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Abstract

In recent years, the advent of high-throughput assays, coupled with their diminishing cost, has facilitated a systems
approach to biology. As a consequence, massive amounts of data are currently being generated, requiring efficient
methodology aimed at the reduction of scale. Whole-genome transcriptional profiling is a standard component of systems-
level analyses, and to reduce scale and improve inference clustering genes is common. Since clustering is often the first step
toward generating hypotheses, cluster quality is critical. Conversely, because the validation of cluster-driven hypotheses is
indirect, it is critical that quality clusters not be obtained by subjective means. In this paper, we present a new objective-
based clustering method and demonstrate that it yields high-quality results. Our method, modulated modularity clustering
(MMC), seeks community structure in graphical data. MMC modulates the connection strengths of edges in a weighted
graph to maximize an objective function (called modularity) that quantifies community structure. The result of this
maximization is a clustering through which tightly-connected groups of vertices emerge. Our application is to systems
genetics, and we quantitatively compare MMC both to the hierarchical clustering method most commonly employed and to
three popular spectral clustering approaches. We further validate MMC through analyses of human and Drosophila
melanogaster expression data, demonstrating that the clusters we obtain are biologically meaningful. We show MMC to be
effective and suitable to applications of large scale. In light of these features, we advocate MMC as a standard tool for
exploration and hypothesis generation.
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Introduction

With the diminishing cost of high-throughput biological assays,

the generation of large and multifaceted datasets has become

commonplace. Scale, once limiting, is now a feature to be

exploited, and researchers have recognized implications beyond

an increased sample size. The classical reductionist approach to

biology, and to genetics in particular, has begun to cede ground to

a systems view in which complex interactions supplant single loci

as the units of study. Today, systems genetic approaches integrate

classical methods with transcriptional profiling and other modern

assays to make inference at the network level [1]. However, while

early successes have illuminated networks of genes responsible for

complex traits and human disease, the underlying inference is

inherently challenging [2,3,4]. Networks expand the scope of

traditional analysis dramatically: 10,000 genes become 100 million

gene pairs that may interact to varying degrees, and this is before

considering directionality or higher-order relationships. Thus,

scale has become an issue once again, only now the limitation is

computational. A second issue is validation; experimentally testing

systems hypotheses is difficult at best, and often validation comes

indirectly through multiple forms of corroborating evidence. While

it is necessary to manage scale and desirable to facilitate validation,

simultaneously addressing these concerns is precarious. It is

customary to partition the genes entering a systems genetic

analysis into clusters destined for independent interrogation

[5,6,7,8]. Incorporating subjective criteria into this clustering step

is natural, but when the rubric is indirect validation, there is a

danger of facilitating a hypothesis that is falsely self-fulfilling.

This study is motivated by the dual issues of scale and

subjectivity. We consider the problem of clustering similar

transcriptional profiles and propose an approach that is both

effective and automatic. Our method, modulated modularity clustering

(MMC), is explicitly designed to elicit latent structure (i.e.

communities) from weighted graphs, and we demonstrate that

the communities identified by MMC are predictive of coherent

transcriptional modules. Moreover, the approach we describe is

objective-based and self-consistent: the complete clustering is

identified by maximizing a single measure of community structure

over all possible gene partitions, with no interference from tuning

parameters or external validation. As a prelude to applications, we

begin with a discussion of community structure, of the measure

used by MMC to quantify it, and of the methodology from which

that measure is derived.

The goal of clustering is to classify objects into some number of

groups such that objects within a group are similar while objects in

different groups are not [9]. The idea of community structure is

related, except that similarity is described by the edges connecting

vertices in a graph. Newman [10] describes community structure

in a network as a statistically surprising arrangement of edges.
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Thus, a community is a cluster of objects (vertices) whose

aggregate similarity (edge set) exceeds random expectation.

Likewise, genes that comprise a community feature transcriptional

profiles that are in aggregate surprisingly correlated. The idea of

clustering transcriptional profiles is not new [11,12], nor is the idea

of interrogating such data for community structure [13,14]. What

distinguishes our approach is its ability to resolve meaningful

community structure in the face of heterogeneous similarity

measured on a continuous scale; the precise scenario that results

from computing correlations between transcriptional profiles.

MMC uses the concept of modularity [15] to quantify

community structure. Defined for an unweighted graph, the

modularity of any partition (clustering) measures the difference

between the total number of edges connecting vertices that share a

cluster and what would be expected in an equivalent graph with

edges placed at random [10,15,16]. Thus, when modularity is

greater than zero, the similarity between clustered vertices exceeds

random expectation, which is an intuitively desirable quality for a

clustering to have. Unfortunately, intuition breaks down when the

edges of a graph are weighted. In this case, the partition of

maximum modularity may not be that which is most desirable, as

edge weight heterogeneity can yield trivial clusters dominated by a

handful of extreme values. MMC addresses this, but we are not the

first to propose a solution; in [17], a rank-based transformation is

applied to the edges, resulting in an unweighted graph where only

the most strongly connected vertex pairs remain connected.

Clearly this discards a great deal of useful information, but more

importantly, undesirable properties emerge. Such is the case in the

graph of Figure 1A, which shows ten vertices connected by edges

that are either strong (thick lines), weak (thin lines), or nonexistent.

Visual inspection clearly indicates two clusters ( {1,2,3,4} and

{5,6,7,8,9,10}), but this grouping is invisible to the rank-based

approach of [17]. By contrast, MMC is able to elicit this

community structure, both in Figure 1A where the distinction

between edge weights is dramatic and in Figure 1B where that

distinction is subtle.

The idea of MMC is to modulate the spectrum of edge weights

parametrically by means of a nonlinear transformation. Visually,

Figure 1B becomes Figure 1A for the purposes of detecting

community structure, with the result that even subtle communities

are revealed. Analytically, MMC includes an additional parameter

s into the modularity objective function (see Materials and

Methods), and the joint maximum over all partitions P and values

of s is sought. It is clear that the optimal partition changes as s

varies: in the graph of Figure 1B, for example, modularity dictates

that there is no community structure when s is large, whereas

when s is small, the two clusters so prominent in Figure 1A

emerge. Because the modularity obtained when s is small is

greater than that obtained when s is large, MMC clusters the

vertices into {1,2,3,4} and {5,6,7,8,9,10} rather than report that

no community structure was found.

In what follows, we generate a small example dataset and use it

to illustrate the method of MMC step by step. We then

demonstrate the performance of MMC on both real and simulated

data, and in the process make direct comparisons with hierarchical

clustering and three graph-based spectral methods. Though MMC

perceives data as graphical, our discussion is presented in terms of

matrices. Specifically, each weighted graph can be represented by

an affinity matrix whose rows and columns represent vertices and

whose entries are the edge weights between vertex pairs. Thus, the

graphs indexed by s that MMC considers can also be viewed as a

parametric family of affinity matrices, and each of these matrices

can be illustrated succinctly. As an example, consider what is

shown in Figures 1C and 1D. Here the graphs from Figures 1A

and 1B, respectively, have been illustrated as affinity matrices, with

grayscale used to emulate line thickness. In this scheme, it is clear

that contrast can either reveal or obscure the pattern. By analogy,

it is useful to consider each of the forthcoming results as structure

that manifests once MMC has determined the optimal level of

contrast.

Results

The nature of clustering is such that it is difficult to make

objective comparisons between methodologies. Thus, in this

section we have chosen to focus mainly on demonstrating the

effectiveness of MMC as a tool for biological inference. We first

illustrate the method on a small simulated dataset for which it can

be argued that a ‘‘correct’’ clustering exists. In this case, we do

quantitatively compare MMC’s performance to that of four other

clustering methods. We then turn to two biological examples,

demonstrating how MMC can be used to predict coherent

transcriptional modules both from the gene expression profiles of

40 wild-derived, inbred lines of Drosophila melanogaster and from

1,240 individual expression profiles obtained from human blood

samples. Here we cannot say what is correct, but we provide

multiple sources of external biological evidence that link the

transcripts assigned to a cluster.

Modulated Modularity Clustering by Example
We begin with a simulated dataset composed of nine

observations drawn from a 12-dimensional multivariate Normal

distribution whose variance-covariance matrix includes four

correlated components (shown in Figure 2). These dimensions

were chosen both for ease of illustration and so that an exhaustive

search for the optimal clustering was feasible (as shown in

Figure 3C). Figure 3 depicts the flow of our simulated data through

MMC, beginning with a depiction of the raw data matrix as input

in Figure 3A. As shown in Figure 3B, the data are interpreted from

their 12612 matrix of pairwise Pearson product-moment

correlations between variables. Here and in subsequent figures

we rely on a heat map to visualize the range of values from 21 to

Author Summary

Systems genetic approaches integrate classical methods
with transcriptional profiling and other modern assays to
make inference at the network level. It is customary to
partition the genes entering such an analysis into clusters
destined for independent interrogation, but there is a
danger of facilitating a hypothesis that is falsely self-
fulfilling. Motivated by the dual issues of scale and
subjectivity, we present a new clustering method designed
to elicit transcriptional modules from gene expression
profiles that is both effective and automatic. Modulated
modularity clustering (MMC) seeks community structure in
graphical data—in this case, a graph of genes connected
by edges whose weights reflect the degree to which
transcriptional profiles correlate. MMC modifies this graph
to make communities stand out and returns the clustering
that describes this community structure. We begin with a
numerical study to show that MMC is able to recover
community structure from simulated data. We then
demonstrate similar success on biological data by obtain-
ing human and Drosophila gene clusters that, in each case,
are intuitive and biologically meaningful. We advocate the
use of MMC as an exploratory tool for functional genomic
inference. A Web server for MMC is available at http://
mmc.gnets.ncsu.edu.

Modulated Modularity Clustering
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+1; the colors range from dark red (+1, perfect correlation)

through green (0, no correlation) to dark blue (21, perfect anti-

correlation). In MMC, the correlation matrix from Figure 3B gives

rise to a continuum of weighted graphs and associated affinity

matrices parameterized by s. The goal is to find the partition P

and value of s that jointly maximize the modulated modularity

objective function Q P,sð Þ. Ideally, this search can be conducted

simultaneously; in practice, we first seek an approximate solution

to the joint maximization to obtain a value of s and then

marginally maximize over Q P,sð Þ with s fixed (see Materials and

Methods). To illustrate how s is obtained, for our small example

we have rendered the exact maximization surface of Q P,sð Þ in

two dimensions as Figure 3C. The horizontal axis of the plot

specifies s and determines the graph from which modularity is

calculated, while the vertical axis indexes the 4,213,597 possible

partitions of the twelve variables, grouped by number of parts k

(and hence number of clusters). At the intersection of s and k, the

plot shows the maximum modularity attainable for those fixed

values; as indicated in Figure 3C, the joint maximum modularity

of Q~0:7095 is attained at s~0:203 for a partition with k~4.

For datasets of even modest size, the exact maximization surface is

intractable, and we resort to fast approximations to obtain the

optimal value of s without specific regard to obtaining the optimal

P. The result is an optimal affinity matrix, shown for our simulated

data in Figure 3D. Note that the affinity matrix takes values

between 0 and 1 inclusive and has zeros on the diagonal, implying

that it corresponds to an undirected, weighted graph with no

loops. For the sake of illustration, we have translated the range of

the affinity matrix to [21, 1] so that the heat map introduced in

Figure 3B is applicable. With the optimal value of s~0:203, the
pairwise correlations between variables have been protracted so

that those of the largest magnitude are emphasized. The strongest

Figure 1. Community structure in graphs and affinity matrices. (A) A graph with 10 vertices and 22 edges. Thick black lines denote strong
edges and thin dotted lines denote weak edges. The edge classes have been drawn so that the distinction between them is prominent: {1,2,3,4} and
{5,6,7,8,9,10} are intuitive communities of connected vertices. (B) Ostensibly the same graph as in the previous panel, with the edge classes drawn to
obscure the communities that were so prominent. (C) Depiction of the affinity matrix that corresponds to the graph in panel (A). Rows and columns
denote vertices, and each (row,column) entry of the matrix is shaded to indicate the strength of its corresponding edge, if any. As drawn, the contrast
between strong and weak edges is sufficient to reveal two communities as clusters of darkly shaded squares along the matrix main diagonal. (D)
Depiction of the affinity matrix that corresponds to the graph in panel (B). With less contrast between edge classes, the pattern along the main
diagonal is largely obscured.
doi:10.1371/journal.pgen.1000479.g001

Modulated Modularity Clustering
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correlations from Figure 3B (dark red off-diagonal entries) now

span the entire range of [21, 1], while those of lesser magnitude

are reduced to near negligibility (see also Figure S1). In essence,

the edge weights of the optimal graph have been modulated to best

emphasize the community structure relating the variables; all that

remains is to enumerate community membership in the form of

clusters. Because in our implementation s is now fixed, the MMC

objective function reduces to that of Newman and Girvan’s

modularity, and we can use any of the techniques already

developed for its maximization [10,18,19,20,21]. We have chosen

Newman’s iterative bisection approach because we have found it

to work well in practice [10]. The approach is illustrated in the

remainder of Figure 3D. We first seek the bipartition of maximal

modularity using a two-step procedure in which an approximate

solution is locally refined (e.g. Level 1, see Materials and Methods).

We then iterate, splitting the resultant parts (e.g. Level 2) in a

greedy attempt to further maximize the overall modularity. As

shown in the figure, for our simulated data the bipartition of

maximum modularity groups the twelve variables into {1, 4, 7, 8,

9, 11} and {2, 3, 5, 6, 10, 12}. Each part from Level 1 is subjected

to further splitting, yielding four parts in Level 2: {1, 9}, {4, 7, 8,

11}, {2, 6, 12}, and {3, 5, 10}. Additional splitting is now fruitless

– any further division actually decreases the overall modularity –

and the procedure terminates with these four clusters. Having

defined the clusters, Figure 3E reconstructs a permuted affinity

matrix in which the rows and columns have been reordered so that

the clustered variables are contiguous. Figure 3F shows the

associated correlation matrix, similarly permuted so that the

clusters of correlated variables are now obvious.

Validation and Comparison by Simulation
In the simulated data example of Figure 3, MMC recapitulates

the four latent components perfectly. It is clear, however, that the

results may change upon clustering nine new observations drawn

from the same multivariate Normal distribution. To place the

performance of MMC in some context, we repeatedly sampled

datasets of nine observations from the multivariate Normal

distribution previously described. For each of these datasets, we

recorded the results of MMC, as detailed above, and of average

linkage agglomerative hierarchical clustering, using the same

distance function as was used in MMC. We chose this form of

hierarchical clustering for comparison because of its prevalence,

particularly in applications to gene expression data

[5,22,23,24,25]. To enrich the comparison, we also considered

the performance of three spectral clustering methods. In each, we

used the optimal affinity matrix A determined by MMC to

construct a graph Laplacian L~D{A where D is the diagonal

matrix whose entries are the row sums of A. The unnormalized

version of spectral clustering to which MMC was compared

operates on the eigenvectors of L. For a prespecified number of

clusters k, we extracted into a matrix the eigenvectors of L

corresponding to its k smallest eigenvalues. To achieve a spectral

clustering, the rows of this matrix were viewed as points in Rk and

clustered with k-means. Motivated by Shi and Malik [26], we also

repeated this procedure for the normalized Laplacian D
{1

L.

Lastly, we considered the variant introduced in [27] that clusters

based on the symmetric normalized Laplacian D
{1=2

LD
{1=2.

Here, before clustering with k-means, we standardized the

extracted matrix of eigenvectors so that each row had unit norm.

Thus, our simulation study compared the performance of MMC

to that of four other methods. Because each method to which

MMC was compared leaves the number of clusters k to be

specified (or otherwise determined), we structured the simulation

in parts. We began by considering how the competing methods

perform when they are seeded with a realistic but incorrect

number of clusters, in this case three. Across 10,000 simulated

datasets, we scored all five methods for each simulation by

recording which pairs of variables were correctly clustered (or

separated) and which were not. Assuming that only variables from

the same correlated component in Figure 2 should be clustered

together, we calculated the proportion of simulations in which

each pair of variables was aligned correctly. The results, reported

in Table 1, show MMC to be more accurate than its competitors

(85.6% vs. less than 80%) when these competing methods seek a

reasonable but suboptimal number of clusters. More convincingly,

Table 1 also shows MMC to be superior when all five methods are

informed of the correct number of clusters, four. To assess

performance in this setting, we again simulated datasets under the

same distributional assumptions; this time, however, we restricted

our consideration to only those cases in which MMC found four

clusters. For 10,000 such cases we compared MMC to its

competitors, and as before MMC was the most accurate among

the five methods considered (91.5% vs. less than 89%). As Table 1

reports, MMC was superior both at clustering pairs of variables

meant to be clustered and at separating those meant to be

separated.

Beyond providing a measure of accuracy, the results of Table 1

are indicative of confidence and cluster stability. Under the

conditions of our simulation study, MMC frequently (and

correctly) clustered the same variables together, and we observe

this phenomenon more generally when resampling. Indeed, the

same quantity we report in Table 1 can be used to summarize a

collection of bootstrapped MMC clusterings [28], though we have

not presented such an analysis here. It is clear that both sample

size and cluster structure impact MMC; we chose to investigate

how the former influences sampling variation by varying the

number of observations in our previous simulation study. Whereas

Figure 2. Correlation structure for simulated data. Twelve
variables are correlated as shown in the figure. The heat map used to
illustrate the pairwise correlations ranges from dark red (perfect
correlation, r~1) through green (no correlation, r~0) to dark blue
(perfect anticorrelation, r~{1). On the diagonal are four correlated
clusters of varying strength: {1,2} with an r of 0.9, {3,4,5,6} with an r of
0.7, {7,8,9} with an r of 0.6, and {10,11,12} with an r of 0.8. There are
nonzero correlations between two pairs of clusters; members of {1,2}
and {3,4,5,6} are positively correlated (r~0:2), while members of {7,8,9}
and {10,11,12} are negatively correlated (r~{0:4).
doi:10.1371/journal.pgen.1000479.g002

Modulated Modularity Clustering
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Figure 3. Modulated modularity clustering. Panels (A)–(F) illustrate the method of modulated modularity clustering by example. (A) Example
data consisting of nine observations on twelve variables drawn from a standard multivariate Normal distribution with variance-covariance matrix
given by the correlation matrix from Figure 2. The variables have been permuted so that the block structure of the data will be obscured. (B) Heat
map showing the pairwise correlations between variables (numbered 1 through 12 after permutation). The color scheme was introduced in Figure 2.
(C) Surface plot of the maximum modularity attainable for a fixed number of clusters as s varies. The 4,213,597 possible partitions of the twelve
variables are grouped by number of parts (and hence clusters), and the maximum modularity Q found among these is shown on the plot for each s.
The surface appears convex and attains its maximum Q~0:7095 at s~0:203 (on a grid of step size 0.001) for a clustering of size 4. For larger
examples, it is not possible to enumerate all partitions, and an approximate method is used to marginally maximize Q in s. (D) The optimal s defines
the graph whose community structure is to be evaluated. The graph has affinity matrix with entries e rj j{1ð Þ=s2 ; for illustration, these values have been
shifted and linearly scaled so that the previously introduced heat map applies. To identify the partition of maximum modularity, we use a greedy
forward search in which the initial graph is recursively bisected into subgraphs until the overall modularity can no longer increase. In the figure, each
level (LEVEL 1, LEVEL 2) indicates a round of bisection, and each subgraph is represented by its corresponding section of the affinity matrix. There is
no third level; subsequent to the second round, the overall modularity cannot be increased through further bisection. (E) The resulting clustering is
used to reorder the affinity matrix by permutation of its rows and columns. Entries with colors other than dark blue have now been aggregated along
the main diagonal. (F) Applying the same permutation to the correlation matrix reveals the four correlated clusters of variables
({1,9},{4,7,8,11},{2,6,12},{3,5,10}) hidden within the data.
doi:10.1371/journal.pgen.1000479.g003

Modulated Modularity Clustering
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before we clustered twelve variables from nine observations, here

we considered sample sizes ranging by ones from four to thirty-six.

In each case, we simulated 1,000 datasets and used the

performance measures from Table 1 to evaluate MMC. The

results, shown in Figure 4, indicate that while four observations are

sufficient to reveal cluster structure, each additional observation

greatly helps resolve clustered variable pairs. This trend continues

for increasing sample size but with diminishing returns; as we have

seen, with nine observations MMC already performs quite well.

Thus, at least in our example, MMC is able to resolve cluster

structure in rank deficient data. We have observed that it does so

better than four competing methods, with the significant feature

that for MMC the number of clusters need not be prespecified or

otherwise arbitrarily ascertained.

Systems Genetic Analysis of Drosophila melanogaster

Data
Having demonstrated the efficacy of MMC on simulated data,

we now turn to a biological example. Our data come from a recent

study of 40 highly-inbred lines of Drosophila melanogaster derived

from the Raleigh, NC, natural population [2]. Here we focus on

the transcriptional profiles of 414 genes whose expression levels

were found to significantly associate with a phenotypic measure of

competitive fitness. A summary of the experiment and data

collection is provided in Materials and Methods; details can be

found in [2]. As shown in Figure 5A, MMC identifies twenty

clusters of correlated transcriptional profiles among the 414

fitness-associated genes. The clusters range in size from 2 to 106

and, significantly, each represents a putative transcriptional

module (henceforth Modules 1–20) comprised of genes that are

genetically intercorrelated across the 40 inbred Drosophila melano-
gaster lines. Often, genes whose transcriptional profiles covary over

time or treatment are represented as connected nodes in an

interaction or relevance network (e.g. [29]); in Figure 5B, we have

done the same for genes whose transcriptional profiles are

correlated across lines. Specifically, we color-coded the twenty

modules from Figure 5A and superimposed them in Figure 5B

onto the graph obtained by connecting genes whose absolute

genetic correlation was above an arbitrary threshold of 0.7. As the

figure shows, the connected components are largely homogeneous

in terms of cluster membership, suggesting that MMC is

automating what might reasonably result from manual curation

(e.g. using Cytoscape [30]). We emphasize, however, that the

intuitive clustering produced by MMC was done automatically

without resorting to hard thresholding or external tuning

parameters. More importantly, the putative transcriptional

modules identified as clusters by MMC are biologically meaning-

ful. As reported in [2], we identified modules enriched for genes

that mediate immune response (Modules 6 and 11), visual

perception and function of the nervous system (Module 17),

chemosensation (Module 20), and for sex-specific transcripts

(Modules 7, 8 and 9). To draw contrast, we note that the

hierarchical clustering approach considered in the simulations

above can be also be used to obtain 20 modules here; doing so

groups the transcripts in such a way that the sex-specificity that

characterizes Modules 7, 8, and 9 is obscured. In what follows, for

the sake of brevity, we have chosen to elaborate the biological

relevance of only Module 9. Of the thirteen genes that comprise

Module 9, six encode predicted transcripts of unknown function.

The remainder, as indicated in Figure 5C, include swallow, brain

tumor, suppressor of variegation 2–10, yemanuclein a, Rev1, mitochondrial

transcription factor b2, and RNA polymerase II 15kd subunit. Our

transcriptional profiling of the genes in Module 9 revealed a

pattern of female-biased expression [2], and an independent

source of tissue-specific Drosophila expression data identified these

genes as being highly expressed in the ovary [31]. The latter is

shown in Figure 5C; for each gene in Module 9, the figure reports

its expression level in each of eleven tissues as a fraction of the total

observed across all tissues. Thus, Module 9 is characterized by

female-biased genes that are highly expressed in the ovary, and

further elucidation can be found through sequence analysis of the

untranslated regions upstream of each gene. We downloaded the

59 UTR of each gene in Module 9 from FlyBase [32] and searched

for the presence of any of 62 Drosophila transcription factor motifs.

In doing so, we identified the doublesex (dsx) motif as being

significantly overrepresented (P,0.001), appearing in the 59 UTR

of five genes in the module. Figure 5D shows the motif sequences

of the five genes that share dsx in their 59 UTRs as well as the

canonical profile of the 17 bp recognition sequence. Figure 5C

indicates that three of the five genes shown (swallow, brain tumor,

and yemanuclein) were also among the top genes in terms of relative

expression in the ovary. Doublesex is a transcription factor that

regulates sexual differentiation in Drosophila [33], and sequence-

based evidence that it regulates the genes in Module 9

complements our observations of female-biased and ovary-

enhanced expression. Thus, using MMC as our starting point,

we now have a basis for annotating the six unknown genes in

Module 9 as well as for a candidate biological process in which all

thirteen genes may be involved. Though we have limited our

discussion to Module 9, other modules suggest hypotheses that are

equally compelling [2]. We view this as support for MMC as a

method for obtaining meaningful clusters from biological data;

conversely, we believe that the objective-based approach of MMC

bolsters the biological hypotheses founded upon it.

Table 1. Comparison of Clustering Methods over 10,000
Simulated Datasets.

Method Variant

%Correctly

Clustered

% Correctly

Separated

%

Correct

Modulated

Modularity

Default 82.4% 86.4% 85.6%

k= 4 81.0% 94.1% 91.5%

Agglomerative

Hierarchical

k= 3 84.4% 76.1% 77.7%

k= 4 79.5% 89.8% 87.8%

Unnormalized

Spectral

k= 3 82.6% 68.6% 71.3%

k= 4 76.0% 83.4% 82.0%

Normalized

Spectral

k= 3 78.2% 70.8% 72.2%

k= 4 70.0% 84.9% 81.9%

Symmetric

Spectral

k= 3 81.1% 78.9% 79.4%

k= 4 77.1% 91.8% 88.9%

Five clustering methods are compared in two simulation studies. Studies are
grouped by row, so that the same 10,000 simulated datasets were used to
evaluate default MMC and the four remaining methods with k~3. A second set
of 10,000 datasets was used to compare the methods with k~4. Columns 2–4
report three related measures of performance. Column 2 considers only pairs of
variables that share a cluster according to Figure 2 (e.g. (1, 2) but not (1, 3)) and
records the percentage of such pairs that are correctly clustered together.
Column 3 considers only pairs of variables that do not share a cluster and
records the percentage of such pairs that are correctly placed in separate
clusters. Column 4 considers all variable pairs and records the overall
percentage correct. These measures are used in Figure 4 as well.
doi:10.1371/journal.pgen.1000479.t001

Modulated Modularity Clustering
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Analysis of Human Lymphocyte Data
As a final demonstration of MMC’s utility, we turned to a

human dataset generated by the San Antonio Family Heart Study

[34,35] In this study, genome-wide transcriptional profiling was

performed on 1240 individuals using lymphocyte extracted from

blood samples. For each individual, age and sex were recorded as

covariates, and high density lipoprotein (HDL-C) concentration

was measured. More details about the experimental design are

given in [34]. These data offer the opportunity to identify

transcripts associated with HDL-C; to that effect, we constructed

linear regression models for each expressed transcript including

the effects of both age and sex. We uncovered 673 genes

significantly associated with variation in HDL-C levels at a 0.05

FDR. Proceeding as in the Drosophila example above, we then used

MMC to cluster these genes into nine modules of correlated

transcripts (Figure 6). We next asked to what extent these

hypothesized transcriptional modules mapped to known pathways

or were enriched for particular biological processes. Considering

the 673 HDL-C-associated genes as statistical background, we

used DAVID [36] to assess for each module the degree to which

biological processes and pathways were overrepresented. We

found that Module 3 is involved in translation; 80% of the genes in

this module are components of the small ribosomal subunit

(P = 1.20E-06, 1.70E-04 corrected). Likewise, Module 5 is highly

enriched for genes involved in natural killer (NK) cell mediated

cytotoxicity (Figure 7A; P= 7.40E-11, 9.40E-09 corrected) and

Module 6 is enriched for members of the B cell receptor signaling

pathway (P= 2.80E-04, 3.50E-02 corrected).

Though our observations ultimately require validation at the

bench, there is ample evidence to indicate that the genes clustered

here by MMC have known interactions relevant to the general

function of their cluster. Module 5 is of particular interest – while

there is a well characterized relationship between NK cell activity

and HDL-C levels [37] the underlying functional genomic basis of

this relationship does not appear to be known. This module

contains a number of membrane receptor and transports

(Figure 7A,B), including five genes encoding killer cell immuno-

globulin-like receptors (KIR2DL1, KIR2DL5A, KIR2DS5, KIR3DL1,

KIR3DS1), granzyme B (also known as Natural killer cell protease 1),

perforin 1 (which in culture medium increases endocytosis of

granzyme B protein [38]), EAT2 (which suppresses NK cell

activation), and SIGLECP3 (which encodes an NK-cell-specific

transmembrane protein [39]). As verified by SymAtlas [40], each

of these genes is expressed primarily in NK cells, and this pattern is

pervasive within but specific to Module 5 (Figure 7C). We

interpret this observation as strong support for MMC, but it also

raises an unexpected possibility: the correlated expression patterns

in Module 5 may be an artifact of individual variation in NK cell

count among the lymphocytes extracted. We lack the data to

interrogate this possibility directly, but it is worth noting that

Module 5 contains relevant genes whose expression patterns are

not thought to be cell-type biased; one such example, Niemann-Pick

Figure 4. MMC analysis of simulated data. Three measures of accuracy are reported for MMC as the number of observations ranges from 4 to 36
in the simulation study. Shown in red for each case is the percentage of simulations in which pairs of variables are correctly clustered. Shown in blue
is the percentage of pairs correctly separated; the overall percentage correct is in black. Each point on the plot represents the results across 1,000
datasets. The scenario considered in Table 1 (MMC default) is highlighted in gray.
doi:10.1371/journal.pgen.1000479.g004
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Figure 5. MMC analysis of Drosophila melanogaster data. Panels (A)–(D) describe a systems genetic analysis of 414 Drosophila melanogaster
genes associated with a competitive fitness phenotype. (A) The reordered matrix of pairwise genetic correlations between transcriptional profiles, in
analogy to Figure 3F. The twenty clusters identified by MMC are numbered (Modules 1–20), color-coded (to the left and below), and emphasized with
borders. From the upper left (Module 1) to lower right (Module 20), modules are ordered by decreasing average connectivity, defined here as average
absolute pairwise correlation within the module. (B) Relevance network obtained from the 414 genes by enforcing an absolute correlation threshold
of rj jw0:7. The genes are numbered and color-coded as in (A) to indicate module membership. Only genes with at least one connection are shown.
(C) Bar chart of the genes in Module 9 reporting for each one its relative expression level across eleven tissues. Genes are shown on the x-axis, tissues
are shown on the y-axis, and relative expression is shown on the z-axis. Expression in the ovary has been highlighted in red, and the genes featured in
the next panel have been highlighted in blue. (D) Local alignment of five genes sharing the dsx motif in their 59 UTRs. Above the alignment, a logo is
shown to represent the profile of the 17 bp recognition sequence of doublesex.
doi:10.1371/journal.pgen.1000479.g005
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type C (NPC1), encodes a protein that mobilizes unesterified

cholesterol from the lysosomal compartment to the intracellular

sites where it can be metabolized or excreted in NK cells [41,42].

In light of the association between Module 5 gene expression

patterns and concentrations of HDL-C, if the correlated patterns

we observe are indeed an artifact, then NK cell count presents a

biologically interesting confounder.

Discussion

In this paper, we present a novel clustering method with

applications to transcriptional profiling. Our method, MMC,

builds upon the concept of modularity to quantify the extent of

community structure present in a weighted graph, largely without

regard to how the edge weights have been initially calibrated. Our

motivation was to elicit transcriptional modules from the genetic

correlations between expression profiles of 40 wild-derived, inbred

lines of Drosophila melanogaster. The results suggest that the clusters

produced by MMC are coherent and biologically meaningful.

MMC was developed in response to a specific set of concerns.

First, while there is a vast body of work on clustering algorithms,

only a small fraction of the literature is dedicated to the problem of

community structure. We envisioned transcriptional modules as

tight communities within a completely connected graph of the

transcriptome and developed MMC to identify these. Second, we

sought to balance the information available in the strengths of

pairwise relationships against the possibility that these strengths

might be uncalibrated. The statistical distinction between genetic

correlations, for example, is a function of both magnitude and

sample size; we developed MMC to adaptively modulate the

magnitude of pairwise relationships in the search for maximal

community structure. Third, we wished to avoid specifying the

number of clusters in advance. Because MMC does not view more

clusters as necessarily being better, clusterings of different sizes can

be compared with impartiality. Fourth, we did not want to resort

to external criteria to determine a proper number of clusters or to

specify a minimum cluster size. Whereas other procedures use

peripheral measures such as the ‘‘elbow’’ criterion, cluster

silhouettes [43], or a gap statistic [44,45] to choose the number

of clusters, MMC weighs clusterings of all sizes consistently under

the same objective function used to establish cluster membership.

Fifth, we did not want to introduce tuning parameters or

opportunities for user-defined thresholds. MMC is fully automated

and independent of the application.

As a graph-based procedure, MMC shares features with other

clustering approaches that seek optimal cuts of graphs. The list of

objective functions used in such approaches continues to grow and

includes the normalized cut, the ratio cut, and the modularity

criterion from which MMC’s is derived. Moreover, because we

have chosen an eigenvector-based approach to optimize the MMC

objective function, our specific implementation can be classified as

spectral. Indeed, the aforementioned spectral clustering approach-

es to which MMC was compared can also be seen as relaxed

solutions to objective functions for cutting graphs. As we have

highlighted MMC’s automated ability to choose the number of

clusters, it should be noted that the spectra of graph Laplacian

matrices are at least informative in that regard. The eigengap

heuristic, for example, is a principled mechanism for choosing an

appropriate number of clusters [46]. Nevertheless, such criteria are

again external to the clustering procedure, whereas MMC seeks

and defines the optimal clustering based on a single objective

function.

The applications presented in this paper range from small (12

simulated variables) to intermediate (414 Drosophila genes, 673

human genes) in scope. Because the algorithm we use to maximize

Q P,sð Þ is fast, results for our simulated data were returned almost

instantaneously, while the Drosophila and human analyses took less

than fifteen minutes on a typical desktop computer. Though not

optimized for speed, we have found our Matlab implementation of

MMC to be suitable for even datasets of very large size. For

example, using data from the same 40 highly-inbred Drosophila

melanogaster lines as previously described, in [2] we clustered 10,096

genetically variable transcripts into 241 transcriptional modules.

Here our implementation of MMC required several days for

completion, but because the search for s is easily parallelized, run

time can be reduced considerably. Our code is freely available,

requires only a data file as input, and generates results along with

figures similar to that shown in Figure 5A. In light of its

effectiveness and ease of use, we envision MMC as a standard tool

for exploration and hypothesis generation.

Materials and Methods

Distance and Similarity Metrics
We have used the absolute correlation rij

�

�

�

� to define the raw

similarity between vectors of observations i and j. From this we

defined the Euclidean-like pairwise distance metric

dij~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 1{ rij
�

�

�

�

� �

q

.

Modulated Modularity
As an optimization criterion, modulated modularity is a

parametric extension of the modularity concept first proposed by

Girvan and Newman [15]. Given an undirected graph G~ V ,Eð Þ
with affinity matrix A~ aij

� �

, each partition P~ V1, . . . ,Vkf g of

the vertex set V yields the modularity Q Pð Þ given by

Figure 6. MMC analysis of data from the San Antonio Family
Heart Study. Clustering of a set of 673 transcripts associated with
HDL-C concentration; shown is the reordered matrix of pairwise
correlations between transcriptional profiles. The nine clusters identi-
fied by MMC are numbered and arranged as in Figure 5.
doi:10.1371/journal.pgen.1000479.g006

Modulated Modularity Clustering

PLoS Genetics | www.plosgenetics.org 9 May 2009 | Volume 5 | Issue 5 | e1000479



Q Pð Þ~
X

k

c~1

A Vc,Vcð Þ

A V ,Vð Þ
{

A Vc,Vð Þ

A V ,Vð Þ

� �2
" #

where we use A X ,Yð Þ to denote the sum of the entries in the

submatrix of A whose rows and columns are indexed by the

vertices in X and Y , respectively. Modulated modularity extends the

application of modularity to weighted graphs by introducing a

monotone transformation of the edge weights aij . We use a one-

parameter family of monotone functions to modulate the

difference in strength between edge weights so that a highly

structured graph emerges. Following the recommendation of [27],

we use a Gaussian transformation to define the family of affinity

matrices with zeros on the diagonal and off-diagonal entries

aij~exp {

d2
ij

2s2

 !

Figure 7. Illustration of module-specific enrichment of pathways and tissues. (A) Representation of the NK cell mediated cytotoxicity KEGG
pathway. Genes in Module 5 associated with HDL-C variation are colored orange. (B) Relevance network representation of Module 5 after enforcing
an absolute correlation threshold of 0.5. (C) Bar graphs of cell-specific expression patterns restricted to derivatives of whole blood. Grey bars indicate
relative cell-specific expression levels across all 673 genes associated with HDL-C. Blue bars consider only the genes in Module 5.
doi:10.1371/journal.pgen.1000479.g007
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where s is additional parameter over which the optimization takes

place. Specifically, the criterion to be maximized is

Q P,sð Þ~
X

k

c~1

As Vc,Vcð Þ

As V ,Vð Þ
{

As Vc,Vð Þ

As V ,Vð Þ

� �2
" #

where As is defined as before for the new graph obtained after

transformation. The P obtained in this joint maximization

procedure gives the optimal modulated modularity clustering.

MMC Implementation
Because the number of partitions P of the vertex set is large for

graphs of even modest size, brute-force maximization of Q P,sð Þ is
in general not tractable. To maximize Q P,sð Þ for fixed s, we

chose to implement the divisive spectral approach of [10] because

of its empirical superiority to competing approximate methods.

The first step in this approach is to construct the matrix

B~A{
A11TA

1TA1

and maximize the quadratic form Y
T
BY in Y. As Newman shows,

the maximum modularity bipartition P~ V1,V2f g is revealed by

the signs of the entries of Y when Y
T
BY is maximized subject to

the restriction that the entries of Y come from {+1, 21}. Upon

relaxing this restriction, Y is simply the eigenvector of B with

maximal eigenvalue, and we assign the nonnegative entries of Y to

V1. If zero is the maximal eigenvalue, the entries of Y share the

same sign and there exists no bipartition of the vertex set with

positive modularity; otherwise, we use the Kernighan-Lin variant

discussed in [10] to seek an optimal bipartition by locally refining

the bipartition obtained by spectral relaxation. The end result is a

bipartition P~ V1,V2f g, and we iterate from the first step with

two new matrices B1 and B2 in place of B. We obtain B1

(respectively B2) by extracting the rows and columns of B that

correspond to V1 (respectively V2) and then subtracting off the row

sum from each of its diagonal entries. The approach terminates

immediately with P~ V1,V2f g if neither B1 nor B2 has a positive

eigenvalue; otherwise, we iterate as before through the descen-

dants of V1 and V2 until no further bipartitions are found that

increase the overall modularity.

Thus, for fixed s we have an approximate method for finding the

P that maximizes Q P,sð Þ. To jointly maximize Q P,sð Þ over all

possible partitions P and values of s, we search using the marginal

maximization procedure just described over a fine grid of s values.

To expedite the joint search, we suppress the local refinement step

when maximizing Q P,sð Þ on the grid. We then choose the s that

yields the maximal value of Q P,sð Þ and again search over all

possible partitions P, this time including the local refinement at each

step. In practice, as indicated in Figure 3C, we initially bound the

range of s in our grid search. Our default implementation searches

between 0.05 and 0.50 inclusive by steps of 0.001; this range is

extended whenever the value obtained lies close to a boundary.

Customization
In this paper, we have described and implemented a specific

approach to data clustering, but the design of MMC is such that

parts of it are easily modified. For example, though we have relied

on a correlation-based distance to define a family of affinity

matrices, our framework easily incorporates any pairwise similarity

or distance metric. One possibility that has already been used for

systems applications is the topological overlap metric of [8]. Given

a graph described by affinity matrix A~ aij
� �

(e.g. defining aij to

be the absolute correlation rij
�

�

�

�), the topological overlap between

nodes i and j reflects their relative interconnectedness and is

defined by

TOij~
lijzaij

min ki,kj
� �

z1{aij

where lij~
P

u=i,j aiuauj and ki~
P

u=i aiu [24]. An extension to

neighborhoods of arbitrary size is given in [24], and again the

application is to hierarchical clustering. Hierarchical clustering is

myopic by design, with each point or cluster seeing only those

points closest to it. In that regard, the topological overlap metric

(TOM) appears to be prescriptive by building a global relationship

between points into the pairwise similarity/distance metric. By

contrast, MMC is designed to be global and considers all pairwise

relationships simultaneously. Thus, it is reasonable to expect that

there is little to be gained by replacing our pairwise similarity

metric with its TOM equivalent, and for our example datasets we

found this to be the case.

Alternatively, MMC can be modified by substituting a different

monotone transformation in place of our Gaussian function. This

requires some care, as it is important that, when possible, the

convexity of the modularity optimization surface be maintained

(c.f. Figure 3C). Convexity in one dimension is inherited from

modularity itself; both extremal partitions (all points share one

cluster, each point has its own cluster) yield nonpositive values of

Q, with favorable clusterings (i.e. Qw0) of intermediate size falling

in between. In the second dimension, for our Gaussian function

extreme values of s emulate the extremal partitions: a small s

attenuates all but the strongest pairwise relationships, while a large

s homogenizes relationship strength. Similar features result from

other nonlinear functions. For example, it would be natural to

parameterize a family of affinity matrices by aij~ rij
�

�

�

�

s

, which has

the advantage of subsuming the untransformed graph for s~1.

This power transformation is not so different from what we have

used (see Supplementary Figure S1), and its application to our

datasets yields remarkably similar results.

Analysis of Simulated Data
We used the Matlab function mvnrnd to simulate 10,000 datasets

consisting of nine observations drawn from a 12-dimensional

multivariate Normal distribution. The distribution was specified to

have mean vector zero, and each variable was specified to have

marginal unit variance so that the variance-covariance matrix was

equivalent to the correlation matrix shown in Figure 2. We

clustered the data from each simulation using the implementation

of MMC described above. The same data was subjected to

average linkage hierarchical clustering as implemented by the

Matlab function linkage; the pairwise distance metric used was the

same as that used by MMC. The dendrogram produced by

hierarchical clustering was always severed at the correct height to

yield a prespecified number of clusters. The three spectral

clustering methods to which MMC was compared were imple-

mented in Matlab as well. The Laplacian matrices were computed

as described in the Results section. Eigenvectors were obtained

with the function eig; clusters were found using kmeans with squared

Euclidean distance.

Analysis of Drosophila melanogaster Data
As detailed in [2], whole genome variation in transcript

abundance was assessed for both young males and females of

Modulated Modularity Clustering
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each of 40 highly inbred lines using Affymetrix Drosophila 2.0

arrays. RNA was extracted in two independent pools of 15 flies/

sex/line (40 lines62 sexes62 replicates = 160 samples). The raw

array data was normalized using a median standardization. After

normalization, an analysis of variance was used to partition

variation in expression between sexes, among lines, and the

sex6line interaction for each expressed transcript. At a false

discovery rate of 0.001, the line term was significant for 10,096 of

the expressed transcripts. A regression model identified 414

transcripts among these 10,096 that were significantly associated

with the competitive fitness phenotype. The residuals from the

regression model were used to compute the genetic correlations for

MMC in Figure 5A. Tissue-specific expression data for each of the

genes in Module 9 was obtained from [31]. The values shown in

Figure 5C report the tissue-specific expression of each gene as a

fraction its expression across all eleven tissues. The doublesex motif

whose logo is shown in Figure 5D represents one of 62 Drosophila

melanogaster transcription factors whose position-weight matrices

were downloaded from http://www.bioinf.manchester.ac.uk/

bergman/data/motifs/. The 59 UTR of each gene in Module 9

was scored for the presence of all 62 motifs; our protocols for

calling a motif present and for assessing enrichment are as

described in [2].

Analysis of Data from the San Antonio Family Heart
Study
We used the normalized data provided by ArrayExpress under

accession number E-TABM-305. Linear regressions were per-

formed in SAS 9.1 using PROC GLM and, following [34], our

model included the effects of age and sex. Gene ontology

enrichment analysis was performed for each module using DAVID

[36] with the list of all genes significant for the regression (673

genes) as background. Both uncorrected and corrected P-values

are reported; DAVID applies the Benjamini-Hochberg procedure

to correct for multiple testing.

Supporting Information

Figure S1 Comparison of monotone transformations. The

absolute correlation coefficient rj j is compared to its value after

transformation by each of two nonlinear monotone functions. On

the left is the Gaussian function used by MMC which transforms

rj j into e rj j{1ð Þ=s2 . On the right is the power function rj js. Note

that the x-axis of the power function is coarser than that of the

Gaussian function by a factor of ten.

Found at: doi:10.1371/journal.pgen.1000479.s001 (0.14 MB PDF)
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