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Abstract—Model predictive control (MPC) presents important
advantages in the control of the power converter and drives
such as, fast dynamic response and capability to include non-
linear constrains. These have positioned MPC as a powerful and
realistic control strategy, however, it also has disadvantages such
as variable switching frequency and parameter sensitivity. This
paper applied a modulated model predictive speed control that
guarantees a fix switching frequency and, thanks to disturbance
compensation, robustness to parameters variation. The strategy
is validated and compared to finite set model predictive speed
control through simulation results.

Index Terms—Model Predictive Control, variable speed drives,
dead-beat control.

I. INTRODUCTION

Finite set model predictive control (FS-MPC) has

positioned itself as a feasible strategy for many power

electronic systems [1]. FS-MPC’s principle consist in

predicting the behavior of the system based on the

mathematical model and selecting in a cost function the

future state of the power converter that achieves the best

performance. This is typically measured as reference tracking.

The capacity to include various control objectives and manage

non-lineal systems are attractive advantages, [2], [3]. That

is why FS-MPC has been successfully implemented in

several power converter topologies such as: neutral point

clamped converters [4], cascade H-bridge converters [5],

matrix converters [6], flying capacitors converters [7], three-

phase two-level inverter [2], multilevel converters [8] and

many others.

FS-MPC has been widely implemented in electrical drives,

[9], [10]. Typically, the model predictive control (MPC) is

used in the electrical sub-system, controlling the mechanical

subsystem usually with a linear controller [9], [11]. In recent

works full predictive speed control has been proposed [12]–

[15]. However, these works consider complex cost functions.

A simple full finite set model predictive speed control (FS-

MPSC) has been proposed in [16] for the control of a

permanent magnet synchronous machine (PMSM), achieving

successful results. Nevertheless, due to the FS-MPC nature, it

has a spread switching harmonic spectrum.

FS-MPC does not guaranteed the same number of

semiconductor commutation in a fixed period. For this reason,

PMSM

Fig. 1. Two level voltage source inverter (2L-VSI). (a) Power circuit; (b)
Voltage vectors.

its switching harmonic spectrum is spread. This entails, among

other problems, difficulties in filter and thermal design [17]. It

is for these reasons that different modulated model predictive

strategies have been proposed to achieve a fixed switching

frequency, [18]–[21].

This paper proposes a modulated model predictive speed

control (MMPSC). The proposed control strategy achieves a

good dynamic and steady-state behavior, with a fix switching

frequency, without weighting factors and without steady-state

speed tracking error.

II. DRIVE MODEL

The proposed modulated model predictive control strategy

is implemented for a permanent-magnet synchronous machine

(PMSM) fed by a two-level voltage source inverter (2L-VSI).

This section presents the mathematical model of the 2L-VSI

and the PMSM.

A. Power Converter

The converter generates the voltage to feed the stator

terminals of the machine, as shown in Fig. 1(a). The 2L-

VSI generates eight voltage vectors, six active vectors and

two zero vectors, as it is shown in Fig. 1(b). At any instant of

time, the voltage vector of the power converter in a stationary

αβ-frame are,

vsαβ
= Vdc ·

2

3

[

1 ej
2π
3 ej

4π
3

]

· S, (1)



Fig. 2. Scheme of Modulated Model Predictive Speed Control of a PMSM.

where Vdc is the dc-link voltage and S = [Sa Sb Sc]
T are the

switching state of the converter.

Then, the power converter voltage in a synchronous dq-

frame oriented with the rotor angle θr of the PMSM is,

vs = vsαβ
· e−jθr . (2)

B. Permanent Magnet Synchronous Machine

The model of the PMSM in a synchronous dq-frame

oriented with the rotor position angle θr is the following,

ẋ = f(x,u), (3)

where,

f(·) =
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and,

x = [isd isq ωr θr]
T ,

u = [vsd vsq]
T .

The parameters of the machine are Rs stator resistor, Ls stator

inductance, ψm the magnitude of the flux generated by the

rotor magnet, p number of pole pairs, Jm inertia and Bm the

friction of the machine. The values of these parameters are

shown in the Table I.

III. PROPOSED CONTROL STRATEGY

The proposed control strategy takes the FS-MPSC concept

[16], where a full predictive speed control is achieved, and

tries to solve the problem of spread switching harmonic

spectrum and ripple using a modulated model predictive

control. The control strategy scheme is presented in Fig. 2.

This is composed by three main stages:

• Outer control loop: it corresponds to the control of the

mechanical subsystem of the machine. The objective

is to achieve a good tracking of the speed reference.

For that, this control loop used the mechanical model

to determinate an adequate quadrature stator current

reference. Because the mechanical model requires the

load torque for an accurate estimation of the speed, a

Kalman filter is uses as disturbance observer for torque

estimation.

• Inner control loop: this stage achieves the control of

the currents in the electrical subsystem. In this case,

the proposed control strategy uses a cost function to

determinate the two active vectors whit minimum current

error. These vectors will be used in the next modulation

stage.

• Modulation control: it receives the two active vectors

previously calculated and, by solving a system of

equations, determines the duration for these two active

vectors and the zero vector that must be applied to

achieve the control objective.

The stages mentioned above will be described in more detail

below.

A. Outer Control Loop

This outer loop uses a predictive dead-beat control to

establish a quadrature stator current reference starting from the

mechanical equation. The following equation is considered:

Jm
dωm

dt
= Te − TL −Bmωm, (5)

where ωm is the mechanical speed, Te is the electrical torque

of the PMSM and TL is the load torque. Considering that the

electrical torque of the PMSM is,

Te =
3

2
pψm · isq, (6)

and solving for the speed derivative:

dωm

dt
=

3

2Jm
pψm · isq −

1

Jm
TL −

Bm

Jm
ωm. (7)

The second order derivative of the speed is obtained by

derivation of equation (7),

d2ωm

dt2
=

3

2Jm
pψm

disq

dt
−

1

Jm

dTL

dt
−
Bm

Jm

dωm

dt
. (8)



The second order Taylor discretization of the mechanical

speed is then:

ωk+1
m = ωkm + Tsω · ω̇m

∣

∣

k
+
T 2
sω

2
· ω̈m

∣

∣

k
, (9)

where the Tsω is the downsampling period of the outer control

loop. The derivative of the quadrature stator current in (8) is

discretized with the forward-Euler method:

disq

dt
=
ik+1
sq − iksq

Tsω
. (10)

Then, using equations (7), (8) and (10) in equation (9) and

considering ωk+1
m = ω∗ and ik+1

sq = i∗sq , where ω∗ and i∗sq
are the speed and quadrature current references respectively,

and that the load torque is invariant in a sampling time, it is

possible to solve equation (9) in order to obtain a quadrature

stator current reference:
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1
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(2J2
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2
sωω
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2
sw),

(11)

where KT = 3p2ψm

2Jm
.

The reference obtained in (11) is used as input in the inner

control loop. Equation (11) needs an estimation of the load

torque T̂L to be calculated. For this reason a Kalman filter is

used as a disturbance observer to estimate the load torque TL.

More details of the KF implementations have been reported

by the authors in [16].

B. Inner Control Loop

The inner control loop corresponds to the electrical

subsystem of the PMSM. Due to the discrete nature of the

control platform, a discrete model of the PMSM, delivered

in (3)-(4), is presented below using a second order Taylor

discretization,

x
k+1 = x

k + Ts · ẋ
∣

∣

k
+
T 2
s

2
· ẍ

∣

∣

k
, (12)

where the second derivative of the state vector is obtained as,

ẍ = ḟ(x,u), (13)

and where Ts is sampling period of the inner control loop.

First, the system’s response is predicted for each of the

voltage vectors in the finite set of vectors produced by the

power converter, assuming application of each vector for a

complete sampling period Ts. The current error produced

is evaluated by the quadratic cost function (14), in which

the objective is a current reference tracking in dq-frame.

The active vector that minimizes the error (vopt) and the

active vector that produces the second smallest error (v′opt)

are identified. It must be noted that vopt and v′opt are always

adjacent vectors.

g(vs,i) = E2
d(vs,i) + E2

q (vs,i), (14)

with,

Ed(vs,i) = i∗d − i
p
d(vs,i), (15)

Eq(vs,i) = i∗q − ipq(vs,i), (16)

where i∗d and i∗q are the direct and quadrature current

references, respectively. vs,i is the voltage vector of the 2L-

VSI, with i ∈ {0, . . . , 7}. i
p
d(vs,i) and ipq(vs,i) are the direct

and quadrature current predictions based on the load model,

respectively.

C. Modulated Model Predictive Control

The two active vectors vopt, v
′

opt with zero vector v0 are

used to synthesize the optimal voltage actuation for the next

sampling period time. By modulating between these three

voltage vectors, the current error can be made to average zero

in a single sampling period, [14]. Then, the problem is reduced

to obtaining the three times for which each of the respective

three voltage vectors must be applied to average zero current

error, τj with j ∈ {0, 1, 2}. For this, the following system of

equations must be solved,


















































2
∑

j=0

τj · Ed,j = 0,

2
∑

j=0

τj · Eq,j = 0,

2
∑

j=0

τj = Ts,

(17)

where Ed,j and Eq,j are the errors in the d and q axis as

defined in (15) and (16), produced by the zero vector (v0),

the optimum vector (vopt) and the second optimum vector

(v′opt), as obtained with the cost function (14).

Solving (17), the three times are obtained:

τ0 = Ts
Ed,1Eq,2 − Ed,2Eq,1

D
, (18)

τ1 = Ts
Ed,2Eq,0 − Ed,0Eq,2

D
, (19)

τ2 = Ts
Ed,0Eq,1 − Ed,1Eq,0

D
, (20)

where,

D =Ed,0Eq,1 − Ed,1Eq,0 − Ed,0Eq,2 + Ed,2Eq,0

+ Ed,1Eq,2 − Ed,2Eq,1.
(21)

Where sub-indexes 0, 1 and 2 refere to the zero vector (v0)

and to the optimum vector (vopt) and the second optimum

vector (v′opt ) found optimizing the value of the cost function

(14).

IV. SIMULATION RESULTS

The simulations of this work were performed using the

software PLECS. The parameters of the permanent-magnet

synchronous machine used are presented in Table I. The inner

control loop of the modulated model predictive speed control

runs at a sampling time of Ts = 50[µs], while the outer speed

loop it is subsampled by a factor of eight, i.e. Tsω = 400[µs].
The pulse-width modulation (PWM) has a carrier frequency
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Fig. 3. Steady-state condition: (a)-(e) Motor speed ω and reference speed ω∗; (b)-(f) Quadrature stator current isq and reference quadrature stator current
i∗sq ; (c)-(g) Direct stator current isd and reference direct stator current i∗

sd
; (c)-(h) Phase-a stator current isa.

TABLE I
PARAMETERS

Parameter Value Unit

Rs 0.369 [Ω]
Ls 2.4 [mH]
ψm 0.129 [Wb]

Jm 1.916 · 10−3 [Kg ·m2]

Bm 4.64 · 10−3 [ Nm ·

rad
s

]

p 5

of fsw=10 kHz. The proposed method is compared to the

related finite-set model predictive speed control (FS-MPSC)

as previously proposed in [16]. In this case, the inner FS-

MPSC current loop runs at Ts = 17[µs].

The steady-state behavior of the proposed control scheme

is presented in Fig. 3. The steady-state condition considers a

nominal reference speed and 90 % of the load torque. The

results of the proposed method are the ones on the right,

while FS-MPSC results are the ones on the left. The proposed

method has an excellent tracking of the reference speed,

without an observable ripple and stationary error, as shown

in Fig. 3(e). The current control of this method (Fig. 3(f)

and Fig. 3(g)) also has good performance. The phase-a stator

current has sinusoidal-waveform without distortion. FS-MPSC

results, shown on the right, also achieve the speed control

objectives, however, they have significant ripple around their

current references. This produce a distortion in the phase-a

stator current, as it is shown Fig. 3(d).

Fig. 4 shows the performance of the current tracking in αβ-

frame for both methods. The result for the proposed MMPSC

is shown in Fig. 4(b), where its excellent performance is

evident. Fig. 4(a) presents the behavior of the FS-MPSC, the

method achieves the a current with average value tracking the

reference,, however, its performance has an evident a large

switching ripple.

The harmonic spectrum of phase-a stator current is

presented in Fig. 5. Fig. 5(b) shows the spectrum of the

MMPSC strategy, where concentrated spectral lines around

of carrier frequency (fsw=10kHz) and its multiples are

observable. The spectrum for the FS-MPSC method is

presented in Fig. 5(a). This shows a switching harmonic

spectrum that is distributed, which is typical of FS-MPC

strategies. The total harmonic distortion (THD) for MMPSC

is only 3.2%, while the THD of the FS-MPSC is 23.1%.

The dynamic behavior for the proposed control method

is evaluated in a speed reversal from the nominal speed

to negative nominal speed with a constant load torque of

90% applied all the time. The speed control shows good

reference tracking, as it is shown in Fig. 6(e). Notable is

that MMPSC achieves the negative reference speed at the
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Fig. 4. Current behavior in αβ-frame: (a) Finite-set model predictive speed
control; (b) Modulated model predictive speed control.

same time than FS-MPSC (Fig. 6(a)), demonstrating its fast-

dynamic response. Respect to the current control variables,

the proposed method shows a clear performance advantage

at all the time, with minimum ripple and no low frequency

oscillations.

V. CONCLUSIONS

This paper presented a modulated model predictive speed

control for a permanent-magnet synchronous machine. The

method used a finite-set model predictive control principle to

identified the optimal voltage vectors to be applied but uses

PWM modulation to achieve zero average current error within

one modulation period.

The control strategy proposed achieves fixed switching

frequency, no steady-state speed error thanks to the use of

a load torque observer and fast dynamic response due to the

predictive model nature.

Simulation results have been presented to validate the

proposed strategy. The steady-state performance is excellent,

with minimum switching ripple, characteristic of PWM

converter and without low frequency distortion or steady state

error, obtaining a sinusoidal-waveform of the stator current

Fig. 5. Harmonic spectrum of stator current isa of: (a) Finite-set model
predictive speed control; (b) Modulated model predictive speed control.

with a total harmonic distortion of the 3.2 %. The most

important result is that the speed dynamic response achieves

the same performance previously reported FS-MPC strategies,

but without their well documented disadvantages in terms of

current switching ripple.
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