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Abstract  We constructed in this work a modulated soliton solution. This solution is a multifo rm soliton prototype 

modulated by the very small parameter  . In pract ice it can represent, a model of soliton capable of changing its form with 

respect to the obstacle in its medium of propagation without any loss in its initial energy. The nonlinear partial differential 

equation used in the construction of this solution is that of modified Kuramoto -Sivashinsky. 
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1. Introduction 

All physical phenomena are in most cases governed by 

differential equations and especially  by the nonlinear part ial 

differential equations (NPDE) for most complicated cases. 

Among thes e NPDEs , the mos t  regu lar are that  o f 

S c h r öd in g e r ,  G i n z b u r g - L a n d a u ,  K d V a n d 

Kuramoto-Sivashinsky 1 4 . The essential th ing is not to 

obtain of NPDEs, but to propose possible solutions. It is in 

th is  light  that many reso lut ion  techn iques  have been 

proposed 5 32 . In our recent works we proposed a new 

method of construction of solutions of NPDEs named the 

method  of ident ificat ion  o f coefficients  o f hyperbo lic 

funct ions  or Bogning-Djeumen  Tchaho -Kofané method 

(BDKm)  33 36 . In th is work, we use the BDKm to 

const ruct  the so liton  so lu t ions fo rmed  by  combin ing 

solutions of type kink and pulse according to the degree of 

domin ion of the parameter  . It is necessary to say that here 

we are enlivened by the desire to construct a type of solitary 

wave solution that is the combination of several shapes of 

solitary waves. If we can already confess that on the 

mathematical plan it is possible, on the other hand we cannot 

already say explicitly what such a solution can represent in 

the practice or in the physics in general. While we think that 

in the case where the broadcast of such a signal would be 

possible in  practice, it would  be a solitary  wave that will be 

ab le to  change s hape accord ing  to  the characterist ic 

properties of the propagation medium or merely o f the met 

obstacle. To  reach our goal, we needed a d ifferent ial  
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equation where cohabits the scattering and the non linearity. 

For this reason we chose a differential equation presenting a 

very strong non linearity. Thus, the construction of this 

multiform solution is supported by Kuramoto-Sivashinsky’s 

equation. This method has been chosen due to the fact that it 

is more adapted for the construction or amelio ration of 

soliton solution in NPDEs. 

This work is organized as  follows: 

In section 2, we are going to present the BDK method and 

in section 3 construct or propose a solution which is closer to 

the form envisaged. In section 4 we will po lish up our work.  

2. The BDK Method 

This method is based on the construction of soliton 

solutions of certain  types of nonlinear equations of the form

 33 36  
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where i , ib , ic , id  are constants, f a linear function 

of u  and 
2

u and u  the variable to determine. Knowing 

that majority of soliton solutions have their analytic forms 

constituted by functions exp , sinh , cosh , arctan , 

tanh , sec h , cos ech …, we have imagined the form of 

solutions capable of bringing together the different functions 

seen above. Among all general forms of solutions which 

have come across our minds, the most adapted is 

sinh secj i

iju a x h x  ,         (2) 
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where ija  are constants to determine,   considered as 

known constant, i  and j are natural integers. Why have 

we chosen solution (Eq.(2))? Simply because it covers 

effectively  the majority of soliton solutions that we come 

across depending on the variation of integers i  and j .  

The methodic principle is based on determining the 

constants ija . If we propose the construction of solutions of 

Eq.(1) in the form 

sinh secj i

ij

ij

u a x h x  ,            (3)  

taking into account Eq.(3) in Eq.(1) we get an equation of the 

form indicated below 
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In the relation g iven by Eq.(4), the factors sec nh x , 

sinh sec mx h x  , cosh k x  and 

cosh sinhl x x   are considered as a sort of simple 

elements of Eq.(4). We wish simply  to mention the fact that 

on introducing Eq.(3) in Eq.(1) we obtain hyperbolic 

functions which are not directly simple elements obtained in 

Eq.(4). To come back to the form Eq.(4),  it  is necessary to 

use adequate transformations  33 36 .On identifying the 

different coefficients of simple elements of Eq.(4) to zero, 

we obtain a range of equations in ija  to determine. In all 

these equations those which have exact values and those 

which have values more or less closes to exact values respect 

a certain  order o f priority ( high  value of n and m ). It is 

convenient to mention here that the choice of the solution to 

be made is fundamental. When the choice is not appropriate, 

the results will be contradictory. 

In the lines that follow we will go beyond the classical 

ways of calculation as seen in our previous works  33 36 , 

construction of modulated soliton solution by the parameter
 . 

3. Solutions of the Shape  
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The modified Kuramoto-Sivashinsky’s equation is given 

by  33   
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where    ,x t   , x ct   ,   ,   ,  

and   represent respectively the first derivative, the 

second derivative, the third derivative and the fourth 

derivative of   with respect to  , L  with  

1, 2,3, 4,5,6   are the constants, c  the group velocity. 

The solutions of the shape 
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Introduced in Eq.(5) leads to the relation 

 

 

2 2

2

2 2 2 2 2 2 4

2 6 3 1

2 2 2 3

5 52 6

2 2 2 2 2

6 2 3

4 7

3

4 sec

4 2 sec

4 4
2 sec

2 2 3

2 sec

cb L a h

L b L b L b L a h

L ab L a
h

L b a L L b

L ab h

  

   

 
 

 

 



   

 
      



 

 4 2 8

6 5 5

4 3 10 4 2 12

5 5

2 2 5 40 sec

8 sec 80 sec

a L a L b L a h

a L h a L h

  

    

  

 
 

  3 3

1 4

2 2

4 2 32 5

2 2

5

2 4 sinh sec

2 2
4 sinh sec

2

ca L L b h

L L a L a
b h

L a

    

 
  



  

  
    

 

4 6

4

4 3 7

3 6 5

2 4 8

3

40 sinh sec

2 6 4 sinh sec

16 sinh sec

L a h

L L ab L b h

a L h

  

  

  



    



 

 

 

2

1 4

2

1 42 4

2

2 3

2 2

5

3 20

8 16
2 sec

4 2

8

L L

L L
h

L L a

L a

 

 
  

 

 

  
  
   

  
  
 
   

 2 2 2

1 44 4 secL L h    
 

 

 

 

 

2 2 2 2

5

2

2 3

2 2 6

2 3

2

1 4

2

4

6 16 3

4 8

4 2 8 sec

5 52

30

L a a b

L L a

L L a h

L L

L

   

 

   

 

 

  
 
  
 
   
 
  
 
 
   



 Clovis Taki Djeumen Tchaho et al. :  Modulated Soliton Solution of the Modified Kuramoto-Sivashinsky's Equation  220 

 

 

 

 

 

2

4

2 2

2 3 6
2 8

2

3 6

2 2 2 2

5

420

8 23 4
2 sec

3 2

16 16 3

L a

L L L a
h

L L a

L a b b

 

  
 

 

   

 
 
   

  
  
 
    

 

 4 9

3 5 616 9 2 2 5 secL L ba L b h           

 

 
3 64 10

2 2 2

5

10 3
8 sec

5 12 4

L L a
h

L a a b


 

  

 
 
    

 

  

2 4 12 3

5

2 5

2 3 6

32 sec 2 sinh sec

4 4 sinh sec

a L h c h

L L L c h

     

      

 

    
 

 

 

2 2

5 3 62 7

2 2

2 3 6

8 3 3 2
4 sinh sec

2 20 16

L ba L L b
h

L L L b

   
  

  

  
 
    

4 8

316 sinh secL a h   

 4 10

3 5 532 2 2 sinh secL a L ba L ba h       

4 12

5

4 12

5

96 sinh sec

32 sinh sec

L ab h

L ab h

   

   

 


 

 


2 2 2 2

2 3 62 2 4

2

3

4 4
4 sec

8

L L L
h

L

   
  

 

  
    

 

 

 

2 2 2 2 2

5 2 3 6
2 6

2 2

2 3 6

8 16 12
4 sec

4 6 8

L a L L L
h

L L L

    
 

  

   
 
   
 

 

 

 

 

2 2 2

2 3 6

2 2 2

6 3
2 8

2 2

2 3 6

2 2

5

4 64 64

9 12
4 sec

4 29 22

2 11 24

L L L

L L
h

L L L

L a

  

  
 

  

  

  
 
  
 
   
 
  
 

 

 

 

 

2 2 2

5

2 2 2 2 10

2 6 3

2

3 6

2 60 7 32

4 4 40 46 sec

12 7 5

L a

L L L h

L L

   

    

 

  
 
    
 
  
 

 

 

 

2

6 34 12

2

5 5

4 2 13

5

25 30
16 sec

18 16

192 sec

L L
h

L L a

L b h


 

 

  

 
 
   



 

 

4 2 14

5

4 2 7

5

4 4 2 9

5

352 sec

24 sinh sec

24 4 sinh sec

L a h

L b h

L h

  

   

     





 

 

 

4 2 11

5

4 2 14

5

160 sinh sec

8 4 sinh sec

L b h

L b h

    

    

  


  

 



 

 

3 4 3 6

5

4 2 3 8

5

4 2 2 3 10

5

16 sec

128 40 sec

8 40 38 3 sec

L h

L h

L h

   

   

    

 

 

  

 

 



4 2 2 3 12

5

4 2 3 14

5

4 3 16

5

16 46 11 16 sec

32 13 18 sec

320 sec 0.

L h

L h

L h

     

    

  

  

 

 

(7) 

While identifying the different coefficients of 
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get 

Term in  0 2,sech  , 

2

24 0.cb L a            (8) 

Term in  0 4,sech  , 

 2 2 2 2

2 6 3 14 2 0.L L b L b L a       (9) 

Term in  0 6,sech   

 2 2 3 2 2 2 2

5 5 6 2 32 2 2 2 3 0.L ab L a L b a L L b     

 (10) 

Term in  1 2,sech  , 

2

1 44 0.L L                 (11) 

Term in  1 4,sec ,h   

   

 

2 2

1 4 1 4

2 2 2

2 3 5

3 20 8 16

4 2 8 0.

L L L L

L L a L a

   

   

  

   
    (12) 

Term in  1 6,sech  , 

   

   

2 2 2 2 2

5 2 3

2 2

2 3 1 4

2

4

6 16 3 4 8

2 8 5 52

30 0.

L a a b L L a

L L a L L

L

     

   

 

   

   

 

(13) 

Term in  1 8,sech  , 

 

 

 

2 2 2

4 2 3 6

2

3 6

2 2 2 2

5

420 8 23 4

3 2

16 16 3 0.

L a L L L a

L L a

L a b b

    

 

   

  

 

   

 (14) 



221 American Journal of Computational and Applied Mathematics 2012, 2(5): 218-224  
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The resolution of Eq.(17) requires a discussion around the  

parameters r , s and t . 
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       
   
      

(19) 

For 0r   i.e .   2

2 6 3/L L L    , Eq.(17) is of 

second order in a . The resolution of Eq.(17) in these 

conditions gives: 

For 0  , we obtain the solution 

/
2

s
a r

 
    

 
,                (20) 

and 

 

1

2
2 2

1 2 6 32 / 4
2

s
b L L L L r 

  
       

  
(21) 

where  2 / 4s rt   . 

- For 0  , we obtain the following roots 

/
2

s
a i r

 
    

 
           (22) 

and 

 

1

2
2 2

1 2 6 32 / 4
2

s
b L i L L L r 

  
       

  
. (23) 

On the other hand, while combin ing equations Eq.(15) and 

Eq.(16), one gets   and   as functions of a  and b  

3 6

3 2 2

5 5

60 5
45 /

4 8

L a L a
L a b

L a L b


 
  

  
,        (24) 

and 

 
 

2

3 6 3
2

3 5 6 52

3 5 2 3 2 3

5 52

5 3

270 90
60 5

108 /
4 8

36

L L L a
L L L L a b

L L a
L a b L ab

L L b



 
   
    
     
 
 

 (25)  

where a and b are values given respectively by 

equations Eq.(18), Eq.(19), Eq.(20), Eq.(21), Eq.(22) and 

Eq.(23). 

Taking into account equations Eq.(18), Eq. (19),..., Eq. 

(25) in Eq. (6) we get three great families of solutions as seen 

below. 

For 0r  , i.e.   2

2 6 3/L L L    , the first family is given by  

     

      

2 2 2 2 2

1 6 3 2 2 6 3 1 5

1

2 2 2 2 2 2 2
1 6 3 2 6 3 2 2 6 3 1 5

2 3 / 4 sec

2 2 3 / 4 4 tanh

L L L L L L L L L h

L L L L L L L L L L L L h

     

    

       

             

 

 

 

 

2 2 4

3 3 6 5 5

2 2 2

3 6 3 3 5 5 3 2

2 2 3 2 3

3 5 6 5 5 5

45 / 60 5 4 8 sec

,270 90 108 36
tanh

/ 60 5 4 8

L a L a L a L a L b b h

L L L a L L a L L b

L L L L a b L a b L ab






    
  
         
   

        

           (26) 

where  a  and b  are g iven by Eq.(18) and Eq.(19).  

For 0r  , i.e.   2

2 6 3/L L L    , we obtain the last two families of solutions  
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   

1

2
2 2 2

1 2 6 3/ sec 2 / 4 tanh
2 2

s s
r h L L L L r     

      
                

      
 

 

 

 

2 2 4

3 3 6 5 5

2 2 2

3 6 3 3 5 5 3 2

2 2 3 2 3

3 5 6 5 5 5

45 / 60 5 4 8 sec

,270 90 108 36
tanh

/ 60 5 4 8

L a L a L a L a L b b h

L L L a L L a L L b

L L L L a b L a b L ab






    
  
 

        
  

        

       

(27)  

where 0  , a  and b given by Eq.(22) and Eq.(23). We also have 

   

1

2
2 2 2

1 2 6 3/ sec 2 / 4 tanh
2 2

s s
i r h L i L L L r     

      
                

      
 

 

 

 

 

2 2 4

3 3 6 5 5

2 2 2

3 6 3 3 5 5 3 2

2 2 3 2 3

3 5 6 5 5 5

45 / 60 5 4 8 sec

,270 90 108 36
tanh

/ 60 5 4 8

L a L a L a L a L b b h

L L L a L L a L L b

L L L L a b L a b L ab






    
  
 

        
  

        

          

(28) 

 

where 0  , a  and b are given by  Eq.(22) and 

Eq.(23). 

To better understand the notion of dominant and less 

dominant parts of wave 

 2 24sec tanh sec tanha h b h           , 

we are engaged in the representation of the two main  parts 

that constitute  . If we state that 

2

1 sec tanha h b     and 

4 2

2 sec tanhh      , the wave becomes

1 2    . Figure 1 shows the representation of 1 , 

which is the profile of a soliton wave of a kink type. Figure 2 

and Figure 3 show the representation of 2  for a few values 

of   and  . The two profiles obtained in Figure 2 and 

Figure 3 are soliton waves of pulse nature. Figure 4 gives the 

representation of solution in general 1 2     for 

  very small ( 0.01  ). The profile obtained is that of a 

kink. We simply realize that   can take the form of a kink 

or the form of a pulse depending on the value of  . As regard 

our research work, we have chosen for our dominant part 

1 . The practical interpretation that we can give to this 

solution is that of a soliton wave solution which changes its 

form with respect to the environment in which  it  happens to 

be or to the obstacle to overcome in  its medium of 

propagation. In the example considered hereafter the soliton 

  can lose its kink or pulse form depending on the 

conditions under which it is subjected. 

 
Figure 1.  Representative curve of the soliton profile of the solution 

, for , ,  

 

Figure 2.  Representative curve of the soliton profile of 

, for , , . 

and and in the case where ,  

2

1 sec tanha h b    1a  1b  0.1. 

4 2

2 sec tanhh      1a  1b  0.1 

 100,100    1.5,1.5  
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Figure 3.  Representative curve of the soliton profile of 

, for , , 

 and in the case where ,  

 

Figure 4. Representative curve of the soliton profile of the combined 

solution , 

, , , ,  and  

4. Conclusions 

We have just polished up this work by putting forward  a 

solution to Kuramoto-Sivashinsky’s equation in the form of 

a combine soliton wave. In the course of our work we have 

made up a solution of the form      1 2       , 

where 1  and 2  are solitary waves. Through the BDK 

innovative method mentioned above, we want to prove that it 

is possible to make up modulated soliton solutions of the 

form      2

1 2 3 ... ,n

n             

where 1 , 2 , …, n  represent solitary waves. This form 

that we are putting forward as regard all calculations and 

analysis undertaken up to date, helps us to  confirm our 

satisfaction as regard the usage of the BDK method in 

making up modulated soliton solution of 

Kuramoto-Sivashinsky’s equation. 

On the whole, projecting our reasoning rays beyond its 

limit , multi-soliton put into evidence experimentally will be 

an object of attraction for all scientists. 
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