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Necessary and sufficient conditions for perfect reconstruction (PR) in a modu-
lated filter bank are derived. It is shown that, for a bank ofM filters of lengthL,
PR can be obtained when L = 2KM , for any positive integer K, whereas pre-
vious results guaranteed PR only for K = 1.
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Introduction

Quadrature mirror filter (QMF) banks are essential building blocks of a subband/trans-
form coder. Generally, one wants the filter bank to have the perfect reconstruction (PR)
property1, which means that, in absence of coding, a delayed copy of the original signal
is reconstructed exactly in the critically-sampled analysis-synthesis system of Fig. 1. Al-
though there are useful filter banks2 that are not exactly PR, if a PR filter bank with a fast
implementation can be found, it is usually preferable. General conditions for PR have
been derived by Vaidyanathan1. Modulated filter banks are a class of QMF banks where
all the impulse responses hk(n) in Fig. 1 are obtained from modulated versions of a single
low-pass filter prototype3−5.

Princen and Bradley4, and Vetterli and Le Gall5 have shown that an M -channel PR
modulated filter bank can be obtained with FIR analysis and synthesis filters as long as
their impulse responses have a length L = 2M . The modulated lapped transform (MLT)
is a particular modulated filter bank that has a very fast algorithm3. In this letter we will
show that PR can be obtained not only when L = 2M , but also when L = 2KM , with
K a positive integer. In applications such as transmultiplexing and speech coding, the
possibility of using longer filters means less interference among the subband signals, and
keeping the modulated structure means a possibility of computationally efficient imple-
mentations.

Perfect Reconstruction

The reconstructed signal in Fig. 1 is given by6

y(n) =
∞∑

l=−∞
x(l) α(n, l) (1)

where

α(n, l) =
∞∑

m=−∞

M−1∑
k=0

fk(n−mM) hk(mM − l) (2)
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Assuming that the analysis and synthesis filters are FIR, of length L, the overall delay
from x(n) to y(n) is L− 1, and PR means that y(n) = x(n−L+ 1). From Eqns. (1) and (2),
PR is obtained if and only if

α(n, l − L+ 1) = δ(n− l) (3)

where δ(n) is the unitary impulse.
A modulated filter bank is a particular form of the integer-band SSB filter bank4−6,

defined by

fk(n) = h(n)

√
2

M
cos

[
π

M
(k + 1

2
)
(
n+

M + 1

2

)]
(4)

for n = 0, 1, . . . , L− 1, with hk(n) = fk(L− 1− n) and h(n) = h(L− 1− n). The window
h(n) is called the low-pass prototype, because the frequency responses of all filters are
just shifted versions of H(ejω). Substituting Eqn. (4) into (2), we get

α(n, l − L+ 1) =
∞∑

m=−∞
h(n−mM) h(l −mM) β(n, l,m) (5)

where

β(n, l,m) =
2

M

M−1∑
k=0

cos
[
π
M

(k + 1
2
)
(
n−mM + M+1

2

)]
· cos

[
π
M

(k + 1
2
)
(
l −mM + M+1

2

)]
(6)

Using the law of cosines and the fact that

1

M

M−1∑
k=0

cos
[
π

M
(k + 1

2
) l
]

=

{
(−1)r, l = 2rM
0, otherwise (7)

we get
β(n, l,m) = β1(n, l,m) + β2(n, l,m) (8)

where

β1(n, l,m) =

{
(−1)r, l = n− 2rM
0, otherwise , (9)

and

β2(n, l,m) =

{
(−1)v+1−m, l = (2v + 1)M − n− 1
0, otherwise (10)

Assuming that L = 2KM , for K a positive integer, using Eqns. (9) and (10) in (5), and
applying the PR condition in Eqn. (3), we obtain, after some algebraic manipulations, the
PR condition

∞∑
m=−∞

h(n+mM)h(n+mM + 2rM) = δ(r) (11)
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Since h(n) is FIR, only a few terms in the above equation will actually be nonzero.
Therefore, as long as the low-pass prototype h(n) satisfies Eqn. (11), the modulated

filter bank will have the PR property. Thus, perfect reconstruction modulated filter banks
of any length can be designed. Even with the enforcement of the PR condition in Eqn.
(11), there are enough degrees of freedom to allow h(n) to have flexible combinations of
transition width and stopband attenuation.

Examples

For the traditional case of K = 1, Eqn. (11) reduces to

h2(n) + h2(n+M) = 1 (12)

which is precisely Princen-Bradley PR condition4,5 for L = 2M . In this case, a good choice
for the window h(n) is that of the MLT, given by3

h(n) = sin
[
π

2M
(n+ 1

2
)
]

(13)

For K = 2, i.e., L = 4M , Eqn. (11) becomes

h2(n) + h2(n+M) + h2(n+ 2M) + h2(n+ 3M) = 1 (14)

and
h(n)h(n+ 2M) + h(n+M)h(n+ 3M) = 0 (15)

A family of windows h(n) that satisfy the above equations can be defined by

h(M/2− 1− i) = −si sM−1−i
h(M/2 + i) = si cM−1−i

h(3M/2− 1− i) = ci sM−1−i
h(3M/2 + i) = ci cM−1−i

(16)

where ci ≡ cos(θi) and si ≡ sin(θi), for i = 0, 1, . . . ,M/2− 1. PR is guaranteed for any set
of angles θi, but for h(n) to be a good low-pass filter a possible set of angles is

θi =
[(

1− p
2M

)
(2i+ 1) + p

]
(2i+ 1)π

8M
(17)

The free parameter p typically varies in the range [0, 1], and controls the frequency re-
sponses of the filters in the analysis and synthesis banks.

In Fig. 2 we show the frequency response of the first subband, M = 8, |H0(e
jω)| =

|F0(e
jω)| for the MLT filter bank, and for the new filter bank with K = 2, for p = 1/2 and

p = 1. We note that the new filter bank has a narrower transition width than the MLT, due
to the longer filter impulse responses obtained with K = 2. With p = 1/2, the maximum
stopband gain is about 9 dB lower than that of the MLT.
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Conclusion

We have demonstrated that an M -band perfect-reconstruction QMF filter bank can be
designed with basis on a modulated (SSB) filter bank, as long as the window h(n) has
length L = 2KM , for any positive integerK, and satisfies the PR condition in Eqn. (11). It
was previously believed that perfect reconstruction could only be obtained whenL = 2M .
As an example, we have shown that a filter bank designed with K = 2 will lead to better
band-pass responses than the modulated lapped transform3 (which is a modulated QMF
filter bank with K = 1). The main advantage of the modulated filter bank structure is
that it has the potential of computationally efficient implementations. We are currently
developing a fast algorithm for modulated filter banks with K = 2; it will be reported in
the near future.
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Fig. 1  Analysis‐synthesis filter bank. 
 
 
 
 

 
 

Fig. 2  Frequency  responses  for  the  first  subband  filter  h0,  for  the modulated 
lapped transform (K = 1), and the new filter banks (K = 2). 
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