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Abstract

Background: Structural analysis of biochemical networks is a growing field in bioinformatics and

systems biology. The availability of an increasing amount of biological data from molecular biological

networks promises a deeper understanding but confronts researchers with the problem of

combinatorial explosion. The amount of qualitative network data is growing much faster than the

amount of quantitative data, such as enzyme kinetics. In many cases it is even impossible to measure

quantitative data because of limitations of experimental methods, or for ethical reasons. Thus, a

huge amount of qualitative data, such as interaction data, is available, but it was not sufficiently used

for modeling purposes, until now. New approaches have been developed, but the complexity of

data often limits the application of many of the methods. Biochemical Petri nets make it possible to

explore static and dynamic qualitative system properties. One Petri net approach is model

validation based on the computation of the system's invariant properties, focusing on t-invariants.

T-invariants correspond to subnetworks, which describe the basic system behavior.

With increasing system complexity, the basic behavior can only be expressed by a huge number of

t-invariants. According to our validation criteria for biochemical Petri nets, the necessary

verification of the biological meaning, by interpreting each subnetwork (t-invariant) manually, is not

possible anymore. Thus, an automated, biologically meaningful classification would be helpful in

analyzing t-invariants, and supporting the understanding of the basic behavior of the considered

biological system.

Methods: Here, we introduce a new approach to automatically classify t-invariants to cope with

network complexity. We apply clustering techniques such as UPGMA, Complete Linkage, Single

Linkage, and Neighbor Joining in combination with different distance measures to get biologically

meaningful clusters (t-clusters), which can be interpreted as modules. To find the optimal number
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of t-clusters to consider for interpretation, the cluster validity measure, Silhouette Width, is

applied.

Results: We considered two different case studies as examples: a small signal transduction

pathway (pheromone response pathway in Saccharomyces cerevisiae) and a medium-sized gene

regulatory network (gene regulation of Duchenne muscular dystrophy). We automatically classified

the t-invariants into functionally distinct t-clusters, which could be interpreted biologically as

functional modules in the network. We found differences in the suitability of the various distance

measures as well as the clustering methods. In terms of a biologically meaningful classification of t-

invariants, the best results are obtained using the Tanimoto distance measure. Considering

clustering methods, the obtained results suggest that UPGMA and Complete Linkage are suitable

for clustering t-invariants with respect to the biological interpretability.

Conclusion: We propose a new approach for the biological classification of Petri net t-invariants

based on cluster analysis. Due to the biologically meaningful data reduction and structuring of

network processes, large sets of t-invariants can be evaluated, allowing for model validation of

qualitative biochemical Petri nets. This approach can also be applied to elementary mode analysis.

Background
Structural analysis of biochemical networks (i.e. meta-
bolic, signal transduction and gene regulatory networks)
is a growing field in bioinformatics, especially considering
the availability of nearly complete metabolic networks of
several organisms [1,2]. Elementary mode analysis [3],
extreme pathway analysis [4], and Petri net invariant anal-
ysis [5] are established methods to qualitatively analyze
biochemical network models. By giving insight into the
basic system behavior, these qualitative approaches can
be used to check a model for consistency and biologically
meaningful behavior, allowing for model validation. The
first two methods (elementary mode and extreme path-
way analysis) are predominantly applied to metabolic
networks [6,7], Petri net theory is additionally applied to
signal transduction [8-10] and gene regulatory networks
[9,11,12], and combinations of them [13-15]. A detailed
review of the use of Petri nets in systems biology is given
in the references [16,17], or [18].

Petri net theory is a mathematical formalism, enabling
formal and clear representation of biochemical networks
at different abstraction levels, as well as their structural
analysis. In contrast to the concepts of elementary modes
and extreme pathways, Petri nets additionally provide
analysis techniques for the computation of static and
dynamic network properties [19]. Other strong advan-
tages are the visual representation and animation facili-
ties, which support the intuitive comprehension of the
network and provide a useful communication platform
between theoreticians and experimentalists. Because of
these reasons, we use Petri nets for modeling biochemical
networks. All examples in this paper were developed as
Petri nets and validated using Petri nets techniques.

The concept of minimal non-negative t-invariants forms
the basis for validating biochemical Petri nets. A crucial
point in model validation [19,20], is that the net should
be covered by t-invariants, and that there should be no t-
invariant without a sensible biological meaning. When
addressing the second point, the exponentially growing
number of minimal invariants in large biochemical net-
works creates the need for additional concepts and tools,
as large numbers of invariants can no longer be handled
and interpreted manually.

Modularization techniques [21,22], which automatically
decompose complex networks into functional modules,
can be applied to facilitate the analysis and interpretation
of biochemical systems and their basic behavior. The
computation of maximal common transitions sets (MCT-
sets) [10], which can be read as functional units (i.e. units
with a distinct biological meaning), allows for the exami-
nation of t-invariants by decomposing a given network
into biologically meaningful modules.

A common approach to handling large data sets is cluster
analysis, a data mining technique used to group objects of
similar kind into respective subsets. Due to the identifica-
tion of relatively homogeneous subsets, the application of
clustering techniques results in a structured and reduced
data representation, facilitating the analysis and interpre-
tation of large data sets. To provide a biological analysis of
large numbers of elementary modes, Pérès et al. [23] elab-
orated a classification method of elementary modes called
aggregation around common motif (ACoM). By grouping
elementary modes into classes with similar substructures,
this method allows the interpretation of classes of ele-
mentary modes to find their biological meaning. To the
best of our knowledge, no clustering approaches in the
analysis of Petri nets existed until now. In this paper, we
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demonstrate how this novel application contributes to the
analysis of Petri net t-invariants. We introduce and discuss
the classification of t-invariants based on cluster analysis
by applying different clustering techniques and distance
measures to various sets of t-invariants of biochemical
Petri net models. After a short introduction to Petri nets
and the clustering techniques used, we illustrate and dis-
cuss the clustering results in two case studies: a small sig-
nal transduction pathway and a medium-sized gene
regulatory pathway.

Methods
Petri nets

A Petri net, N = (P, T, F, M0), is a directed bipartite graph
with two types of nodes, which are described by the finite
sets, P and T . Places, p ∈ P, drawn as circles, typically
model the passive part of the network, which in biochem-
ical Petri nets are the chemical compounds (e.g. metabo-
lites or complexes). Transitions, t ∈ T, drawn as rectangles,
generally stand for the active part (e.g. stoichiometric
chemical reactions, complex formation, de-/phosphoryla-
tion, de-/activation). The set, F, describes the directed arcs
between places and transitions and vice versa. In meta-
bolic networks, the arcs are weighted by the stoichiomet-
ric factors of the underlying stoichiometric reaction
equations, whereas in signal transduction and gene regu-
latory networks the arc weight is usually set to one at the
beginning of the modeling process [10,24], because no
stoichiometric equations exist. There are movable objects,
tokens, which are located on places. They usually corre-
spond to an amount (e.g. a mole) of the chemical com-
pound (e.g. a metabolite). The distribution of tokens over
the places is called a marking, M, representing a certain sys-
tem state. M0 describes the initial marking, before any
reaction took place. The movement of tokens is defined by

the firing rule. A transition can fire, or take place, if it is
enabled; that is, if the pre-places, also called pre-condi-
tions, carry at least as many tokens as indicated by the
weights of the transition's incoming arcs. This means that
as many tokens will be removed from the pre-places of the
transition as are indicated by the arc weights of its incom-
ing arcs, and as many tokens are put on the post-places as
are given by the arc weights of its outgoing arcs (Figure 1).
This firing rule is timeless and describes a discrete process.
Note that tokens can be produced within the system and
removed from the system.

Now, static and dynamic network properties can be com-
puted to analyze the system behavior. In the following, we
will focus on these properties, which are essential to our
analysis. For a more formal and detailed introduction to
Petri nets, see references [25-28], or [29]. We continue
with the introduction of system invariants, especially the
t-invariants [5], which form the basis for all further analy-
ses in this paper.

T-invariants

A Petri net's incidence matrix corresponds to the stoichio-
metric matrix in a metabolic network. The incidence
matrix comprises the change in token amount for each
place when a single transition of the whole network fires
(see Figure 2). Based on an incidence matrix, C, the linear
equation system, C · y = 0, can be formulated to calculate
the t-invariants, y. The t-invariants describe the system
behavior of the network, e.g. for metabolic networks in
the steady state. Only nontrivial, non-negative integer
solutions are of interest. Because the non-empty solution
space of such linear equation systems is infinite, we want
to get a minimal and favorably finite characterization of

A biochemical example for the Petri net firing ruleFigure 1
A biochemical example for the Petri net firing rule. The stoichiometric equation represents the conversion of glucose into eth-
anol, an alcoholic fermentation. The stoichiometric factors correspond to the arc weights in the Petri net. Figure 1a indicates 
the marking before the firing, whereas Figure 1b corresponds to the marking after the firing.
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all solutions. Thus, we are searching for minimal nontriv-
ial, non-negative integer solutions.

The elements corresponding to an invariant's non-zero
entries are called the support of this invariant. To get min-
imal invariants, the support of one invariant must not be
contained in another one, and the greatest common divi-
sor of all entries of the invariant vector is equal to 1. In the
following, we write t-invariants instead of minimal t-invar-
iants. The support of a vector (i.e. of a t-invariant) contains
the set of transitions with an entry greater than 0, without
any additional information, as, for example, the weight
for each transition in the t-invariant. Vectors, containing
frequencies of the elements, are called Parikh vectors (for
the formal definition see [53]), which are interpreted in
Petri net theory as a frequency vector of firing transitions.
The solution vectors of the linear equation system give
multisets of transitions, which can be interpreted in the
context of Petri nets as well as in a biological context.

The Petri net interpretation of t-invariants means that the
firing of transitions, indicated by the entries in the Parikh
vector formed by t-invariants, reproduces an arbitrary sys-

tem state, indicated by a token distribution. In biology,
the interpretation was introduced by Schuster et al. [3],
and represents the well-known concept of elementary
modes. The correspondence of elementary modes and
minimal t-invariants is given by their definitions. The con-
cept of elementary modes is described on the basis of a
finitely generated convex cone. Elementary modes repre-
sent solution vectors on the surface and in the interior of
this cone. The cone is polyhedral, and is given by the cor-
responding linear inequation system [30]. This concept
has mainly been applied to metabolic systems. Here, min-
imal t-invariants and elementary modes, respectively, are
interpreted as the minimal set of enzymes, which repre-
sent the chemical reactions or transitions, respectively,
which can operate at steady state. T-invariants have also
been used for analyzing signaling and gene regulatory net-
works [8,10,12]. Meanwhile, also elementary modes are
applied to the analysis of signaling pathways [31]. Please
note that in signal transduction and gene-regulatory net-
works generally no stoichiometric relations are known,
such that the invariant condition cannot be interpreted as
the steady state known in biology. Since the set of mini-
mal t-invariants is a generating system for the solution

An example of a Petri net with its incidence matrix, the corresponding linear equation system for the computation of t-invari-ants, and the resulting solution vectorsFigure 2
An example of a Petri net with its incidence matrix, the corresponding linear equation system for the computation of t-invari-
ants, and the resulting solution vectors.
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space, all solutions (not only the minimal t-invariants)
can be computed by a linear combination of the minimal
ones.

According to our validation criteria for biochemical Petri
nets [19,20], this also means that each transition must be
contained in one of the minimal t-invariants. This prop-
erty is called covered by t-invariants, or for short, CTI. T-
invariants define subnets, and minimal t-invariants define
self-contained subnets, which are always connected.
These subnetworks describe biological pathways in the
network, and each should be checked for its biological
meaning to validate the model. The occurrence of a bio-
logically senseless or unknown pathway can indicate a
modeling error or a new pathway detection, which can
induce further experiments. Unfortunately, the number of
t-invariants can grow exponentially. For larger and more
complex biochemical networks, the number of t-invari-
ants can be in the thousands or more. In this case, our
clustering approach can help to interpret these large sets
of t-invariants.

Pathways and subpathways

A pathway is a part of a biochemical network (i.e. a subnet-
work) with a special biological meaning. In graph theory,
it corresponds to a subgraph of the whole graph. A path-
way is not necessarily linear; it may contain branches and
joints. Well-known biochemical pathways are, for exam-
ple, the glycolytic pathway or the pentose phosphate
pathway. Consequently, a subpathway is again a part of a
pathway, but not necessarily related to a whole biological
functional unit.

Cluster analysis

Cluster analysis comprises a range of methods for classify-
ing multivariate data into subsets (clusters) based on sim-
ilarity. By partitioning heterogeneous data into relatively
homogeneous clusters, clustering can help to identify the
intrinsic grouping in the data set and to reveal the charac-
teristics of some structure in the data. In biology, cluster-
ing techniques are applied to many different fields of
study, such as ecology, zoology, and molecular biology
(e.g. gene expression analysis) [32,33]. A cluster analysis
can be seen as a three step process, encompassing the fol-
lowing main steps: (1) selection of a distance measure to
compute the distance between all pairs of objects, (2)
selection of a clustering algorithm to group the objects
based on the computed distances, and (3) selection of a
cluster validity measure to identify the optimal number of
clusters for interpretation. A detailed description of each
of these steps is given below.

Distance measures

To assess the similarity between two objects, oi and oj, it is
necessary, first, to describe the objects according to some

scheme and then choose an appropriate measure to com-
pare the description of the objects. A common method is
to describe the objects by the presence or absence of fea-
tures and to compute the similarity by comparing the
binary feature vectors, χi, χj, of the objects, {oi, oj}. In our
case, the objects considered are the t-invariants, and the
feature vectors correspond to the support vectors of these
invariants. The Tanimoto coefficient [34] has been chosen
as the similarity measure. Based on this coefficient, the
similarity between two t-invariants, ti and tj, is computed
as:

where a is the number of features present in both objects,
b is the number of features only present in object, i, and c
is the number of features only present in object, j. The
pair-wise similarity, sij, is transformed into a distance, dij

[35], by

dij = 1 - sij.

For the clarity of illustration, an example is given below:

Beside the Tanimoto coefficient, several other distance
measures (Simple Matching [34], Sum of Difference [34])
have been tested in preliminary investigations. Supported
by an external cluster validation (i.e. the evaluation of
clustering results based on the knowledge of the correct
classification of objects), the distance measures were vali-
dated and compared on the basis of various sets of t-invar-
iants from different types of biochemical Petri nets
describing metabolic, gene regulatory, and signal trans-
duction nets. In this paper, only the distance measure
showing the best results, the Tanimoto coefficient, is
applied to the data. A brief discussion of the other dis-
tance measures is given as additional material [see Addi-
tional file 1].

Clustering algorithms

Having obtained the distance between each pair of objects
in the data set, a hierarchical clustering algorithm is
applied, which successively merges the objects into binary
clusters resulting in an ordered sequence of partitions (i.e.
a hierarchical clustering tree or dendrogram). In the den-
drogram produced by the clustering algorithm the objects
are located at the leaves of the dendrogram, and similar
objects occur in proximate branches. The dendrogram can
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be cut at any level to yield different clustering, i.e. parti-
tions, of the data.

In this paper, three agglomerative hierarchical clustering
algorithms (UPGMA, Single Linkage, and Complete Link-
age) are applied. In general, an agglomerative clustering
algorithm starts with the finest partitioning (singleton
clusters), merging the two most similar clusters in each
iteration, until all clusters are joined in one cluster.
Agglomerative algorithms differ in the way the distance
between a pair of two clusters is determined. In UPGMA,
the distance between two clusters, Ci and Cj, is computed
as the average of distances, dij, of all possible pairs of
objects with i ∈ Ci and j ∈ Cj . In Single Linkage and Com-
plete Linkage, the distance between two clusters, Ci and Cj,
is the minimum of distances, dij, or maximum of dis-
tances, dij, respectively, of all possible pairs of objects with
i ∈ Ci and j ∈ Cj .

As a fourth method, the Neighbor Joining algorithm, a clus-
tering technique widely used for phylogenetic tree con-
struction, is implemented. The Neighbor Joining
algorithm, originally introduced by Saitou and Nei [36],
and modified by Studier and Keppler [37], successively
joins pairs of neighboring objects. To determine two
neighboring objects, the average distance of each object to
each other object is computed and subtracted from the
pairwise distance, dij, between the objects.

In this paper, the algorithm given by Saitou and Nei [36],
which generates an unrooted tree (in phylogeny inter-
preted as a tree with an unknown evolutionary ancestor),
has been modified to build a rooted tree, by assigning a
root node in between the two clusters remaining at the
end of the clustering process. For a detailed description of
clustering techniques, see e.g. [38]. Once the hierarchical
clustering tree has been built, we have to decide the most
suitable number of clusters.

Number of clusters

The prediction of the optimal number of clusters to con-
sider for interpretation, or the decision of where to cut the
hierarchical tree, is a fundamental problem in unsuper-
vised classification. To overcome this problem, various
cluster validity measures have been proposed to assess the
quality of a clustering partition (for review, see [39] and
[33]), thus helping to identify the number of clusters that
"best" represents the intrinsic grouping of the data. After
testing different validity measures (Silhouette Width [40],
Dunn- [41], Davies-Bouldin- [42], and C-index [43]) in pre-
liminary investigations, the measure showing the best
results, the Silhouette Width, is applied to the data. A brief
discussion of the other validity measures is given as addi-
tional material [see Additional file 2]. The Silhouette
Width for a clustering partition is computed as the average

Silhouette value over all data samples. The Silhouette
value, S, for an individual data sample, i, is defined as

where ai denotes the average distance between i and all the
data samples in the same cluster, and bi denotes the aver-
age distance between i and all data samples in the closest
other cluster (i.e. the cluster yielding the minimal bi). The
Silhouette Width is limited to the interval [-1,1] and
should be maximized. The shape of the Neighbor Joining
dendrogram does not permit the application of the pro-
posed cluster validity measures, as the cutting of the den-
drogram at a given hierarchical level does not always
result in a partition comprising the sum of all clustered
objects. Therefore, the optimal number of clusters for the
Neighbor Joining dendrograms is determined based on
visual inspection.

T-cluster

The proposed clustering approach results in clusters of t-
invariants, t-clusters for short. The set of transitions char-
acterizing a given t-cluster (i.e. those transitions that par-
ticipate exactly in all t-invariants of the t-cluster) define
subnets, which can overlap or even contain each other.
Due to their distinct biological meaning, these subnets
can be read as functional units. These modules, which are
defined by the resulting t-clusters, can be used for decom-
posing a network into biologically relevant functional
units. Transitions not contained in any of these modules
correspond to functional units, which characterize a sub-
set of t-invariants of a given t-cluster. In general, these
functional units correspond to trivial modules, i.e. mod-
ules consisting of only one transition.

Modeling and classification approach

The biochemical pathways used as case studies in this
paper are modeled as Petri nets and validated according to
Koch and Heiner [19]. In order not to describe the whole
modeling process we chose already published models
[10,24] and discuss the clustering results here. We con-
sider two different types of biochemical pathways, a signal
transduction and a gene regulatory pathway. The com-
puted t-invariants are clustered based on the Tanimoto
distance measure and the clustering methods UPGMA,
Single Linkage, Complete Linkage, and Neighbor Joining.
To determine the optimal number of t-clusters for inter-
pretation, the quality of all clustering partitions of a given
dendrogram is determined based on the Silhouette Width,
and the partitioning maximizing the validity measure is
chosen for interpretation. All models are given as addi-
tional material [see Additional file 3].

S i
bi ai

max bi ai
( )

( , )
,=

−
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Results and Discussion
Results

In the following, two well-investigated examples, a signal
transduction pathway and a gene regulatory pathway, are
given to demonstrate the usability of our approach. After
a short introduction to the biological background of each
pathway, the clustering results are presented and an eval-
uation of the applied clustering techniques is given.

Pheromone response pathway in yeast

Biological background

The pheromone response pathway of Saccharomyces cerevi-
siae (yeast) is one of the best understood signal transduc-
tion pathways in eukaryotes [44]. Two haploid yeast cells
of opposite mating types are able to mate and fuse into
one diploid cell. For this purpose, the response of one cell
to the presence of a cell of the opposite mating type is trig-
gered by a secreted peptide mating pheromone binding to
a cell surface receptor, which leads to a G protein trans-
mitted signal transduction. The resulting signal is then
transmitted and amplified through a mitogen-activated
protein (MAP) kinase cascade. A complete cellular
response ultimately includes induction or repression of
gene transcription, synchronization of the cell cycles (i.e.
an arrest in G1 phase), and, finally, the mating of the cells
and the fusion of their nuclei [45].

Petri net model

The Petri net model of the pheromone response pathway,
shown in Figure 3, consists of 48 transitions and is cov-
ered by 10 t-invariants. The composition of the t-invari-
ants based on the transitions is represented in Figure 4; a
table listing the transitions by their name and biological
meaning is given as additional material [see Additional
file 3]. For further information on the Petri net model the
reader is referred to Sackmann et al. [10].

Clustering results

The clustering results of all four methods are shown in Fig-
ure 5, with the optimal partition being indicated by the
Silhouette Width. Based on this validity measure, the set
of the 10 t-invariants is split into four t-clusters by all clus-
tering methods, each cluster containing the same t-invari-
ants across all methods. The composition of the t-
invariants belonging to one t-cluster is represented in Fig-
ure 4, with the set of transitions characterizing a given t-
cluster (i.e. those transitions, which participate exactly in
all t-invariants of the t-cluster) being highlighted. A graph-
ical representation as well as a biological interpretation of
each of these transition sets is given in Figure 3.

The transition sets shown in Figure 3 define subnets,
which can be assigned to a distinct biological meaning. By
representing biologically relevant functional units, these
subnets can be read as biological modules. With respect to

these biological modules (i.e. the common biological fea-
tures), the t-invariants belonging to one t-cluster are char-
acterized below:

t-cluster 1: t-invariant 1

common biological feature: receptor activation and compo-
sition

The t-invariant 1 includes the synthesis and activation of
the pheromone receptor. The activated receptor causes the
dissociation of the G-protein, whose subunits reassociate
to a trimeric form.

t-cluster 2: t-invariant 2

common biological feature: receptor activation and
(de)composition

The t-invariant 2 includes the synthesis and activation of
the pheromone receptor. The phosphorylation of the acti-
vated receptor leads to receptor endocytosis.

t-cluster 3: t-invariants 3, 4, 5, 6

common biological feature: MAP kinase cascade

The t-invariants 3 to 6 include the composition of the
MAP kinase cascade complex and the MAP kinase cascade.
Differences between the t-invariants originate from
actions taking place downstream of the cascade, which
either result in the degradation of the MAPK complex (t-
invariant 3 (t37, t38)); t-invariant 4 (t38, t39)), or in the
repression of a transcription factor (t-invariant 5 (t43), t-
invariant 6 (t40, t41)).

t-cluster 4: t-invariants 7, 8, 9, 10

common biological feature: pheromone response pathway
leading to cell mating

The t-invariants 7 to 10 include the complete pheromone
response pathway (activation and composition of the
pheromone receptor complex, MAP kinase cascade, tran-
scription factor activation, gene transcription, and cell
fusion) leading to a mating of the cell. Differences
between t-invariants primarily originate from positive and
negative feedback regulations, like the repression of tran-
scription factors (t42).

The obtained results show that the t-invariants belonging
to one t-cluster are significantly involved in the same bio-
logical processes. They are characterized by similar sub-
nets, which correspond to biologically relevant functional
modules (see Figure 3). Showing high intra-cluster homo-
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Pheromone response pathway in yeast: the Petri net modelFigure 3
Pheromone response pathway in yeast: the Petri net model. Tables listing the meaning of the places and transitions are given as 
additional material [see Additional file 3]. The t-invariants are graphically represented using the color code of the respective t-
clusters (see Figures 4 and 5). Transitions, which are only included in some of the t-invariants of a given t-cluster, are marked 
by colored numbers. These numbers correspond to the ID of those t-invariants in which the transition is included. The transi-
tions characterizing a given t-cluster (i.e. those transitions that participate exactly in all t-invariants of the t-cluster) are framed 
in the color of the respective t-cluster, and the biological meaning of each of these transition sets is denoted.
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Pheromone response pathway in yeast: the dendrogram of the clustering method UPGMA (distance measure: Tanimoto), with the optimal partition indicated by the cluster validity measure, Silhouette Width (SW)Figure 4
Pheromone response pathway in yeast: the dendrogram of the clustering method UPGMA (distance measure: Tanimoto), with 
the optimal partition indicated by the cluster validity measure, Silhouette Width (SW). The leaves of the dendrogram corre-
spond to t-invariants. The composition of the t-invariants, based on the transitions, is represented in the subjacent table. The 
transitions included in a given t-invariant are marked with an asterisk. T-invariants belonging to the same t-cluster, as indicated 
by the cluster validity measure, Silhouette Width, are of identical color. The transitions characterizing a given t-cluster (i.e. 
transitions that exactly participate in all t-invariants of the t-cluster) are framed in red.

SW
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geneity with respect to biological functionality, the com-
puted t-clusters can be considered as biologically

meaningful. Thus, all of the applied clustering techniques
lead to a meaningful classification of t-invariants.

Pheromone response pathway in yeast: the dendrograms of the clustering methods, UPGMA, Single Linkage, Complete Link-age, and Neighbor Joining (distance measure: Tanimoto)Figure 5
Pheromone response pathway in yeast: the dendrograms of the clustering methods, UPGMA, Single Linkage, Complete Link-
age, and Neighbor Joining (distance measure: Tanimoto). The leaves of a given dendrogram correspond to t-invariants charac-
terized by their respective t-invariant number. The optimal partition is indicated by the cluster validity measure, Silhouette 
Width (SW).
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(c) Complete Linkage
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As shown in Figure 3, the biological modules, characteriz-
ing the resulting t-clusters, can be used for decomposing
the Petri net model into biologically relevant subnets.

Gene regulation of Duchenne muscular dystrophy

Biological background

Duchenne muscular dystrophy (DMD) is one of the most
common inherited human neuromuscular diseases. The
disorder is caused by mutations in the dystrophin gene,
followed by the absence or functional impairment of the
protein. The network downstream of dystrophin, which
represents the pathomechanism of DMD, comprises dif-
ferent gene regulatory processes, such as the dystrophin-
glycoprotein-complex (DGC) downstream pathway. DGC
is formed in presence of the protein, dystrophin, which is
absent in DMD patients. The functional DGC results in a
reaction cascade, which finally phosphorylates the tran-
scription factor, NFATc. NFATc is dephosphorylated and,
consequently, activated by calcineurin. In turn, cal-
cineurin is positively regulated by the RAP2B-calcineurin
cascade (RAP2B downstream pathway). Activated NFATc
is able to enter the nucleus and to act as a transcription
factor for different genes, such as MYF5, UTRNA, and p21.
The cyclin-dependent kinase (CDK) inhibitor, p21, is a
negative regulator of the G1 to S progression in the cell
cycle. Therefore, it plays an important role in cell cycle
withdrawal and, consequently, in determining prolifera-
tion or differentiation [46].

Petri net model

The gene regulatory Petri net model of DMD is shown in
Figure 6. The net contains 88 transitions and is covered by
107 t-invariants. A table listing the transitions by their
name and biological meaning, is given as additional
material [see Additional file 3]. For further information
on the Petri net model the reader is referred to Grunwald
et al. [24].

Clustering results

Part of the clustering result using UPGMA is shown in Fig-
ure 7, with the optimal partition indicated by the Silhou-
ette Width. Based on this validity measure, the set of 107
t-invariants is split into 21 t-clusters. A table depicting the
composition of the t-invariants belonging to one t-cluster
is given as additional material [see Additional file 4]. The
set of transitions characterizing the t-invariants of a given
t-cluster are represented in Figure 6. A biological charac-
terization of the t-cluster-specific t-invariants is given
below:

t-cluster 1: t-invariant 36

initiation, down-regulation, and removal of calcineurin

t-cluster 2: t-invariant 5

initiation, up-regulation, and degradation of calcineurin

t-cluster 3: t-invariant 34

initiation of dystrophin, followed by generation of DGC
and simulation of DMD by DGC loss

t-cluster 4: t-invariant 37

initiation, up-/down-regulation of JNK1

t-cluster 5: t-invariants 40, 41

initiation and up-regulation of the gene CSNK1A1; the
protein CSNK1A1 activates p53, followed by p21 tran-
scription

t-cluster 6: t-invariants 38, 39

initiation and down-regulation of the gene CSNK1A1, the
protein CSNK1A1 activates p53, followed by p21 tran-
scription

t-cluster 7: t-invariants 100 – 107

regulated RAP2B downstream pathway, including Ca
release, which activates regulated NFATc, followed by a
transcription of MLC2, aActin, ANF, and deactivation of
NFATc in the nucleus by regulated CSNK1A1

t-cluster 8: t-invariants 48, 49, 51, 52, 54, 55, 57, 58

regulated RAP2B downstream pathway, including Ca
release, which activates regulated NFATc; no transcrip-
tional activity due to deactivation of NFATc in the cytosol
by regulated CSNK1A1

t-cluster 9: t-invariants 17, 19, 21, 23, 25, 27, 29, 31

regulated RAP2B downstream pathway, including Ca
release, which activates regulated NFATc, followed by
transcription of UTRNA, and deactivation of NFATc in the
nucleus by regulated CSNK1A1

t-cluster 10: t-invariants 74 – 77, 80 – 83, 86 – 89, 92 – 95

regulated RAP2B downstream pathway, including Ca
release, which activates regulated NFATc, followed by p21
transcription, and deactivation of NFATc in the nucleus by
regulated CSNK1A1

t-cluster 11: t-invariants 16, 18, 20, 22, 24, 26, 28, 30

regulated RAP2B downstream pathway, including Ca
release, which activates NFATc, followed by transcription
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The Petri net model of the gene regulation of Duchenne muscular dystrophyFigure 6
The Petri net model of the gene regulation of Duchenne muscular dystrophy. Tables listing the meaning of the places and tran-
sitions are given as additional material [see Additional file 3]. The transitions characterizing a given t-cluster (i.e. the transitions 
that participate exactly in all t-invariants of the t-cluster) are framed in the color code of the respective t-clusters.
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of MYF5, and deactivation of NFATc in the nucleus by reg-
ulated CSNK1A1

t-cluster 12: t-invariant 42

DGC downstream pathway, which activates up-regulated
JNK1, followed by a c-JUN phosphorylation dependent
p21 inhibition; regulated NFATc mediates p21 transcrip-
tion, followed by a degradation of NFATc in the nucleus

t-cluster 13: t-invariants 32, 33

DGC downstream pathway, which activates regulated
JNK1, followed by a c-JUN phosphorylation dependent
p21 inhibition; regulation of CSNK1A1, which activates
p53, followed by p21 transcription

t-cluster 14: t-invariants 8 – 15, 60 – 73, 78, 79, 84, 85,
90, 91, 50, 53, 56, 59, 96, 97, 98, 99

DGC downstream pathway, which activates regulated
JNK1; regulated RAP2B downstream pathway, which acti-
vates regulated NFATc, followed by (no) transcription,
and deactivation of NFATc in the nucleus by JNK1

t-cluster 15: t-invariant 35

initiation and down-regulation of NFATc

t-cluster 16: t-invariant 47

regulated NFATc mediates transcription of MLC2, aActin,
and AFN, followed by degradation of NFATc in the
nucleus

t-cluster 17: t-invariant 7

regulated NFATc mediates transcription of MYF5, fol-
lowed by degradation of NFATc in the nucleus

t-cluster 18: t-invariants 43, 44

regulated NFATc mediates p21 transcription, followed by
degradation of NFATc in the nucleus

t-cluster 19: t-invariant 6

regulated NFATc mediates transcription of UTRNA, fol-
lowed by degradation of NFATc in the nucleus

Gene regulation of the Duchenne muscular dystrophy: Dendrogram of the clustering method UPGMA (distance measure: Tan-imoto)Figure 7
Gene regulation of the Duchenne muscular dystrophy: Dendrogram of the clustering method UPGMA (distance measure: Tan-
imoto). The leaves of the dendrogram correspond to t-clusters characterized by their respective t-cluster number. Features 
characterizing a t-cluster are named at the respective arcs of the dendrogram. The optimal partition is indicated by the cluster 
validity measure Silhouette Width (SW).

1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
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t-cluster 20: t-invariants 4, 45, 46

CDK-dependent RB-E2F cell cycle pathway, resulting in
transcription of S-phase genes

t-cluster 21: t-invariants 1, 2, 3

RB-E2F cell cycle pathway, inhibited by CDK2-phosphor-
ylated E2F

In concordance with the results shown in the first case
study, the computed t-clusters are biologically meaning-
ful. The t-invariants belonging to one t-cluster are charac-
terized by similar subnetworks, which correspond to
biologically relevant functional units (see Figure 6). A dis-
tinct separation of t-invariants with respect to biological
functionality is shown in the dendrogram given in Figure
7. The t-invariants covering the RAP2B downstream path-
way (t-clusters 7 – 11, t-cluster 14), the DGC downstream
pathway (t-clusters 12 – 14), the NFATc initiation (t-clus-
ters 15 – 19), and the E2F-RB-complex generation (t-clus-
ters 20, 21) are well-discriminated, and a clear separation
concerning the transcriptional targets genes is given. Fur-
thermore, t-invariants representing pathways not covered
by any other t-invariant are assigned to singleton clusters
(t-cluster 1 – 4), indicating their particular role in the net-
work. Due to the high intra-cluster homogeneity in com-
bination with distinct inter-cluster separation, the
application of UPGMA leads to a biologically meaningful
classification of t-invariants.

With only minor differences, comparable results are
obtained using Complete Linkage and Neighbor Joining.
In contrast, the dendrogram based on Single Linkage is
characterized by a larger number of singleton t-clusters
(i.e. clusters containing only one t-invariant) with only
three t-clusters containing more than three t-invariants,
thus, resulting in a less distinct discrimination of the t-
invariants. The dendrograms, as well as a detailed descrip-
tion of the clustering results, using Single Linkage, Com-
plete Linkage, and Neighbor Joining, are given as
additional material [see Additional file 5].

In agreement with the network modularization shown in
the first case study, the plotting of the transition sets, char-
acterizing the computed t-clusters, leads to a valuable
decomposition of the Petri net model into biologically
relevant functional units (see Figure 6).

Discussion
Our approach aims to facilitate the model validation of
biochemical Petri nets. This validation is mainly based on
the assignment of a biological meaning to each of the t-
invariants. These t-invariants describe possible pathways
in the net. Thus, the biological interpretation of t-invari-

ants reflects the system behavior. Model validation of bio-
chemical networks, based on Petri net t-invariants, often
becomes unmanageable due to the huge number of t-
invariants in large biochemical networks, which can no
longer be evaluated manually.

The use of automatic modularization techniques [21,22],
which decomposes a complex network into functional
modules, facilitates the analysis of complex biological sys-
tems and their general behavior. The concept of MCT-sets,
introduced by Sackmann et al. [10], represents one possi-
ble way to decompose t-invariants into disjunctive sub-
networks, which can be interpreted as the smallest
biological building blocks. Another possibility is the clus-
tering of t-invariants, as described in this paper, which
generally results in overlapping subnetworks. This
method can be applied to large sets of t-invariants, with
the user having the ability to influence the complexity of
the evaluation by choosing a respective number of t-clus-
ters for interpretation.

Data mining techniques, such as cluster analysis, enable
the analysis of large sets of data, due to the identification
of relatively homogeneous subsets, resulting in a struc-
tured and reduced data representation. To investigate the
classification of biochemical Petri net t-invariants based
on cluster analysis, we have applied different distance
measures and clustering techniques to various sets of t-
invariants of biochemical Petri net models, using as exam-
ples, a small signal transduction pathway and a larger
gene regulatory pathway. To identify the optimal number
of t-clusters to consider for interpretation, different cluster
validity measures (Silhouette Width, Dunn-, Davies-Boul-
din-, and C-index) have been evaluated in preliminary
investigations, with the Silhouette Width offering the best
results with respect to the percentage of correct predic-
tions. The clustering techniques, UPGMA, Single Linkage,
Complete Linkage, and Neighbor Joining, have been
tested in combination with different distance measures
(Tanimoto, Simple Matching, Sum of Difference). With
respect to the biological interpretability, the best results
are obtained using the Tanimoto distance measure. In
combination with the Tanimoto coefficient, our results
suggest that the clustering techniques, UPGMA, Complete
Linkage, and Neighbor Joining are suitable for the cluster-
ing of t-invariants. All of the clustering results based on
these methods correspond to a biologically meaningful
classification of t-invariants in the example pathways. The
computed t-clusters comprise t-invariants, which are sig-
nificantly involved in the same biological processes.
While t-invariants characterized by similar subpathways
are grouped together, t-invariants, which correspond to
subpathways not covered by any other t-invariant, are
assigned to singleton clusters (e.g. Figure 7). These "out-
liers" have to be checked carefully with respect to biologi-
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cal functionality, as they might represent a modeling
error. In contrast to the clustering results obtained by
UPGMA, Complete Linkage, and Neighbor Joining, a
functionally indistinct classification is obtained using the
Single Linkage method (see e.g. the second case study).
Being subject to a chaining effect [47], the Single Linkage
algorithm has the tendency to produce straggling or elon-
gated clusters and is less eligible for the classification of t-
invariants. When dealing with large numbers of t-invari-
ants, Neighbor Joining is outperformed by UPGMA and
Complete Linkage due to its run-time complexity. On that
account, our results suggest that UPGMA and Complete
Linkage are the most appropriate methods for a biological
classification of t-invariants.

The set of transitions that characterizes a given t-cluster of
t-invariants can be interpreted as a biological module.
Similar to the MCT-sets, these modules are automatically
generated based on structural network properties only,
and can be assigned to a distinct biological meaning.
Whereas MCT-sets describe disjunctive subnetworks, t-
clusters can produce overlapping subnetworks. These
overlapping transitions can be interpreted as a set of com-
pounds (or enzymes for metabolic networks) that are
active in more than one functional module. By decompos-
ing a given network into biochemical subnetworks, our
approach demonstrates a biologically meaningful modu-
larization technique based on the clustering of t-invari-
ants.

Conclusion
This paper describes a new general approach for the
decomposition of large biochemical networks into func-
tional modules. This decomposition is based on Petri net
t-invariants, but can also be applied to elementary modes.
We have used different clustering techniques in combina-
tion with different distance measures and cluster validity
measures to classify t-invariants. The obtained results sug-
gest that UPGMA and Complete Linkage, in combination
with the Tanimoto distance measure, and the cluster
validity measure, Silhouette Width, are suitable for classi-
fying t-invariants into t-clusters that have a distinct bio-
logical meaning. T-invariants of a given t-cluster are
significantly involved in the same biological processes.
They are characterized by similar subnets, which corre-
spond to biologically relevant functional units. Our
approach leads to a biologically meaningful data reduc-
tion and structuring of the network. Thus, large sets of t-
invariants can be evaluated and interpreted, allowing for
model validation of biochemical systems.
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The Petri nets have been edited with the graphical Petri
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Wilmascope [51,52]. All programs are freely available.
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