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It is estimated that more than 339 million people worldwide suffer from asthma. The

leading cause of asthma development is the breakdown of immune tolerance to inhaled

allergens, prompting the immune system’s aberrant activation. During the early phase,

also known as the sensitization phase, allergen-specific T cells are activated and become

central players in orchestrating the subsequent development of allergic asthma following

secondary exposure to the same allergens. It is well-established that allergen-specific

T helper 2 (Th2) cells play central roles in developing allergic asthma. As such, 80%

of children and 60% of adult asthma cases are linked to an unwarranted Th2 cell

response against respiratory allergens. Thus, targeting essential components of Th2-type

inflammation using neutralizing antibodies against key Th2 modulators has recently

become an attractive option for asthmatic patients with moderate to severe symptoms.

In addition to directly targeting Th2 mediators, allergen immunotherapy, also known as

desensitization, is focused on redirecting the allergen-specific T cells response from a

Th2-type profile to a tolerogenic one. This review highlights the current understanding

of the heterogeneity of the Th2 cell compartment, their contribution to allergen-induced

airway inflammation, and the therapies targeting the Th2 cell pathway in asthma. Further,

we discuss available new leads for successful targeting pulmonary Th2 cell responses

for future therapeutics.
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INTRODUCTION

Asthma is a chronic lung disease characterized by breathing problems and obstructed airflow when
airways swell and narrow and produce excess mucus (1). Allergic asthma is the most common form
of asthma and is caused by the inhalation of allergens, which trigger the overreaction of the immune
system in allergic people (1). The most common airborne allergens are pollen, fungal spores,
house dust mites (HDM), and animal allergens. The characteristic pattern of inflammation in the
airways of patients with allergic asthma includes the production of T helper 2 (Th2)-associated
cytokines, such as interleukin- (IL-) 4, IL-13, and IL-5 by Th2 cells and type 2 innate lymphoid cells
(ILC2s), the activation of mast cells, the infiltration and activation of eosinophils, and the increased
production of immunoglobulin E (IgE) by B cells (2). Clinical and preclinical studies demonstrate a
strong cause and effect relationship between the aberrant expansion of allergen-specific Th2 CD4+

T cells and the development of asthma pathogenesis, thus leading to the idea that Th2 cells play a
central role in allergic asthma (1, 2).
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The development of allergic asthma occurs in two phases
(1, 3). Phase one requires an initial exposure to allergen or
“sensitization” that does not necessarily cause symptoms or
pathology. Phase two is characterized by pathology development
following secondary or subsequent allergen exposures or
“challenges.” Initial sensitization to airborne allergens occurs
typically in early childhood, and it is characterized by the
initial priming of allergen-specific CD4+ T cells with a Th2-like
cytokine profile. These T cells persist after the initial priming and
can be subsequently reactivated upon re-exposure with the same
inhaled allergen, which caused their migration to the airways,
where they locally produce Th2 cytokines. The accumulation of
effector Th2 cells in the lungs ultimately stimulates the hallmark
features of asthma, such as mucus hypersecretion and bronchial
hyperresponsiveness (1).

Most patients with asthma achieve good disease control with
the principal use of inhaled corticosteroids and bronchodilators
(4, 5). However, a large proportion of patients with asthma
remain poorly controlled (6). The failure of conventional
therapies in these corticosteroid-resistant patients justifies
looking for new approaches to treat allergic asthma. In this
regard, the central role of Th2 cells in regulating airway
inflammation has aroused great interest in the therapeutic
potential of “anti-Th2 approaches.” As such, new biological
asthma medications based on monoclonal antibodies against key
Th2 mediators have been recently approved, and more are being
under investigation (7). Furthermore, allergen immunotherapy,
a long-term treatment that inhibits Th2-cell-mediated responses,
decreases symptoms for many people with allergy disease (8),
thereby evidencing the central pathogenic role of Th2 cells in the
pathophysiology of allergy.

Here, we will review the available treatments for allergic
asthma and discuss the potential immunological mechanisms
underlying the clinical benefits of these therapies. Finally, recent
studies provide evidence of a critical function of T follicular
helper (Tfh) cells, a subset of CD4+ T cells that help GC B
cell responses, in the allergic asthma pathogenesis. Therefore,
we will discuss potential therapeutic approaches to target Tfh
cells and suppress IgE responses and Th2 cell-mediated allergic
inflammation in asthmatic patients.

PATHOGENIC ROLES OF Th2 CYTOKINES
IN ALLERGIC ASTHMA

Eighty percentage of children and 60% of adults with asthma
have type 2/Th2 asthma (9), which is driven by allergen-induced
production of IgE and Th2 cytokines, including IL-5, IL-13, and
IL-4 (Figure 1). Studies in mice, initially using OVA adjuvant and
adjuvant-free sensitization protocols and most recently, using
natural allergens such as HDM, cockroaches, sensitizing fungi,
and protease allergens, have demarcated our knowledge on Th2
cytokines in asthma. For example, IL-4 produced by T cells
drives IgE class switching (10–15) and, in conjunction with IL-
13, is required to produce high-affinity IgE (16). IgE mediates
mast cell and basophil degranulation by FcεRI crosslinking
upon allergen recognition (17–19). Activation of FcεRI results

in the immediate release of preformed granular substances
(e.g., histamine, heparin, and proteases) and the production of
inflammatory mediators, such as cytokines and arachidonic acid
metabolites. This activation drives edema, mucus hypersecretion,
and bronchial hyperresponsiveness, all accompanied by a drop
in airflow in the airways. In some cases, activation of FcεRI
can develop into a life-threatening systemic reaction called
anaphylaxis (20).

In addition to regulating IgE production, IL-13 and IL-
4 are implicated in cardinal features of asthma, such as
extravasation and trafficking of eosinophils into the tissue (21–
27), goblet cell maturation, mucus secretion (28), bronchial
hyperresponsiveness (28, 29), and tissue remodeling (30).

IL-5 is responsible for the maturation of eosinophils in
the bone marrow and their release into the blood (31). As
such, IL-5 production in the airways favors the production,
accumulation, and activation of eosinophils in the lung (32), and
ultimately, the release of a large number of mediators capable of
inducing bronchial hyperresponsiveness, mucus hypersecretion
via enhanced differentiation of goblet cells (33–36) and, airway
remodeling (37, 38).

Although ILC2s and other cells can also contribute to Th2
cytokines production, IL-4, IL-13, and IL-5 are principally
produced by Th2 cells during ongoing chronic asthmatic
responses. Given the pathogenic role of Th2 cells and Th2
cytokines, treatments for patients with type 2/Th2 asthma are
directed to globally suppress Th2-mediated inflammation or to
specifically target the most pathogenic effector functions of the
various Th2 cytokines or the IgE response.

CONVENTIONAL TREATMENTS THAT
TARGET Th2-TYPE INFLAMMATION IN
ASTHMA

Inhaled corticosteroids (ICS) are the most effective and
commonly used long-term control drugs for asthma (4, 5).
They locally suppress many aspects of Th2 cell-mediated
inflammation, including Th2 cytokines (IL-4, IL-13, IL-5)
epithelium-derived cytokines (TSLP, IL-33), chemotactic
chemokines (IL-8, RANTES, MIP-1α, eotaxin, CCR2), and
adhesion molecules (ICAM-1, VCAM-1) (4, 5, 39–41). Globally,
ICS reduce the recruitment and maintenance of inflammatory
cells into the airways of asthmatic patients, including dendritic
cells, Th2 cells, eosinophils, and mast cells. Mechanistically, ICS
suppress the production of chemotactic mediators, prevent the
expression of adhesion molecules, and inhibit the survival of
inflammatory cells in the airways (4, 5).

ICS mediate their effects through the glucocorticoid receptor
(GR), an intracellular receptor and transcription factor belonging
to the nuclear receptor family (39). In the absence of the ligands,
GR is maintained in the cytoplasm by chaperone proteins.
Upon ligand binding, GR becomes active and translocates
into the nucleus to bind glucocorticoid response elements
(GREs), thereby regulating the transcription of GR target genes.
GR dimers and monomers can induce either transcriptional
gene induction or gene repression (39, 42–44). Besides, GR
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FIGURE 1 | Pathogenic roles of Th2 cytokines in allergic asthma. Th2 cytokines play critical roles in asthma pathogenesis. IL-5 promotes eosinophil egress from the

BM and help survival in the lungs. IL-4 and IL-13 induce eosinophil extravasation from the blood into the tissue and promote IgE class-switching. IL-13 favors globet

cell maturation, mucus secretion, and airway hyperresponsiveness. TSLP helps Th2 differentiation and DC function. Altogether, these effects lead to edema, mucus

hypersecretion, bronchial hyperresponsiveness and remodeling, and ultimately drop in air-flow and asthma. Novel biological therapeutics target these pathways for the

treatment of asthma.

can indirectly induce gene repression by GR interaction with
DNA-bound transcription factors such as NF-κB and activator
protein-1 (AP-1), resulting in the repression of the respective
inflammatory signaling cascades (39, 45, 46).

The wide range of anti-inflammatory effects of ICS probably
accounts for their clinical effectiveness in managing type 2/Th2-
asthma. Regular treatment with ICS (alone or in combination
with bronchodilators, such as long-acting β2 agonists (LABAs)
or Theophylline) can effectively control chronic symptoms and
prevent asthma attacks in most of the patients (4, 5). However,
in patients with moderate to severe asthma, ICS are less
effective. Hence, unacceptably high doses of ICS or even oral
corticosteroids may be required to achieve optimal control.

Several mechanisms can contribute to the reduced
responsiveness to ICS in moderate/severe asthma [for a
review, see (6)]. For example, cytokines such as IL-1, TNFα,
nitric oxide (NO), IL-13, and IL-4, which are overexpressed in
the airways of patients with corticosteroid-resistant asthma, have
been shown to reduce GR nuclear translocation and function.
Ultimately, people with severe asthma are refractory to ICS
treatment and experience poor symptom control. Additionally,
these patients can have frequent asthma exacerbations, in which
symptoms flare-up and get progressively worse, leading to
respiratory failure. Therefore, new treatments have emerged for
selected patients with moderate to severe type 2/Th2 asthma
disease and inadequate responsiveness to ICS. These new
therapeutic avenues are aimed to target cytokines and mediators
that promote type 2/Th2 immunity.

Biologic Drugs That Target Th2-Type
Inflammation in Asthma
The clinical characteristics of moderate/severe asthma disease
are frequent asthma exacerbations (>2 episodes in 12 months
period), high blood counts of eosinophils and sputum
eosinophils, and poor response to high dosage ICS/ LABAs
(47). These uncontrolled symptoms place patients at high risk
for hospitalization and reduced health-related quality of life.
Therefore, additional therapeutics are needed for those patients
whose severe asthma does not respond well to conventional
anti-inflammatory treatment. Several biologics designed to target
specific mediators of Th2-type cell immunity have been proved
to be effective as add-on treatments for severe asthma patients
(Figure 1).

Anti-IgE Therapy in Severe Asthma: Omalizumab
Omalizumab is a humanized IgG1 monoclonal antibody that
specifically binds to free IgE and prevents it from binding to the
high-affinity IgE receptor (FcεRI) on basophils and mast cells. As
Omalizumab depletes free IgE, it further promotes FcεRI down-
regulation in basophils and mast cells, rendering those cells
much less sensitive to stimulation by allergens and consequent
degranulation (48–50).

Omalizumab is given by subcutaneous injection every 2–4
weeks. It is FDA-approved to treat moderate-to-severe asthma
in patients over 6 years of age that have sensitivity to perennial
aeroallergens (e.g., dust mites, pet dander, cockroach debris).
The appropriate doses are determined on a combination of age,
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IgE levels, and body weight. In clinical trials and observational
studies with moderate to severe persistent asthma patients,
Omalizumab has been shown to decrease the incidence of asthma
exacerbations and emergency visits by 38 and 47%, respectively,
compared with controls (50).

Some potential adverse reactions have been described related
to long-term effects on cardiovascular and cerebrovascular
events. However, the available studies limit the ability to quantify
the magnitude of the risk (50, 51). Omalizumab has also been
associated with life-threatening systemic allergic anaphylactic
reactions; thus, anyone who gets an injection of this drug should
be monitored closely by health professionals (50).

Anti-IL-5 Therapy in Severe Asthma: Mepolizumab,

Reslizumab, and Benralizumab
Three different biologic drugs targeting IL-5 signaling are
available, and FDA-approved. All three treatments have been
consistently shown to reduce blood eosinophil counts and
sputum eosinophils (47, 52, 53). Mepolizumab is a humanized
IgG1 monoclonal antibody that recognizes and blocks IL-5
and prevents its binding to IL-5 receptor alpha subunit (IL-
5Rα or CD125) on the surface of eosinophils. Reslizumab is a
humanized IgG4 monoclonal antibody against IL-5 that likewise
prevents IL-5 function in eosinophils. Finally, Benralizumab

also targets IL-5-mediated effects on eosinophils, but in this
case, it is via a humanized IgG1 monoclonal antibody directed
against IL-5Rα/CD125. Besides, blocking IL-5/IL-5R signaling,
Benralizumab induces antibody-mediated eosinophil depletion
(54) and as such, very rapid eosinophil reduction in sputum, bone
marrow and blood (53).

Targeting the biological activity of IL-5 with Mepolizumab,
Reslizumab and Benralizumab reduces asthma exacerbations and
life-threatening emergencies in corticosteroid-resistant severe
eosinophilic asthma, as well as help minimize corticosteroid use
(55–69). However, no consistent benefits have been shown to
improve daily asthma symptoms and quality-of-life, pertaining to
the use of short-acting bronchodilators, nigh awakenings, or the
limitation of activities (55–57, 62, 66, 67, 70). Likewise, targeting
IL-5 does not improve asthma control in patients with mild-to-
moderate eosinophilia (59, 71–73). Hence, while these findings
highlight the importance of eosinophils in the pathogenesis of
asthma exacerbations, they also suggest that the inflammatory
cues driving the day-to-day symptoms are different from the
eosinophil-driven mechanisms responsible for asthma attacks.
Therefore, the primary target population for these medications is
limited, at best, to patients with moderate-to-severe eosinophilia
and a history of frequent exacerbations.

The three current FDA-approved anti-IL-5 therapies have
different administration routes and schedules. Mepolizumab
is given as an at-home monthly subcutaneous injection and
approved as an add-on treatment for patients 6 and older.
Reslizumab is a personalized, weight-based intravenous injection
given every 4 weeks and approved for use with other asthma
medicines in patients aged 18 and older. Due to the risk of
an anaphylactic reaction, patients should be observed after
drug administration. Benralizumab is an add-on maintenance
treatment for patients 12 and older and is administered once

every 4–8 weeks by subcutaneous injection. A healthcare
professional should oversee Benralizumab administration due to
the risk of anaphylaxis.

Anti-IL-13/4 Therapy in Severe Asthma
Due to the central role of IL-13 and IL-4 in controlling critical
aspects of asthma pathophysiology, several biologic drugs have
been designed to block either IL-13 alone or IL-13 and IL-4
simultaneously. IL-13 signals primarily through the Type-2 IL-4
receptor, which is composed of two chains, IL-13Rα and IL-4Rα

IL-4 can signal through both, the Type-2 IL-4 receptor and the
Type 1 IL-4 receptor (consisting of IL-4Rα and common γ chain).

IL-13 alone blocking drugs include monoclonal antibodies
against IL-13 such as Lebrikizumab (humanized IgG4),
Tralokinumab (human IgG4), GSK679586 (humanized IgG1),
Anrukinzumab (IMA-638; humanized IgG1) and IMA-026

(humanized IgG1). Simultaneous targeting of IL-4 and IL-13
signaling has been achieved by using a human IL-4 mutein
that competes with IL-13 and IL-4 for binding to the IL-4Rα

(Pitrakinra), and by usingmonoclonal antibodies against IL-4Rα

(AMG-317, human IgG2 andDupilumab, human IgG4).
IL-13 blocking agents show evidence of IL-13 pathway

inhibition, such as a reduction in biomarkers of Th2/eosinophilic
airway inflammation and serum IgE concentration. However,
they do not consistently show clinically meaningful
improvements in asthma control, pulmonary function, or
exacerbations in severe asthma patients (74–83), most likely
due to the inability of IL-13 blocking agents to reduce airway
eosinophilia in humans significantly (79, 83). Collectively, these
results do not support the use of Lebrikizumab, Tralokinumab,
GSK679586, Anrukinzumab, and IMA-026 for the treatment of
severe asthma.

The biologic activities of IL-14 and IL-13 significantly overlap.
Thus, the relatively low efficacy of IL-13 blocking agents is likely
due to the capacity of IL-4 and other inflammatory mediators to
compensate for the lack of IL-13. Therefore, dual targeting of IL-
13 and IL-4 has been suggested as a superior approach to reduce
airway eosinophilia and other activities associated with airway
inflammation, fibrosis, andmucus production (84). In agreement
with this idea, local (inhaled) treatment with Pitrakinra, an IL-
4 mutein that simultaneously blocks IL-13 and IL-4 signaling,
has shown clinical efficacy in reducing asthma symptoms in a
phase 2a study in patients with mild asthma (85). In a later larger
study, inhaled Pitrakinra showed significant clinical efficacy in
reducing the rate of exacerbations in patients with moderate-to-
severe eosinophilic asthma (86). Despite these promising data,
further development of Pitrakinra for asthma has ceased.

Additionally, two monoclonal antibodies to IL-4Rα have
been developed for the dual inhibition of IL-4/13 signaling
(AMG-317 and Dupilumab). AMG-317 displayed relatively poor
pharmacokinetics and did not demonstrate clinical efficacy
in a clinical trial with moderate-to-severe asthma patients
(87). Dupilumab, however, has shown clinical improvements
in reducing asthma exacerbations and asthma symptoms and
control, as well as lung function in patients with persistent,
moderate-to-severe asthma and elevated eosinophil levels (88–
91). Besides, Dupilumab appears to have a more significant
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effect in improving bronchial hyperreactivity than inhibitors
of IL-5 and significantly reduce levels of Th2-associated
inflammatory indicators, including markers of eosinophilic
airway inflammation and IgE levels (88, 89). IL-4 and IL-
13 are essential factors promoting Th2 cell differentiation and
class switching into IgE in B cells (1), but at the same time,
precluding the differentiation of regulatory T cells (Tregs) (92–
95). Therefore, the blockade of the actions of IL-4 and IL-13 with
Dupilumab could potentially alter the course of adaptive immune
responses to allergens and thus cause a long-term tolerogenic
effect. If this is confirmed, Dupilumab could be considered not
only a Th2-targeted therapy but an immunomodulatory therapy
as well.

Up until now, Dupilumab is the only FDA-approved dual
inhibitor of IL-4 and IL-13. It is currently used as an
add-on maintenance treatment in patients with moderate-to-
severe asthma aged 12 years and older with an eosinophilic
phenotype or oral corticosteroid-dependent asthma. It is also
approved for inadequately controlled chronic rhinosinusitis with
nasal polyposis and atopic dermatitis (96–98). The drug is
administered once every 2 weeks by subcutaneous injection and
is administered at home or in office.

Interestingly, though Dupilumab decreases bronchial
hyperreactivity, serum IgE, and pulmonary eosinophilia,
eosinophil counts in blood are elevated (88, 89). This observation
is not entirely surprising since, rather than inhibiting eosinophil
differentiation, the likely mechanism by which IL-4/IL-
13 blockade prevents airway eosinophilia is by precluding
eosinophils recruitment from the blood into the tissues (21–27).
Notably, IL-5 stimulates eosinophil development, maturation,
and egress from bone marrow (31). As a result, anti-IL-5-based
therapies significantly reduce eosinophil numbers in both blood
and sputum (47, 52, 53). Therefore, combined blockade of
multiple Th2-associated cytokines (IL-13, IL-4, and IL-5) may
be a better approach to overcome cytokine redundancy and gain
full control of asthma symptoms, including exacerbations, lung
function, and quality of life, by simultaneous optimization of
airway hyper-reactivity, eosinophil, and IgE targeting (99).

Promising New Therapy in Severe Asthma Targeting

the Epithelial-Cytokine TSLP: Tezepelumab
The epithelial cell-derived cytokine thymic stromal
lymphopoietin (TSLP) has been described as a central regulator
of Th2 cell-mediated inflammation in asthma (100–104). Several
studies have shown that the airways of asthmatic patients
have increased TSLP expression, which correlates with higher
Th2 cell response and disease severity (100–103, 105). In vitro
approaches and in vivo animal models have demonstrated that
TSLP is released by the barrier epithelium in response to external
insults, particularly to allergens with proteolytic activity, such
as HDM, cockroaches, ragweed, Alternaria, Aspergillus, and
papain (106–113). Additional preclinical studies demonstrate
that the lack of TSLP signaling results in reduced Th2 cell-
mediated airway inflammation (106, 114, 115). On the contrary,
TSLP overexpression leads to spontaneous Th2 cell-mediated
airway inflammation and an asthma phenotype (115, 116).
Mechanistically, TSLP can directly stimulate naïve CD4+ T cells

to commit to the Th2 cell lineage (106, 114, 117) and directly
stimulate dendritic cells (103, 106, 113, 115, 118, 119) and ILC2
(106, 113, 120–122) for priming Th2 cell responses.

Based on the central role of TSLP in the initiation and
maintenance of Th2-cell-mediated inflammation, including not
only asthma but also atopic dermatitis and food allergy
(123), a human IgG2 monoclonal antibody with the ability
to neutralize TSLP (Tezepelumab) was developed (124) and
have shown promising results in severe, uncontrolled asthma
(125–127). Tezepelumab was given as an add-on therapy to
patients whose asthma was uncontrolled despite the use of
ICS. It was found to reduce asthma exacerbations, allergen-
induced bronchoconstriction, and airway inflammation indexes,
including decreased levels of blood and sputum eosinophils.
These findings are being further explored in an ongoing phase
2/3 trial that will produce data by early 2021. Current trials are
testing Tezepelumab when given subcutaneously every 4 weeks.
Additionally, an inhaled anti-TSLP antibody will be studied in
a 652-patient Phase II study (NCT04410523) that has yet to
start recruiting.

ALLERGEN IMMUNOTHERAPY OR
ALLERGEN DESENSITIZATION

Allergen immunotherapy, also known as desensitization, is
a long-term medical treatment that decreases symptoms and
prevents the development of allergic asthma in patients
with environmental allergies (128–131). Contrary to ICS, oral
corticoids, LABAs, and biologic drugs, which require continuous
utilization to keep asthma symptoms under control, allergen
immunotherapy is a disease-modifying approach. In these
therapies, patients are exposed to gradually increasing doses
of environmental allergies to divert their pathogenic Th2 cell
responses from pathogenic to tolerogenic. The treatment requires
a significant commitment since it usually takes 3–5 years to
achieve clinical benefits. However, it often leads to long-lasting
relief of allergy symptoms and severity of asthma, with an
observed efficacy duration of 7–12 years after treatment is
stopped (129–135). Allergen Immunotherapy may also decrease
the development of new sensitizations to other allergens in both
pediatric and adult patients (8, 131).

Despite proven efficacy, the mechanisms of allergen
immunotherapy remain not entirely understood. Multiple
overlapping mechanisms, mediators, and cell types are likely
responsible for re-directing the established Th2/IgE-dominant
response and the restoration of the immune tolerance to the
aeroallergens. Desensitization of FcεRI-bearing mast cells and
basophils, accompanied by decreased activity for degranulation
and anaphylactic reactions, is observed early after treatment. This
effect could be mediated by the up-regulation of the histamine
type 2 receptor, which has a suppressive effect on the activation
of mast cells and basophils (136). As the therapy progresses,
IgG-dependent inhibition of mast cell/basophil activation might
contribute to sustaining inhibition of mast cell/basophil activity.
In this regard, it has been shown that specific-IgE levels in blood
progressively decrease during allergen immunotherapy. On the
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contrary, the titters of allergen-specific IgG4 antibodies increases
over time (137–142). This change in balance is thought to be
the consequence of increased IL-10 production (140), which can
drive allergen-specific B cells to produce IgG4 at the expense of
IgE secretion (143). Although the exact clinical consequences
of these changes remain unclear, it has been suggested that
IgG4 can sequester antigen, thereby limiting its availability
for cross-linking of receptor-bound IgE. Alternatively, IgG4
can co-stimulate the inhibitory IgG receptor FcγRIIb, which
negatively regulates FcεRI signaling and cell activation (144).

Phenotypic and functional changes in the allergen-specific
T cell response have been observed in the peripheral blood
and nasal mucosa of treated patients. These changes included
diminished production of Th2 cytokines (IL-4, IL-13, IL-5)
by allergen-specific T cells (142–148) and elevated numbers
of allergen-induced Foxp3+CD25+ Tregs expressing IL-10
and TGF-beta (139, 142, 146, 149–152). Whereas, the exact
mechanisms through which allergen immunotherapy drives
inhibition, deletion, exhaustion, replacement, or reprogramming
of T cells remain elusive, changes in the cytokine milieu
could partially account for these changes. For example, allergen
immunotherapy triggers IL-10 induction by multiple cell types
(138, 140, 153, 154). In turn, IL-10 can control Th2 cell-mediated
allergic inflammation by both direct and indirect mechanisms.
On the one hand, intrinsic IL-10 signaling may limit Th2 cell
responses by directly inducing Th2 cell death (155). On the
other hand, IL-10 might prevent Th2 cell expansion by down-
regulating antigen presentation by reducing MHCII class II
expression (156, 157) or via IgG4-mediated inhibition of IgE-
facilitated allergen presentation (140, 158–160). The subsequent
reduction in the production of Th2 cytokines, most crucially
in IL-4, could favor the differentiation of allergen-specific, IL-
10-producing inducible Tregs by allowing TGF-beta-dependent
up-regulation of FOXP3 in responding T cells (92–95). Thus,
initiating a positive feedback loop of IL-10 signaling and Treg-
mediated immunosuppression that ultimately suppresses the
differentiation and function of newly formed allergen-specific
Th2 cells (149, 161).

In current clinical practice in the United States,
immunotherapy is delivered either subcutaneously or
sublingually. Additionally, other methods of allergen delivery are
being tested for improving outcome.

Subcutaneous Immunotherapy (SCIT)
Subcutaneous immunotherapy (SCIT), also known as allergy
shots involves receiving subcutaneous injections of a particular
aeroallergen that has been identified to cause the allergic reaction.
Allergen identification is based on the presence of IgE antibodies
specific to that allergen (162). Injectable allergen extracts
are available to treat allergies triggered by common airborne
allergens such as pollen, mold, dust mites, and animal dander.

SCIT treatment consists of two phases: During the Build-up
phase, the antigen is given frequently (one to two times per week)
in gradually increasing doses until achieving an effective targeted
dose (that reduce disease severity from natural exposure). This
phase usually lasts 3–6 months. During the maintenance phase,
the targeted dose of allergen is injected every 3–4 weeks for

at least 3–5 years. Allergy shots are recommended for people
with allergy symptoms who do not respond well to usual
mediations, have significant side effects from their mediation,
want to reduce the long-term use of allergy medication, or
for whom allergies might become life-threatening (8). Although
allergen immunotherapy is generally safe, it can have adverse
reactions, including anaphylaxis (163, 164). For that reason, each
injection is administered in a setting with trained professionals
and equipment to treat anaphylaxis (8). Further, it is essential to
identify any patient characteristics (such as severe uncontrolled
asthma) that may increase the risk of a severe reaction (165).

Sublingual Immunotherapy (SLIT)
SLIT involves administering the allergens in a tablet form under
the tongue, generally on a daily basis. Sublingual tablets are
intended for the treatment of allergic rhinitis and allergic asthma.
This therapeutic approach is available for different species of
grass pollen and dust mites. SLIT can achieve a significant
clinical improvement but shows less efficacy than SCIT, which
offers earlier and robust clinical effects and induces systemic
changes (166–169). SLIT only provides local changes in the oral
mucosa and regional lymph nodes (170, 171). The significant
advantage of SLIT over SCIT is its safety profile, which allows
for administering this treatment outside of the medical setting
after the first dose (131, 172). Still, as for the possibility of
severe allergic reactions from SLIT, an epinephrine auto-injector
is usually prescribed to treat potential severe reactions at home.

Future Approaches in Allergen
Immunotherapy
Although SCIT and SLIT are efficacious in that both offer
significant clinical improvements in allergic and asthma
symptoms, the adherence with the current regimens is low.
Most likely because of the frequency of administrations and the
long duration of the therapeutic courses. Thus, there is a need
for more effective allergen immunotherapy strategies, especially
for patients with refractory allergic disease or those who suffer
adverse drug reactions.

One of the novel approaches includes using adjuvants such
as Toll-like receptor (TLR) agonists. Lipopolysaccharide (LPS),
also known as endotoxin, is a major component of Gram-
negative bacteria that activates the innate immune response
through TLR4. Exposure to airborne allergens containing
endotoxin protects against asthma by suppressing the Th2 cell
differentiation program in allergen-specific T cells (173–175). In
this regard, monophosphoryl Lipid A (MPL), which is a TLR4
agonist, being a derivate of Lipid A from LPS that triggers a
moderate inflammatory reaction (176, 177), have been evaluated
in allergen immunotherapy. Compared to conventional allergen
desensitization strategies, MPL immunotherapy show lasting
clinical benefits even when administered in shorter courses
(178–186). These results are certainly promising and encourage
further controlled studies to evaluate clinical and immunological
measurements and long-term efficacy.

Outside of TLR4, other agonists targeting alternative TLRs
are being investigated in the context of allergen immunotherapy,
with components targeting TLR9, TLR8, and TLR7. TLR9
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agonists have been shown to reduce allergic symptoms and
modulate the immune response to allergens when administered
as an adjuvant in allergen immunotherapy (187–189). Despite
promising data, clinical trials have not yet progressed beyond
initial studies. TLR7 agonists are currently being evaluated
for their safety in the context of allergen immunotherapy
(190–193). Future studies will determine whether those are
promising adjuvants.

Finally, other routes of allergen administration have been
tested. Intralymphatic immunotherapy has shown favorable
results in shorten treatment duration. Hence, it might offer
an alternative approach to improving allergen immunotherapy
adherence and success (194). Intralymphatic immunotherapy
involves the application of the allergen directly into the lymph
nodes. The whole treatment consists of three ultrasound-
guided injections into the inguinal lymph nodes 1 month apart.
Although the clinical results are favorable, more extensive studies
are needed to support long-term effectiveness.

FUTURE THERAPEUTIC TARGETS: Tfh
CELLS IN ASTHMA

Experimental mouse models of allergic asthma have been
instrumental in investigating the mechanisms underlying

the initiation and maintenance of allergen-specific Th2 cell
responses. Using these preclinical models, it has been shown
that the development of allergic Th2 cell responses is more
complex than initially expected. During the initial sensitization
through the intranasal (i.n.) route, lung-migratory dendritic cells
traffic into the lung-draining lymph nodes to prime allergen-
specific CD4+ T cells (3, 195). Importantly, however, this initial
exposure does not typically result in the accumulation of effector
allergen-specific Th2 cells in the airways (1, 3). Instead, allergen
sensitization triggers a strongly biased Tfh cell response that is
restricted to the lung-draining lymph nodes (1, 3, 196).

Tfh cell development depends on the expression of the
transcription factor Bcl6, which functions as a transcriptional
repressor that prevents the acquisition of T effector programs,
thereby facilitating Tfh cell differentiation (197–199). However,
the capacity of Bcl6 to repress alternative T effector fates is not
absolute. As such, whereas Tfh cells were initially characterized
as IL-21-producing cells (198, 199), they are more plastic than
expected and can initiate secondary differentiation programs and
secrete Th1 (200–202), Th2 (3, 203), and Th17 (204) effector-
like cytokines when developing in high polarizing environments.
Correspondingly, work by us (3, 205), and others (10–12, 16,
206–208), show that Tfh cells can produce large amounts of Th2
cytokines, including IL-4 and IL-13, in response to allergens and
helminths. Notably, while early studies considered that Th2 cells

FIGURE 2 | Tfh cells are critical mediators in the pathogenesis of allergic asthma. During the sensitization phase, lung-migratory DC primed allergen-specific “Type 2”

Tfh cell responses in the lung-draining lymph node. Through the interaction with B cells, Type-2 Tfh cells promote IgE secretion. Following re-challenge, Tfh cells

differentiate into conventional effector Th2 cells that subsequently migrate to the lung and promote allergic airway inflammation. Treatment with rIL-2 has the potential

to prevent Tfh cells differentiation and maintenance, thereby reducing asthma pathogenesis.
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were the primary source of type 2 cytokines, it is increasingly
accepted that Tfh cells, and not effector Th2 cells, are the main
providers of IL-4 and IL-13 during the sensitization phase (3,
16). Furthermore, more recent data demonstrate that allergen-
specific Tfh cells are critical mediators in the pathogenesis of
allergic asthma (Figure 2). For example, IL-4/IL-13 producing
Tfh cells are critical for the sustained production of high-affinity,
allergen-specific IgE (1, 10, 16), which, as aforementioned, plays
a crucial role in asthma pathogenesis. In addition, using an
HDM sensitization and challenge model of asthma, we have
recently found that type-2 Tfh cells survive in the lymph
nodes for extended periods as memory cells and have the
unique ability to give rise to effector Th2 cells upon allergen
rechallenge (3). Combining fate-mapping and adoptive transfer
experiments, we demonstrated that allergen-specific Tfh cells
generated during the sensitization phase were the precursors of
effector Th2 cells found in the lung after secondary challenge.
Supporting the role of Tfh cells as progenitors of Th2 cells,
depletion of Tfh cells during the sensitization phase prevented
the accumulation of effector Th2 cells in the airways after
challenge, thereby inhibiting asthma pathogenesis. Thus, our
work establishes the lineage flexibility of Tfh cells in allergic
disease and identifies these cells as a crucial long-term reservoir
of Th2 cell progenitors.

All these studies collectively show a critical function of Tfh
cells in allergic asthma pathogenesis, thus highlighting Tfh cells
as an attractive target for the suppression of IgE responses
and Th2 cell-mediated allergic inflammation. Unfortunately,
there are currently no therapies to selectively target Tfh cells
in vivo. Thus, a better understanding of the cellular and
molecular mechanisms that control allergen-specific Tfh cell
development and function will be critical for designing new
therapeutic approaches to prevent Tfh-cell-mediated pathology
in asthmatic patients. Interestingly, a large body of evidence

indicates that IL-2 is a potent inhibitor of Tfh cells (3, 209–
214). IL-2/STAT5 signaling prevents Tfh cell differentiation

by repressing the expression of Bcl6, the master regulator of
Tfh cells. As a consequence of the inhibitory effect of IL-
2, Tfh cells fail to differentiate and are efficiently depleted
after exogenous recombinant IL-2 treatment (3, 212, 214–
217). Importantly, subcutaneous administration of low-dose
recombinant human IL-2 r-IL2, (Aldesleukin/Proleukin) has
potent immunosuppressive effects in patients with autoimmune
disorders and can be safely administered to humans (217–220).
In agreement with the role of IL-2 as an “anti-Tfh” agent,
treatment of active Systemic Lupus Erythematosus (SLE) patients
with low-dose rIL-2 resulted in reduced frequencies of Tfh cells
in a recent clinical study by Jing He and colleagues (217),
hence evidencing the therapeutic potential of IL-2 to prevent
unwanted Tfh cell responses (Figure 2). Given the efficacy and
safety of the low-dose IL-2- treatments and the putative role of
Tfh cells in asthma pathogenesis, IL-2-based therapies, alone or
in combination with other strategies, could represent a promising
therapeutic approach to deplete allergen-specific Tfh cells and
prevent allergic asthma pathogenesis.
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