Contents

Foreword

1.	. Theory and Practice of Modulated Temperature Diffe	rential
	Scanning Calorimetry	1
	Andrew A. Lacey, Duncan M. Price, and Mike Readin	g
	1 Introduction	1
	2 The Basics of Modulated Temperature Differential	Scanning
	Calorimetry	2
	2.1 Some Preliminary Observations on Heat Capa	city 2
	2.2 The MTDSC Experiment and Deconvolution I	rocedure 4
	2.2.1 The Simple Deconvolution Procedure	6
	2.2.2 The Complete Deconvolution Procedure	9
	2.2.3 Comments on the Different Deconvoluti	on
	Procedures	10
	2.2.4 Comments on Nomenclature	12
	3 Practical Modulated Temperature DSC	13
	3.1 The Importance of Linearity	13
	3.2 Selection of Experimental Parameters	13
	3.3 Common Transformations Studied by MTDSC	2 16
	3.4 Chemical Reactions and Related Processes	16
	3.4.1 Characteristics of MTDSC Results for C	hemical
	Reactions and Related Processes	16
	3.4.2 Summary	22
	3.5 The Glass Transition	23
	3.5.1 Characteristics of MTDSC Results for C	ilass
	Transitions	23
		=0

xi

3.5.2 The Fictive T	emperature and Enthalpy Loss on	
Annealing	1 12	34
3.5.3 Summary		37
3.6 Melting		38
3.6.1 Characteristic	cs of MTDSC Results for Polymer	
Melting		38
3.6.2 The Measure	ment of Polymer Crystallinity	43
3.6.3 Summary		49
3.7 Calibration		50
3.7.1 Calibration o	f the Total and Reversing Signals	50
3.7.2 Comments on	n Methods of Phase Lag Correction	52
3.8 Overview		54
4 Detailed Discussion of t	the Theory of MTDSC	55
4.1 Introduction		55
4.2 Modulation and De	convolution	55
4.3 Chemical Reaction	s and Related Processes	56
4.4 Frequency Depende	ent Heat Capacity and the Glass	
Transition		61
4.5 Melting		66
4.6 Calibration		69
		80
References		00
References 2 The Application of Modul	ated Temperature Differential	00
References 2. The Application of Modul Scanning Calorimetry for	ated Temperature Differential	00
References 2. The Application of Modul Scanning Calorimetry for Systems	ated Temperature Differential the Characterisation of Curing	83
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R	ated Temperature Differential the Characterisation of Curing Pahier, Guy Van Assche, and Steven	83
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier	ated Temperature Differential the Characterisation of Curing Pahier, Guy Van Assche, and Steven	83
References 2. The Application of Modul Scanning Calorimetry for Systems <i>Bruno Van Mele, Hubert R</i> <i>Swier</i> 1 Introduction	ated Temperature Differential the Characterisation of Curing Cahier, Guy Van Assche, and Steven	83 83
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and Comparison	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing	83 83 85
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 2.1 General Aspects of	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation	83 83 85 85
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and C 2.1 General Aspects of 2.2 Cure Reaction Mec	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism	83 83 85 85 87
References 2. The Application of Modul Scanning Calorimetry for Systems <i>Bruno Van Mele, Hubert R</i> <i>Swier</i> 1 Introduction 2 Polymer Networks and 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation	83 83 85 85 87 88
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination	83 83 85 85 85 87 88 89
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and C 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination	83 83 85 85 87 88 89 90
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation	83 83 85 85 87 88 89 90 91
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 9 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law	83 83 85 85 87 88 89 90 91 91
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and C 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growth 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov	ated Temperature Differential the Characterisation of Curing <i>Cahier; Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control	83 83 85 85 85 87 88 89 90 91 91 93
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov 2.5 Glass Transition–C	ated Temperature Differential the Characterisation of Curing <i>Cahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control onversion Relationship	83 83 85 85 87 88 89 90 91 91 93 94
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 9 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov 2.5 Glass Transition–C 3 Experimental Procedure	ated Temperature Differential the Characterisation of Curing <i>Pahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control onversion Relationship es to Monitor the Cure Process	83 83 85 85 87 88 89 90 91 91 93 94 94
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and C 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov 2.5 Glass Transition–C 3 Experimental Procedure 3.1 Gelation	ated Temperature Differential the Characterisation of Curing <i>Pahier; Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control onversion Relationship es to Monitor the Cure Process	83 83 85 85 85 87 88 89 90 91 91 93 94 94 94
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and C 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov 2.5 Glass Transition–C 3 Experimental Procedure 3.1 Gelation 3.2 Vitrification and the	ated Temperature Differential the Characterisation of Curing <i>Pahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control onversion Relationship es to Monitor the Cure Process e Glass Transition	83 83 85 85 87 88 89 90 91 91 93 94 94 94 95
References 2. The Application of Modul Scanning Calorimetry for Systems Bruno Van Mele, Hubert R Swier 1 Introduction 2 Polymer Networks and 9 2.1 General Aspects of 2.2 Cure Reaction Mec 2.2.1 Step-Growth 2.2.2 Chain-Growt 2.2.3 Chain-Growt 2.2.4 Heterogeneou 2.3 Mechanistic Versus 2.4 Specific Versus Ov 2.5 Glass Transition–C 3 Experimental Procedure 3.1 Gelation 3.2 Vitrification and the 3.3 Conversion and Co	ated Temperature Differential the Characterisation of Curing <i>Pahier, Guy Van Assche, and Steven</i> General Nature of Curing Polymer Network Formation hanism Polymerisation h Polymerisation without Termination h Polymerisation with Termination us Polymerisation s Empirical Cure Rate Law erall Diffusion Control onversion Relationship es to Monitor the Cure Process e Glass Transition nversion Rate	83 83 85 85 87 88 89 90 91 91 93 94 94 94 95 96

4	Pro	cedure	s for MTDSC Cure Measurements	98
	4.1	Gene	ral Considerations for Accurate Kinetic Analysis	98
		4.1.1	Sample Preparation, Sample Size and Storage	98
		4.1.2	Case of Volatile Reaction Products	99
		4.1.3	(Quasi-)isothermal MTDSC Cure Experiments	99
		4.1.4	Isothermal or Non-Isothermal Data for Kinetic	
			Analysis?	99
		4.1.5	Baseline for Isothermal and Non-Isothermal	
			MTDSC Cure	100
		4.1.6	Total Reaction Enthalpy	100
	4.2	MTD	SC Parameters	101
		4.2.1	Modulation Amplitude	101
		4.2.2	Modulation Period	101
		4.2.3	Temperature-Dependent Heat Capacity Calibration	102
5	MT	DSC (Characterisation of Cure: Experimental	
	Obs	servati	ons	102
	5.1	Expe	rimental Systems	102
		5.1.1	Epoxy Systems	102
		5.1.2	Polyester–Styrene Systems	103
		5.1.3	Melamine–Formaldehyde Resins	103
		5.1.4	Inorganic Polymer Glasses	103
	5.2	Rema	arks Concerning MTDSC Signals	103
		5.2.1	Non-Reversing MTDSC Heat Flow Versus	
			Conventional DSC Heat Flow	103
		5.2.2	Heat Flow Phase	105
	5.3	Isothe	ermal Cure with Vitrification	105
		5.3.1	Epoxy Systems	105
		5.3.2	Unsaturated Polyesters	106
		5.3.3	Melamine–Formaldehyde Resins	109
		Expe	rimental Requirements and Reproducibility of	
		Co	ndensation Reactions	109
		Vitrif	ication During MF Cure	110
		5.3.4	Inorganic Polymer Glasses	111
	5.4	Non-	Isothermal Cure with Vitrification and	
		Devit	rification	112
		5.4.1	Epoxy–Anhydride	112
		5.4.2	Epoxy–Amine	114
		5.4.3	Effect of Heating Rate	115
	5.5	Comb	bined Cure Paths	116
	5.6	Slow	Isothermal Cure	118
		5.6.1	Unsaturated Polyesters	118
		5.6.2	Inorganic Polymer Glasses: Influence of Particle	
			Size	118

	5.7 Partial Vitrification	121
	5.8 Mobility Factor to Quantify Degree of Vitrification	123
	5.9 Heat Capacity Change as a Result of Reaction Before	
	Vitrification	124
	5.9.1 Mechanistic Information	124
	5.9.2 Step-Growth Epoxy–Amine Polymerisation:	
	Primary and Secondary Reactions	125
	5.10 Reaction-Induced Phase Separation	127
	6 Modelling the Diffusion-Controlled Overall Kinetics and	
	Cure Rate Law of Epoxy Systems	129
	6.1 Proposed Model	129
	6.2 Optimised Cure Rate Law	133
	6.2.1 Epoxy–Anhydride System	134
	6.2.2 Epoxy–Amine System	137
	6.3 Remarks Concerning the Proposed Model and	
	Literature Models	139
	6.4 Remarks Concerning the Frequency Dependence of He	at
	Capacity During Cure	140
	7 Glass Transition–Conversion Relationship	142
	7.1 Validation of the $T_{\rm g} - x$ Model	142
	7.2 $\Delta C_{\rm p}$ and $\Delta T_{\rm g}$ at $T_{\rm g}$ as a Function of Conversion	144
	8 TTT and CHT Cure Diagrams	145
	8.1 MTDSC Calculation Procedure	145
	8.2 Influence of Chemical Structure on the (De)vitrification	
	Behaviour of the Thermosetting Systems	153
	9 Conclusions and Future Developments	154
	References	156
2		
3.	Applications of Modulated Temperature Differential Scanning	1.61
	Calorimetry to Polymer Blends and Related Systems	161
	Douglas J. Hourston and Mo Song	171
	1 Introduction 2 Heat Connection and its Differential with Tanan another Signal	161
	2 Heat Capacity and its Differential with Temperature Signal	1(5
	Over the Glass Transition Region	105
	5 Measurements of the Glass Transition Temperature and	166
	4 Multi Component Polymor Materials	100
	4 Ividit-Component in the Massurement of Delymer Delymer	1/3
	4.1 Improvement in the Measurement of Polymer–Polymer Missibility	172
	IVIISUUIIIIIY 4.2 Interface Development Potyzoon Compatible Delymor	1/3
	4.2 Interface Development Detween Compatible Polymer	107
	1/11/15	103

4.

		4.2.1 Asymmetrical Interdiffusion:	
		Polyepichlorohydrin/Poly(vinyl acetate)	186
		4.2.2 Symmetrical Interdiffusion: Poly(methyl	
		acrylate)/Poly(vinyl acetate)	190
	4.3	Structured Latex Films	195
	4.4	Morphology Analysis of Interpenetrating Polymer	
		Networks	203
		4.4.1 Characterisation of Glass Transition Behaviour in	
		Interpenetrating Polymer Networks	204
		4.4.2 Model Experiment	207
		4.4.3 Analysis of Phase Structure of IPNs	209
5	Cor	clusions	211
	Ref	erences	212
T	he A	pplication of MTDSC to Polymer Melting	217
B	ernh	ard Wunderlich	017
1	Intr	oduction	217
2	The	Melting and Crystallisation Behaviour of Polymers	219
	2.1	Equilibrium Melting	219
	2.2	Nucleation of Crystals and Molecules	224
	2.3	Irreversible Melting	227
	2.4	Local Equilibria	233
2	2.5	Summary of Thermal Effects	235
3	Inst	rument and Deconvolution Problems	237
	3.1	Evaluation of Heat Capacity by MTDSC as a Baseline	007
	2.2	for the Study of Melting	237
	3.2	Melting and Crystallisation by Standard DSC	245
	3.3	Types of Modulation of Temperature	250
	3.4	Deconvolution of the Reversing Heat Capacity	252
4	App	blications of MTDSC to Polymer Melting	258
	4.1	Qualitative and Semi-quantitative Analysis of Polymer	250
		Melting by MTDSC	258
	1.0	4.1.1 Summary	268
	4.2	Determination of Heat Capacity of Solids and Melts	269
		4.2.1 Summary	274
	4.3	Determination of Heat of Fusion, Crystallinity	
		and Kinetics	275
		4.3.1 Heat of Fusion and Crystallinity	275
		4.3.2 Baseline Fits	276
		4.3.3 Quasi-Isothermal Kinetics of the Glass Transition	276
		4.3.4 Model Calculation for the Glass Transition with an	
		Underlying Heating Rate	281

435 Kinetics of Transitions with a Latent Heat	285
4.2.6 Maganhaga Transitions with a Eatent Heat	205
4.5.6 Mesophase Transitions	289
4.3.7 Analysis by MTDSC Kinetics of Transitions with a	
Latent Heat	290
4.3.8 Summary	293
4.4 Determination of Annealing and Reorganisation	294
4.4.1 Annealing of PET	295
4.4.2 Annealing of PTT	297
4.4.3 Annealing and Reversible Recrystallisation in Low	
Molar Mass PEO	299
4.4.4 Annealing in PEcoO	304
4.4.5 Summary	308
4.5 Reversible Melting	309
4.5.1 Summary	313
5 Recommendations	314
Acknowledgements	316
References	316
Index	321