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Abstract

Bayesian analysis incorporates different sources of information into a single anal-

ysis through Bayes theorem. When one or more of the sources of information are

suspect (e.g., if the model assumed for the information is viewed as quite possibly

being significantly flawed), there can be a concern that Bayes theorem allows this

suspect information to overly influence the other sources of information. We con-

sider a variety of situations in which this arises, and give methodological suggestions

for dealing with the problem.

After consideration of some pedagogical examples of the phenomenon, we focus

on the interface of statistics and the development of complex computer models of

processes. Three testbed computer models are considered, in which this type of

issue arises.
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1 Introduction

1.1 Background

Two of the strengths of Bayesian analysis are that it allows simultaneous incorporation

of all relevant data into the analysis, and simultaneously deals with all uncertainties in

the model. These strengths can be weaknesses, however, when either some of the data or

some parts of the model are suspect.

We consider the situation where the overall model consists of a number of distinct

components, that we will call modules. We will focus on discussion of why it may be ben-

eficial to keep modules at least partly separate in the Bayesian computation, a technique

that we will call modularization.

A version of modularization that is well known in statistics is partial likelihood. The

partial likelihood approach essentially results in ignoring one or more factors of the like-

lihood function in the analysis. We briefly review some of the motivations for this in

Section 2.1.

Within Bayesian analysis, there is increasing use of modifications to posterior distri-

butions that do not strictly flow from Bayes theorem. One common type of manipulation

is to represent the posterior distribution in a formally correct way involving a sequence

of marginal and conditional distributions, but then to simplify one or more of the terms

in the expression. Here are some of the reasons this has been done:

1. A ‘good’ module might be kept separate from a ‘suspect’ module to prevent it from

being unreasonably influenced (which we will term ‘contamination’).

2. Keeping modules separate might be viewed as important for scientific understanding

and future scientific development of the modules.

3. There may be a lack of identifiability in the problem, with unknown parameters in

one module being confounded with unknown parameters in another.

4. A poorly mixing MCMC analysis can start mixing quickly if certain (probabilisti-

cally invalid) modifications to the posterior are made.

5. One might be in a problem in which computational complexity prevents analysis,

yet (incoherent) manipulation of the posterior will yield an answer.

We are not questioning Bayesian analysis here; if one is comfortable with all the

modeling and prior assessments that go into an analysis, and if it is possible to carry out
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the ensuing Bayesian computation, then certainly we would not argue for altering the

posterior distribution. Uncertainties in modeling and practical computational realities,

however, may suggest certain types of modifications of the posterior, and our goal is

to try to understand which modifications are reasonable. Note that one does not have

the coherency of Bayesian analysis as an automatic support for the modified analysis, so

supplementary justifications are often needed.

Ideally, uncertainty in modeling would be best addressed formally, through diagnostic

checking (see, e.g., Evans and Moshonov (2006)). One can, indeed, imagine comparing the

original model and the ‘modularized model’ through such methods, formally ascertaining

when use of the modularized model is better.

Modularization arose, however, in settings that are too complex for such formal anal-

ysis (at least with the current state-of-the-art). Indeed, in typical applications of mod-

ularization, one identifies that there is a problem (often, a non-mixing MCMC for some

parameters) and the problem itself suggests an easy modularization ‘fix’, yet it can be

extremely difficult to actually identify the modeling flaw directly. A real example in which

this occurred – and which provided the main motivation for this paper – will be discussed

in Section 3.3.

Another name given to this idea of preventing the information from ‘uncertain’ mod-

ules to ‘contaminate’ good modules is cutting feedback (Spiegelhalter et al. (2003)), im-

plemented in the Bayesian software WinBugs. Often this is also used to facilitate the

MCMC computation; by not allowing full information flow across the steps of an MCMC,

much more rapid mixing can be achieved. (We delay, until the end, a discussion of the

merits of such adjustments when done only for computational reasons.)

Certain versions of this idea have also been implemented and formally studied in par-

ticular application-contexts. For instance, inconsistent dependency networks (Heckerman

et al. (2000)) is an approach to dealing with graphical models with very complicated

dependency structures: in the posterior, the dependency structure is vastly simplified

to allow computation, but in a way that is inconsistent with a true joint distribution.

Another alteration made for computational simplicity is inconsistent Gibbs (Gelman and

Raghunathan (2001), Raghunathan et al. (2001)), where the likelihood is the product

of separately assessed full conditional distributions, which might or might not define a

joint posterior. Still another method seeking an easily computable approximation to the

posterior is the weighted likelihood bootstrap (Newton and Raftery (1994)) where factors

in the likelihood function are raised to weights that have a joint distribution.
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1.2 Application to Computer Models

For pedagogical reasons, we will first illustrate some of these issues in Section 2, on rather

simple artificial examples. We then turn to the practical domain in which we encountered

these issues, namely the interface of statistics and complex computer modeling.

Complex computer models are increasingly being used to simulate natural or engineer-

ing processes. Statistical analysis involving such computer models (following, e.g., Sacks

et al. (1989), Kennedy and O’Hagan (2001), Craig et al. (2001), Santner et al. (2003),

Higdon et al. (2004), and Qian and Wu (2008)) typically involves three modules:

Module 1. The computer model itself, which may have unknown parameters, and is

typically very expensive to run, often necessitating use of a response surface ap-

proximation called an emulator.

Module 2. The field data, which are measurements of the real process with some mod-

eled error structure.

Module 3. The bias or discrepancy between the computer model and the real process,

which is typically an unknown function, often also represented by a response surface

model.

In Section 3, we will discuss the various uses that have been made of modularization in

analysis of computer models, and argue for regular use of certain modularizations.

2 Pedagogical Examples

This section considers a series of relatively simple examples that are designed to illustrate

different types of modularization, and to show how modularization can fix ‘flaws’ in the

modeling. Because the examples are relatively simple, a number of more formal (and

better) alternatives exist for analyzing and fixing the revealed problems. We are simply

using the examples pedagogically, to show how modularization works; later examples in

the paper will demonstrate the use of modularization in problems that are too complex

for the more formal methods.

2.1 Partial Likelihood

Although statistical analysis should, in principle, depend on the entire likelihood function,

there are a number of reasons that it is relatively common to ignore factors of the likelihood
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in the analysis. The most common situation in which this arises is when the likelihood

for data Y depends on the unknown parameters of interest θ and unknown nuisance

parameters η and is of the form

f(y | θ, η) = g(s1 | θ, s2)h(s2 | θ, η) ,

where s1 and s2 are two statistics. It is then tempting to ignore the second term involving

the nuisance parameter, and base the analysis only on the first term. We briefly discuss

two reasons in this section for employing partial likelihood.

2.1.1 A Suspect Module

Suppose we have two sources of data concerning an unknown parameter µ. The first is

a reliable sample y (of size m) arising, say, from a N(µ, 1) distribution; the second is a

possibly biased sample yb (of size n) arising from a N(µ+b, 1) distribution, with unknown

bias b. The full likelihood is thus

f(y, yb | µ, b) ∝ exp{−
m

2
(ȳ − µ)2} exp{−

n

2
[ȳb − (µ + b)]2} ,

where ȳ and ȳb are the sample means. Intuitively, it is reasonable to ignore the biased

data, and just base the analysis on the first component of the likelihood, unless one feels

quite certain that b is very small.

To see the possible danger in using the full likelihood, suppose µ is assigned a constant

objective prior, while b is subjectively assessed to have a N(0, σ2
b ) prior distribution. The

posterior mean for µ is then

E(µ | y, yb) =
m(σ2

b + n−1)

1 + m(σ2
b + n−1)

ȳ +
1

1 + m(σ2
b + n−1)

ȳb , (2.1)

and the posterior variance is (m + 1/(σ2
b + n−1))−1.

Note first that, even if the sample size n for the biased data is huge, the posterior

variance does not drop below (m + 1/σ2
b )

−1, which will typically not be much of an

improvement over the posterior variance m−1 of the partial likelihood estimate ȳ when m

is moderate or large, unless σ2
b is quite small. The main issue, however, is that it can be

dangerous to use (2.1) if the prior assessment was an inaccurate reflection of real beliefs.

For instance, if one evaluates robustness by overall mean squared error of the estimate

(expected squared error over the data and the prior distribution of b), it can be shown that
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(2.1) is worse than the partial likelihood estimate ȳ if the true prior variance is larger than

2σ2
b +m−1 +n−1. Note that folklore says that prior variances are typically underestimated

by a factor of 3, in which case the use of the full likelihood here would be detrimental

unless σ2
b were very small. If the error in the assessment were in the distributional form of

the prior, the result could be far worse. For instance, if the true prior for b were actually

Cauchy, the overall mean squared error of the estimate in (2.1) would be infinite. In

conclusion, there is typically little to gain and much to lose in attempting to incorporate

the biased data into the analysis, unless the bias is known to be very small.

2.1.2 Ease of Analysis

Another common reason for ignoring a component of the likelihood function is that the

analysis is much easier if one does so. Usually, of course, arguments are also made that

the ignored likelihood component (h(s2 | θ, η) in (2.1)) is not overly informative, so that

the analysis remains reasonable. For examples involving likelihood methodology, see Cox

(1972), Cox (1975), Møller and Sorensen (1994), and Diggle (2006).

Note that, in Bayesian analysis, it is less common to utilize partial likelihood solely

for computational reasons, because MCMC computational techniques can generally deal

with the full likelihood rather easily. In the situation of (2.1) for instance, one might

either be able to incorporate the second factor in the likelihood into the analysis by Gibbs

sampling, or by a Metropolis step (utilizing the first factor of the likelihood to construct

a proposal distribution).

2.2 Modularization as a Modeling Surrogate

2.2.1 A Random Effects Example

This section considers a simple example of the issues involving modularization. Interest-

ing and somewhat disturbing issues are also raised concerning standard random effects

analysis or hierarchical modeling.

Consider a simple random effects model in which we have n independent observations

on each of N groups:

yij | bi = bi + ǫij , j = 1, . . . n; i = 1 . . .N ,

ǫij | σ2
i ∼ N(0, σ2

i ),

bi | τ 2 ∼ N(0, τ 2), (2.2)
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where the σ2
i ’s and τ 2 are unknown. This model has two modules: Module 1 is the

distribution of the observables yij, while Module 2 is the distribution of the random

effects bi.

With objective priors π(σ2
i ) ∝ (σ2

i )
−1 and π(τ 2 | σ2) ∝ (τ 2 + σ̄2/n)−1, where σ2 =

(σ2
1, . . . , σ

2
N ) and σ̄2 =

∑

σ2
i /N , the marginal posterior for τ 2 and σ2 is (see Appendix A

for details)

π(τ 2,σ2 | ȳ, s2) ∝

1

τ 2 + σ̄2/n

N
∏

i=1

(σ2
i )

−
n+1

2 exp {−
ns2

i

2 σ2
i

}
1

(τ 2 + σ2
i /n)1/2

exp

(

−
ȳ2

i

2(τ 2 + σ2
i /n)

)

; (2.3)

here ȳ is the vector of N sample means and s2 is the N -vector with components s2
i =

∑n
j=1(yij − ȳi)

2. The conditional posterior distribution for b = (b1, . . . , bN ), given τ 2 and

σ2, is

π(b | σ2, τ 2, ȳ, s2
i ) ∼

N
∏

i=1

N

(

τ 2

τ 2 + σ2
i /n

ȳi ,
τ 2σ2

i /n

τ 2 + σ2
i /n

)

. (2.4)

Consider the following scenario:

• The number of groups, N , is large, while the number of replications, n, is relatively

small but large enough for reasonably accurate estimation of the σ2
i ; also suppose

that the σ2
i are near 1.

• We are very confident in the normality of the errors ǫij , but are not confident about

the normality assumption for the random effects, bi.

Suppose now that one of the random effects, say bk, happens to be large (e.g., 10), while

the others are small, say near one. (Of course this is incompatible with the normality

assumption for the bi but, for the moment, we are imagining that this cannot be directly

ascertained.) The common belief in hierarchical Bayesian analysis is that this situation

would result in a posterior under which τ 2, the variance of the random effects, is large,

and so there would be little shrinkage of the usual estimates ȳi of the bi.

Something quite different happens in the posterior in (2.3), however, under the above

scenario. The terms to focus on from this posterior are

exp

(

−
ȳ2

k

2(τ 2 + σ2
k/n)

)

(σ2
k)

−
n+1

2
1

(τ 2 + σ̄2/n)

N
∏

i=1

1

(τ 2 + σ2
i /n)1/2

. (2.5)
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Note that ȳ2
k will be large because bk is large, so the first term in (2.5) (and hence the

posterior density) can be kept away from zero only by choosing either τ 2 or σ2
k/n to be

correspondingly large. The second term in (2.5) tries to prevent σ2
k from being large, while

the last terms try to prevent τ 2 from being large. The last terms win out, since the power

for τ 2 is effectively −(N +2)/2 (and N is large) while the power for σ2
k is −(n+1)/2 (and

n is relatively small). Hence the Bayesian analysis will let σ2
k/n get large, while keeping

τ 2 small.

The consequence of this is revealed from the posterior for the bias in (2.4): having

σ2
k/n large and τ 2 small will result in the posterior for bk being approximately N (0 , τ 2),

a dramatic – and very incorrect – shrinkage of ȳk towards 0.

Note also the ‘contamination’ from one module to another that is causing the problem.

Module 1 contains the replication data, which contains almost all of the real information

about σ2
k (and which would say that σ2

k is not large). However, the suspect Module 2 is

allowed to influence Module 1 through Bayes theorem, and its influence happens to be

dramatic (and harmful).

2.2.2 The Modular Approach in the Example

The modular approach in this example is simply to insist that the posterior for σ2 in

Module 1 be based only on the replicate observations. To formally see what is being

proposed, write the joint posterior of τ 2 and σ2 as

π(τ 2, σ2 | ȳ, s2) = π(τ 2 | σ2, ȳ, s2)π(σ2 | ȳ, s2) , (2.6)

where

π(σ2 | ȳ, s2)

∝

[

N
∏

i=1

σ−n−1
i exp{−

ns2
i

2σ2
i

}

]

∫

1

τ 2 + σ̄2/n

N
∏

i=1

1

(τ 2 + σ2
i /n)1/2

exp

(

−
ȳ2

i

2(τ 2 + σ2
i /n)

)

dτ 2 .

The modular posterior distribution for σ2 is that arising from the first expression (in

square brackets) above, simply ignoring the integral. In other words, (2.6) is replaced

with

π(τ 2, σ2 | ȳ, s2) ≈ π(τ 2 | σ2, ȳ, s2)π(σ2 | s2) . (2.7)

Note that the conditional posterior distributions for τ 2 and b are unchanged in terms

of their mathematical expressions, but will change very considerably in terms of their
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location: with σ2
k no longer being able to accommodate the outlier, τ 2 will become large,

and the posterior for bk will remain near ȳk.

To implement this modularization in the MCMC, first sample σ2
i from the Gamma−1

(

(n−

1)/2, n s2
i /2
)

posteriors given only the s2
i , and then draw τ 2 and b from their true posterior

conditional distributions in (2.3) (with σ2 viewed as given) and (2.4).

2.2.3 The Modeling Flaw in the Example

The problem with the random effects model here is, of course, that the normality assump-

tion for the bi is bad: the actual random effects were all moderately valued, except for

one large outlier. This is not a scenario in which using a normal distribution is expected

to work.

The nature of the failure, however, is disturbing, and carries ramifications for random

effects analyses in general. Folklore suggests that the random effects or hierarchical mod-

eling assumption is rather risk free in that, if the effects vary widely, then τ 2 will be large

and the analysis essentially collapses to a fixed-effects analysis; no harm done (although

the potential gain from reasonable shrinkage is not realized). Here, however, we see that

the analysis instead collapses to the disastrous conclusion that bk is essentially zero when,

in fact, it is large. Furthermore, simple diagnostics, such as seeing if the posterior means

of the bi are compatible with a normal distribution, would not have revealed a problem at

all. While we are focusing on this example only from the perspective of modularization,

the analysis reveals a considerable potential danger in routine application of standard

random effects analysis when the number of random effects is larger than the replication

size.

The correct Bayesian solution to the situation is, of course, to use a better model for

the bi, such as a t-distribution with small degrees of freedom (which can accommodate

outliers well). This will be illustrated in an application in Section 3.3.

The appeal of modularization is that it can be much easier to identify a useful restric-

tion of the Bayesian analysis, than to develop a better model for suspect modules. In the

random effects problem, for instance, deciding that the σ2
i will be determined only from

the replications is much simpler than attempting to infer a good model for the random

effects (which are not directly observed). In more complicated scenarios, this difference

in difficulty can be even more pronounced.
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2.2.4 Computational Considerations in the Example

From a computational perspective, modularization is also much simpler. Indeed, it typi-

cally leads to an easier MCMC than even the original analysis; thus it is much easier to

sample from π(σ2 | s2) in (2.7) than from π(σ2 | ȳ, s2) in (2.6). See, also, Section 3.3,

where other computational issues arise in the full Bayesian analysis.

3 Modularization in Analysis of Computer Models

3.1 Background on Computer Models

Our motivation for consideration of modularization arose in the analysis of complex com-

puter models which, as discussed in the introduction, typically have three distinct mod-

ules: field observations, the computer model itself, and computer model bias or discrep-

ancy. In such analyses, we have routinely encountered situations in which modularization

is needed or, at least, useful.

Computer experiments typically have data of two types: runs of the computer model

itself (which we here assume to be deterministic) at various inputs, and runs of physical

experiments (field data). A typical computer model will have two types of inputs, denoted

by x and u. Inputs x occur in both the computer model and the field runs, whereas u

are calibration/tuning parameters that are only needed to run the computer model. We

represent the (unknown) true value of the calibration parameter by u∗; note that this is

often just conceptual, in that it will often be impossible to determine u∗ from data, for

reasons discussed below.

Given input vectors x and u, we represent the corresponding computer model output

by yM(x, u), and the jth field replicated run by yF
j (x), respectively. The goal is to combine

these two sets of observations, to facilitate better understanding of the real processes, to

perform calibration or tuning for unknown parameters of the computer model, and to

evaluate the computer model in terms of its accuracy in representing the real process.

Following Kennedy and O’Hagan (2001), the third key module in computer modeling

arises from representing the real process as the sum of the computer model yM(x, u∗) at

u∗ and the model discrepancy b(x),

yR(x) = yM(x, u∗) + b(x) ;

modeling of b(x) then becomes the third module of the problem. Reality is connected
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with the field observations by viewing the field runs as realizations from

yF
j (x) = yR(x) + ǫxj = yM(x, u∗) + b(x) + ǫxj , (3.8)

where ǫxj are measurement errors, ǫxj ∼ N(0, 1/λe).

Many computer models are time-consuming to run. It is thus often useful to construct

a fast surrogate – usually called an emulator – to the expensive-to-run computer code.

Gaussian process response-surface methodology (GASP) has been consistently effective

for constructing emulators, since its introduction for this purpose in Sacks et al. (1989),

Currin et al. (1991), Welch et al. (1992), and Morris et al. (1993). The idea is to assign

a Gaussian stochastic process as the prior distribution of the computer model,

yM(·) ∼ GP

(

µM ,
1

λM
corr(·, ·)

)

, (3.9)

where µM , λM and corr(·, ·) are the mean, precision, and correlation function that char-

acterize the Gaussian process. In the computer modeling literature, the most commonly

used correlation function is the exponential correlation function, which takes the form

corr ((x, u), (x̃, ũ)) = exp(−
∑

k

βk | xk − x̃k |αk) × exp(−
∑

l

β∗

l | ul − ũl |
α

(∗)
l ) . (3.10)

At any (untried) input (x, u), the emulator predicts the corresponding output using

the posterior predictive distribution of yM(·), which will be denoted π(yM(x, u) | Data).

We similarly use a GASP prior to represent our uncertainty about the discrepancy function

b(·). Completing the modeling with priors on the unknown GASP mean, precision and

correlation parameters, along with any needed priors for the inputs, allows Bayesian

analysis both to assess the accuracy of the computer model and to provide predictions of

the real process utilizing all the information.

Extensions of this validation framework include that in Bayarri et al. (2007a) and Liu

et al. (2008), which use a hierarchical structure to deal with smooth functional data and

allow for uncertainty in the inputs, and that in Bayarri et al. (2007a), which uses wavelets

to incorporate irregular functional outputs. See also Higdon et al. (2007) for approaches

using other basis functions. For nonstationary processes, dynamic emulators have been

considered by Conti et al. (2005), Liu (2007), and Reichert et al. (2008). Another related

approach is the treed Gaussian process method of Gramacy and Lee (2008).
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3.2 Modularizing the Emulator of the Computer Model

Recall that we denote the (possibly unknown and deterministic) computer model by yM(·),

and the runs of the computer model and the field experiments by yM and yF , respectively.

As is clear from (3.8), analysis of yM(·) will involve both yM and yF in a full Bayesian

analysis. The corresponding posterior predictive distribution, π(yM(·) | yM , yF ), is the

emulator under the full Bayesian analysis.

When this is presented to computer modelers, it is viewed as strange that data from

the field runs is allowed to affect the emulator for the computer model; much more nat-

ural, from their perspective, is to build an emulator of the computer model using only

runs of the computer model itself, i.e., using only yM together with the model (3.9). If

only yM is used, we will call this modularizing the emulator, and denote the resulting

posterior predictive by π(yM(·) | yM). Note that we are not talking about calibration

(i.e., estimation of u) here; calibration certainly requires use of both the computer run

and field run data. We are, rather, talking only about emulating the computer model

response to the variables x and u.

Part of the concern of computer modelers with full Bayesian analysis is that computer

models are typically in an ongoing state of development and, during this development, it

is typically important to clearly separate computer model uncertainty at untried inputs

from the discrepancy b(·), in order to provide guidance for improvement of the computer

model. The modular approach essentially ensures that this separation happens (to the

extent that is possible), while the full Bayesian approach is much more likely to confound

the two.

To see this, consider the pedagogical example of a one-dimensional dampened cosine

function, as considered in Santner et al. (2003) and Joseph (2006).

• The true computer model is yM(x) = exp(−1.4x) cos(7πx/2), x ∈ (0, 1), but is only

observed at the m = 7 inputs, xM
i = (i − 0.5)/7, for i = 1, . . . , m.

• The real process is yR(x) = exp(−1.4x − 0.05/x) cos(7πx/2).

• n = 7 replicate field observations are made at each of the field design points in DF =

(xF
1 , . . . , xF

4 ) = (1/28, 3/14, 7/14, 11/14), with measurement errors distributed as

N(0, 1
4000

). Note that the last 3 points also occurred in the computer model runs,

but 1/28 was not a design point in those runs.

The resulting data is shown in in Figure 1.
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Figure 1: The simulated data from the pedagogical example.

Appendix B gives the details of the prior choices for the GASP parameters (for the

computer model and the discrepancy function) and details of the ensuing Bayesian com-

putation. The resulting emulators from both the modular approach and the full Bayes

analysis are given in Figure 2. The emulators are described in this figure by their pos-

terior means and 95% confidence bands. The emulators necessarily pass through the

computer model design points, and both emulators are in reasonable agreement in the

regions between these design points.

Of main interest is the design point x = 1/28, since this was used only in the field

data, and not for the computer model runs. The modular approach provides a reasonable

answer at this design point, in the sense that the 95% confidence band for the computer

model from the emulator does contain the actual computer model value at that point.

In the full Bayesian analysis, however, something quite different happens; the Bayesian

analysis knows that reality is near the field data, and chooses to estimate the computer

model as being comparatively near this reality. The modular approach, in contrast, will

ascribe the difference between the estimate of the computer model and the field data to

the discrepancy function.

The problem with the full Bayesian analysis is again due to the fact that there is a

suspect module, namely the model for the discrepancy b(·). Formally fixing the problem by

improving the model for b(·) is very difficult, however, since essentially nothing is known

about the discrepancy apriori. Fixing the problem by modularization is, in contrast,
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Figure 2: Emulators – as described by the posterior mean and 95% confidence bands –
of the actual computer model from the modular approach (top) and from full Bayesian
analysis (bottom). Vertical bars in the graphs highlight the 95% confidence bands at
x = 1/28.

simple and natural.

In the above example, the modularized emulator was a true Bayesian emulator based

on the model-run data yM . For the correlation parameters, α and β, that occur in

the emulator GASP, an even more radical simplification is often employed: replacing
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the parameters with their maximum likelihood estimates, based on yM . The rationale

for doing so is that (i) there are often a large number of such parameters; (ii) the data

about the parameters is typically weak; and (iii) they are typically the least important

parameters in the problem, in that similar predictions often result from many reasonable

choices of these parameters. See Bayarri et al. (2007b) for a more extensive discussion of

the use of maximum likelihood to estimate the correlation parameters. Use of maximum

likelihood to deal with correlation parameters also sometimes arises for computational

reasons, as in (Bayarri et al., 2007a), where there were hundreds of such parameters.

3.3 Modularization of the Field Data Module

3.3.1 The Motivating Example

Bayarri et al. (2007a) considered validation of a computer model which predicted loads

resulting from stressful events on a vehicle suspension system over time. The key idea

was to represent the functional data (over time t) by wavelet basis functions Ψi(t), for

i in an index set I, of size 289. This reduced the problem to analysis of the resulting

wavelet coefficients w(·), to which the validation methodology described in Section 3.1

was applied. The ensuing model to analyze was

wR
i (x) = wM

i (x, u∗) + wb
i (x) , wF

ir(x) = wR
i (x) + εir , ∀i ∈ I, r = 1, . . . , 7 , (3.11)

where x = (x1, . . . , x7) and u = (u1, u2) are input vectors (with u∗ the true value for

u); wM
i (x, u), wb

i (x), wR
i (x), wF

ir(x), εir are wavelet coefficients for the model run, for

the discrepancy, for reality, for the rth field run, and for the error process, respectively.

An additional complication in this example was that the inputs x for the field runs are

unknown; only their distributions are known (specified by the engineers in the study).

We used the following distributions to model wb
i and εir:

π(wb
i | τ 2

j(i)) ∼ N
(

0, τ 2
j(i)

)

, εir ∼ N(0, σ2
i ) ,

where j(i) is the resolution level of the ith wavelet basis. The σ2
i are given the usual

noninformative priors π(σ2
i ) ∝ 1/σ2

i . The prior for τ 2
j takes the form π(τ 2

j | {σ2
i }) ∝

(τ 2
j + 1

7
σ̄2

j )
−1, where σ̄2

j is the average of σ2
i for i at level j.
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3.3.2 The Motivation for Modularization

As discussed in Section 3.1, it was necessary to also model the emulators of the com-

puter model coefficients wM
i (x, u∗), using GASPs. In this analysis there were 289 such

coefficients, and including all 289 vectors of correlation coefficients in the full Bayesian

analysis is not feasible. Hence, and also for the reasons indicated in Section 3.2, we used

modularization; indeed, we simply plugged in the maximum likelihood estimates of the

correlation parameters based on only the model run data.

An MCMC was then run with this partially modularized model, but proved to have a

problem. A few (of the many hundreds) of parameters were not mixing well. For instance,

Figure 3 shows the trace plot for σ170; it is clear that this parameter is not mixing. (Note

that virtually all of the parameters were mixing well.)

The cause of the problem for σ170 was clear: it was stuck at large values and we had

been using, as a proposal distribution, the Inverse Gamma distribution arising from the

replicate data for the variance, and this was concentrated on small values. We realized,

however, that the problem was not really with the proposal distribution, but was with

the posterior itself; the modeling was faulty if it encouraged such large values of σ170.

The modularization solution to this problem was easy: simply generate the MCMC

samples of the variances only from the Inverse Gamma distributions arising from the

replications (as in the simplified setting of Section 2.2). Reasonable mixing of the MCMC

was then achieved, as observed from the traceplot of σ170 in Figure 3. The point of

the modularization was not, however, to achieve mixing of the MCMC but, rather, to

overcome the identified problem of the model suggesting inappropriately large values of

σ170. This will be a recurring theme: poor mixing in an MCMC may lead to a conclusion

that the modeling is inadequate and can be improved through modularization, but is not

itself a reason for modularization.

3.3.3 Improved Modeling

From a purist Bayesian position, the modularization solution is unsatisfying; one has

identified that the modeling is doing something wrong but, instead of identifying the

modeling flaw and changing the model, one applies a rather adhoc patch.

To further study this issue for the current paper, we investigated and eventually identi-

fied the modeling flaw: the assumption of normality of the wavelet coefficients was flawed

(at least at the wavelet level that contained σ170). It was not easy to discover this, since

the distribution of the estimated wavelet coefficients seemed quite compatible with nor-
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Figure 3: Trace plots for σ170 under full Bayesian analysis with the normal assump-
tion (top), modularized Bayesian analysis with the normal assumption (middle), and full
Bayesian analysis with the Cauchy assumption (bottom).
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mality, and we had no reason to think that an error in this hyper-distribution could so

strongly affect first-level model variances (for which there were a number of replications).

Indeed, it was not until construction of the simplified example in Section 2.2 that we

actually understood the modeling flaw and could see how to correct it, namely use more

flat-tailed distributions for the wavelet coefficients. (If we had not been investigating

modularization itself here, we would not likely have found this modeling error, and would

have had to content ourselves with the modularized answers.)

To verify that this was the modeling problem, we redid the analysis using what is

known to be a robust alternative to normality: we assumed that the wb
i at level j follow a

Cauchy distribution with scale parameter τ 2
j(i). Perhaps surprisingly, this model enhance-

ment does not greatly complicate the analysis, as discussed in Appendix C. And, indeed,

implementation of this robust model seemed to fix the problem; from Figure 3, we see

that σ170 now remains small, which also causes the mixing problem to disappear.

One might wonder if the modularization or improved modeling makes a difference

in the overall analysis of the study. Figure 4 gives the discrepancy functions estimated

under the three approaches, while Figure 5 gives the corresponding overall predictions

of reality. With full Bayesian analysis under the normal assumption, the discrepancy

is clearly shrunk too much towards 0 (see the related discussion in Section 2.2) and,

consequently, the computer model is not corrected appropriately, as evidenced in the top

panel of Figure 5. Under both modularization and the Cauchy model, the discrepancy is

estimated as being considerably larger and the prediction of reality is much more realistic.

The interesting difference between the modularized approach and use of the Cauchy

model is that the confidence bands for the latter are typically wider, for both the discrep-

ancy and the prediction of reality. More investigation would be required to clarify the

reason for this difference but it does, at least, provide a warning that modularization may

lead to an underestimate of variance.

3.4 Modularization of the Discrepancy Module

Dealing with the discrepancy function in computer modeling is quite challenging, in part

because there typically are not direct observations from the discrepancy process and, in

part, because the discrepancy is almost always seriously confounded with other unknowns

in the model. Modularization is thus routinely needed to deal with the discrepancy pro-

cess. This section explores several possible ways to institute modularization and illustrates

the possibilities with an example.
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Figure 4: Posterior mean of the discrepancy function with 90% confidence bands under full
Bayesian analysis with the normal assumption (top), modularized Bayesian analysis with
the normal assumption (middle), and full Bayesian analysis with the Cauchy assumption
(bottom). The solid black lines are the posterior mean and dashed black lines are the
90% confidence bands.
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Figure 5: Posterior mean of the prediction for reality with 90% confidence bands under full
Bayesian analysis with the normal assumption (top), modularized Bayesian analysis with
the normal assumption (middle), and full Bayesian analysis with the Cauchy assumption
(bottom). The solid black lines are the posterior means, the dashed black lines are the
90% confidence bands, the light grey lines are the 7 field runs, and the dark grey lines are
the posterior prediction at the nominal input.
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3.4.1 The Testbed Example and Original Analysis

The thermal challenge problem was studied in Liu et al. (2008). The computer model

itself is very simple: given an input vector x = (κ, ρ, q, L), it predicts the temperature of

a particular device at time t (t = 100, 200, . . . , 1000) as

yM(κ, ρ, L, q, t) = 25 +
qL

κ

[

κt/ρ

L2
+

1

3
−

6
∑

N=1

2

π2n2
exp

(

−
n2π2κt

L2ρ

)

]

.

Here, (κ, ρ) are physical properties varying from device to device; they are unknown in

physical experiments, and are assumed to have a common (informative) prior distribution.

The inputs (L, q) are controllable and are varied in both computer model runs and physical

experiments.

In this example, field observations, denoted by yF
i (L, q, t), are taken of a device at

configuration (L, q) and with the associated (unknown) physical properties equal to κi

and ρi. These observations have essentially zero measurement error. The computer model

discrepancy function should ideally also be a function of (L, q) and (κi, ρi), but having an

unknown discrepancy that itself depends on unknown parameters (κi, ρi) is a rather severe

overparameterization. Hence we make the simplifying assumption that the computer

model discrepancy function corresponding to the ith observation is of the form bi(L, q, t) =

b(L, q, t) + ei(t), where ei(t) is a “nugget” introduced to account for the unmodeled extra

variation. The overall statistical model being used to relate field observations to the

computer model is thus

yF
i (L, q, t) = yM(L, q, κi, ρi, t) + b(L, q, t) + ei(t) . (3.12)

As before, the prior distributions of b(L, q, t) and ei(t) are specified to be Gaussian

processes; the prior for b(L, q, t) is

b(·) ∼ GP
(

µb, τ
2corr (·, ·)

)

,

and the prior for ei(t) is GP (0, σ2ct(·, ·)), which is independent of b(·) and ej(·)(j 6= i).

The correlation function for the discrepancy is assumed to be separable,

corr (b(L, q, t), b(L∗, q∗, t)) = c ((L, q), (L∗, q∗)) × ct (t, t∗) ,
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with

c ((L, q), (L∗, q∗)) = exp
(

−β1|L − L∗|
2 − β2|q − q∗|

2
)

, ct (t, t∗) = exp
(

−β(t)|t − t∗|
α(t)
)

.

Note that we impose the same correlation structure for the time component of ei and

of b, allowing fast computation of the inverse of the correlation matrix through use of

Kronecker product simplifications (Bayarri et al., 2005b).

We first considered a full Bayesian analysis, which make draws of the discrepancy

correlation parameters θ(GP ) =
(

β1, β2, α
(t), β(t)

)

within an overall MCMC loop. The

Markov chain was not mixing well, however, as indicated by the trace plots and auto-

correlation plots for κ in Figure 6. The slow convergence rate was likely due to the

confounding between the unknown discrepancy and the unknown (κi, ρi) in (3.12).

Figure 6: Trace plots (left) and acf plots (right) for κ under the full Bayesian approach.

To try to reduce this confounding, we take the modular approach of trying to fix the

correlation parameters θ(GP ) at some reasonable values before running the MCMC over

the rest of the model. Again, the goal is not just to improve the computational mixing,

but to hopefully deal with model inadequacies through modularization. Confounding of

parameters is not itself a sign of model inadequacy, but confounding between modules of

the analysis can greatly increase the detrimental effects of model inadequacies (since the

confounding ensures that the different modules exert a strong influence on each other in

a full Bayesian analysis).
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3.4.2 Modularization Approaches

There are a variety of possible modularization schemes to fix the values of θ(GP ), and it

is not obvious which is best. Here we explore three intuitively natural modularization

schemes.

Modular approach 1. As suggested in Bayarri et al. (2007b), one can estimate the dis-

crepancy function by subtracting from the field data an estimate of the computer model

output,

b̂i(L, q, t) = yF
i (L, q, t) − yM(κ̂, ρ̂, L, q, t) ,

where κ̂ and ρ̂ are the prior means of the unknown device properties. One can then treat

the b̂i(L, q, t) as realizations from the Gaussian process with a nugget, and conduct an

initial Bayesian analysis to fix θ(GP ) at its posterior mean.

Modular approach 2. Sample the (κi, ρi) from their prior distributions, not their posterior

distributions. Then sample the remaining parameters (including the θ(GP )) from their

posteriors, conditional on the prior-generated values of the (κi, ρi). Finally, θ(GP ) is fixed

at its resulting posterior mean.

Modular approach 3. Initially assume that the discrepancy is zero, and obtain the resulting

posterior distribution for the (κi, ρi). (This would correspond to a standard ‘model-

tuning’ operation under the assumption that the model is correct.) Next, fix (κi, ρi) at

the resulting posterior means and operate as in in Approach 1 to obtain an estimate of

θ(GP ).

Figure 7 gives the trace plots and auto-correlation functions for κ when Modular

Approach 1 is used; the mixing has very much improved. The estimates of the θ(GP ) are

actually more or less the same as they were under the full Bayesian analysis (although

we were not sure it had converged), so there there may not have been any real modeling

problems with the full Bayesian analysis. In any case, the modularization has greatly

simplified the analysis and seems to provide essentially the same answers.

With Modular Approach 2, we observed that the the θ(GP ) were much more variable

than under the full Bayesian analysis or under Modular Approach 1. For example, the

95% credible interval for β1 under Modular Approach 2 is (1.20, 115.49), while the interval

is (1.56, 17.56) and (1.29, 36.86), respectively, for the full Bayesian analysis and Modular

Approach 1.

Modular Approach 3 appeared to overtune the parameters κ and ρ to best fit the data

in the initial step, leading to unrealistic estimates of the θ(GP ). This also resulted in bad
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estimates of the other parameters in the model. Finally, the mixing of the MCMC under

Modular Approach 3 did not seem to improve. Modular Approach 1 thus appears to be

the clear winner for practical use.

Figure 7: Left: trace plots for κ under Modular Approach 1; Right: acf plots for κ.

4 Discussion

4.1 Rationales for Modularization

Five possible reasons for modularization were given in the introduction. Here is our

current perspective on each (slightly rephrased), based on the examples considered in the

paper.

1. Keep a good module separate from a suspect module to avoid contamination: This

notion was encountered in several of the examples, and generally seems to be a

useful idea. Of course, improving the modeling of the suspect module would be

optimal, but there are many situations where this is not directly feasible, either

because the suspect module is hard to identify, or because it is unknown how to

improve the module.

2. Scientific understanding and development can require modularization: This is not nec-

essarily distinct from the above rationale, but it’s focus is different. Modularization
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can allow better individual development of modules, as in computer modeling when

there are ongoing efforts to improve the computer model (or, for that matter, to

improve the field data); the confounding that can occur from a poorly understood

discrepancy function can make improvement of these modules more difficult.

3. Identifiability concerns or confounding might require modularization: This is an issue

of a somewhat different character. The modeling in all modules can be perfectly

fine, and yet there may be unavoidable confounding of unknowns because of a lack of

identifiability. Ideally, one deals with such a situation either by obtaining data of a

new type that eliminates the confounding or specifying subjective prior distributions

that do so but, if such additional information is not available, there is no principled

solution.

If confounding occurs between parameters in different modules, there is increased

danger of having a poor module ‘contaminate’ a good module. Furthermore, if there

is confounding and the goal is overall prediction (as in overall prediction of reality

in computer modeling), rather than determination of the confounded parameters

themselves, it is often the case that fixing some of the confounded parameters at

reasonable values will not significantly affect the predictions. So, in situations where

there is significant confounding and some model inadequacy is possible, employing

modularization is arguably a reasonable practical strategy. Note that fixing some

parameters to eliminate confounding is not always wise; see Gustafson (2005).

4. Mixing of MCMC analyses can greatly improve under modularization: We have not

considered using modularization simply to fix a poorly mixing MCMC. Poorly mix-

ing MCMC’s are a possible sign of a modeling problem, but they also could simply

be a poorly constructed MCMC (or an unavoidably hard computational problem).

Ideally, any modularization designed to improve mixing should also be justified from

a modeling perspective.

5. The computation is not otherwise possible: This is the extreme of Reason 4 and, indeed,

deviations from ideal practice are unavoidable in such situations; modularization is

one of many simplifications that one might need to employ to obtain an answer.

Again, however, it is preferable to have auxiliary reasons for thinking that the

modularization might be reasonable, since the guarantees that come with a coherent

Bayesian analysis will no longer apply.
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4.2 Recommendations for Modularization in Computer Model-

ing

• Typically determine unknown parameters of an emulator of a computer model by

modularization, utilizing only the computer model runs to construct the emulator.

• When replications of field observations are available, modularize inference about

the error structure of field observations to the extent possible, by using only the

residuals in the inference.

• Modularizing the discrepancy function to the extent possible is important; there

are rarely direct observations on the discrepancy and the assumptions made about

the discrepancy are usually quite uncertain and yet can have a profound effect.

The modularization technique we have found most effective is to predetermine the

discrepancy GASP correlation parameters by

– utilizing ‘fake’ discrepancy observations obtained as the difference of field runs

and computer model runs (or emulator means) at the same input values, with

any unknown inputs in the computer model replaced by their posterior means;

– running a Bayesian (or maximum likelihood) analysis on these fake discrepancy

observations to obtain estimates of the correlation parameters.

Note that we do not predetermine the discrepancy function variance parameters

and, of course, in the overall analysis the unknown inputs are again allowed to vary.

Considerable confounding remains, therefore, and care must be taken to ensure

that the MCMC is constructed efficiently but, through the above modularization

techniques, enough of the less important parameters can be fixed to allow for a

feasible MCMC in spite of the remaining confounding.
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A Details from Section 2.2

For each i,

yij | bi, σ
2
i ∼ N(bi, σ

2
i ) , i.i.d. for j = 1, . . . n .

Reduction by sufficiency gives

ȳi | bi, σ
2
i ∼ N(bi,

σ2
i

n
), independent,

s2
i | σ2

i ∼ Ga(
n − 1

2
,

1

2σ2
i

), independent,

where ȳi =
∑n

j=1 yij/n, s2
i =

∑n
j=1(yij − ȳi)

2, and Ga is the Gamma density: Ga(x |

a, b) ∝ xa−1 exp{−bx}. Hence,

f(ȳ, b | τ 2, σ2) =

N
∏

i=1

f(ȳi | bi, σ
2
i )

N
∏

i=1

π(bi | τ 2) ,

and the (integrated) likelihood function for (τ 2, σ2) is:

L(τ 2, σ2; ȳ, s2) =

(
∫

f(ȳ, b | τ 2, σ2) d b

) N
∏

i=1

f(s2
i | σ2

i )

=

N
∏

i=1

N(ȳi | µi , τ
2 +

σ2
i

n
)

N
∏

i=1

Ga(s2
i |

n − 1

2
,

n

2σ2
i

)

∝
N
∏

i=1

(σ2
i )

−(n−1)/2 exp {−
ns2

i

2σ2
i

}
N
∏

i=1

1

(τ 2 + σ2
i /n)1/2

exp

(

−
ȳ2

i

2(τ 2 + σ2
i /n)

)

.

The posterior distribution in (2.3) is obtained as the product of the likelihood and the

priors π(σ2) and π(τ 2 | σ2).

B Details from Section 3.2

B.1 Prior Distributions

We use yF
ij to represent the jth field run at xF

i , and DF
2 = DF\

{

xF
1

}

to represent the

nested field design with n2 = 3 being the number of nested field design points. Finally, let

yM
1 = {yM(x) : x ∈ DM\DF

2 }; yM
2 = {yM(x) : x ∈ DF

2 }; yF
1 = {yF

ij : i = 1; j = 1, . . . , 7};

and yF
2 = {yF

ij : xi ∈ DF
2 and j = 1, . . . , 7}.
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We assign the Gaussian process in (3.9) as the prior for the computer model. Following

Santner et al. (2003) and Joseph (2006), we specify the correlation function as corr(x, x
′

) =

exp(−136.1(x − x
′

)2). Let θM denote the mean and precision parameter in the prior for

the computer model. Because of the limited design space for the field data (and only

three overlapping with model run design points), the discrepancies b(xi) at each design

point are simply modeled as i.i.d. N(0, 1/λb), rather than following a GASP. Note that

the true discrepancy function here is b(x) = exp(−1.4x) cos(7πx/2)[exp(−0.05/x) − 1].

To complete the Bayesian model, we must specify prior distributions for the unknown

parameters θ = (µM , λM , λe, λb). We use non-informative priors π(µM) ∝ 1, π(λM) ∝

λ−1
M , π(λe) ∝ λ−1

e , and π(λb | λe) ∝
(

λ−1
b + (nλe)

−1
)

−1
.

B.2 Posterior distributions

B.2.1 Posterior distribution under full Bayesian analysis

Write the likelihood as a product of the following three factors,

L(θ; Data) = f(yM | θM)f(yF
2 | θ, yM)f(yF

1 | θ, yM , yF
2 ) ,

where the first factor is

f(yM | θM) =
λ

m/2
M

(2π)m/2 | Σ |m/2
exp

(

−
λM

2
(yM − µM1m)

′

Σ−1(yM − µM1m)

)

,

with Σ being the correlation matrix of the computer model runs, (Σ)ij = exp(−136.1(xM
i −

xM
j )2).

The sufficient statistics, ȳF
i = 1

r

∑r
j=1 yF

ij and sF
i = 1

n

∑n
j=1(y

F
ij − ȳF

i )2, have distribu-

tions (after integrating out the discrepancies)

(ȳF
i | yM

i , θ) ∼ N(yM
i ,

1

λb
+

1

nλe
) , sF

i | θ ∼ Ga(
n − 1

2
,
nλe

2
) .

Given yM
2 , yF

2 is conditionally independent of yM
1 , and given yM , yF

1 is conditionally

independent of yF
2 . Therefore, the second factor in the likelihood is proportional to

∏

i:xF

i
∈DF

2

[

(

1

λb
+

1

nλe

)

−1/2

exp

(

−
(ȳF

i − yM(xF
i ))2

2( 1
λb

+ 1
nλe

)

)]

[

(λes
2
i )

(r−1)/2−1 exp(−
λens2

i

2
)

]

,
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and the third factor can be written as

∫

f(yF
1 | θ, yM(xF

1 ))f(yM(xF
1 ) | θ, yM)dyM(xF

1 ) ∝

(λes
2
1)

(r−1)/2−1 exp(−
λens2

1

2
)

(

1

λb
+

1

nλe
+

V̂ (xF
1 )

λM

)

−1/2

exp



−
(ȳF

1 − µ̂(xF
1 ))2

2
(

1
λb

+ 1
nλe

+
V̂ (xF

1 )

λM

)



 ,

where µ̂(x) and V̂ (x) are the mean and variance functions

µ̂(x) = µM + ρ
′

Σ−1(yM − µM1), V̂ (x) =
1

λM

(

1 − ρ
′

Σ−1ρ
)

, (2.13)

and ρ =
(

corr(x, xM
1 ), . . . , corr(x, xM

m )
)′

is the column vector of correlation functions be-

tween xF
1 and DM .

Combining the prior with the likelihood L(θ; Data) yields the posterior distribution

π(θ | Data) ∝ L(θ; Data)π(θ). MCMC techniques (cf. Robert and Casella (2002)) are

used to make draws from this posterior distribution; see Appendix B.3 for details. The

result of the MCMC is draws θ(i) = (µ
(i)
M , λ

(i)
M , λ

(i)
e , λ

(i)
b ), for i = 1, . . . , N . Additionally, at

iteration i, we make a draw from the emulator given under a full Bayesian analysis. This

can be done as follows. Given θ(i),







yM(x)

yM

ȳF
1






∼ N

(

µ
(i)
M 1m+2, Σ̃

(i)
)

,

where

Σ̃
(i)

=











1

λ
(i)
M

1

λ
(i)
M

ρ
′

(x, DM) 1

λ
(i)
M

ρ(x, xF
1 )

1

λ
(i)
M

ρ
′

(x, DM) 1

λ
(i)
M

Σ 1

λ
(i)
M

ρ(xF
1 , DM)

1

λ
(i)
M

ρ(x, xF
1 ) 1

λ
(i)
M

ρ(xF
1 , DM) 1

λ
(i)
M

+ 1

λ
(i)
b

+ 1

nλ
(i)
e











and ρ(x, DM) is a column vector with the ith element equal to corr(x, xM
i ) and ρ(x, xF

1 )

equal to corr(x, xF
1 ). As a result, we have π(yM(x) | θ(i), yM , yF ) ∼ N(E

(i)
x , V

(i)
x ), with

E(i)
x = µ

(i)
M +

1

λ
(i)
M

[ρ
′

(x, DM), ρ(x, xF
1 )](Σ̃

(i)
)−1

((

yM

ȳF
1

)

− µ
(i)
M 1

)

(2.14)

V (i)
x =

1

λ
(i)
M

−
1

λ
(i)
M

[ρ
′

(x, DM), ρ(x, xF
1 )](Σ̃

(i)
)−1[ρ

′

(x, DM), ρ(x, xF
1 )]

′

.
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B.2.2 Posterior distribution under modularization

Under modularization, the likelihood depends only on the computer model runs yM and

θM , and is thus simply f(yM | θM), the first factor arising in the likelihood under the full

Bayesian analysis. The posterior distribution for θM is π(θM | yM) ∝ f(yM | θM)π(θM).

Draws can be made from π(θM | yM) by Gibbs sampling (Gelfand and Smith, 1990).

Conditioning on λM ,

µM | λM , yM ∼ N
(

V −1
µ 1tΣ−1yM , Vµ = [λM1

′

Σ−11]−1
)

,

and conditioning on µM ,

λM | µM , yM ∼ IG
(

m/2, (yM − µM1)
′

Σ−1(yM − µM1)/2
)

.

Alternating draws from these two conditionals results in θM(i) = (µ
(i)
M , λ

(i)
M ), for i =

1, . . . , N . Additionally, at iteration i, we make a draw from the emulator given under

modularization, π(yM(x) | θM(i), yM), utilizing (2.13).

B.3 MCMC algorithm under the full Bayesian analysis

In this section, we describe a Gibbs sampling algorithm to make draws from π(θ | Data).

The full conditional distribution for µM is N(Eµ, Vµ) with

V −1
µ =

[

λM1
′

Σ−11 +
(

λ−1
M V̂ (xF

1 ) + λ−1
b + (rλe)

−1
)

−1

(1 − ρ
′

Σ−11)2

]

,

Eµ = Vµ

[

λM1tΣ−1yM +
(

λ−1
M V̂ (xF

1 ) + λ−1
b + (rλe)

−1
)

−1

(1 − ρ
′

Σ−11)
(

ȳF
1 − ρ

′

Σ−1yM
)

]

,

where µ̂(x), V̂ (x) are the mean and variance functions given by (2.13).

The full conditional distribution for λM , π(λM | µM , λb, λe, Data) can be written as

π(λM | µM , λb, λe, Data) ∝ λ
m/2−1
M exp

(

−
λM

2
(yM − µM1)

′

Σ−1(yM − µM1)

)

×f(ȳF
1 | θ, yM) ,

where ȳF
1 | θ, yM ∼ N(µ̂(xF

1 ), λ−1V̂ (xF
1 ) + λ−1

b + (rλe)
−1). Similarly, the full conditional
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distribution for λe is proportional to

λ(n2+1)(r/2−3/2)−1
e exp

(

−
λe

2

n
∑

i=1

rs2
i

)

×
∏

i:xi∈DF

2

f(ȳF
i − Y M(xF

i ) | θ) ,

where ȳF
i − Y M(xF

i ) | θ ∼ N(0, λ−1
b + (rλe)

−1), for xF
i ∈ DF

2 . Finally, the full conditional

distribution for λb is proportional to

(

λ−1
b + (rλe)

−1
)

−n2+1
exp



−
1

2(λ−1
b + (rλe)−1)

∑

i:xF

i
∈DF

2

(ȳF
i − Y M(xF

i ))2



×f(ȳF
1 | θ, yM) .

At the ith iteration, the Gibbs sampling algorithm proceeds as follows.

Step 1. Given λ
(i)
M , λ

(i)
b and λ

(i)
e , draw µ

(i+1)
M from N(E

(i)
µ , V

(i)
µ ).

Step 2. Given µ
(i+1)
M , λ

(i)
b and λ

(i)
e , propose λM from

Ga
(

m/2, (yM − µ(i+1)1)tΣ−1(yM − µ
(i+1)
M 1)/2

)

.

Calculate the acceptance ratio,

ρ = min

{

1,
f(ȳF

1 | µ
(i+1)
M , λ

(i)
b , λ

(i)
e , λM , yF , yM)

f(ȳF
1 | µ

(i+1)
M , λ

(i)
b , λ

(i)
e , λ

(i)
M , yF , yM)

}

.

Set λ
(i+1)
M equal to λM with probability ρ, and to λ

(i)
M with probability 1 − ρ.

Step 3. Given µ
(i+1)
M , λ

(i+1)
M and λ

(i)
b , propose a new value λe from

Ga



(n2 + 1)(r/2 − 3/2),
1

2

∑

i:xF

i
∈DF

2

rs2
i



 .

Calculate the acceptance ratio,

ρ = min

{

1,

∏

i:xi∈DF

2
f(ȳF

i − yM(xF
i ) | µ

(i+1)
M , λ

(i+1)
M , λe, λ

(i)
b )

∏

i:xi∈DF

2
f(ȳF

i − yM(xF
i ) | µ

(i+1)
M , λ

(i+1)
M , λ

(i)
e , λ

(i)
b )

}

.

Set λ
(i+1)
e equal to λe with probability ρ, and to λ

(i)
e with probability 1 − ρ.
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Step 4. Given µ
(i+1)
M , λ

(i+1)
M and λ

(i+1)
e , propose a new value of λb by first making a

draw from

IG



n2/2,
1

2

∑

i:xF

i
∈DF

2

(ȳF
i − yM(xF

i ))2



 .

Denoting this resulting draw by ig, we obtained a proposed value for λb by (ig −

(rλ
(i+1)
e )−1)−1. If this value is less than 0, propose another value for λb by repeating

the above process. Otherwise, calculate the acceptance ratio

ρ = min

{

1,
f(ȳF

1 | µ
(i+1)
M , λb, λ

(i+1)
e , λ

(i+1)
M , yF , yM)

f(ȳF
1 | µ

(i+1)
M , λ

(i)
b , λ

(i+1)
e , λ

(i+1)
M , yF , yM)

}

.

Set λ
(i+1)
b to λb with probability ρ, to λ

(i)
b with probability 1 − ρ.

To avoid highly correlated samples, we cycle within each step of Step 2-4 for 200

iterations before proceed to the next step.

C Analysis under the Cauchy model in Section 3.3

The computation for this example under the assumption of normality for the discrepancies

at each wavelet level and using modularization, was given in Bayarri et al. (2007a). This

algorithm can easily be modified to provide a full Bayesian analysis under the normality

assumption, and also a full Bayesian analysis under the assumption that the discrepancies

are Cauchy.

For full Bayesian analysis under normality, simply replace Step 1 in Appendix B of

Bayarri et al. (2007a) by the following Step 1b.

Step 1b: Propose σ2
i from the following distribution:

InverseGamma

(

3,
2

s2
i

) (

shape = 3, scale =
2

s2
i

)

.

Calculate the acceptance ratio by

ρ =
πpost(δ

h, uh, τ 2h, σ2 | D)

πpost(δ
h, uh, τ 2h, σ2h | D)

and define σ2(h+1) = σ2 with probability min(1, ρ); σ2(h+1) = σ2h otherwise.
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To make draws under the full Bayesian analysis with the Cauchy assumption, we first

represent the Cauchy distributions as mixtures of normal and Gamma distributions,

π(wb
i | τ 2

j(i)) ∼ N
(

0, τ 2
j(i)/λi

)

, π(λi) ∼ Gamma(1/2, 2) .

Then use Gibbs sampling to make draws from the posterior distribution. This results in

the following changes to the algorithm:

• Replace τh
j(i) by τh

j(i)/λ
h
i in (14), (17), and (18) of Bayarri et al. (2007a), and condition

on λh
i = {λh

i } in Steps 1-4 in Appendix B of that paper.

• Add one additional step within each iteration of the Gibbs sampling, to update λ

according to its full conditional posterior distribution

πpost

(

λi | wb, δ∗, u∗, σ2, τ 2, D
)

∝ exp

(

−
τ 2
j(i) + (wb

i )
2

2τ 2
j(i)

λi

)

.
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