. Also,
KLM has multiple years of SOA experience in a joint Air France/KLM SOA
program. For our case study we selected two parts of Air France/KLM for
data gathering: Air France/KLM Cargo and Air France/KLM Ground Ser-
vices. Cargo deals with the transportation and handling of cargo and Ground
Services deals with ground handling of Air France/KLM flights and flights of
partners. Activities of Ground services include check-in, baggage handling,
de-icing, and refueling and cleaning planes. We selected these two parts of the

154

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

organization for they have both DEMO experience and service identification
experience.

We performed data gathering in three phases. First, we analyzed sev-
eral documents of the SOA program. This analysis is described in section
10.2. Second, we interviewed business architects, technical architects, enter-
prise architects, and the service repository manager. The interview results
are described in section 10.3. Third, we performed a workshop in which we
gathered and evaluated principles for module and service identification and
the importance of different aspects of the generic service specification frame-
work. We describe the workshop results in section 10.4. We conclude this
chapter in section 10.5 by summarizing the most important findings of this
case study.

10.2 Document Data Gathering

Air France/KLM provided the following documents:

1. SOA Business Services - Identification Techniques V2.1b, Date: June,
2010

2. Overall Domain Structure, Ground Services, Common AF/KL V2.0,
Date: May 2010

3. SOA Business Services Concepts Definition V2.4, Date: August 2010

4. Software Services Definition V2.4, Date: August 2010

5. BSD - Business Service Description V2.0, Date: not provided

6. SSD - Software Service Description, Date: not provided

7. SOA Repository Roles & Service Lifecycle, Date: not provided

8. SOA Repository Demonstration, Date: not provided

9. SOA introduction for KL CCC, Date: Spring 2010

10. Required Service States and its implementation, Request for Change for
Service States in the AFKL SOA Repository, Date: not provided

155

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

The first two documents describe principles for domain and/or service iden-
tification. Documents three and four explain the notions of domain, business
service, and software service. Documents five and six are the templates for
respectively business and software service specifications. The business service
description (BSD) template is intended for describing the aspects of a service
that are relevant from a business point of view. The software service descrip-
tion (SSD) is intended for describing the aspects of a service that are relevant
from a software engineering point of view. The last documents describe how
the service registry is used at Air France/KLM.

10.2.1 Identification of Services Using Business Models

Air France/KLM defines the notion of an SOA business service as a busi-
ness service for which the interaction between consumer and producer can
be automated. Additionally, an SOA business service has the property that
the interaction between consumer and provider is limited to a single inter-
action to avoid deep coupling. The documents describe three techniques for
the identification of SOA business services: (i) identification from domain-
ing, (ii) identification from business process modeling, and (iii) identification
from functional detailed design. These techniques differ in the completeness
of the service specification (i.e. how much information about the service is
available) and the exhaustivity of the service identification (the amount of
services that are identified). Which service identification technique is used
depends on the project phase. Figure 10.1 shows graphically which technique
Air France/KLM uses in which project phase. This is not a picture with
formal semantics. What it intends to depicts is the following. In the first
phase of a project (pre-study) Air France/KLM starts identifying services
using domaining. Later in this phase identification from process modeling is
used. This technique is also the main technique used in the feasibility study
phase. At the end of the feasibility study phase the functional detailed de-
sign technique is applied. This technique is also used in the last two phases:
architecture & specification and design & realization.

Let us first have a look at identification from domaining. This technique
starts with the identification of a business domain or domain for short. Air
France/KLM assigns the following characteristics to a domain:

to a domain corresponds a specific mission, strategy and policy (internal
much cohesion, external loose coupling)

156

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#$%&'()*''$

'*+,(-*$(.*)/(0-1/(2)$

3+24$.241()()5

!"#$%&'()*''$'*+,(-*$

(.*)/(0-1/(2)$3+24$%&'()*''$

6+2-*''$42.*7()5

!"#$%&'()*''$'*+,(-*$(.*)/(0-1/(2)$

3+24$3&)-/(2)17$.*/1(7*.$.*'(5)

!"#$%&'(")'%&

!"#$%&'() *#+%,-,.,&)/

%&'()

0"12,&'"#/3/

%4#1,51+&,67

8#%,97/3/

"#+.,%+&,67

Figure 10.1: Applicable techniques per project phase

each domain contains a set of business processes contributing to its
mission

the decomposition of domains does not depend on organizational struc-
tures

for a given type of business (e.g. airline, retail bank) a domain decom-
position could be shared by several enterprises

domains can be decomposed into multiple layers of subdomains and the
smallest identified domain is called business area

Air France/KLM defines a business service as an added-value that con-
tributes to fulfill part of the mission of the enterprise and that is provided
by a business area to other business areas or that is reusable inside the same
area. A distinction is made between the black-box view of a business service
that only exposes its behavior (aimed at consumers) and the white-box view
of a business services that describes its construction (exposes the internal
actions). The business service is used by a consumer area, i.e. the business
area that benefits from the result/output of the business service. The busi-
ness service is offered by a provider area, i.e. the area which produces the
business service. The business areas interacting through services can reside
inside the same domain or in different domains. Also, an interaction between
a domain (or actually a business area within a domain) and an external actor

157

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#$%&'($)('**+,$#)
*"-.$/0

!"#$%&'($)1"*"1,0-)
$#)1&.*+$0,&/

3%,*.$/0)$4$1'0,&/

!"#$%&'($)#$(&'#1$)
*'#1%"(,/5

6#'17)($#8,1$)$#)
1&.*+$0,&/

9%-(,1"+)1"*"1,0-)
:&#$1"(0,/5

;*$#"0,&/"+)/$0<)
2$8$+&*.$/0

=>?)2,(0#,@'0,&/

=>?),/0"7$

A.*�)(%,*.$/0)
1%"#5$()*"-.$/0

!"#$%&'"($'&)*+,-.)&

/*)$.'-"*++#+$

0*)(%.1,('
(2(31&#.+

0*)(%.1,('
)(,.1)3('

4*+*$(4(+&
B+,5%0)+$5)0#"/(*�

A.*�)(%,*.$/0)
%"/2+,/5

B+,5%0)+$5),/@&'/2)
%"/2+,/5

B+,5%0)+$5)&'0@&'/2)
%"/2+,/5

C4*�)(%,*.$/0)
%"/2+,/5

>5/2D

@'(,/$(()2&.",/)&#)
@'(,/$(()"#$"

@'(,/$(()($#8,1$

Figure 10.2: Example of domain: operations

is defined as a business service. Figure 10.2 shows the operations domain as
an example. As stated before, one of the characteristics of a domain is that
it may be further decomposed into subdomains.

The second technique, identification from business process modeling, iden-
tifies SOA business services using the ARIS notation (the notation that is
supported by the tool Air France/KLM uses). A business process is defined
in this context as a structured chain of actions which is designed to produce
a specific output with added-value for a particular customer or higher level
process. Figure 10.3 depicts the Air France/KLM processes pyramid; a de-
composition of business processes. A business process which has an interface
with the current analyzed process is candidate to be provider of an SOA busi-
ness service if (i) this process belongs to another domain and (ii) exchange
of events with the current process takes place via IT systems. These services
are called event report type SOA business services.

158

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#"$%&'()(*+'")(,-'++'+".'+-(*)&*,%

/"#"0,12*%")(,-'++'+".'+-(*)&*,%

3"#"42-(,")(,-'++'+".'+-(*)&*,%

5"#

6"#

72+8"9%*&+".'+-(*)&*,%

:,(8")(,-'++'+".'+-(*)&*,%;

Figure 10.3: Air France/KLM process pyramid

Also, process models can be used to define request/reply type of SOA Busi-
ness Services. Task units (lowest level of process pyramid depicted in Figure
10.3) can be described in dedicated models. These are called ARIS Function
Allocation Diagrams (FADs). These FADs describe among others the actors,
used documents, associated risks, and read and/or updated business informa-
tion. The criterion for determining whether or not a task unit uses a business
service is the usage of external business information. Next to this, task units
used in more than one work process are SOA business service candidates at
the condition that: (i) they are fully automated and (ii) it is validated that
the task unit is candidate to be (re)used by other business areas.

The last technique for identifying SOA business services is identification
from functional detailed models. These services are on a lower granularity
level than the services identified from the previously described technique.
For this technique task steps within task unit are identified as SOA business
services if the following conditions apply: (i) they are fully automated and
(ii) it is validated that the task unit is candidate to be consumed by other
business areas. These conditions are the same conditions as in the previous
technique. The only difference is the granularity level of the services.

10.2.2 Terminology Related to Automated Services

Figure 10.4 provides an overview of the terminology used at Air France/KLM
in relation to automated services. As we see a business area can offer Business
Software Services (BSS). A BSS is defined as the software service implement-
ing an SOA business service. A distinction is made between two types of BSS:
those that executed after a request from a consumer and those that are exe-
cuted after a notification from a publish/subscribe mechanism. In the latter
case the party creating the notification does not require a response from the
provider. An SOA business service may have one of these implementations or

159

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#$%&##'()&*'+

!"#$%&"'()*+,-"#

./001%&23%)*'4.

!"#$%&##'()&*',

!"#$%&"'()*+,-"#

./001%&23%)*'5.

!"#$%&##'()&*'-

!"#$%&"'6#)$%7"#

!"#$%&##'()&*'.

!"#$%&"'6#)$%7"#

!"#$%&##'()&*'/

!"#$%&"'6#)$%7"#

!"#$%&##'012*$%'!"

!"#$%&"'6#)$%7"#

8)99%*9

/-27",+

:2"32*

()7"&)

;<(=/3&4&%5
>!!?')@*"7'AB'3C"'
0#)$%7%*9'>,+%*"++'
/#"2
D!!?')@*"7'AB'3C"'
>,+%*"++'E)-2%*'!"

;!!?')@*"7'AB'3C"'
)@*"#')F'3C"'1"92&B'
2001%&23%)*G02&H29"

Figure 10.4: Different service types at KLM

both. Internal Software Services (ISS) are software services privately exposed
by an area. The need for internal software services can come from legacy ap-
plications reuse, COTS, or IT optimization needs. Utility Software Services

(USS) expose technical functionality (e.g. archiving, logging). These are BSS
offered by the domain IT.

10.2.3 Specification of Services

Air France/KLM uses a service repository for storing information about ser-
vices. This is a catalog used for adding, editing, and organizing services. The
services are organized in a hierarchical way using the domain, subdomain,
and business area decomposition. Another function of the repository is to

160

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Aspects of business service
Name
Description
ARIS-Database
Business Process
Business Area
Owner

Table 10.1: SOA business service as-
pects stored in service repository

Aspects of software service
Name
Business Area
Application
Business Service
Owner
Name
Identifier
Visibility
External
Transmission (event or request/reply)
Technical Type
Type (Business/Internal/Utility)
Connector
Functionality
Securitic (Air France only)
URL

Table 10.2: Software service aspects
stored in service repository

keep track of versioning information of services and different document ver-
sions. The latest version of a service specification is always available to the
consumers and older versions can be made available if required. Thus it is a
single point of information for services. Figure 10.5(a) shows a screenshot of
the organization of SOA business services in the service repository. As we can
see in the picture the relationship between business domains, business subdo-
mains, and business areas is graphically represented by hierarchical folders.
Figure 10.5(b) shows a screenshot of the organization of software services.

Table 10.1 shows the aspects of an SOA business service specified in the
repository as structured searchable fields. The ARIS-Database is a link to
the business models in the business modeling tool. Specification documents
can be attached and a link to an SOA business service version can be made.
A certain SOA business service version can be linked to a software service.
Table 10.2 shows the aspects of a software service that are specified in the
repository as structured searchable fields. Figure 10.6 shows a screenshot of
a software service in the service repository. Again, specification documents
can be attached. A link to a software service version can be made.

As stated before the repository contains links to documents that contain
the detailed specifications of services. Air France/KLM specifies services using
two different templates: the SOA Business Service Description (BSD) and the

161

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!! "#$%&'$$()!*+%&(

!! "#$%&'$$(,#-.!*+%&(

!! "#$%&'$$(/0'+(

!! ,1/("#$%&'$$(,'02%3'(

!! "#$%&'$$(,'02%3'(4'0$%!&(

!! ,!567+0'(,'02%3'8(

!! ,!567+0'(,'02%3'(4'0$%!&8(

8(1&9:(6;'(,,(6;+6(+0'((

3!&&'36'.(6!(6;%$(",((

+0'(2%$%-9'(;'0'(

(a) Organization of SOA business services

!! "#$%&'$$()!*+%&(

!! "#$%&'$$(,#-.!*+%&(

!! "#$%&'$$(/0'+(

!! /112%3+4%!&(

!! ,!546+0'(,'07%3'(

!! ,!546+0'(,'07%3'(8'0$%!&(

(b) Organization of software services

Figure 10.5: Screenshots of organization of SOA business services and software
services

162

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Figure 10.6: A software service in the service repository

163

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Software Service Description (SSD). The first template specifies the aspects of
a service relevant from a business point of view. The second template specifies
the aspects of a service relevant from a technical point of view. Table 10.3
shows the document template for SOA business services. Table 10.4 shows
the document template for software services.

Table 10.3: Specification aspects for SOA business services at Air
France/KLM

Aspect Description
Document information

Name of the SOA business
service

The name of the service, naming rules for services are
available

Version number The version number consists of two digits “x.y”. The
x is called the release number and is updated by the
business enterprise architect who is accountable for the
Business Service Description (BSD). The y is updated
by the business analyst who is responsible for the BSD.

Status The status of the specification, e.g. “Draft” or “Final”
Date of last update The date of the last update of the specification
Document location The location of the specification
Domain/area The business area that is responsible for the SOA busi-

ness service
IMO accountable The name of the provider of the description of the SOA

business service
Author The author of the specification document specified by

his name, function, and department code
Approvals The persons who have given approval for the different

versions of the specification
Business enterprise archi-
tect

The architect accountable for the SOA business service

Revision history An overview of the changes made to the service
Distribution A list of people to whom the specification is sent
Linked documents A list of documents related to the specification docu-

ment
Overview

Goal The objective fulfilled with this service in main lines
Result(s) A textual description of the result, this should be in

terms of added value to the consumer and part of the
mission of the owning domain

Interaction type Indicator whether the service is a request/reply services
or an event report, sometimes both types are applicable
to a service

Precondition(s) All the predicates that should be met in order to be able
to execute the SOA business service successfully

164

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.3: (continued)

Aspect Description
Postcondition(s) The condition(s) of the environment that should be met

after the SOA business service is executed
Invocation

Request If the service is a request/reply service, this aspect needs
to be specified. This is done as a table in which the
business object, its description, whether its mandatory
or optional, and remarks are specified.

Triggers If the service is an event-based service, this aspect needs
to be specified. This is done as a table in which the
trigger name, a description of the trigger, and remarks
are specified.

Other information
Result A complete description of the result, this is a table in-

cluding the business object, its description, an indicator
whether it is mandatory or optional, and remarks

Process steps The process steps performed by the SOA business ser-
vice

Business rules The business rules that are relevant for consumers of the
SOA business service

Business exceptions The behavior of the SOA business service when an ex-
ception occurs (also called business fault)

Policies The Quality-of-Service aspects of the SOA business ser-
vice, this includes business criticality, business volume,
business use, confidentiality, integrity, availability, and
accountability

Table 10.3: Specification aspects for SOA business services at Air
France/KLM

Table 10.4: Specification aspects for software services at Air France/KLM

Aspect Description
Document information

Name of the software ser-
vice

The name of the service, naming rules for services are
available

Type of software service Indicator whether the service is a Business Software Ser-
vice (BSS), an Internal Software Service (ISS), or a Util-
ity Software Service (USS)

Version number The version number consists of two digits “x.y”. The
x is called the release number and is updated by the
business enterprise architect who is accountable for the
Business Service Description (BSD). The y is updated
by the business analyst who is responsible for the BSD.

165

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.4: (continued)

Aspect Description
Status The status of the specification, e.g. “Draft” or “Final”
Date of last update The date of the last update of the specification
Document location The location of the specification
Author The author of the specification document specified by

his name, function, and department code
Approvals The persons who have given approval for the different

versions of the specification
ICT enterprise/domain ar-
chitect

The architect is accountable for the SOA business ser-
vice related to this software service (if applicable)

Revision history An overview of the changes made to the service
Distribution A list of people to whom the specification is sent
Linked documents A list of documents related to the specification docu-

ment
Business alignment

Business domain The name of the business domain, the business subdo-
main, the business areas and optionally the department
code and/or name of the business enterprise architect

Business service The name of the business service
Software service structure

Goal(s) Description in main lines when and for what this soft-
ware service is used

Description of the result(s) A short textual description of the added value of the
software service

Preconditions These are conditions that should be checked by con-
sumers before invoking the software service. For im-
portant service the check may (also) be done by the
provider at the start of service execution. Choices must
be made clear in the service contract between consumer
and provider.

Postconditions The indirect results of the service (which is not part of
out parameters and for which the consumer may need to
take some actions after this service has been executed)

Application The name of the application that implements the soft-
ware service

Interaction pattern Indicator for the way of interaction with the service, this
can be request/reply or event report

General constraints Any constraint applicable, these can be constraints for:
(i) one attribute (e.g. date construct), (ii) one attribute
of the same type (e.g. list of authorized values), (iii) be-
tween attributes (e.g. “valid until date” of credit card),
(iv) between entities/classes (e.g. ticket has maximum
of four coupons)

166

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.4: (continued)

Aspect Description
Operation The name of the operation, a software service usually

has only one operation
Main attributes For the main attributes the following things are speci-

fied: goal, result(s), preconditions, and postconditions.
Input structure A link to the input structure defined using XML Schema

(XSD)
Output structure A link to the output structure defined using XML

Schema (XSD)
Return code - business fault For request/reply types of services, this aspect explains

the way return code (errors, warning, successful) are re-
turned. Also, descriptions of the return codes are given.
In case of event report types of services this aspect is
empty.

Policies
Intended use The intended use of the software service, such as reuse

within business domain, reuse within Air France/KLM,
reuse within Air France only, reuse within KLM only, or
unlimited reuse

Security The appropriate security policy for authentication &
authorization of the service, such as confidential, re-
stricted, secret, internal Air France/KLM, internal Air
France only, internal KLM only, or unrestricted

Usage requirements Requirements, not yet mentioned in the above para-
graphs, such as minimal and/or preferred requirements
at consumer’s side to use this service in an optimal way,
for example, minimal version of specific client software
and memory

Service implementation design logic
Dependencies other services A list of other software services need, the orchestration

can be showed too using one or more UML sequence
diagram(s)

Software service overall de-
scription

UML sequence diagrams or UML class diagrams that
describe how the software service delivers the result.
Please note: this is internal design of the service. These
internals should not be exposed to the service consumer.

Table 10.4: Specification aspects for software services at Air France/KLM

167

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

10.3 Interview Results

We scheduled the following interviews at Air France/KLM:

27 August 2010, 8.30 - 10.30, Dick van Egmond, Business Architect
Cargo

27 August 2010, 10.30 - 12.30, John van Velzen, Project Architect IS
Development with focus on Cargo and Ground Services

27 August 2010, 13.00 - 15.00, Wouter Mellink, Enterprise Architect
CIO Office

30 August 2010, 9.30 - 11.30, Daniël Burggraaf, Manager Service Repos-
itory

30 August 2010, 13.00 - 15.00, Hans Zonneveld & Paul Ensink, Manager
Business Architectuur Ground Services & Enterprise Architect CIO Of-
fice

The interviews with Hans Zonneveld and Paul Ensink were combined be-
cause of scheduling and availability reasons. Appendix B shows the question-
naire used in these interviews. The following subsections contain the main
findings from these interviews. These subsections mirror the structure of the
interviews. First, we discuss the rationale for and status of the SOA imple-
mentation (10.3.1). Next, we discuss the criteria for the modularization of
service-oriented systems that we found in conducting the interviews (10.3.2).
Finally, we present the preliminary results of the evaluation of the service
specification framework (10.3.3).

10.3.1 Context of SOA Implementation

Figure 10.7 shows the motivation for starting the SOA program at Air France/
KLM three years ago according to the interviewees. KLM as well as Air
France have acquired middleware knowledge before the start of the mutual
SOA program. KLM started using middleware about ten years ago using
the Enterprise-Wide Messaging System (EWMS), a custom middleware sys-
tem based on the IBM message queueing system MQ. Air France has around
twenty years of experience. Before the introduction of the Enterprise Service

168

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!" #" $" %" &"

'()*+*,(,-".-/0-"(12"-+*3*1(,-"2/4+*)(,-0"

51(6+-"-(07".-4+()-3-1,"89"(44+*)(:810"

;34.8<-"6/0*1-00=;>"(+*?13-1,"

;1).-(0-"@-A*6*+*,7"

!"#$%#"&'(")'%**+,-&.'/01'

B/36-."89":3-0"

3-1:81-2"

Figure 10.7: Motivation for applying SOA

Bus (ESB) Air France used a middleware system based on Remote Proce-
dure Calls (RPCs) called Adhesion. Both environments had a focus on the
technical aspects of system integration; not much effort was spent on the
representation of business services to IT services.

From a technical perspective the current SOA environment is relatively
mature. At the moment the case study was conducted, the service repository
contained a few dozens services. Since business architects got involved later
in the SOA program there is still work to be done to streamline the process
from business analysis to service development. In the airline industry it is
quite common though to think service-oriented on a business level. At Air
France/KLM business people already use the notion of (business) building
blocks that can be purchased from different partners.

Looking back at the original motivation for starting the SOA program,
the interviewees see some of the advantages are met. Flexibility has already
increased to a small extent. One of the examples mentioned was checking
online. The front-end system could be built quicker because the back-end
services were available and did not have to be developed in the online checking-
in project. Though Air France/KLM is still working on better business/IT
alignment, the notion of domains helped in making analyses for the merger of
KLM and Air France. Because the organizational structure was not part of
these domain models, discussions had much less political load. The advantage
of easy application replacement is not yet met. According to the interviewees
this is mainly a timing issue. First all services have to be realized. After
that the applications can be replaced. This moment will probably come in
the near future. Finally, on a small scale services are reused and duplicates
eliminated. A negative experience that the interviewees encountered is the
speed of the SOA program; things take longer than expected.

169

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

10.3.2 Criteria for Modularization and Service Design

The interviewees proposed several criteria for the identification of domains.
These included “maximum cohesion”, “independence of organizational struc-
ture”, “sourceability”, and “semantics of business objects”. We discuss the
meaning of these criteria in the next section as we gained additional data
in the workshop phase. Some of the architects of Air France/KLM define
these domains on logical groups of transactions of DEMO models to ensure
confirmation to the maximum cohesion criterion.

10.3.3 Service Specification Framework Evaluation

Tables 10.5, 10.6, 10.7, and 10.8 exhibit the evaluation comments of the in-
terviewees regarding the aspects of the service specification framework. The
interviewees proposed the following additional aspects they required in a ser-
vice specification: (i) versioning information, (ii) life cycle information, , and
(iii) an indicator whether a service has a request/reply or pub/sub interaction
style.

Table 10.5: Evaluation of the Service Executor Aspects

Service Executor Aspect Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Actor Role Air France/KLM distinguishes between a

business owner and a technical owner. The
business owner is the one who pays for the
development and maintenance of the ser-
vice. The technical owner is the one who
makes sure that the service keeps up and
running. Next to this, Air France/KLM
has a wish to also specify the functional
owner. The functional owner makes sure
the service offers the correct functionality
and deals with functional changes.

170

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Owners are specified on the level of a de-
partment to avoid trouble when people
quit their job, get sick etc. Individuals ful-
filling the role can be found in the reposi-
tory.

x
Contact Information The contact information (email address

and telephone number) is specified in the
repository. Additional information about
persons can be found on the corporate in-
tranet.

Table 10.5: Evaluation of the Service Executor Aspects

Table 10.6: Evaluation of the Service Production Aspects

Service Production
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Production Act This information is distributed over mul-

tiple fields. The repository has a field
called ‘description’ and the templates have
fields called ‘overview’ and ‘goal’. Cur-
rently, not much uniformity exists in how
these fields are filled. For business services
Air France/KLM could specify the DEMO
production act as many of the business ser-
vices are ontological transactions.

x
Production Information Used This is specified as the input of the service.

An additional wish of KLM/Air France is
to specify the conditions under which cer-
tain parts of the input structure have to be
filled or can be left empty.

x
Production Fact This is specified as the output of the ser-

vice.

171

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.6: (continued)

Service Production
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

An additional wish of KLM/Air France is
to specify the conditions under which cer-
tain parts of the output structure are filled
or left empty.

x
Production Kind No distinction is made between ontologi-

cal, infological, and datalogical services.
Air France/KLM does distinguish different
types of services, such as request/reply and
event-based services, entity services, util-
ity services, and composite services.

x
Production World Semantics Currently, semantics is not sufficiently

specified, but Air France/KLM acknowl-
edges its importance. The semantics is
specified as a dictionary per business area.

x
Preconditions Preconditions are specified in the tem-

plate. These are specified in natural lan-
guage.

x
Postconditions Postconditions are specified in the tem-

plate. These are specified in natural lan-
guage.

Table 10.6: Evaluation of the Service Production Aspects

172

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.7: Evaluation of the Service Coordination Aspects

Service Coordination
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Coordination Acts Though Air France/KLM does not spec-

ify the coordination acts of the ontological
model, they do specify different types of
exceptions, namely (i) business faults (for
expected situations that have meaning on
a business level), (ii) technical faults (for
several technical types of errors like wrong
input formats), and (iii) SOAP faults (for
connection errors). The interviewed busi-
ness architects acknowledge that the com-
plete transaction patters could form a good
basis for defining faults.

x
Coordination Kind Only IT services are fully specified in a ser-

vice specification. Therefore the distinc-
tion between manual services and IT ser-
vices is not required in the service specifi-
cation (as it is always an automated ser-
vice).

173

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Table 10.7: (continued)

Service Coordination
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Protocol For IT services this is only specified by ex-

ception. Most services use the Web ser-
vices stack. When a service uses another
protocol this is specified. Though non-IT
services are not specified in a service spec-
ification, the business architects do think
there is a need for specifying the protocol
for manual services.

x
Location In the repository five types of locations are

specified: development, customer accep-
tance, service acceptance, load test, and
production.

Table 10.7: Evaluation of the Service Coordination Aspects

174

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Service Contract Option
Aspect

Comments of interviewees N
o
t
a
p
p
li
ca

b
le

A
d
a
p
te
d

U
se
fu
l

x
Price Quality Combination Air France/KLM only specifies the

Quality-of-Service and not the price as the
company does not apply an internal pric-
ing mechanism. Price would be relevant
though when external parties would offer
or consume services. Also, no distinction
is made between different quality levels; if
one consumer requires a higher Quality-
of-Services, every consumer will get the
new higher Quality-of-Service.
One of the architects noted that Quality-
of-Service can only be specified per compo-
nent, as all services of a certain component
are affected by each other’s calls.

Table 10.8: Evaluation of the Contract Option Aspects

10.4 Workshop Results

The last part of this case study was a workshop organized on 26 November
2010. Five of the six interviewees were able to attend this workshop. The goal
of this workshop was to get a better insight into the criteria for service iden-
tification at Air France/KLM and to validate our generic service specification
framework. We used group decision software to facilitate the workshop.

Table 10.9 shows the criteria proposed by the workshop participants. The
letters ‘D’, ‘S’, ‘BS’, and ‘SS’ have the following meaning. ‘D’ means that the
criterion applies to the identification of domains, ‘S’ to services in general,
‘BS’ to business services, and ‘SS’ to software services. These criteria are
not orthogonal. Figure 10.8 shows the average rating of importance of the
criteria given by the workshop participants. Also, the standard deviation is
calculated so we can see to what degree the participants agree on the average
rating.

The criterion having the highest ranking was ‘ownership’. This criterion

175

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

Criterion short name Criterion long name
D: Object definitions A domain has a uniform definition of the syntax

and semantics of information objects.
D: Internal cohesion A domain has a high internal cohesion.
D: Meaningful results A domain delivers results that are meaningful to

its environment.
D: Sourceability A domain should be sourceable as a whole to an

external party.
S: Service contract A service has behavior that can be specified in a

contract (including measurable results, price).
S: Reusable by right granularity A service is reusable by defining it at a right gran-

ularity level.
S: Service description indepen-
dent of implementation

A service has a stable description that is indepen-
dent of its implementation.

S: Recognizable to airline indus-
try

A service is recognizable to others in the airline in-
dustry; it should be compliant with industry stan-
dards.

S: Independence of other services A service is independent of other services.
S: Interaction required A service always requires interaction about the re-

sult.
BS: Ownership The scope of the service is aligned with business

responsibilities.
BS: Interaction between business
areas

A business service is an interaction between busi-
ness areas.

BS: Need of environment A business service delivers a result that is
wanted/required by its environment.

BS: Complete result (no partial
results)

A business service delivers a complete result (i.e.
no partial result).

BS: Part of one of more business
processes

A business service is part of one or more business
processes.

BS: Independence of existing sys-
tems

A business service is identified without looking at
the existing IT systems.

BS: Description sufficient for use A business service can be used by a consumer that
does not have knowledge of its implementation.

SS: Automated version of busi-
ness service

A software service is an automated version of an
identified business service.

Table 10.9: Criteria proposed by workshop participants

176

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

means the service is aligned with business responsibilities. The main moti-
vation for this criterion is that the owner is the one who knows best what
can be delivered by his domain. He can make a trade-off between his own
interests and that of his consumer. Also, he is the one the consumers can go
to when the quality of the service is insufficient. Though these things are all
true, the question remains how an owner is assigned to a domain. And when
this is determined, the service owner will not define services out of the blue;
he will need a set of criteria for service definition. Other criteria that have
a rating equal to or higher than 7.0 are ‘meaningful results’, ‘independence
of existing systems’, and ‘description sufficient for use’. ‘Meaningful results’
should be delivered by a domain to its environment, because otherwise the
domain does not provide any value and it should be discontinued. ‘Indepen-
dence of existing systems’ is important because Air France/KLM does not
want a tight coupling between the functionality offered by the services and
the current IT systems. This tight coupling would oppose the idea of SOA to
create a more flexible IT environment. ‘Description sufficient for use’ means
the description of a service should be sufficient for using it; the consumer
should not need to be aware of its internals. Surely, this is true, but this is
already inclined in the definition of SOA.

Criteria with a medium score (equal to or higher than 6.0 and lower than
7.0) are ‘object definitions’, ‘internal cohesion’, ‘service description indepen-
dent of implementation’, ‘service contract’, ‘recognizable to airline industry’,
‘interaction required’, ‘reusable by right granularity’, and ‘need of environ-
ment’. ‘Object definitions’ means that the domain should specify the syntax
and semantics of a certain object. According to the participants it is re-
quired that in a domain objects have the same structure and meaning. In
an interaction between domains the semantics of the providing domain is
used. It can be the case, for instance, that the term ‘flight’ has a different
meaning for the cargo domain than for the ground services domain. This
division of semantics is made to give domains freedom in their terminology
and to prevent organization-wide discussions on semantics. One objection
posed by a participants is that an object can have multiple meanings within
Air France/KLM which makes reuse of services harder. That is why seman-
tics needs to be specified very precisely for each domain. ‘Internal cohesion’
refers to the principle of maximum cohesion and minimal coupling. The main
motivation for this criterion is to reduce the impact of changes by limiting
the number of dependencies to those that are absolutely required. ‘Service
description independent of implementation’ is important because of the no-

177

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

tion of loose coupling. However, this principle got a low rating, because it is
already captured in the definition of SOA. ‘Service contract’ states that the
service needs to have a contract that includes measurable properties of the
service. ‘Recognizable to airline industry’ was considered to be a desirable,
but not a mandatory property for services. ‘Interaction required’ is seen as
a trivial property of a service. One remark was that communication acts in
automated services are often implicit. The motivation for ‘reusable by right
granularity’ is that services should not be too specific to be reused. When
a service does not offer enough functionality/information potential consumer
will not use it. ‘Need of environment’ refers to the property that the service
should deliver a result that has value to its environment. If a service does
not offer value, there would not be consumers for it. So the provider should
not only look at what he has to offer, but also what the ‘market’ (internal or
external) wants.

The lowest scoring criteria (lower than 6.0) are ‘sourceability’, ‘interaction
between business areas’, ‘independence of other services’, ‘complete result (no
partial results)’, ‘automated version of a business service’, and ‘part of one or
more business processes’. ‘Sourceability’ refers to the possibility of sourcing
a complete domain to an external company. This criterion got a low score of
the participants, because this criterion is seen as a derived criterion. Thus
a domain is sourceable when it conforms to other criteria, such as maximum
cohesion and low coupling and meaningful results. ‘Interaction between busi-
ness areas’ got a low score because it does not really help. It just raises
another question, namely how domains should be defined. There were some
differences in the motivation for the criterion ‘independence of other services’.
Some participants agreed having as rationale that dependencies between ser-
vices limit the flexibility. Others opposed because of the notion of composite
services which does allow dependencies between services. The reason why the
criterion of ‘complete results’ scored low and had a high standard deviation
was a discussion about semantics. One part of the group said that it is impos-
sible to determine what a part and a whole is, because this depends on your
perspective. Thus they disagreed with the principle. The other part of the
group interpreted this criterion as the property of a service to keep the world
in a consistent state after a call (guarantee integrity). This part of the group
gave the criterion a relative high rating. The criterion that a software service
is an ‘automated version of a business service’ scored low. The business ar-
chitects stated that this criterion was trivial and therefore did not help. A
more technical participant mentioned that this criterion is not always true;

178

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#$

!"%$

&"!$

'"'$

!"'$

!"!$

!"#$

!"($

)"%$

!"'$

%"%$

)"%$

!"%$

)"#$

*"'$

&"!$

%"#$

'"'$

("+$

+"!$

+"#$

("($

+"#$

#"%$

#",$

+",$

+")$

+"&$

+"($

+",$

+",$

("'$

+",$

+",$

#"!$

("($

#$ +$ ($ *$ '$)$!$ &$ %$,$ +#$

-.$/01234$526789:7;$

-.$<742=7>?$3:@2;8:7$

-.$A2>787BCD?$=2;D?4;$

-.$E:D=32>08?84F$

E.$E2=G832$3:74=>34$

E.$H2D;>0?2$0F$=8B@4$B=>7D?>=84F$

E.$E2=G832$52;3=8I9:7$8752I275274$:C$8JI?2J274>9:7$

E.$H23:B78K>0?2$4:$>8=?872$875D;4=F$

E.$<752I2752732$:C$:4@2=$;2=G832;$

E.$<742=>39:7$=2LD8=25$

ME.$/N72=;@8I$

ME.$<742=>39:7$024N227$0D;872;;$>=2>;$

ME.$O225$:C$27G8=:7J274$

ME.$P:JI?242$=2;D?4$Q7:$I>=9>?$=2;D?4;R$

ME.$S>=4$:C$:72$:C$J:=2$0D;872;;$I=:32;;2;$

ME.$<752I2752732$:C$2T8;97B$;F;42J;$

ME.$-2;3=8I9:7$;DU38274$C:=$D;2$

EE.$VD4:J>425$G2=;8:7$:C$0D;872;;$;2=G832$

VG2=>B2$H>97B$

E4>75>=5$-2G8>9:7$H>97B$

Figure 10.8: Rating of proposed criteria

IT services can also be utility services or internal software services that do
not have a direct link with business services. That a service is ‘part of one

or more business processes’ received a low score, because it is not seen as
a criterion by most participants. According to these participants a business
process can be supported by services, but we cannot use the business process
as a criterion for defining services.

Because of some software problems not enough time was left to discuss the
service specification framework in the workshop. For this reason we sent all
workshop participants a questionnaire about the service specification frame-
work. In this questionnaire we asked to rate the importance of the different
aspects in our service specification framework. Additionally, we asked them
to provide a motivation for this rating. Figure 10.9 depicts the average rat-
ing and the standard deviation of importance of the service specification as-
pects. Let us have a look at the aspects with the highest standard deviations,
since these are the aspects the participants disagree about. Aspects with
a standard deviation higher than 2.0 are: contact information, production
act, production world semantics, preconditions, postconditions, coordination
acts, protocol, and location. Contact information got two low grades (4 and
5). According to these case study participants direct contact is not required
when all information about a service is thoroughly documented and an ap-

179

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

proval mechanism for publishing and consuming services is put in place. The
aspect production act overall received high grades. The high standard de-
viation is caused by one very low grade (2). This low-grading participants
gave as an explanation that ‘it should be possible to alter the production
act without altering the service’. We do not see, however, how a service can
still be the same service when the production act is altered. A change to the
production act would in our eyes lead to another service. Production world
semantics also received very high grades. The high standard deviation was
again caused by one very low grade (1). This low grade had as a motivation
that semantics should not be specified for each service separately, but for the
complete domain and all services offered by the domain. So, this person also
thinks describing semantics is important, but not for every service separately.
Preconditions and postconditions got two low ratings (preconditions 3 and 4
and postconditions 3 and 6). Objections by these persons included that they
are often trivial and it is hardly possible to make a complete and consistent
set of them. The aspect coordination acts received four high grades and one
very low one (3). The low-grader found the coordination acts not relevant,
because services at Air France/KLM at the moment have one interaction step.
The protocol aspect had the largest standard deviation of all aspects (3,4),
because everybody thought this aspect was relevant for technical service, but
people disagreed whether or not the aspect was relevant for business services.
The location aspect got very diverse ratings. For technical services this was
seen as important, for business services there was disagreement. The given
explanations for the rates did not really clarify this disagreement. The overall
lowest scores were given to production kind and coordination kind. Two rea-
sons for given production kind a low rate were given. First, the information in
this aspect is redundant: it can be derived from the production act. Second,
Air France/KLM does not use the classification of ontological, infological, and
datalogical services. Coordination kind is seen as unimportant, because only
IT service are fully specified in a service specification. Therefore it makes no
sense to describe in a service specification whether it is a human or IT service.

180

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

!"#$

#"%$

#"&$

'"%$

!"#$

!"&$

!"%$

#"($

)"&$

("($

*"&$

!"%$

#"#$

!"&$

&")$

%"#$

+"'$

,"#$

%"'$

%"*$

%")$

%"*$

,"*$

,"%$

,",$

%"($

%",$

,"!$

&$,$ %$ +$ '$)$ #$!$ ($ *$,&$

-./01$2345/67$89:;/<4=9<$$$

>904=9<$

-.969095$

899.?/<4=9<$@/<?$

899.?/<4=9<$A06B$$

-9B609<?/=9<B$$$

-.109<?/=9<B$$

-.9?30=9<$C9.5?$D1:4<=0B$$

-.9?30=9<$@/<?$$

-.9?30=9<$E406$$

-.9?30=9<$F<G9.:4=9<$HB1?$

-.9?30=9<$A06$$

89<6406$/<G9.:4=9<$$

A069.$.951$$

D64<?4.?$I1J/4=9<$K4=<L$

AJ1.4L1$K4=<L$

Figure 10.9: Rating of the service specification aspects

10.5 Conclusions

This chapter presented a case study conducted at Air France/KLM. We asked
business architects and technical architects what criteria they value for mod-
ularization of service-oriented systems and service definition. Additionally,
we validated our service specification framework. An interesting finding in
relation to modularity in this case study is the application of domaining. Air
France/KLM applies the notion of modularity on a business level by defin-
ing coarse-grained modules containing people as well as IT systems. These
modules are defined independently of organizational structures and interact
with each other through business services. Domains are often delimited by
clustering related transactions of DEMO models. Criteria for defining do-
mains and their services considered important are: a domain delivers results
that are meaningful to its environment (by means of its services), a domain
has a high internal cohesion, a business service has an owner, a business ser-
vice is independent of existing systems, and the description is sufficient for
using the service. Not all criteria help us in defining domains and services.
Some of them are already included in the definition of SOA (e.g. ‘the descrip-
tion is sufficient for using the service’) and some raise additional questions
(e.g. ‘a business service has an owner’).

The workshop participants rated the importance of eight of the fourteen

181

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

aspects of the service specification framework with a 7.0 or higher on a scale
of 1 to 10. We can conclude that the participants regard these aspects as
crucial in a service specification. For the aspects with a score lower than 7.0
we performed a further analysis to find out the reason for the medium or low
score and whether the aspect belongs in a service specification framework or
not according to the participants.

Aspects with a score of 6.0 and higher, but lower than 7.0 are: contact
information, production world semantics, protocol, and location. Contact in-
formation got a medium average rating due to two low grades (4 and 5). As
reported by these participants direct contact is not required when all informa-
tion about a service is thoroughly documented and an approval mechanism
for publishing and consuming services is put in place. So this aspect may be
optional; it is only required in case consumers need to contact the providers
directly and no intermediary takes care of communication. The medium av-
erage rating of production world semantics was caused by one very low grade
(1). This low grade had as a motivation that semantics should not be speci-
fied for each service separately, but for the complete domain and all services
offered by the of a domain. So, this person also thinks describing seman-
tics is important, but not for every service separately. When an organization
applies the notion of domaining it makes sense to specify the semantics for
each domain instead of for each service. The protocol aspect had a very di-
verse rating and therefore a medium average. This was the case because most
people thought this aspect was relevant for technical services, but people dis-
agreed whether or not the aspect was relevant for business services. Another
argument for not specifying the protocol for IT services was that the same
protocol (Web service stack) was used for each service. Only when IT services
used another protocol it was specified. So we see another way in which the
protocol aspect in the service specification framework can be used. Instead of
specifying the protocol for each IT service a guideline for all services can be
put in place that specifies to which protocols the IT services have to conform.
The protocol aspect is only filled when the IT service for some reason can-
not conform to the guideline and uses another protocol. The location aspect
got very diverse ratings. For technical services this was seen as important,
for business services there was disagreement. The given explanations for the
rates did not really clarify this disagreement.

The lowest scoring (below 6) were production kind and coordination kind.
The main causes for the low rating of production kind are (i) that the infor-
mation is redundant (it can be derived from the production act) and (ii) Air

182

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

France/KLM uses another taxonomy for services. Surely, it is true that the
information is redundant. The type of service can be derived from the other
information in the service specification. However, this classification can be
valuable for searching services. Because of the limited amount of services at
KLM (dozens) and the clear hierarchical way of structuring them in the ser-
vice repository, this was not an important requirement. The participants did
not think coordination kind was a relevant aspect to specify as they only make
complete service specifications for IT services and not for manual services.

The consequences of this case study for the service specification framework
are as follows. First of all, some aspects need to be added to the framework.
These are: versioning information, life cycle information (different locations
for different stadia of the lifecycle of the service), and an indicator whether
the service has a request/reply or pub/sub interaction style. Also, based on
the importance rating of the different aspects one can define which aspects
are most crucial to understanding the behavior of the service. The rating can
be used as a means for prioritizing the service specification activities.

183

CHAPTER 10. CASE STUDY 3: AIR FRANCE/KLM

184

Part IV

Conclusions

185

Chapter 11

Reflections on Case Studies

Abstract This chapter presents reflections on the three conducted case studies.
In two of the case studies the participants proposed criteria for identify-
ing coarse-grained modules of service-oriented systems and in all three case
studies the participants evaluated our service specification framework. The
criteria for module delimitation can be used to define design principles for
guiding the application of BCI-3D. BCI-3D is a method that delimits modules
based on the maximum cohesion and minimal coupling principle. One of the
inputs of the method is a business model of the enterprise (for which we use
the ontological model). Besides this, it requires design principles to set the
weights of the different types of relationships. We revisit the different types
of modularity as described in the theoretical part of this dissertation, i.e.
product modularity, process modularity, and organization modularity. We
look into the criteria proposed in the case studies and how they are related
to these types of modularity.
According to the interviewed practitioners the service specification framework
covers the vast majority of aspects that are required in practice. But accord-
ing to them the framework needs to be extended with some aspects that
cannot be derived from the Ψ-theory. First of all, for IT services it is recom-
mended to specify multiple locations instead of one (the development, test,
acceptance, and production location). Also, versioning information should be
included. The notion of Enterprise Ontology does not give us any help on how
to deal with versioning. A versioning schema of “x.y”, in which x represents
a major version number and y a minor version number was considered to be
sufficient in all case studies. Also, we have seen that some aspects are not
always required, so they should be optional rather than mandatory.

187

CHAPTER 11. REFLECTIONS ON CASE STUDIES

11.1 Introduction

Chapter 3 of this dissertation presented one of the most widely accepted def-
initions in general systems theory of modularity, proposed by Baldwin and
Clark (2000). They define a module as a unit whose structural elements are
powerfully (i.e. strongly) connected among themselves and relatively weakly
connected to elements in other units. Unfortunately, the terms ‘powerfully’
and ‘weakly’ are open to interpretation. In computer science literature we
usually read about the modularity of software systems. Depending on the
paradigm applied for software development these modules can be, for instance,
functions, objects, or components. In literature from the organizational sci-
ences we find a broader view on modularity. Not only product modular-
ity is described, but also organizational modularity, process modularity, and
knowledge modularity. In section 11.2 of this chapter we evaluate the criteria
for the delimitation of coarse-grained modules of service-oriented systems as
proposed in the case studies. Next, we elaborate on how these criteria can be
integrated in BCI-3D in section 11.3. Another goal of the case studies was to
evaluate our service specification framework. We reflect on the results of this
evaluation in section 11.4.

11.2 Analyzing the Criteria

Both De Lage Landen and Air France/KLM see service-orientation as a means
to achieve organizational flexibility. They are well aware that it is not suf-
ficient to only take into account software systems for being able to create
products or to change existing products quicker and with less effort. The
products we are talking about in this context are intangible products, like
loans and lease products for De Lage Landen and flights for Air France/KLM.
In the answers on questions about how to structure their service-oriented sys-
tem, we often heard terms like product, process, organization, and respon-
sibilities in the interviews as well as the workshops. So a number of the
criteria proposed were directly related to other types of modularity. Table
11.1 provides an overview.

Let us have a closer look at the criteria. First, some ‘criteria’ were men-
tioned that are not really criteria: ‘service contract’, ‘service description inde-
pendent of implementation’, ‘independence of other services’, ‘interaction re-
quired’, ‘description sufficient for use’. Rather, they are part of the definition

188

CHAPTER 11. REFLECTIONS ON CASE STUDIES

of the service notion. A criterion that was proposed by multiple people at De
Lage Landen was that of ‘maximum cohesion and minimal coupling’. At Air
France/KLM this criterion was also proposed by multiple people using the
name ‘internal cohesion’. The criterion ‘interaction between business areas’
is very much related to maximum cohesion and minimal coupling as these
business areas are the modules that are required to communicate through
services. Though the workshop participants valued this principle highly and
they could also provide the motivation, i.e. changes in one part have little
impact on another part, they could not provide a complete method on how
to achieve conformation to this criterion. The most important criterion for
the division of autonomous environments according to the participants at De
Lage Landen is that they do not have any ‘functional overlap’ as this can lead
to extra maintenance effort and more error situations. However, because of a
‘buy before build’ policy conformation to this criterion is not always feasible.
Also, the participants stated that this criterion may require a lot of analysis
work upfront. There is always a trade-off between the modeling effort and the
maintenance effort/dealing with error situations. A very low scoring principle
at De Lage Landen was ‘an autonomous environment should be available on
the market as a COTS system’. The participants opposed to the idea that
an external vendor determines what the boundaries of their autonomous en-
vironments should look like. Air France/KLM formulated the criterion the
other way around as ‘independence of existing systems’ and gave it a high
rating. So both companies agreed on this criterion. In general, the people
at the Lage Landen agreed that the modules and their services should not
be dependent on the specific business strategy or implementation technology
(the criterion ‘strategy and technology agnosticism’) as these are both highly
subject to change. The opposite criterion that the division of modules should
depend on the business strategy (‘long term strategy’) got a relatively low
grade. The ‘business object’ (De Lage Landen) and ‘object definitions’ (Air
France/KLM) criteria mean that modules (autonomous environments) are
built around a certain business object, e.g. there should be an autonomous
environment dealing with client information, one for car information etc. We
see this criterion often in practice, for instance in the Dutch Government Ar-
chitecture NORA (ICTU, 2010) in which they are called ‘basisadministraties’.
The criterion of ‘no single orchestration’ does not deal with the division of
autonomous environment, but only with the services that the autonomous
environment offers. It says that when the services of an autonomous environ-
ment are always called in the same order, these services should be hidden to

189

CHAPTER 11. REFLECTIONS ON CASE STUDIES

the consumer and a composite service at a higher aggregation level should be
offered for communicating with other environments. The criterion ‘reusable
by right granularity’ does not help us in defining services as the term ‘right’
is very subjective and not measurable. The criterion ‘recognizable to airline
industry’ is of course very specific to Air France/KLM, but it could be for-
mulated as a more general criterion, i.e. ‘recognizable to other enterprises
operating in the same organizational network’. The criterion ‘complete result’
means that the service needs to leave the world in a consistent state after it
is called. This is a general principle for designing IT functions.

The first criterion that has a link with another type of modularity is ‘life
cycle decoupling’. This criterion refers to the wish to use IT services for sup-
porting the creation of multiple products and also to put these IT services in
the market as separate products. Because De Lage Landen offers intangible
products, the difference between its products and its information systems is
often less obvious than when speaking about physical products. A subprod-
uct can be exposed easily as a new product by offering it as an IT service,
generating additional income. The web service standards make it possible for
customers to integrate this service in their own software systems. So the real
wish here is to create more modular business products and not only sell the
complete product, but to also sell the modules separately to allow customers
to use these building blocks. Baldwin and Clark (2000) make a distinction
between modularity in production and modularity in use. The first refers
to using the notion of modularity to bringing advantages to the production
process of a product, e.g. to be able to manufacture car parts in different
locations and then assemble them. The latter refers to using the notion of
modularity to enable customers to assemble their own products. As we just
explained both notions are important to De Lage Landen. For the design of
modules that offer IT services this means that it may be more sensible to
make multiple small services that are aligned with the product structure of
the business product and to assemble these services through service compo-
sition if required. Only in this way the IT services can be exposed separately
to the market. The criteria ‘automated version of business service’, ‘value
for consumer and commercial usage’, ‘meaningful results’, ‘need of the envi-
ronment’ all entail that an IT service has to be directly linked to a business
need, i.e. the IT service is aligned with the product delivered by the enter-
prise. ‘Sourceability’ refers to the property of a module that it should be
sourceable as a whole to an external party.

The criteria of ‘process clusters’ and ‘part of one or more business pro-

190

CHAPTER 11. REFLECTIONS ON CASE STUDIES

cesses’ refer to aligning the IT services with the business processes. In other
words, services are ‘found’ through the decomposition of processes until an
activity is small enough to support it with an IT service.

An interesting observation was that at De Lage Landen a lot of criteria
for determining the boundaries of autonomous environments based on the or-
ganization construction scored quite low (e.g. ‘budgeting’, ‘supporting team’,
and ‘business disciplines’). At Air France/KLM the criterion ‘ownership’ did
get a high rating. The motivation for this high rating is that the owner knows
best what can be delivered by his domain. He can make a trade-off of his
own interests and that of his consumer. However, as explained in the Air
France/KLM case study domains are not based on organizational structures
(though they may overlap). Basing module boundaries on organizational
structures was considered to be a bad idea in both case studies, because, for
instance, budgeting structures are often based on internal politics, which can
lead to decisions that do not contribute to the enterprise as a whole. Never-
theless, currently the boundaries of the modules and the services they offer
are often based on such organization structures. A plausible explanation is
given by Conway’s Law (Conway, 1968), which states that “...organizations
which design systems ... are constrained to produce designs which are copies
of the communication structures of these organizations”. An interesting note
of Conway is the statement that as long as a manager’s prestige and power
are tied to the size of his budget, he will be motivated to expand his orga-
nization. Conway calls this way of reasoning an inappropriate motive in the
management of a system design activity. However, he also states that once
the organization exists, of course, it will be used. He concludes his ‘plea’ with
the following statement: “Probably the greatest single common factor behind
many poorly designed systems now in existence has been the availability of a
design organization in need of work.” These are forces that play an important
role in practice.

191

CHAPTER 11. REFLECTIONS ON CASE STUDIES

Criterion short name Relation with other type
of modularity

Service Contract (AFK), Service Description In-
dependent of Implementation (AFK), Indepen-
dence of Other Services (AFK), Interaction Re-
quired (AFK), Description Sufficient for Use
(AFK), Maximum Cohesion and Minimum Cou-
pling (DLL) and Internal Cohesion (AFK), Inter-
action between Business Areas (AFK), No Func-
tional Overlap (DLL), COTS (DLL), Indepen-
dence of Existing Systems (AFK), Strategy and
Technology Agnosticism (DLL), Long Term Strat-
egy (DLL), Business Objects (DLL) and Ob-
ject Definitions (AFK), No Single Orchestration
(DLL), Reusable by Right Granularity (AFK),
Recognizable to Airline Industry (AFK), Complete
Result (AFK)

Not applicable

Life Cycle Decoupling (DLL), Automated Version
of Business Service (AFK), Value for Consumer
and Commercial Usage (DLL), Meaningful Results
(AFK), Need of Environment (AFK), Sourceabil-
ity (AFK)

Related to the modularity
of the product delivered by
the enterprise.

Process Clusters (DLL), Part of One or More Busi-
ness Processes (AFK)

Related to the modularity
of the process executed by
the enterprise.

Knowledge Domain (DLL), Business Disciplines
(DLL), Responsibilities (DLL) and Ownership
(AFK), Budgeting (DLL), Supporting team (DLL)

Related to the modularity
of the organization of the
enterprise.

Table 11.1: Criteria and relationship with modularity type

11.3 Enterprise Ontology and Alignment of
Different Types of Modularity

In the second case study we have seen that De Lage Landen somehow wishes to
base the delimitation of its autonomous environments, i.e. the coarse-grained
modules of IT services, on product structures and process structures. As
seen in the third case study Air France/KLM aims at finding coarse-grained
modules of human services and IT services by applying the notion of domain-
ing. But the interviewees of both organizations could not precisely define
how these modules can be delimited. Problems arise when the delimitation

192

CHAPTER 11. REFLECTIONS ON CASE STUDIES

is directly based on organization structures, because usually these organiza-
tion structures are not created using a design approach and they tend to be
unstable. Also, existing IT system boundaries do not provide a good starting
point as we want to be able to easily replace systems. Though at both or-
ganizations some explicit criteria are available, these criteria together do not
provide sufficient means to identify modules in an objective way. Thus the
process of module and service identification is not fully defined and the blank
spots are filled in by the experience and gut feeling of architects. Though
this does not automatically mean that this leads to ‘bad’ modules (architects
often know what works and what not based on their experience), but it results
in a subjective and non-traceable process.

Design principles, which together form the Enterprise Architecture of the
enterprise, influence the value of the weights allocated to the different types
of relationships. In our case studies we asked participants what criteria they
value for the identification of modules of service-oriented systems. Some of
the proposed criteria can be used as a starting point for formulating design
principles. Let us give two examples. First, we found a criterion ‘autonomous
environments are built around business objects (base administrations)’. Such
a principle is often applied if business processes that are structured the same
way use different types of information. For instance, an application process
for getting a building permit for a house consists of more or less the same
steps as an application process for a company license for dealing with toxic
chemicals. Both processes consists of the activities of registering the applica-
tion request, checking the details of the applicant, checking the application
itself, dealing with objections etc. Because the processes use different types of
information it makes sense to structure this information in different modules.
Example modules could be a civilian module, a company module, a house
design module, a license module, and an objection module. The proposed
criterion implies that relationships among information objects have a high
weight; the relationships between process steps and information objects are
less relevant than the relationships among information objects. A second
example is the criterion ‘life cycle decoupling’. This criterion entails that it
should be possible to deliver services independently of the products in which
they are used, i.e. services should not be tightly coupled to the product as a
whole. The motivation for applying this criterion is the possibility to generate
additional income by applying a fee-for-service model. Usually the services
offered by a module are only used for making certain products, but sometimes
these ‘building block services’ can also be put on the market independently.

193

CHAPTER 11. REFLECTIONS ON CASE STUDIES

An example of such a module is a credit rating module. This service was
required originally for making decisions on loan applications, but it can also
be offered to other enterprises for a fee. The life cycle decoupling criterion
implies that child transactions should not be allocated to the same module as
their parent transactions. Instead, a decomposition structure of modules sim-
ilar to the transaction tree should be defined. This can be realized by giving
a very low weight to relations between mandatory calls among transactions.
Especially if one transaction is called by multiple other transaction (‘reuse of
the transaction’) the weights should be set low.

As shown in chapter 5 we can set the weights of different types of relations
in the ontological model of the enterprise in a Design Structure Matrix (DSM).
This weight defines the strength of the relation.

11.4 Evaluation of the Service Specification
Framework

In all three case studies we evaluated the service specification framework. In
the first case study at the Port of Rotterdam we applied the framework to
specify services ourselves in a software development project. In this project
two different companies were building software components for the Port of
Rotterdam. One of these companies was working from Rotterdam, the other
one from Groningen. The service specifications were used, among others, for
work division. The developers of one component could design and implement
its internal structure without requiring the other components to be fully de-
signed and implemented yet. They could use the service specifications to
understand the expected behavior of their own components and other com-
ponents. Also, the service specifications could be used to create stubs for
testing purposes. After the first services were implemented and tested, we
interviewed architects and developers of both companies about their experi-
ences with these service specifications.

In the second case study (De Lage Landen) and the third case study
(Air France/KLM) we did not specify services ourselves. De Lage Landen
and Air France both had multiple years of experience with SOA and already
made service specifications themselves. We compared their service specifica-
tion templates and actual service specifications to our service specification
framework. Also, we interviewed business architects, technical architects, de-
signers, and developers about whether or not they considered the aspects of

194

CHAPTER 11. REFLECTIONS ON CASE STUDIES

the service specification framework to be applicable for specifying services in
practice. Next to this, we asked them whether any aspects were lacking in
the service specification framework.

We were only able to validate our service specification framework for IT
services. At the Port of Rotterdam and De Lage Landen the focus of the
SOA initiative was on IT services only. At Air France/KLM human services
were also included in the SOA initiative. However, only for IT services service
specifications were made. Though the business architects at Air France/KLM
confirmed that the framework could also be used for human services, we could
not compare service specification templates and actual service specifications
for human services to our own framework (as they were not available).

In the interviews we asked the practitioners of all three companies about
the usefulness of the aspects in our service specification framework. Table
11.2 shows an overview of the results. The rows of this table show whether a
certain aspect was seen as not applicable, as useful in an adapted form, or as
useful. The company names are abbreviated as follows: Port of Rotterdam
to PoR, De Lage Landen to DLL, and Air France/KLM to AFK.

The following aspects are seen as useful by all companies: production
information used, production fact, production world semantics, preconditions,
and postconditions. Let us look into why the other aspects were not seen as
useful by all companies, either because they need to be specified in an adapted
form or because they are not applicable at all.

Actor role: In the Port of Rotterdam only a technical owner of the
services was assigned. Since this person was responsible for all services, it did
not make sense at the Port of Rotterdam to specify this technical owner in
all service specifications. De Lage Landen and Air France/KLM stated that
the actor role was useful in an adapted form, because they wanted to specify
multiple actor roles. De Lage Landen made a distinction between functional
ownership and technical ownership and Air France/KLM between business
ownership, functional ownership and technical ownership. The business owner
is the person who pays for the service, the functional owner is the person who
specifies the functional behavior and decides about functional changes to the
service, the technical owner is the person who makes sure that the service
stays up and running and solves technical problems.

Contact information: The Port of Rotterdam did not specify the con-
tact information for the same reason they did not specify the actor role. De
Lage Landen and Air France/KLM did see contact information as a useful
aspect to specify.

195

CHAPTER 11. REFLECTIONS ON CASE STUDIES

Aspect Not applicable Adapted Useful
Service Executor

Actor Role PoR DLL/AFK
Contact Informa-
tion

PoR DLL/AFK

Service Production
Production Act AFK PoR/DLL
Production Infor-
mation Used

PoR/DLL/AFK

Production Fact PoR/DLL/AFK
Production Kind PoR/DLL AFK
Production World
Semantics

PoR/DLL/AFK

Preconditions PoR/DLL/AFK
Postconditions PoR/DLL/AFK

Service Coordination
Coordination Acts PoR DLL/AFK
Coordination
Kind

PoR/DLL/AFK

Protocol AFK PoR/DLL
Location PoR/DLL/AFK

Service Contract Option
Price Quality
Combination

PoR/DLL/AFK

Table 11.2: Perceived usefulness of aspects in framework in three case studies

196

CHAPTER 11. REFLECTIONS ON CASE STUDIES

Production act: Air France/KLM did see this as a useful aspect to
specify, but currently specifies it using multiple fields (description, overview,
and goal). The Port of Rotterdam and De Lage Landen only used one field
to describe it.

Production kind: Production kind was not seen as useful by the Port
of Rotterdam and De Lage Landen. They did not think it was very useful,
at least not at the moment, to make a distinction between different types of
services. Also, they did not use the notion of Enterprise Ontology, so they
did not know the difference between ontological, infological, and datalogical
services. Air France/KLM agreed that it was useful to make a distinction
between certain types of services, but they used another type of classification
than ontological, infological, and datalogical.

Coordination acts: In the Port of Rotterdam a very basic way of dealing
with coordination was seen as sufficient. The company only wanted to specify
errors (not cancellations, promises etc). Both De Lage Landen and KLM did
see the value of being able to specify all possible coordination acts.

Coordination kind: Coordination kind was not seen as important by
any of the companies, because they only specified IT services.

Protocol: Air France/KLM usually does not specify the protocol of the
services, because almost all services use the same protocol. Only when another
protocol than the regular set of protocols is used, the protocol is specified.
The same holds for De Lage Landen.

Location: All three companies agreed that one location was not enough
for specifying IT services. Instead, they required a development, a test, an
acceptance, and a production location.

Price Quality Combination: All companies specified the Quality-of-
Service (QoS) of the services, but none of them specified a price. De Lage
Landen and Air France/KLM valued information about pricing to some ex-
tent, but certainly not for every service.

Figure 11.1 shows the ratings of De Lage Landen and Air France/KLM for
the different aspects of the service specification framework. We do not have
ratings from the Port of Rotterdam, because we did not have the opportunity
to organize a workshop during the SOA project in which we participated. The
aspects are presented in the order of the average rating of the two companies
from high to low.

A thing that was lacking according to the interviewees was versioning
information. The notion of Enterprise Ontology does not give us any help
on how to deal with versioning. A versioning schema of “x.y”, in which

197

CHAPTER 11. REFLECTIONS ON CASE STUDIES

!" #" $" %" &" '" (")" *" +" #!"

,--./0123-1"401/"

5.-/673-1"401/"

5.-8-7-9"

5.07:";62908<",-=>0123-1"

,-18278"?1@-.=23-1"

A78-.".-9:"

B-723-1""

5.-/673-1"C-.9/"D:=2137E"

5-E87-1/03-1E"

,--./0123-1"A78E"

5.:7-1/03-1E"

5.-/673-1"A78"

5.-/673-1"?1@-.=23-1"FE:/"

5.-/673-1"G278"

AH:.2I:"

AG4"

JBB"

Figure 11.1: Rating of the service specification aspects by De Lage Landen
and Air France/KLM

x represents a major version number and y a minor version number was
considered to be sufficient in all case studies. In one of the case studies
also the way of interacting with the service (request/reply or pub/sub) and
policies that specify the obligation(s) of the consumer were seen as a necessary
specification aspect.

What does this mean for our service specification framework? First of
all, we see that most specification aspects are seen as useful. However, some
aspects are not always required in a service specification. The coordination
kind aspect is only required if an organization makes specifies human services
as well as IT services. Otherwise it can be omitted (that is why it got a low
rating in our case studies). The production kind aspect can only be specified
in the way it is originally intended if the organization uses the notion of En-
terprise Ontology and makes the distinction between ontological, infological,
and datalogical services. Other types of service taxonomies are, according to
the practitioners, only required with a large number of services. So this aspect
does not have to be specified when an organization just starts with SOA, but
when the number of services rises such a classification can provide assistance
in searching for services. Protocol information is only useful if multiple (ver-
sions) of protocols are used. Because it depends on the situation whether or
not the aspects of coordination kind, production kind, and protocol need to

198

CHAPTER 11. REFLECTIONS ON CASE STUDIES

be specified, they are optional specification aspects.

As we have seen, price information is not always provided. However, this
is not a problem in the framework. We can just specify one price quality
combination having a price of zero.

Aspects in the framework that require changes are actor role and location.
Instead of only one actor role, we need to specify multiple actor roles for IT
services. Not only do we need to specify the actor responsible for the service
from a business point of view. We also need to specify the actor roles of
people who are responsible for specifying and making functional changes to
the service (functional owner) and for dealing with the technical aspects of
the service (technical owner). The same holds for the location. One location
is not sufficient in the service specification. We need to be able to specify
multiple locations, e.g. the development, test, acceptance, and production
location.

11.5 Conclusions

In this chapter we presented reflections on the conducted case studies. The
main premise of service-orientation is to achieve more organizational flexibil-
ity. But it is too simple to state that when an enterprise applies principles
from the field of software engineering for modularization of service-oriented
systems, it automatically gets more organizational flexibility. As we have seen
in literature one of the main challenges for getting more organizational flex-
ibility is to align product modularity, process modularity, and organization
modularity. In our case studies we asked the participants to propose criteria
that they value for the delimitation of modules of service-oriented systems.
We found that many of these criteria are related to products, processes and
organizational structures. Not all criteria proposed in the workshop help in
delimiting coarse-grained modules of service-oriented systems. Some ‘crite-
ria’ only provide a definition of service or module rather than assistance in
delimiting modules or in finding the services through which modules interact.
Some other principles, however, can be used as a basis for defining design
principles. These design principles can be used for setting weights in the
Design Structure Matrices (DSMs) used by BCI-3D (as shown in chapter 5).

Additionally, we presented the results of the evaluation of our service
specification framework in the three case studies. We found that the service
specification framework covers the vast majority of aspects that are required

199

CHAPTER 11. REFLECTIONS ON CASE STUDIES

in practice. But according to the practitioners the framework needs to be
extended with some aspects that cannot be derived from the Ψ-theory. First
of all, for IT services it is required to specify multiple locations instead of one
(the development, test, acceptance, and production location). Also, version-
ing information should be included. The ontological model of the enterprise
does not give us any help on how to deal with versioning. A versioning schema
of “x.y”, in which x represents a major version number and y a minor version
number was considered to be sufficient in all case studies. What we have
also seen is that some aspects of the service specification framework (coordi-
nation kind, production kind, and protocol) are not always required in the
specification; they are optional rather than mandatory.

200

Chapter 12

Answers to Research Questions

12.1 Research Questions Revisited

In this dissertation we studied service-oriented systems. We defined a service-
oriented system as an enterprise that offers services to its environment, that
is structured in a modular way, and for which it does not matter whether a
service is delivered by a human being or an IT system. Our wish was to find
an approach for delimiting coarse-grained modules of such systems and to
create a service specification framework to assist enterprises in describing the
behavior of their services. To be able to do these things we needed to know
what a service actually is. We encountered several definitions, but none of
them was founded on a scientific theory. That is why we wanted to found the
notion of service-orientation on Enterprise Ontology and Enterprise Architec-
ture (as defined by the Enterprise Engineering community). After conducting
the first case study in which we evaluated our service specification framework,
we wanted to broaden the scope of our research and to dive deeper into the
concept of modularity. In the second and third case study we therefore not
only evaluated the service specification framework, but we also focused on
deriving criteria for the delimitation of modules of service-oriented systems.

This led to our central research question: “How can service-oriented sys-
tems be constructed and specified in practice by founding service-orientation
on the notions of Enterprise Ontology and Enterprise Architecture?”.

201

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

The answers to the subquestions posed in chapter 2 are:

RQ1: How can service-orientation be founded on the notions of
Enterprise Ontology and Enterprise Architecture?

RQ1.a: How can the Ψ-theory which underlies the notion of Enter-
prise Ontology be used to define the concept of service?

Because the Ψ-theory describes the interaction between the requesting party
and the offering party in a very formal way, it provides a basis for formal-
izing the notion of service. In chapter 4 we based the definition of service
on the complete transaction pattern. Though a service has many similarities
with a transaction in the Ψ-theory, they are not equal. While the transac-
tion includes all acts of the initiator and the executor, the service concept
only regards the executor side. We therefore defined a service as a part of
a transaction rather than a whole transaction. So a service is a pattern of
coordination and production acts, performed by the executor of a transaction
for the benefit of its initiator, in the order as stated in the complete, universal
pattern of a transaction. When implemented it has the ability:

to get to know the coordination facts produced by the initiator and

to make available to the initiator the coordination facts produced by
itself.

We made a distinction between the following types of services: ontological
human service, infological human service, datalogical human service, ontolo-
gical IT service, infological IT service, and datalogical IT service.

RQ1.b: How can the notions of Service-Oriented Design (SoD) and
Service-Oriented Architecture (SOA) be defined on the basis of the
Generic System Development Process (GSDP)?

We elucidated the notions of SoD and SOA based on the GSDP in chapter
5. SOA has been defined as a consistent and coherent set of design principles
that need to be taken into account in the development of service-oriented
systems. We have defined SoD as the design part of a development process,
according to the GSDP. It consists of producing successive conceptual models
of the object system under consideration. In SoD, this object system is a
service-oriented system.

202

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

We introduced the following phases in the development process for service-
oriented systems: function design of the service-oriented system, construction
design of the service-oriented system (including engineering), and implemen-
tation of the service-oriented system.

In chapter 6 we used these definitions for comparing several methodologies
for service-orientation. Using the high-level distinction of phases we have de-
termined the scopes of the investigated methodologies for service-orientation.

All in all, the GSDP has been very helpful in discussing the coverage of
the investigated methodologies, and to elucidate and sharpen the core notions
in service-orientation. Next, the application of the methodologies to the same
case has shown the differences in depth in which the activities are described.
None of methodologies combines full coverage with full depth.

RQ2: How can coarse-grained modules of service-oriented systems
be delimited based on notions of Enterprise Ontology and Enter-
prise Architecture and on the needs of practitioners?

RQ2.a: How can coarse-grained modules of a service-oriented sys-
tem be delimited by applying the principle of maximum cohesion
and minimal coupling on its ontological model?

As a starting point for delimiting coarse-grained modules of service-oriented
systems we used BCI-3D. BCI-3D, described in chapter 5, deals with identi-
fying the modules of service-oriented systems and the services for interaction
between these modules by using the ontological model of an enterprise as
input. For this method the following relationships in the ontological model
of the enterprise are important: the relationships among transactions, the
relationships between information objects and transactions, and the relation-
ships among information objects. Different types of relationships exist, e.g.
conditional relationships and causal relationships between transactions and
part-of, state-of, and related-to relationships between information objects.
Since an organization may regard one type of relationship as more important
than another, it can set weights to the different kinds of relationships.

An algorithm is used to cluster transactions from the business process
model and information objects from the information model and thereby form-
ing modules. The maximum cohesion and minimal coupling requirement for
modules is an optimization problem for which a genetic algorithm has been
developed. The algorithm starts with a predefined solution and generates

203

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

better solutions through iterations. It generates the starting solution using
a greedy graph-partitioning algorithm and improves this solution using the
Kernighan and Lin graph-partitioning algorithm.

Summarizing, BCI-3D applies ‘maximum cohesion, minimal coupling’ as
a principle. In applying this principle it uses business process models and
information object models as input. The outcome of the algorithms can be
influenced by design principles of the organization. BCI-3D does not state
which principles are important.

RQ2.b: What criteria do practitioners regard as important for de-
limiting coarse-grained modules of service-oriented systems?

In two of the three conducted case studies (chapters 9 and 10) we asked
business architects as well as technical architects what criteria they value for
(coarse-grained) modularization. The criterion of ‘maximum cohesion and
minimal coupling’ was proposed in both case studies. Architects of both
companies agreed that the boundaries of existing IT systems and current
organizational structures do not pose good starting points for module iden-
tification. By basing module boundaries on existing systems an enterprise
would create a tight coupling between its conceptual information system de-
sign and the actual implementation and would limit the possibility to easily
replace one IT system by another. By basing module boundaries on the or-
ganizational structure an enterprise cannot easily get a stable set of modules
as organizational structures tend to change often and are often influenced by
organizational politics instead of rational enterprise design decisions. Because
BCI-3D takes the ontological model of an enterprise as a starting point both
problems are prevented. Surely, the ontological model of the B-organization
is not sufficient for defining all types of modules. As we have seen in the
definition of a service also infological and datalogical services exist. These
types of services can only be defined if we have the infological and data-
logical model of the enterprise. Some ‘criteria’ mentioned by practitioners
were not really criteria: ‘service contract’, ‘service description independent of
implementation’, ‘independence of other services’, ‘interaction required’, ‘de-
scription sufficient for use’. Rather, they are part of the definition of the
service notion. We did find some criteria in the case studies that can be used
as a basis for defining design principles that are input for determining the
weights in BCI-3D. Examples are ‘life cycle decoupling’ (parts may be used
independent of the whole) and ‘business object’ (related information should

204

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

be in one module).

RQ2.c: How can the criteria proposed by practitioners be included
in the proposed approach for delimiting coarse-grained modules of
service-oriented systems?

As we have seen, BCI-3D can define coarse-grained modules based on the
maximum cohesion and minimal coupling principle. The weights to deter-
mine what items have strong cohesion can be derived from design principles
of the enterprise. Some of the criteria proposed in the case studies can be
incorporated into BCI-3D, e.g. the criterion of ‘life cycle decoupling’. This
criterion entails that it should be possible to deliver services independently of
the products in which they are used, i.e. services should not be tightly cou-
pled to the product as a whole. This implies that child transactions should
not be allocated to the same module as their parent transactions. Instead, a
hierarchy of modules similar to the transaction tree should be defined. This
can be realized by giving a very low weight to initiation relations among
transactions. Especially if one transaction is called by multiple other transac-
tions (‘reuse of the transaction’) the weights should be set very low. Though
many of the criteria (e.g. ‘process clusters’, ‘business objects’, ‘independence
of other services’, ‘interaction between business area’) can be used as a basis
for formulating principles for BCI-3D, this is not the case for all principles.
An example we encountered in our case studies was the criterion ‘services
are recognizable to the airline industry’. This criterion requires knowledge of
other enterprises within the airline industry and specific standards used. This
information can never be derived from a single ontological model. Another
example of a criterion that cannot be incorporated in BCI-3D is ‘value for
consumer and commercial usage’ as this requires an insight into the market
of the enterprise.

RQ3: How can the external behavior of a service be specified based
on the Ψ-theory and on the needs of practitioners?

RQ3.a: How can a service specification framework be derived from
the Ψ-theory?

In chapter 7 we presented a service specification framework based on the
Ψ-theory. When we recall the service definition, we see that for calling a ser-

205

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

vice basically three things need to be known to the service consumer, namely
information on (i) who provides the service (the executor), (ii) which pro-
duction fact is brought about by the executor, and (iii) how to interact with
the service executor by performing and dealing with coordination acts. We
translate these information needs into three main areas of concern, i.e.: ser-
vice executor, service production and service coordination, respectively. As
transactions can have a commercial as well as a non-profit character, we add
contract options as an additional area of concern; the consumer needs to know
what he gets for which price. For each area of concern we define specification
aspects based on the notion of Enterprise Ontology.

RQ3.b: Which aspects of the service specification framework de-
rived from the Ψ-theory do practitioners specify in their own or-
ganization and/or regard as useful for getting an understanding of
the external behavior of a service?

We evaluated our service specification framework in three case studies in chap-
ters 8, 9, and 10. We interviewed business architects, technical architects and
software engineers and found that they in general agreed that the framework
is comprehensive enough to describe the externally visible behavior of a ser-
vice. The following aspects are seen as useful by all companies: production
act, production information used, production fact, production world seman-
tics, preconditions, and postconditions. Aspects that were regarded as useful,
but with changes are: actor role, contact information and location. Aspects
that were seen as optional (depending on the situation are): production kind,
coordination kind, and protocol. Furthermore, the Quality-of-Service was
specified by the organizations, but the price of the service was not. This
would lead to only one price quality combination (having a price of zero).
There was some disagreement about the coordination acts aspect. In one
case study (Port of Rotterdam) a very basic way of dealing with coordina-
tion was seen as sufficient. The company only wanted to specify errors (not
cancellations, promises etc). In the other case studies (De Lage Landen and
KLM) the practitioners did see the value of being able to specify all possible
coordination acts.

206

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

RQ3.c What aspects is the service specification framework derived
from the Ψ-theory lacking according to practitioners?

Our framework was lacking several aspects that were needed in practice. The
first aspect was the possibility to specify multiple locations of a service. If an
enterprise develops its own software, either with or without the assistance of
an external IT service provider, it in general requires four types of locations:
the development, test, acceptance, and production location. Some of the
interviewees referred to this type of information as ‘the lifecycle of a service’.
Next to this, according to several interviewees our framework should include
a versioning aspect. The ontological model of the enterprise does not give us
any help on how to deal with versioning. For our first case study we applied
the backwards compatibility strategy as defined by Erl et al. (2008) to the
data model as well as the messages. This results into the following type of
version numbers: “x.y”, in which x represents a major version number and y
a minor version number. The terms major and minor relate to compatibility
with previous versions, for instance: version 5.3 is compatible with version
5.1, but not with version 4.8. This was considered to be sufficient in all case
studies. In one of the case studies also the way of interacting with the service
(request/reply or pub/sub) was seen as a necessary specification aspect.

Summarizing, the service specification framework covers the vast majority
of aspects that are required in practice, but according to practitioners it needs
to be extended with some aspects that cannot be derived from the Ψ-theory.

Central Research Question

The central question of our research was:

How can service-oriented systems be constructed and
specified in practice by founding service-orientation on the

notions of Enterprise Ontology and Enterprise
Architecture?

We managed to define the notion of service-orientation on the concepts of
Enterprise Ontology and Enterprise Architecture. In the answer on research
question 1 we saw that we defined a service as the pattern of coordination and
production acts, performed by the executor of a transaction for the benefit
of its initiator, in the order as stated in the complete, universal transaction

207

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

pattern of a transaction. When implemented it has the ability: (i) to get to
know the coordination facts produced by the initiator and (ii) to make avail-
able to the initiator the coordination facts produced by itself. We clarified the
notions of Service-oriented Design (SoD) and Service-Oriented Architecture
(SOA) by basing them on the GSDP. We made a distinction between design-
ing the function of (a module of) a service-oriented system and its services
(black-box view) and the construction of the module and its services (white-
box view). In BCI-3D we found an objective, scientific method to identify
coarse-grained modules of service-oriented systems. In the answer on ques-
tion 2 we explained the main principle of BCI-3D: maximum cohesion and
minimal coupling. Also, we explained how we can incorporate principles that
are based on criteria that we found in case studies. The answer on research
question 3 shows that we were able to derive a service specification framework
from the Ψ-theory that underlies the notion of Enterprise Ontology. We vali-
dated this framework in practice and we found that it covers the vast majority
of required service specification aspects. Also, we proposed some changes to
the framework based on this evaluation.

12.2 Outlook for Further Research
In this dissertation we did not see service-orientation as a technical paradigm,

but as a paradigm for structuring the complete enterprise. Modules of service-
oriented systems can be defined using BCI-3D as a method. We gathered
criteria for the delimitation of coarse-grained modules and the identification
of services in two case studies. Some of these criteria can be used for formu-
lating design principles that define the weights between relationships. These
weights are used by the algorithms of BCI-3D. This means that these criteria
can be used to tune BCI-3D to the specific wishes of the enterprise. How-
ever, we cannot be sure whether the criteria we found are specific to the two
enterprises we studied or whether they can be applied to a broader range of
organizations. We need to study a large number of companies and see whether
or not applying BCI-3D combined with the proposed criteria results in more
flexibility for the enterprise.

Another important topic to study in future research is the sensitivity of
the weights, i.e. do small changes in the weights lead to large changes in the
outcome of the delimitation of the coarse-grained modules. This can be done
by applying BCI-3D a large number of times to the same model using small

208

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

differences in weights and comparing the results.
Furthermore, we designed a generic service specification framework. This

framework can be used for specifying human services as well as IT services. It
was our intention to determine what aspects should be described in a service
specification. Future research should focus on how these aspects should be
specified. How an aspect is specified will be different for human services and
IT services. For instance, the location of a human service is usually a physical
location or a telephone number, while the location of an IT service is usually
a URL. The input of an IT service is usually specified in fields with a certain
type (e.g. ‘string’ or ‘integer’) and a certain length, while a human service can
interpret more free format input descriptions. Sometimes industry standards
for human service specification exist. For example, in the Dutch healthcare
sector Diagnose Behandel Combinaties (DBC’s) are used to define a certain
medical treatment and to allocate a price to it. Usually human services are
specified using natural language. For IT services more formal descriptions
are used. It does not make sense to define a complete new standard for
specifying all aspects of the specification framework, because this would be
a massive effort and already many standards are available. Instead, it is
advisable to look into what existing standards can be used and how they can
be combined (if possible). Some of the standards worth investigating are (non-
limitative list): UML-OCL and Rule-ML for pre- and postconditions, OWL
and ISO/IEC 11179 for semantics, WSDL-S for annotation of input/output
structures with semantics, and WSLA and WS-agreement for service level
agreements.

When a standardized way of specifying the aspects of the service specifica-
tion framework (i.e. the ‘how part’) is available, quantitative research can be
conducted. We would like to compare the time required to build services us-
ing our service specification framework and using other approaches to service
specification. Also, we would like to measure the number of errors and the
discovery time for potential consumers of our framework compared to others.

209

CHAPTER 12. ANSWERS TO RESEARCH QUESTIONS

210

Part V

Appendices

211

Appendix A

Invitation Letter for Case Study

Dear Mr/Mrs <name>,

I would like to thank you for your interest in participating in my PhD study at the Delft
University of Technology. Its goals are (i) to contribute to a better understanding of the
principles involved in the identification of services in Service-Oriented Architecture (SOA)
and (ii) to provide a specification framework for describing the externally visible behavior of
services.
The study started in 2005 and is expected to be completed in Q4 2010 or Q1 2011. Currently,
the theoretical foundations are laid by building on the theoretical foundation of the notions
of Enterprise Ontology and Enterprise Architecture. An essential part of this study are a
number of case studies that form a bridge between theory and practice. These case studies
serve two purposes, i.e. getting input from practice to extend theory and validating artifacts
derived from theory.

To participate in a case study we ask the following from you and your company:

1. access to documents related to the Service-Oriented Architecture (SOA) (e.g. the
Enterprise Architecture, the service catalog, service design guidelines)

2. the opportunity to plan 2-hour interviews with key players in the SOA implementation
(approximately 5 interviewees required)

3. the opportunity to organize a 4-hour workshop in which the results of the interviews
are discussed and critically reviewed

As a sign of appreciation for your cooperation you get:

1. a report in which the results of your case study are documented

2. access to several technical reports produced in context of this research

3. a copy of the PhD thesis

Of course we will not publish any material about your company without your consent. Be-
fore anything is published in either the PhD thesis, technical reports or articles, you get the

213

APPENDIX A. INVITATION LETTER FOR CASE STUDY

opportunity to review.

I will contact you by phone to discuss additional details. Looking forward to our cooperation!

Kind regards,

Linda Terlouw
PhD researcher Delft University of Technology

214

Appendix B

Questionnaire

The interview starts with an introduction about the goal, approach and status of the PhD
study. Then we move on to the interview questions.

B.0.1 Questionnaire Interview - Part I

The first part of the interview focuses on the principles for the identification of services. It
aims at getting information about the current principles that are used within the organiza-
tion and the ideas of the interviewee of which principles should be used.

Context

The following questions are asked to get an idea of the context:

1. What are your reasons for applying SOA?

2. When did you start working on SOA?

3. With which earlier middleware concepts do you have experience (if any)?

4. What is the status of the implementation of SOA in the organization?

5. To which goals SOA contribute and how did it contribute (if any)?

6. How SOA contribute to these goals (if any)?

7. Which goals were not met (if any)?

8. Why were these goals not met (if any)?

9. What are the next steps for the implementation of SOA in the organization (if any)?

10. Which methodologies for SOA and/or Enterprise Architecture do you apply (if any)?

215

APPENDIX B. QUESTIONNAIRE

Data Gathering for Principles

The next phase of the interview is about gathering data about design principles for the
delimitation of coarse-grained modules and the services these modules offer to each other.
First, we explain (if necessary) the concept of an architectural principle. Then we asked the
following questions:

11. In general, do you start by identifying coarse-grained modules after you identify their
services or the other way around?

12. What principles do you use for delimitating coarse-grained modules (also called busi-
ness components or functional components)?

For each principle mentioned we ask the following questions:

(a) What is the rationale (motivation) behind applying this principle?

(b) What are the consequences of applying this principle?

(c) Are you familiar with any reasons not to apply this principle?

(d) If so, what are these reasons?

13. What principles are currently applied for the definition of services?

For each principle mentioned we ask the following questions:

(a) What is the rationale (motivation) behind applying this principle?

(b) What are the consequences of applying this principle?

(c) Are you familiar with any reasons not to apply this principle?

(d) If so, what are these reasons?

14. What do you think is the priority ranking of these principles?

15. How do these principle influence each other (if they have an influence on each other)?

B.0.2 Questionnaire Interview - Part II

In this part, we move to the subject of service specification. We start with an open question
on which aspects the interviewee thinks need to be specified (to prevent them being pushed
into a certain direction). Then we explain our framework and ask questions related to our
framework.

1. Which aspects do you think need to be specified?

For each aspect:

(a) Do you currently specify this aspect?

(b) If so, why do you specify this aspect?

216

APPENDIX B. QUESTIONNAIRE

(c) If so, what problems could occur if this aspect is not specified?

(d) If not, do you see any reasons for specifying these aspects (what problems would
it solve)?

2. Do you think our framework is lacking aspects that should be specified?

3. If so, which ones?
For each mentioned aspect:

(a) Why do you specify this principle (what problems could occur if this aspect is
not specified)?

217

APPENDIX B. QUESTIONNAIRE

218

Appendix C

Workshop Agenda

<date, time, location>

Part I

Recap of PhD research goal

Presentation of list of criteria extracted from interview

Discussion of rationale and consequences of principles

Prioritizing criteria

Discovery of potential conflicts between criteria

Part II

Presentation of service specification framework

Presentation of feedback received during interviews

Discussion of framework and feedback

219

APPENDIX C. WORKSHOP AGENDA

220

Abbreviations

ATD Actor Transaction Diagram

BCI-3D Business Component Identification 3D

BPEL Business Process Execution Language

BPML Business Process Modeling Language

DEMO Design & Engineering Methodology for Organizations

DSM Design Structure Matrix

GSDP Generic System Development Process

IUT Information Use Table

P&H SoD and Development methodology

RUP Rational Unified Process

SCA Service Component Architecture

SMART Service-Oriented Migration and Reuse Technique

SOA Service-Oriented Architecture

SOAF Service-Oriented Architecture Framework

SoD Service-Oriented Design

SOMA Service-Oriented Modeling and Architecture

TRT Transaction Result Table

UDDI Universal Description Discovery Integration

WSDL Web Service Definition Language

xAF Extensible Architecture Framework

221

APPENDIX C. WORKSHOP AGENDA

222

Bibliography

J. Ackermann, F. Brinkop, S. Conrad, P. Fettke, A. Frick, E. Glis-
tau, H. Jaekel, O. Kotlar, P. Loos, H. Mrech, E. Ortner, S. Over-
hage, U. Raape, S. Sahm, A. Schmietendorf, T. Teschke, and
K. Turowski. Standardized specification of business components,
February 2002. http://www.wi2.info/downloads/gi-files/MEMO/

Memorandum-english-final-included.pdf.

E. D. Adamides, Y. Stamboulis, and N. Pomonis. Modularity and strategic
flexibility: a cognitive and dynamic perspective. In J. D. Sterman, N. P.
Repenning, R. S. Langer, J. I. Rowe, and J. M. Yanni, editors, Proceed-
ings of the 23rd International Conference of the System Dynamics Society,
Boston, MA, USA, 2005. System Dynamics Society.

A. Akram, R. Allan, and D. Meredith. Best practices in web service style,
data binding and validation for use in data-centric scientific applications.
In S. J. Cox, editor, Proceedings of the UK e-Science All Hands Meeting,
pages 297–304, Nottingham, UK, 2006. National e-Science Centre.

A. Albani and J. L. G. Dietz. The benefit of enterprise ontology in identifying
business components. In D. Avison, S. Elliot, J. Krogstie, and J. Pries-Heje,
editors, Proceedings of the 19th IFIP World Computer Congress, pages 243–
254, Santiago de Chile, Chile, 2006. Springer.

A. Albani, J. L. G. Dietz, and J. M. Zaha. Identifying business components
on the basis of an enterprise ontology. In D. Konstantas, J. Bourriéres,
M. Léonard, and N. Boudjlida, editors, Interoperability of Enterprise Soft-
ware and Applications, pages 335–347, Geneva, Switzerland, 2005. Springer.

223

BIBLIOGRAPHY

A. Albani, G. Hardjosumarto, L. Terlouw, and J. L. G. Dietz. Enterprise on-
tology based service definition. In Proceedings of 4th International Work-
shop on Value Modeling and Business Ontologies, Amsterdam, The Nether-
lands, 2009.

C. Alexander. Notes on the Synthesis of Form. Harvard University Press,
1964.

E. D. Arnheiter and H. Harren. A typology to unleash the potential of mod-
ularity. Journal of Manufacturing Technology Management, 16(7):699–711,
2005.

E. D. Arnheiter and H. Harren. Quality management in a modular world.
The TQM Magazine, 18(10):87–96, 2006.

A. Arora and A. Gambardella. The changing technology of technological
change: general and abstract knowledge and the division of innovative
labour. Research Policy, 23(5):523–532, 1994.

A. Arsanjani. Best practices in service-oriented architecture, 2006. http:

//www.ibm.com/developerworks/blogs/page/-AliArsanjani.

A. Arsanjani and A. Allam. Service-oriented modeling and architecture for
realization of an SOA. In Proceedings of the IEEE International Conference
on Services Computing, pages 521 – 521, Chicago, IL, USA, 2006. IEEE
Computer Society.

A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Gariapathy, and K. Holley.
SOMA: a method for developing service-oriented solutions. IBM Systems
Journal, 47(3):377–396, 2008.

C. Y. Baldwin and K. B. Clark. Design Rules: Volume 1: The Power of
Modularity. The MIT Press, Cambridge, MA, USA, 2000.

A. Bask, M. Lipponen, M. Rajahonka, and M. Tinnila. The concept of mod-
ularity: diffusion from manufacturing to service production. Journal of
Manufacturing Technology Management, 21(3):355–375, 2009.

J. Becker, B. Niehaves, and D. Pfeiffer. Case study perspectives on design
science research. In V. Vaishnavi and R. Baskerville, editors, Proceedings
of the 3rd International Conference on Design Science Research in Infor-
mation Systems and Technology, pages 1–6, Atlanta, GA, USA, 2008.

224

BIBLIOGRAPHY

J. M. Bieman and B. Kang. Cohesion and reuse in an object-oriented system.
ACM SIGSOFT Software Engineering Notes, 20(SI):259–262, 1995.

D. Birkmeier. Graphpartitionierungsalgorithmen zur Komponentenidentifika-
tion. Master’s thesis, University of Augsburg, June 2008.

J. Bloomberg. The role of the service-oriented architect. The Rational Edge,
May 2003.

N. Boertien, M. van Steen, and H. Jonkers. Evaluation of component-based
development methods. In J. Krogstie, T. Halpin, and K. Siau, editors,
Information Modeling Methods and Methodologies, pages 323–343. Idea
Group, 2005.

R. E. Bohn. From art to science in manufacturing: The evolution of tech-
nological knowledge. Foundations and Trends in Technology, Information
and Operations Management, 1(2):1–82, 2005.

G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin–
Cummings, Redwood City, CA, USA, 2nd edition, 1994.

L. C. Briand, S. Morasca, and V. R. Basili. Measuring and assessing maintain-
ability at the end of high level design. In D. N. Card, editor, Proceedings of
the Conference on Software Maintenance, pages 88–97, Washington, DC,
USA, 1993. IEEE Computer Society.

L. C. Briand, S. Morasca, and V. R. Basili. Defining and validating high-
level design metrics, Report No. UMIACS-TR-94-75. Technical report,
University of Maryland Institute for Advanced Computer Studies, College
Park, MD, USA, 1994.

L. C. Briand, J. W. Daly, and J. Wüst. A unified framework for cohesion
measurement in object-oriented systems. Empirical Software Engineering,
3(1):65–117, 1998.

T. R. Browning. The design structure matrix. In R. Dorf, editor, Technology
Management Handbook, pages 103–111. Chapman & Hall CRC Press, 1999.

T. R. Browning. Applying the design structure matrix to system decom-
position and integration problems: a review and new directions. IEEE
Transactions on Engineering Management, 48(3):292–306, 2002.

225

BIBLIOGRAPHY

S. Brusoni and A. Prencipe. Unpacking the black box of modularity: Tech-
nologies, products and organizations. Industrial and Corporate Change, 10
(1):179–205, 2001.

M. A. Bunge. Treatise on Basic Philosophy, vol. 4, A World of Systems. D.
Reidel Publishing Company, Dordrecht, The Netherlands, 1979.

C. Bunse, F. C. Freiling, and N. Lévy. A taxonomy on component-based
software engineering methods. In R. H. Reussner, J. A. Stafford, and
C. A. Szyperski, editors, Architecting Systems with Trustworthy Compo-

nents, pages 103–119, Dagstuhl Castle, Germany, 2004. Springer.

S. R. Chidamber and C. F. Kemerer. Towards a metrics suite for object
oriented design. ACM SIGPLAN Notices, 26(11):197–211, 1991.

S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493, 1994.

L. Clement, A. Hately, C. von Riegen, T. Rogers, T. Bellwood, S. Capell,
J. Colgrave, M. J. Dovey, D. Feygin, R. Kochman, P. Macias, M. Novotny,
M. Paolucci, K. Sycara, P. Wenzel, and Z. Wu. UDDI spec technical
committee draft 3.0.2. OASIS committee draft, OASIS, 2004. http:

//uddi.org/pubs/uddi_v3.htm.

F. Colasuonno, S. Coppi, A. Ragone, and L. L. Scorcia. jUDDI+: A semantic
web services registry enabling semantic discovery and composition. In Pro-

ceedings of the 8th IEEE Conference on E-Commerce Technology and the

3rd IEEE Conference on Enterprise Computing, San Francisco, CA, USA,
2006. IEEE Computer Society.

M. Conway. How do committees invent. Datamation, 14(4):28–31, 1968.

De Lage Landen. De lage landen, September 2009. http://www.

delagelanden.com/.

J. L. G. Dietz. A world ontology specification language. In R. Meersman,
Z. Tari, and P. Herrero, editors, Proceedings of the On the Move Workshops,
pages 688–699, Ayia Napa, Cyprus, 2005. Springer.

J. L. G. Dietz. The deep structure of business processes. Communications of

the ACM, 49(5):58–64, 2006a.

226

BIBLIOGRAPHY

J. L. G. Dietz. Enterprise Ontology, Theory and Methodology. Springer,
Berlin Heidelberg, Germany, 2006b.

J. L. G. Dietz. Architecture - Building strategy in design. Academic Service,
Amersfoort, The Netherlands, 2008.

J. L. G. Dietz and A. Albani. Basic notions regarding business processes and
supporting information systems. Requirements Engineering, 10(3):175–183,
2005.

J. L. G. Dietz and A. Albani. Benefits of enterprise ontology for the de-
velopment of ICT-based value networks, communications in computer and
information science. In A. R. J. Cordeiro, B. Shishkov and M. Helfert,
editors, Proceedings of 4th International Conference on Software and Data
Technologies, pages 3–22, Sofia, Bulgaria, 2009. INSTICC Press.

J. L. G. Dietz and J. A. P. Hoogervorst. Enterprise ontology and enterprise
architecture, how to let them evolve into effective complementary notions.
GEAO Journal of Enterprise Architecture, 2(1):3–20, 2007.

J. L. G. Dietz and J. A. P. Hoogervorst. Enterprise ontology in enterprise
engineering. In Proceedings of the ACM symposium on Applied computing,
pages 572–579, Fortaleza, Ceara, Brazil, 2008.

F. Ding and L. Jie. An empirical study of flexible business process based on
modularity system theory. In Proceedings of the 3rd International Multi-
Conference on Computing in the Global Information Technology, pages 37–
44, Athens, Greece, 2008. IEEE Computer Society.

J. Eder, G. Kappel, and M. Schrefl. Coupling and cohesion in object-oriented
systems. Technical report, University of Klagenfurt, 1994.

T. Erl, A. Karmarkar, P. Walmsley, H. Haas, U. Yalcinalp, C. K. Liu, D. Or-
chard, A. Tost, and J. Pasley. Web Service Contract Design and Versioning
for SOA. Prentice-Hall, Upper Saddle River, NJ, USA, 2008.

A. Erradi, S. Anand, and N. Kulkarni. Evaluation of strategies for integrat-
ing legacy applications as services in a service-oriented architecture. In
Proceedings of the IEEE International Conference on Services Computing,
pages 257–260, Chicago, IL, USA, 2006a. IEEE Computer Society.

227

BIBLIOGRAPHY

A. Erradi, S. Anand, and N. N. Kulkarni. SOAF: An architectural framework
for service definition and realization. In Proceedings of the IEEE Inter-
national Conference on Services Computing, pages 151–158, Chicago, IL,
USA, 2006b. IEEE Computer Society.

F. Flores and J. Ludlow. Doing and speaking in the office. Decision Support
Systems, Issues and Challenges, pages 95–118, 1980.

J. Gadrey. The characterization of goods and services: An alternative ap-
proach. Review of Income and Wealth, 46(3):369–87, September 2000.

F. Gallouj and O. Weinstein. Innovation in services. Research Policy, 26(4-5):
537–556, 1997.

R. B. Glassman. Persistence and loose coupling in living systems. Behavioral
Science, 18(2):83–98, 1973.

G. Goldkuhl and K. Lyytinen. A language action view of information systems.
In Proceedings of the 3rd International Conference on Information Systems,
pages 13–29, Ann Arbor, MI, USA, 1982.

S. M. Goldstein, R. Johnston, J. Duffy, and J. Raod. The service concept: the
missing link in service design research? Journal of Operations Management,
20(2):121–134, 2002.

P. Harmon. Second generation business process methodologies. Business
Process Trends, 1(5):1–12, 2003.

C. W. Hart. The power of unconditional service guarantees. Harvard Business
Review, 66(4):54–62, 1988.

B. Henderson-Sellers. Software Metrics. Prentice-Hall, Hemel Hempstaed,
UK, 1996.

M. Henkel, J. Zdravkovic, and P. Johannesson. Service-based processes: de-
sign for business and technology. In Proceedings of the 2nd international
conference on Service-Oriented computing, pages 21–29, New York, NY,
USA, 2004. ACM Press.

P. Herzum and O. Sims. Business Components Factory: A Comprehensive
Overview of Component-Based Development for the Enterprise. John Wiley
& Sons, New York, NY, USA, 2000.

228

BIBLIOGRAPHY

A. R. Hevner and S. T. March. The information systems research cycle.
Computer, 36(11):111–113, 2003.

A. R. Hevner, S. T. March, J. Park, and S. Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

M. Hitz and B. Montazeri. Measuring coupling and cohesion in object-oriented
systems. In Proceedings of the International Symposium on Applied Cor-
porate Computing, 1995.

G. Hoetker. Do modular products lead to modular organizations? Working
papers, University of Illinois at Urbana-Champaign, College of Business,
2002. http://econpapers.repec.org/RePEc:ecl:illbus:02-0130.

K. Hoffman and P. Eugster. Towards probabilistic assessment of modularity.
In Proceedings of 2nd Workshop on Assessment of Contemporary Modular-
ization Techniques, Nashville, TN, USA, 2008.

J. A. P. Hoogervorst. Enterprise Governance and Enterprise Engineering.
Springer, 2009.

J. A. P. Hoogervorst and J. L. G. Dietz. Enterprise architecture in enterprise
engineering. Enterprise Modelling and Information Systems Architectures,
3(1):3–13, 2008.

ICTU. NORA, 2010. http://www.e-overheid.nl/e-overheid-2.0/live/
binaries/e-overheid/architectuur/NORAv2_0.pdf.

I. Jacobson. Object-Oriented Software Engineering: a Use Case driven Ap-
proach. Addison-Wesley, Wokingham, UK, 1995.

D. L. Jisa. Component based development methods: comparison. In Proceed-
ings of the 5th international conference on Computer systems and technolo-
gies, pages 1–6, Rousse, Bulgaria, 2004. ACM.

S. Johnston. Modeling service-oriented solutions, 2005. http://www.ibm.

com/developerworks/rational/library/jul05/johnston/.

A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring
service level agreements for web services. Journal of Network and Systems
Management, 11(1):57–81, 2003.

229

BIBLIOGRAPHY

KLM. Klm, July 2010. http://corporate.klm.com/en/about-klm/

profile/.

D. Krafzig, K. Banke, and D. Slama. Enterprise SOA: Service-Oriented Ar-
chitecture Best Practices. Prentice-Hall, Upper Saddle River, NJ, USA,
2004.

P. Kruchten. The Rational Unified Process: An Introduction. Addison-Wesley,
Boston, MA, USA, 2003.

A. Kusiak. Integrated product and process design: a modularity perspective.
Journal of Engineering Design, 13:223–231, 2002.

R. N. Langlois and P. L. Robertson. Networks and innovation in a modular
system: Lessons from the microcomputer and stereo component industries.
Research Policy, 21(4):297–313, 1992.

Y. Lee, B. Liang, S. Wu, and F. Wang. Measuring the coupling and cohesion
of an object-oriented program based on information flow. In Proceedings
of International Conference on Software Quality, pages 81–90, Maribor,
Slovenia, 1995.

K. Levi and A. Arsanjani. A goal-driven approach to enterprise component
identification and specification. Communications of the ACM, 45(10):45–
52, 2002.

G. Lewis, E. J. Morris, D. B. Smith, and L. Wrage. SMART: The service-
oriented migration and reuse technique, September 2005. Technical Note,
CMU/SEI-2005-TN-029, http://www.sei.cmu.edu/pub/documents/05.

reports/pdf/05tn029.pdf.

G. Lewis, E. J. Morris, and D. B. Smith. Analyzing the reuse potential of mi-
grating legacy components to a service-oriented architecture. In G. Chastek,
editor, Proceedings of the Conference on Software Maintenance and Reengi-
neering, pages 15–23, Washington, DC, USA, 2006. IEEE Computer Soci-
ety.

J. Luo, B. Montrose, A. Kim, A. Khashnobish, and M. Kang. Adding OWL-S
support to the existing UDDI infrastructure. In Proceedings of the IEEE
International Conference on Web Services, pages 153–162, Chicago, IL,
USA, 2006. IEEE Computer Society.

230

BIBLIOGRAPHY

M. W. Maier, D. Emery, and R. Hilliard. Software architecture: Introducing
IEEE standard 1471. Computer, 34(4):107–109, 2001.

H. Mannaert and J. Verelst. Normalized Systems, Re-creating Information
Technology Based On Laws for Software Evolvability. Koppa, Kermt, Bel-
gium, 2009.

R. Mantovaneli Pessoa, E. Goncalves da Silva, M. van Sinderen, D. Quartel,
and L. Ferreira Pires. Enterprise interoperability with SOA. In M. van
Sinderen, P. Johnson, and L. Kutvonen, editors, Proceedings of the 1st
International Workshop on Enterprise Interoperability., volume WP08-05,
pages 32–45, Munich, Germany, 2008. CTIT, University of Twente.

J. March and J. Olsen. Choice situations in loosely coupled worlds. Technical
report, Stanford University, 1975. Unpublished manuscript.

E. Marks and M. Bell. Service-Oriented Architecture, A planning and imple-
mentation guide for business and technology. John Wiley & Sons, Hoboken,
New Jersey, 2006.

J. McClelland and D. Rumelhart. Parallel Distributed Processing. The MIT
Press, 1995.

J. McGovern, O. Sims, A. Jain, and M. Little. Enterprise Service-Oriented
Architectures: Concepts, Challenges, Recommendations. Springer, Secau-
cus, NJ, USA, 2006.

M. D. McIlroy. Mass-produced software components. Proceedings of NATO
Conference on Software Engineering, pages 88–98, 1968.

G. J. Myers. Composite/structured design. Van Nostrand Reinhold, New
York, 1978.

OASIS. OASIS, 2006a. http://www.oasis-open.org/.

OASIS. Reference model for service-oriented architecture, committee
draft 1.0., February 2006b. http://www.oasis-open.org/committees/

download.php/16587/wd-soa-rm-cd1ED.pdf.

P. O’Grady. The Age of Modularity. Adams and Steele, 1999.

OMG. Service-oriented architecture SIG, 2006. http://soa.omg.org/.

231

BIBLIOGRAPHY

M. Op ’t Land. Applying Architecture and Ontology to the Splitting and
Allying of Enterprises. PhD thesis, Delft University of Technology, June
2008.

Open Grid Forum. Web services agreement specification (WS-agreement),
2007. http://www.ogf.org/documents/GFD.107.pdf/.

J. D. Orton and K. E. Weick. Loosely coupled systems: A reconceptualization.
Academy of Management Review, 15(2):203–223, April 1990.

M. Papazoglou and W. van den Heuvel. Service-oriented design and de-
velopment methodology. International Journal of Web Engineering and
Technology 2006, 2(4):412–442, 2006.

D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

K. Peffers, T. Tuunanen, M. Rothenberger, and S. Chatterjee. A design
science research methodology for information systems research. Journal of
Management Information Systems, 24(3):45–77, 2007.

J. Pries-Heje, R. Baskerville, and J. Venable. Strategies for design science re-
search evaluation. In W. Golden, T. Acton, K. Conboy, H. Van Der Heijden,
and V. K. Tuunainen, editors, Proceedings of the 16th European Conference
on Information Systems, pages 255–266. National University of Ireland,
2008.

P. Rajasekaran, J. A. Miller, K. Verma, and A. P. Sheth. Enhancing web
services description and discovery to facilitate composition. In J. Cardoso
and A. Sheth, editors, Proceedings of the 1st International Workshop on
Semantic Web Services and Web Process Composition, pages 55–68, San
Diego, CA, USA, 2004.

E. Ramollari, D. Dranidis, and A. J. H. Simons. A survey of service-oriented
development methodologies. In Proceedings of the 2nd European Young
Researchers Workshop on Service-Oriented Computing, Leicester, UK, June
2007.

Rational Software Corporation. Rational unified process: Best practices for
software development team, November 2001. Technical Paper, TP026B,
http://www.therationaledge.com.

232

BIBLIOGRAPHY

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented modeling and design. Prentice-Hall, Upper Saddle River, NJ, USA,
1991.

F. Salvador, C. Forza, and M. Rungtusanatham. How to mass customize:
Product architectures, sourcing configurations. Business Horizons, 45(4):
61–69, 2002.

R. Sanchez and J. Mahoney. Modularity, flexibility, and knowledge manage-
ment in product and organizational design. Strategic Management Journal,
17:63–76, 1996.

M. A. Schilling. Toward a general modular systems theory and its application
to interfirm product modularity. The Academy of Management Review, 25
(2):312–334, 2000.

H. A. Simon. The sciences of the artificial. The MIT Press, 1969.

D. B. Smith, L. O. Brien, and J. Bergey. Using the options analysis for
reengineering (OAR) method for mining components for a product line. In
Proceedings of the 2nd International Conference on Software Product Lines,
pages 316–327, London, UK, 2002. Springer.

M. Stal. Using architectural patterns and blueprints for service-oriented ar-
chitecture. IEEE Software, 23(2):54–61, 2006.

J. te Winkel, D. Moody, and C. Amrit. Desperately avoiding bureaucracy:
Modularity as a strategy for organisational innovation. In Proceedings of
the European Conference on Information Systems, Galway, Ireland, 2008.

L. Terlouw. Towards a business-oriented specification for services. In J. L. G.
Dietz, A. Albani, and J. Barjis, editors, Advances in Enterprise Engineering
I, pages 122–136. Springer, 2008.

L. Terlouw and A. Albani. An enterprise ontology-based approach to service
specification. Technical report, Delft University of Technology, 2011.

L. Terlouw and J. L. G. Dietz. Positioning methodologies for service-
orientation. Enterprise Modelling and Information Systems Architectures -
An International Journal, 1(5):26–43, 2010.

233

BIBLIOGRAPHY

L. Terlouw and K. E. Maarse. A service specification framework for developing
component-based software: A case study at the Port of Rotterdam. In
A. Albani, J. Barjis, and J. L. G. Dietz, editors, Proceedings of the 5th
International Workshop CIAO! and EOMAS, pages 100–114, Amsterdam,
The Netherlands, June 2009. Springer.

The Open Group. Service-oriented architecture, 2006. http://www.

opengroup.org/projects/soa/.

The Zachman Institute for Framework Advancement. Enterprise architecture:
A framework, June 2007. http://www.zifa.com/framework.pdf.

G. Todorova and B. Durisin. Mixing and matching modularity: A study
of strategic flexibility. Technical report, Carnegie Mellon University and
Bocconi University, 2008. http://mtei.epfl.ch/webdav/site/mtei/

shared/mtei_seminars/2008/durisin_210408.pdf.

K. Ulrich. The role of product architecture in the manufacturing firm. Re-
search Policy, 24(3):419–440, May 1995.

B. van Zeist and P. Hendriks. Specifying software quality with the extended
ISO model. Software Quality Journal, 5(4):273–284, 1996.

P. Vitharana, F. M. Zahedi, and H. Jain. Design, retrieval, and assembly in
component-based software development. Communications of the ACM, 46
(11):97–102, 2003.

W3C. Web services description language, March 2001. http://www.w3.org/
TR/wsdl.

W3C. Web services glossary, February 2004. http://www.w3.org/TR/

ws-gloss/.

W3C. Web service architecture, w3C working group note, 2006a. http:

//www.w3.org/TR/ws-arch/.

W3C. W3C, 2006b. http://www.w3c.org/.

W3C. Web services policy 1.5 - framework, 2007. http://www.w3.org/TR/

ws-policy/.

234

BIBLIOGRAPHY

T. Wahl and G. Sindre. A survey of development methods for semantic
web service systems. International Journal of Information Systems in the
Service Sector, 1(2):1–16, 2009.

J. Walkerdine, J. Hutchinson, P. Sawyer, G. Dobson, and V. Onditi. A faceted
approach to service specification. In Proceedings of the 2nd International
Conference on Internet and Web Applications and Services, page 20, Morne,
Mauritius, 2007. IEEE Computer Society.

R. A. Watson and J. B. Pollack. Modular interdependency in complex dy-
namical systems. Artificial Life, 11(4):445–457, 2005.

K. E. Weick. Educational organizations as loosely coupled systems. Admin-
istrative Science Quarterly, 21(1):1–19, 1976.

H. Weigand. The language/action perspective. Data & Knowledge Engineer-
ing, 47(3):299–300, 2003.

G. M. Weinberg. An Introduction to General Systems Thinking. Dorset House
Publishing Company, 2001.

E. Wintzen. Eckart’s notes. Lemniscaat, Rotterdam, The Netherlands, 2007.

WSMO. D10 v0.1 WSMO registry, June 2007. http://www.wsmo.org/2004/
d10/v0.1/.

R. K. Yin. Case Study Research: Design and Methods. Sage, 3 edition,
December 2002.

E. Yourdon and L. Constantine. Structured Design: Fundamentals of a Dis-
cipline of Computer Program and Systems Design. Prentice-Hall, Upper
Saddle River, NJ, USA, 1979.

V. A. Zeithaml, L. L. Berry, and A. Parasuraman. The nature and deter-
minants of customer expectations of service. Journal of the Academy of
Marketing Science, 21(1):1–12, January 1993.

Z. Zhang, R. Liu, and H. Yang. Service identification and packaging in service-
oriented reengineering. In W. C. Chu, N. J. Juzgado, W. E. Wong, W. C.
Chu, N. J. Juzgado, and W. E. Wong, editors, Proceedings of the 17th Inter-
national Conference on Software Engineering and Knowledge Engineering,
pages 620–625, Taipei, Taiwan, China, 2005. Springer.

235

This dissertation is based on the following publications:

L. Terlouw. Towards a business-oriented specification for services. In
J. L. G. Dietz, A. Albani, and J. Barjis, editors, Advances in Enterprise
Engineering I, pages 122–136. Springer, 2008

L. Terlouw and K. E. Maarse. A service specification framework for
developing component-based software: A case study at the Port of Rot-
terdam. In A. Albani, J. Barjis, and J. L. G. Dietz, editors, Proceedings
of the 5th International Workshop CIAO! and EOMAS, pages 100–114,
Amsterdam, The Netherlands, June 2009. Springer

A. Albani, G. Hardjosumarto, L. Terlouw, and J. L. G. Dietz. Enterprise
ontology based service definition. In Proceedings of 4th International
Workshop on Value Modeling and Business Ontologies, Amsterdam, The
Netherlands, 2009

L. Terlouw and J. L. G. Dietz. Positioning methodologies for service-
orientation. Enterprise Modelling and Information Systems Architec-
tures - An International Journal, 1(5):26–43, 2010

L. Terlouw and A. Albani. An enterprise ontology-based approach to
service specification. Technical report, Delft University of Technology,
2011

236

SIKS
Dissertations

1998

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous
Objects
1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-
Information
1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business
Conversations within the Language/Action Perspective
1998-4 Dennis Breuker (UM)
Memory versus Search in Games
1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

1999

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling; Automated
modelling of Quality Change of Agricultural Products
1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets
1999-3 Don Beal (UM)
The Nature of Minimax Search
1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects
1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate
User-Driven Specification of Network Information Systems
1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems
1999-7 David Spelt (UT)
Verification support for object database design
1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a
Multi-Agent Mechanism for Discrete Reallocation.

2000

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance
2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management
2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.
2000-4 Geert de Haan (VU)

ETAG, A Formal Model of Competence Knowledge for User
Interface Design
2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.
2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication
2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management
2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks
2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization
2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture
2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for
Database Management

2001

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks
2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental
Models
2001-3 Maarten van Someren (UvA)
Learning as problem solving
2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with Instance-Based
Boundary Sets
2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style
2001-6 Martijn van Welie (VU)
Task-based User Interface Design
2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization
2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems
Dynamics.
2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented
Models, Views of Packages as Classes
2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice BRAHMS: a
multiagent modeling and simulation language for work practice
analysis and design
2001-11 Tom M. van Engers (VUA)
Knowledge Management: The Role of Mental Models in Busi-
ness Systems Design

2002

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis
2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections
2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval
2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining
2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents
2002-06 Laurens Mommers (UL)
Applied legal epistemology; Building a knowledge-based ontol-
ogy of the legal domain
2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive
Applications

237

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas
2002-09 Willem-Jan van den Heuvel (KUB)
Integrating Modern Business Applications with Objectified
Legacy Systems
2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble
2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisa-
tional Applications
2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems
2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applica-
tions
2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Pro-
gramming and Verifying Multi-Agent Systems
2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Work-
flow Modelling
2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applica-
tions
2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory
Database Performance

2003

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured En-
vironments
2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems
2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality
Exposure Therapy
2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Tech-
nology
2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling ap-
proach
2003-06 Boris van Schooten (UT)
Development and specification of virtual environments
2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks
2003-08 Yongping Ran (UM)
Repair Based Scheduling
2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour
2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on
the interaction between medium, innovation context and cul-
ture
2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue
using Bayesian Networks
2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval
2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models
2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-
Supported Organisations
2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of In-
dexes to Digital Media Warehouses
2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochas-
tic Timing
2003-18 Levente Kocsis (UM)
Learning Search Decisions

2004

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents,
Founded in Logic
2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business
2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in
Symbolic Problem Solving
2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures
2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity
2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques
2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een op-
stap naar abstract denken, vooral voor meisjes
2004-08 Joop Verbeek (UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensre-
gionale politiële gegevensuitwisseling en digitale expertise
2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-
based reasoning
2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects
2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies
2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents
2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how
to Play
2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic
Equilibrium
2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining
2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning
2004-17 Mark Winands (UM)
Informed Search in Complex Games
2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models
2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval
2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

2005

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Appli-
cations
2005-02 Erik van der Werf (UM)
AI techniques for the game of Go
2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language
2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

238

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Pars-
ing
2005-06 Pieter Spronck (UM)
Adaptive Game AI
2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Infor-
mation Systems
2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-
based Web Applications
2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages
2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Inter-
active Learning Environments
2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized
Approach to Search
2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry
2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van
Euthanasiebeslissingen
2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring
how semantics meets pragmatics
2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes
2005-16 Joris Graaumans (UU)
Usability of XML Query Languages
2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Compo-
nents
2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks
2005-19 Michel van Dartel (UM)
Situated Representation
2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives
2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

2006

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting
2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technol-
ogy in organizations
2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems
2006-04 Marta Sabou (VU)
Building Web Service Ontologies
2006-05 Cees Pierik (UU)
Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU)
Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling
2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness
by means of clustering
2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on
the Web
2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion
2006-10 Ronny Siebes (VU)

Semantic Routing in Peer-to-Peer Systems
2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types
2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technolog-
ical environment, and the arts
2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents
2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards
a Theory of Requirements Change
2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain
2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Net-
works
2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mo-
bile Device
2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing
2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach
2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining
2006-21 Bas van Gils (RUN)
Aptness on the Web
2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation
2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web
2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources
2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC
2006-26 Vojkan Mihajlović (UT)
Score Region Algebra: A Flexible Framework for Structured
Information Retrieval
2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically
annotated media repositories
2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

2007

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures
2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A For-
mal Approach
2007-03 Peter Mika (VU)
Social Networks and the Semantic Web
2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a
dialogue-based approach
2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy: a Leg-
islative Framework for Agent-enabled Surveillance
2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs
2007-07 Natasa Jovanović (UT)
To Whom It May Concern - Addressee Identification in Face-
to-Face Meetings
2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations
2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation
2007-10 Huib Aldewereld (UU)

239

Autonomy vs. Conformity: an Institutional Perspective on
Norms and Protocols
2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose
Adaptive Hypermedia System
2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support: A Rational
Approach to Dynamic Decision-Making under Uncertainty
2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing
Technology
2007-14 Niek Bergboer (UM)
Context-Based Image Analysis
2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model
2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in Insti-
tutions and Organizations for Multi-agent Systems
2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice
2007-18 Bart Orriens (UvT)
On the development an management of adaptive business col-
laborations
2007-19 David Levy (UM)
Intimate relationships with artificial partners
2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Net-
work
2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential
adoption and usage of broadband internet in the Netherlands
between 2001 and 2005
2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns
2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems
2007-24 Georgina Ramrez Camps (CWI)
Structural Features in XML Retrieval
2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

2008

2008-01 Katalin Boer-Sorbn (EUR)
Agent-Based Simulation of Financial Markets: A modular,
continuous-time approach
2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Or-
ganizations
2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach
2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integra-
tion
2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware
information systems from a cost perspective
2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines,
an Artificial Intelligence Perspective
2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-
learning
2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference
2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-
effective
2008-10 Wauter Bosma (UT)

Discourse oriented summarization
2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based
Approach
2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Rep-
resentation
2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks
2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort
2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation
and Algorithms for the Markov Decision Process Framework
in First-Order Domains.
2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective
2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Al-
lying of Enterprises
2008-18 Guido de Croon (UM)
Adaptive Active Vision
2008-19 Henning Rode (UT)
From Document to Entity Retrieval: Improving Precision and
Performance of Focused Text Search
2008-20 Rex Arendsen (UVA)
Geen bericht, goed bericht. Een onderzoek naar de effecten van
de introductie van elektronisch berichtenverkeer met de over-
heid op de administratieve lasten van bedrijven
2008-21 Krisztian Balog (UVA)
People Search in the Enterprise
2008-22 Henk Koning (UU)
Communication of IT-Architecture
2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-
associated pneumonia
2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching
2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management
Plan Repair using Spender-signed Currency
2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise
Data Unraveled
2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning De-
sign
2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks
2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Em-
bodied Agents, Users, and Other Humans
2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Rep-
resenting and Querying Media Content
2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval
2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Ob-
servable Markov Decision Processes
2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues
2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining
2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

2009

240

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models
2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques
2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT
2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using
Collaboration Engineering
2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Quality
2009-06 Muhammad Subianto (UU)
Understanding Classification
2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Hu-
man Motion
2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Envi-
ronments
2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Sys-
tems
2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive appli-
cations
2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web
2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services
2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems
2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)
2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that
Make Sense 2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess
2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data
2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System
2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration
in Agent-Mediated Electronic Markets
2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Mak-
ing
2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification
2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence
2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment
2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations
2009-25 Alex van Ballegooij (CWI)
RAM: Array Database Management through Relational Map-
ping
2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mo-
bile Services
2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on
the Web
2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Appli-
cations
2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized
storage
2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text
2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects
and Auditors
2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?
2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental
Method Engineering Approach
2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve
informatie-uitwisseling
2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks
2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Net-
works
2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning re-
sources in a multilingual context
2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri
Nets
2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Ge-
ometry of Language
2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings
2009-42 Toine Bogers
Recommender Systems for Social Bookmarking
2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuris-
tic Search and Mobile Ambients
2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations
2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful
2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

2010

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter
2010-02 Ingo Wassink (UT)
Work flows in Life Science
2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for
Multimedia documents
2010-04 Olga Kulyk (UT)
Do You Know What I Know? Situational Awareness of Co-
located Teams in Multidisplay Environments
2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems
2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI
2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance
2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities
and eGovernments

241

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve
waarborging
2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children
2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning
2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis
2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques
2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration
2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Mod-
els
2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and prac-
tice
2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, In-
frastructure, Applications
2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Sim-
ulation
2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems
2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and
Authorship of Emergent Narrative
2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation
2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to
Heterogeneous Linked Data
2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions
2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies
2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human
Mindreading Perspective
2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heteroge-
neous XQuery Engines
2010-27 Marten Voulon (UL)
Automatisch contracteren
2010-28 Arne Koopman (UU)
Characteristic Relational Patterns
2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels
2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, struc-
turing, and retrieval
2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web
2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solv-
ing Interoperability Problems
2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Mul-
timedia Retrieval
2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions
2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Re-
trieval
2010-36 Jose Janssen (OU)

Paving the Way for Lifelong Learning; Facilitating competence
development through a learning path specification
2010-37 Niels Lohmann (TUE)
Correctness of services and their composition
2010-38 Dirk Fahland (TUE)
From Scenarios to components
2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents
2010-40 Mark van Assem (VU)
Converting and Integrating Vocabularies for the Semantic Web
2010-41 Guillaume Chaslot (UM)
Monte-Carlo Tree Search
2010-42 Sybren de Kinderen (VU)
Needs-driven service bundling in a multi-supplier setting - the
computational e3-service approach
2010-43 Peter van Kranenburg (UU)
A Computational Approach to Content-Based Retrieval of Folk
Song Melodies
2010-44 Pieter Bellekens (TUE)
An Approach towards Context-sensitive and User-adapted Ac-
cess to Heterogeneous Data Sources, Illustrated in the Televi-
sion Domain
2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services
2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Align-
ment
2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Ex-
amples
2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets
2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions
2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives
2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information seeking tasks in
multiple sources
2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams: Exploring the
Use of Cognitive Models of Trust and Attention
2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Ac-
cess

2011

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaus-
sian Models
2011-02 Nick Tinnemeier (UU)
Work flows in Life Science
2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based
Information Systems
2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning; Formal analysis and em-
pirical evaluation of temporal-difference learning algorithms
2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age - Increasing the Perfor-
mance of an Emerging Discipline.
2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage
2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human
Computer Interaction
2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues

242

2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning
2011-10 Bart Bogaert (UvT)
Cloud Content Contention
2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspec-
tive
2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining
2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground
Handling
2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets
2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for In-
formation Retrieval
2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity
2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence, Diversity and Related-
ness
2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games
2011-19 Ellen Rusman (OU)
The Mind’s Eye on Personal Profiles
2011-20 Qing Gu (VU)
Guiding service-oriented software engineering - A view-based
approach

243

244

Samenvatting

Modularisatie en specificatie
van servicegeoriënteerde systemen

Motivatie en doel

Hedendaagse organisaties staan voor een dilemma. Aan de ene kant willen
ze in staat zijn snel te reageren op marktveranderingen; ze willen flexibel
zijn. Aan de andere kant willen ze (of beter gezegd: moeten ze) complexi-
teit in hun organisatie introduceren vanwege strategische keuzes als massa-
customisatie van producten en diensten, de introductie van meer complexe
producten en diensten en de deelname in interorganisationele netwerken. Het
is bijvoorbeeld een grote uitdaging om een overzicht te krijgen van alle be-
drijfsprocessen en hun ondersteunende softwaresystemen door hun grootte en
hun vervlochten structuur. Een nog groter probleem is dat ‘de regels’ voor
het ontwerp van een organisatie nog slecht begrepen of in ieder geval slecht
gedocumenteerd zijn.

In de algemene systeemtheorie is modulariteit voorgesteld als middel voor
het omgaan met complexiteit. Het doel dat we in dit proefschrift wilden
bereiken is mensen uit de praktijk (met name bedrijfsarchitecten en infor-
matiearchitecten) meer inzicht geven in serviceoriëntatie en modulariteit van
organisaties en softwaresystemen. Op dit moment worden in de praktijk vaak
beslissingen genomen op basis van intüıtie en ervaring. Onze intentie was
ontwerpkennis op het gebied van modulariteit meer onderbouwd en expliciet
te maken. We hebben ons onderzoek gebaseerd op literatuur uit de software
engineering en uit de organisatiewetenschappen.

245

Allereerst hebben we gezocht naar criteria voor de decompositie van ser-
vicegeoriënteerde systemen in grofmazige modules. Deze modules kunnen
mensen en/of softwaresystemen bevatten. We hebben ons dus niet gericht
op het structureren van een enkel softwaresysteem, maar op het structure-
ren van de complete set van services geleverd door de organisatie. Voorde-
len van het introduceren van deze modulariteit zijn onder andere het geheel
meer begrijpbaar maken en het effect van een aanpassing in één module op
de andere modules minimaliseren. Om de afhankelijkheden tussen modules
te minimaliseren is het belangrijk het principe van ‘maximale samenhang en
minimale koppeling’ te hanteren. Dit heeft geleid tot de vraag hoe dit principe
van maximale samenhang en minimale koppeling toegepast kan worden. En
zijn andere criteria belangrijk voor het identificeren van modules? En zijn
deze criteria alleen software engineering-principes of misschien (ook) organi-
sationele criteria? We hebben deze vragen beantwoord in ons ‘laboratorium’:
grote organisaties met complexe IT-omgevingen.

Ten tweede hebben we gezien dat huidige aanpakken voor servicespecifi-
catie erg onvolwassen zijn. Dit levert een probleem op, omdat er verwarring
ontstaat wanneer partijen een verschillende interpretatie hebben van elkaars
syntax, semantiek of verantwoordelijkheden. Leveranciers en afnemers zullen
bijvoorbeeld niet in staat zijn nuttige informatie uit te wisselen als één partij
alleen Engels spreekt (of XML) en de ander alleen Nederlands (of EDIFACT).
Ook kunnen problemen ontstaan wanneer de leverancier denkt dat de hoogte
van een product in centimeters gespecificeerd is, terwijl de afnemer denkt
dat dit in inches gedaan is. Misschien noemen leverancier en afnemer niet
eens dezelfde kant van een product ‘hoogte’, omdat het product op verschil-
lende manieren op de vloer gepositioneerd kan zijn. Een ander type probleem
ontstaat wanneer de afnemer verwacht dat de leverancier een product tegen
de hoogst mogelijke kwaliteitsnormen levert, terwijl de leverancier daadwer-
kelijk het goedkoopste product van lage kwaliteit levert. Om de informatie
over een service te structureren wilden we een servicespecificatieraamwerk
ontwerpen. Dit raamwerk ondersteunt de leverancier in het beschrijven van
zijn services door aan te geven welke aspecten gespecificeerd moeten worden
om een afnemer de service te laten vinden, de service te kunnen benaderen
en te kunnen bepalen of de service al dan niet aan zijn behoeften voldoet.
We hebben dit raamwerk afgeleid van de Ψ-theory om het te baseren op een
geschikte, wetenschappelijke basis.

Samengevat hadden we twee doelen: (i) het vaststellen van criteria voor
het afbakenen van grofmazige modules van een servicegeoriënteerd systeem

246

en (ii) het ontwerpen van een raamwerk voor het specificeren van services.

Onderzoeksaanpak

Voor het ontwerp van het servicespecificatieraamwerk hebben we de design
science-methodologie gevolgd. Het theoretische deel van ons onderzoek is
gebaseerd op de noties van Enterprise Ontology en Enterprise Architecture,
zoals gedefinieerd door de Enterprise Engineering community (zie voor meer
informatie www.ciaonetwork.org). We hebben het servicespecificatieraam-
werk gebaseerd op de Ψ-theorie, de theorie die ten grondslag ligt aan de notie
van Enterprise Ontology. Het Generic System Development Process (GSDP)
verheldert de notie van architectuur en geeft begrip van het ontwerpproces
door de introductie van een duidelijke en consistente terminologie. We spe-
cialiseerden het GSDP voor serviceoriëntatie, het meest recente paradigma
voor modulariteit van informatiesystemen, en gebruikten dit om een aantal
verschillende bestaande methoden op het gebied van serviceoriëntatie met
elkaar te vergelijken. We hebben ons servicespecificatieraamwerk gevalideerd
door mensen uit de praktijk te vragen of het raamwerk volgens hen compleet
is en of het geen irrelevante aspecten bevat. In onze case studies hebben we
semigestructureerde interviews gehouden, aangezien vragenlijsten over com-
plexe zaken vaak niet erg zorgvuldig ingevuld worden (‘om er maar vanaf te
zijn’). Ook wilden we niet een te vaste structuur in de interviews hanteren
om de gëınterviewden ruimte te geven aan te geven wat zij belangrijk vinden.
Een laatste stap in het uitvoeren van de case studies was het organiseren van
een workshop. Tijdens deze workshop konden de gëınterviewden reageren op
elkaars ideeën.

We hebben onze case studies niet alleen gebruikt voor het evalueren van
het servicespecificatieraamwerk, maar ook voor het afleiden van criteria voor
modularisatie uit de praktijk. Ons doel was inzicht krijgen in criteria die
belangrijk zijn voor het afbakenen van grofmazige modules van servicege-
oriënteerde systemen. Hoewel we BCI-3D als uitgangspunt hadden, was ons
doel niet het valideren van BCI-3D als identificatiemethode. In plaats daarvan
wilden we criteria ontdekken die als invoer voor BCI-3D gebruikt kunnen wor-
den (voor het vaststellen van de gewichten). We hebben onze case studies dus
niet alleen gebruikt voor de evaluatiestap in de design science-methodologie:
de case studies hadden ook een verkennende aard (exploratory case studies
(Yin, 2002)).

247

Resultaten

Aangezien de Ψ-theory de interactie tussen een afnemende partij en een leve-
rende partij op een formele manier beschrijft, biedt deze een basis voor het
formaliseren van het begrip service. We hebben een service gedefinieerd door
gebruik te maken van het complete transactiepatroon als basis. Ondanks de
overeenkomsten tussen een service en een transactie in de Ψ-theory kunnen
we niet stellen dat ze gelijk aan elkaar zijn. Een transactie bevat namelijk
alle acties van de initiator en de executor, terwijl een service alleen de exe-
cutorkant omvat. Daarom hebben we een service gedefinieerd als een deel
van een transactie in plaats van als de hele transactie. Een service is een
patroon van coördinatie- en productieacties, uitgevoerd door de executor van
de transactie voor de initiator in de volgorde van het complete, universele
transactiepatroon. Wanneer de service gëımplementeerd is, heeft deze de mo-
gelijkheid om:

de coördinatiefeiten geproduceerd door de initiator te weten te krijgen
en

de coördinatiefeiten geproduceerd door zichzelf beschikbaar te maken
aan de initiator.

We hebben een onderscheid gemaakt tussen de volgende typen services:
ontologische menselijke services, infologische menselijke services, datalogische
menselijke services, ontologische IT-services, infologische IT-services en da-
talogische IT-services. In twee case studies hebben we bedrijfsarchitecten
en technisch architecten gevraagd welke criteria zij belangrijk vinden voor
het afbakenen van grofmazige modules van servicegeoriënteerde systemen. In
beide gevallen gaven de architecten aan te zoeken naar modules met maximale

samenhang en minimale koppeling. In de eerste case study bij De Lage Lan-
den werd gezocht naar grofmazige IT-modules. Deze werden autonome omge-

vingen genoemd. In de tweede case study, bij Air France/KLM, werd gezocht
naar grofmazig organisatiemodules (die bestaan uit mensen en IT-systemen).
Deze werden domeinen genoemd. Beide organisaties waren het erover eens dat
grofmazige IT-modules niet gedefinieerd zouden moeten worden op basis van
bestaande IT-systeemgrenzen of commerciële softwarepakketten, omdat dit de
mogelijkheid om systemen te vervangen reduceert. Ook waren ze het erover
eens dat de organisatiestructuur (organogram) geen goed startpunt is, omdat
deze structuur doorgaans niet stabiel is en in grote mate bëınvloed wordt door

248

organisatiepolitiek. BCI-3D kan gebruikt worden om grofmazige organisatie-
modules evenals om grofmazige IT-modules af te bakenen, onafhankelijk van
huidige IT-systemen en organisatiestructuren. Dit gebeurt door het toepassen
van het principe van maximale samenhang en minimale koppeling. Echter,
BCI-3D moet uitgebreid worden met ontwerpprincipes voor het bepalen van
gewichten van verschillende afhankelijkheden. Deze gewichten zijn invoer
voor de algoritmes die de modules vaststellen. In de case studies vonden we
voorbeelden van criteria die deze gewichten kunnen bepalen. Bijvoorbeeld,
het criterium ‘autonome omgevingen zijn gebouwd rondom bedrijfsobjecten
(basisadministraties)’ leidt tot een relatief hoog gewicht voor relaties tussen
bedrijfsobjecten. Het criterium ‘levenscyclusontkoppeling’ houdt in dat het
mogelijk moet zijn services onafhankelijk van het product waarin ze zijn ge-
bruikt te kunnen leveren. Dit wil zeggen dat services niet sterk gekoppeld
moeten zijn aan het product als geheel. Dit kan gerealiseerd worden door een
erg laag gewicht te geven aan relaties tussen aanroepen tussen transacties.
Vooral als een transactie door meerdere andere transacties gëınitieerd wordt
(hergebruik) moet het gewicht laag gezet worden.

249

De onderstaande figuur geeft het generieke servicespecificatieraamwerk dat
afgeleid is van de Ψ-theory weer.

!"#$%&"'()"&*+,#

!"#$%&'$()

*$+#,"#&-+.$%/,#0$+

-,.+#/&+'01+%,.2

!"#$%&"'3#,4*&+%,.

!"#$%&"'-,,#4%./+%,.

1%$23"#0$+&!"#

1%$23"#0$+&-+.$%/,#0$+&45)2

1%$23"#0$+&6,"#

*$$%20+,#0$+&!"#5

*$$%20+,#0$+&70+2

1%$#$"$(

1%)"$+20#0$+5

1%$23"#0$+&8$%(2&9)/,+#0"5

1%$23"#0$+&70+2

1$5#"$+20#0$+5

:$",#0$+

1%0")&;3,(0#<&*$/=0+,#0$+

;3,(0#<

1%0")

We hebben het servicespecificatieraamwerk gevalideerd in drie case studies
(het Havenbedrijf Rotterdam, De Lage Landen en Air France/KLM). Het
servicespecificatieraamwerk dekt het grootste deel van de aspecten die in de
praktijk nodig zijn, maar volgens sommige gëınterviewden dient het uitge-
breid te worden met enkele aspecten die niet afgeleid kunnen worden van
de Ψ-theory. Allereerst is er niet slechts een enkele locatie nodig, maar
moeten meerdere locaties gespecificeerd worden. Als een organisatie eigen
software ontwikkelt, ofwel zelf, ofwel met de assistentie van een externe IT-

250

dienstverlener, dan zijn er doorgaans vier typen locaties nodig: de ontwikkel-
omgeving, de testomgeving, de accepatieomgeving en de productieomgeving.
Sommige gëınterviewden noemden deze informatie ‘de levenscyclus van een
service’. Daarnaast gaven sommige gëınterviewden aan dat het raamwerk een
versioneringsaspect zou moeten bevatten. In één van de case studies werd
ook de manier van interactie met een service (request/reply of pub/sub) als
noodzakelijk specificatieaspect gezien.

Toekomstig onderzoek

In dit proefschrift hebben we serviceoriëntatie niet benaderd als een tech-
nisch paradigma, maar als een paradigma voor het structureren van de hele
organisatie. Modules van servicegeoriënteerde systemen kunnen gedefinieerd
worden met behulp van de methode BCI-3D. We hebben criteria verzameld
voor het afbakenen van grofmazige modules in twee case studies. Sommige
voorgestelde criteria kunnen gebruikt worden als basis voor het formuleren
van ontwerpprincipes die de gewichten van relaties bepalen. Deze gewichten
worden gebruikt door de algoritmes van BCI-3D. Dit betekent dat deze cri-
teria gebruikt kunnen worden om BCI-3D te conformeren aan de specifieke
wensen van de organisatie. In toekomstig onderzoek moet bepaald worden
of deze criteria ook voor andere organisaties gelden, aangezien het aantal
uitgevoerde case studies te beperkt is om met zekerheid te zeggen dat ze
algemeen toepasbaar zijn.

Een ander belangrijk onderwerp om te onderzoeken is de gevoeligheid van
de gewichten. Hebben kleine veranderingen in de gewichten misschien grote
veranderingen in de uitkomsten van de afbakening van grofmazige modules
tot gevolg? Dit kan onderzocht worden door BCI-3D zeer vaak toe te passen
op hetzelfde model met steeds een klein verschil in de gewichten en vervolgens
de verschillen in uitkomsten met elkaar te vergelijken.

In het onderzoek naar servicespecificatie hebben we ons gericht op het ont-
werp van een generiek servicespecificatieraamwerk dat gebruikt kan worden
voor het specificeren van menselijke services evenals het specificeren van IT-
services. Ons doel was te bepalen welke aspecten beschreven zouden moeten
zijn in een servicespecificatie. Een vervolgstap is het bestuderen hoe deze as-
pecten gespecificeerd moeten worden. De manier waarop een aspect gespeci-
ficeerd moet worden is verschillend voor menselijke services en IT-services.

De locatie van een menselijke service is bijvoorbeeld doorgaans een fysieke

251

locatie of een telefoonnummer, terwijl de locatie van een IT-service vaak een
URL is. De invoer van een IT-service is normaal gesproken in velden van een
bepaald type (bijv. ‘string’ of ‘integer’) en met een bepaalde lengte gespeci-
ficeerd, terwijl een menselijke service ook minder formeel gedefinieerde invoer
kan verwerken. Soms bestaan er industriestandaarden voor het beschrijven
van menselijke services. In de Nederlandse gezondheidszorgsector worden bij-
voorbeeld Diagnose Behandel Combinaties (DBC’s) gebruikt om medische
behandelingen te definiëren en hier een prijs aan te alloceren. Meestal wor-
den menselijke services in natuurlijke taal gespecificeerd. Voor IT-services zijn
formele beschrijvingen nodig. Het zou niet verstandig zijn om een compleet
nieuwe standaard op te stellen voor het specificeren van alle aspecten van het
servicespecificatieraamwerk, omdat dat veel werk met zich mee zou brengen
en er al veel standaarden beschikbaar zijn. Het is daarom verstandiger om te
bekijken welke bestaande standaarden gebruikt kunnen worden en hoe deze
gecombineerd kunnen worden. Sommige standaarden die hiervoor onderzocht
kunnen worden zijn (niet-limitatieve lijst): UML-OCL en Rule-ML voor pre-
en postcondities, OWL en ISO/IEC 11179 voor semantiek, WSDL-S voor
de annotatie van invoer- en uitvoerstructuren met semantiek en WSLA en
WS-agreement voor service level agreements.

Wanneer een gestandaardiseerde manier voor het specificeren van de as-
pecten van het servicespecificatieraamwerk (d.w.z. het ‘hoe’-deel) beschik-
baar is, kan kwantitatief onderzoek uitgevoerd worden. Een te onderzoeken
vraagstuk is hoeveel tijd er nodig is voor het bouwen van services met be-
hulp van ons raamwerk en met behulp van andere aanpakken. Een ander
interessant vergelijkend onderzoek is het verschil in de benodigde tijd voor
het vinden van services door potentiële afnemers.

252

Curriculum Vitae
Linda Terlouw (15-9-1980) is geboren in Tilburg en volgde de gymnasium-
opleiding aan het Sint-Oelbert in Oosterhout (1992 - 1998). Ze studeerde
Technische Informatica en Bedrijfsinformatietechnologie aan de Universiteit
Twente (1998 - 2003) en startte haar carrière als consultant bij IBM. In 2005
maakte ze de overstap naar de SOA-adviesgroep van Ordina. In haar rol
als solution architect adviseerde Linda grote organisaties over de stapsge-
wijze invoering van een servicegeoriënteerde manier van denken en het ge-
bruik van ESB-technologie voor de technische implementatie. In hetzelfde
jaar ging ze (part-time) terug naar de academische wereld voor een pro-
motieonderzoek in de informatica aan de Technische Universiteit Delft. In
2009 richtte ze het bedrijf ICRIS B.V. op. De missie van ICRIS is het bren-
gen van de laatste wetenschappelijke inzichten over informatiesystemen naar
de praktijk. Linda richt zich op het geven van cursussen en het uitvoeren
van consultancyopdrachten op het gebied van Enterprise Architecture (EA)
en Service-Oriented Architecture (SOA).

Linda Terlouw (15-9-1980) was born in Tilburg (9-15-1980) and attended Sint-
Oelbert grammar school in Oosterhout (1992 - 1998). She studied Computer
Science and Business Information Technology at the University of Twente
(1998 - 2003) and started her career working as a consultant for IBM. In 2005
she joined the SOA Consulting Group of Ordina. In her role as solution archi-
tect Linda advised large corporations about the gradual migration towards a
service-oriented way of thinking and the use of ESB technology for its techni-
cal implementation. In the same year, she went back to academia (part-time)
to pursue a PhD in Computer Science at the Delft University of Technology.
In 2009 she founded the company ICRIS B.V. The mission of ICRIS is to bring
the latest scientific insights in the field of information systems to industry.
Linda focuses on giving courses and conducting consulting engagements in
the area of Enterprise Architecture (EA) and Service-Oriented Architecture
(SOA).

253

254

