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Modulation analysis of nonlinear beam refraction at an interface in liquid crystals
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A theoretical investigation of solitary wave refraction in nematic liquid crystals is undertaken. A modulation
theory based on a Lagrangian formulation of the governing optical solitary wave equations is developed. The
resulting low-dimensional equations are found to give solutions in excellent agreement with full numerical
solutions of the governing equations, as well as with previous experimental studies. The analysis deals with
a number of types of refraction from a more to a less optically dense medium, the most famous being the
Goos-Hänchen shift upon total internal reflection.
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I. INTRODUCTION

Nematic liquid crystals have been proven to be an ideal
medium in which to study nonlinear light beam propagation
due to their “giant” nonlinearity, so that nonlinear effects
can be observed over millimeter distances and at milliwatt
power levels. Nematic liquid crystals possess a self-focusing,
intensity-dependent response, so that optical solitary waves,
termed nematicons, can form due to a balance between
the nonlinear refractive index increase and diffraction [1–3].
While two-dimensional solitary waves governed by nonlinear
Schrödinger (NLS)-type equations are usually unstable to
“catastrophic” collapse in a finite length [4], nematic liquid
crystals are an example of a nonlocal dielectric in which
solitary waves are stabilized because the medium response
extends far beyond the waist of the exciting optical beam [2,3].

Several proposed applications of nematicons, such as
switches and routers, are based on controlling their trajectory
[5–15], e.g., by altering the refractive index distribution in the
liquid crystalline sample. This can be achieved in a number
of ways, including the use of an external low-frequency
electric field [8,16,17] and/or extra optical beams to perturb
the solitary wave environment [5,7,9–15]. The present work
will be concerned with nematicon control and steering through
index changes caused by an external low-frequency or static
electric field (voltage).

Extensive theoretical studies of one-dimensional solitary
wave refraction and reflection at an interface were carried
out for local [18] and nonlocal media [19] by Aceves
et al. These studies used both numerical beam propagation
solvers and asymptotic solutions based on the equivalent
particle approximation [20], which provided results in good
agreement with numerical solutions. Most studies of refraction
of spatial solitary waves at interfaces have dealt with bright
solitary waves. However, dark and grey solitary waves in
self-defocusing dielectrics also show refraction at interfaces
separating media with different optical properties [21,22].

The present work investigates the refraction and (total
internal) reflection of nematicons at an (straight) interface
between regions in a liquid crystal cell with different molecular
director orientations, and therefore different refractive indices
and walk-off, as in earlier experimental studies [16,23,24].
These regions can be formed by applying two unequal external,

low-frequency biases, which results in two background pretilt
orientations of the director. The refraction and reflection are
studied using both full numerical solutions of the nonlocal
equations governing the propagation of a nematicon and a
modulation theory based on their Lagrangian formulation [25].
This modulation theory is related to the equivalent particle
method [18–20]; in fact, it is the same in the limit in which the
input beam is a slowly varying nematicon; that is, its amplitude
and waist satisfy the relation for a steady nematicon [2].
Modulation theory possesses the advantage that it gives good
agreement with numerical [25] and experimental [17] results
even if the beam’s amplitude and waist are not given by the
steady-state relation. It uses appropriate trial functions for the
unknown nematicon profile; however, in many applications,
the nematicon trajectory is independent of the details of
the trial profile [11,14,15,26]. Besides allowing for unknown
solitary wave solutions and wider profile variations, the present
work studies nematicon refraction in two space dimensions,
at variance with the one-dimensional work of Aceves et al.
[18,19]. It also includes the background dependent walk-off
of the extraordinary polarized nematicon beam. In the case of
propagation from a more to a less optically dense medium,
total internal reflection can occur, as expected. This reflection
is nonspecular and can take a number of forms, in agreement
with experiments [16,23,24] and theory [18]. The nematicon
can penetrate the less dense medium, but still turn and reenter
the more dense medium again, the Goos-Hänchen or lateral
shift [27]. For higher angles of incidence, a large portion of
the beam remains in the optically denser medium, only its
tail entering the less dense medium. Eventually not enough of
the tail enters the less dense medium to result in significant
deviation of the beam trajectory.

II. MODULATION EQUATIONS

Let us consider a thick layer (several optical wavelengths)
of uniaxial nematic liquid crystals (NLC) occupying a planar
cell, with boundary conditions arranged such that the optic
axis or molecular director belongs to the plane xz everywhere
in the cell. The cell is configured so that two independent
biasing static, external electric fields can be applied across its
thickness [16] and adjust, by reorientation, the angle between
the optic axis and the direction z down the cell. A coherent
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beam of light is then launched into the cell and propagates in
the volume of nonlinear dielectric. Let us define a coordinate
system such that the applied electric fields are in the x

direction (i.e., across the NLC thickness), the same direction
as the polarization of the extraordinary input beam launched
in the principal plane xz. The transverse direction y completes
the right-hand coordinate system. In the paraxial approxima-
tion the nondimensional equation governing the envelope of
the input extraordinary polarized light beam is [2,3,28]

i
∂E

∂z
− i�

∂E

∂y
+ 1

2
∇2E + [sin2 ψ − sin2 ψb]E = 0. (1)

The angle ψ is the angle the NLC molecular director makes
with the z axis, while ψb is the pretilt angle due to the external
bias and can be nonuniform. The walk-off angle δ between
the Poynting vector and the wave vector of the extraordinary
beam is given by

� = tan δ = �n2 sin 2ψ

�n2 + 2n2
⊥ + �n2 cos 2ψ

, (2)

where �n2 = n2
‖ − n2

⊥ is the optical birefringence and n‖
and n⊥ are the refractive indices for fields parallel and
perpendicular to the optic axis, respectively [28]. For full three
dimensional propagation of a nematicon, the walk-off � is the
projection of the walk-off onto the observation plane yz [23].
The Laplacian ∇2 operates in the (x,y) plane.

The input beams used in experiments have milliwatt power
levels [1], so that the reorientation of the NLC due to light is
substantially less than that due to the bias field(s). Let us then
take ψ = ψb + θ , where |θ | � |ψb|. In this limit, a Taylor
series expansion in the electric field equation (1) results in

i
∂E

∂z
− i�

∂E

∂y
+ 1

2
∇2E + sin(2ψb)θE = 0 (3)

to first order in |θ |. In a similar manner, the nondimensional
equation governing the director orientation is

ν∇2θ − 2qθ = − sin(2ψb)|E|2 (4)

to first order in |θ | [2,3,29]. Here ν measures the elastic
response of the NLC. The usual experimental operating regime
has ν large, ν = O(100), the so-called nonlocal regime in
which the NLC response extends far beyond the beam waist.
The parameter q is proportional to the square of the static
electric field [2,3]. While the system of Eqs. (3) and (4) has
been derived in the context of nonlinear beam propagation in
nematic liquid crystals, it is general and describes nonlinear
propagation in a diverse range of media for which the nonlin-
earity is accompanied by some diffusive phenomena [18].

To complete the description of the NLC cell and the
equations governing the propagation of the extraordinary
beam, the external bias configuration of the cell needs to be
specified. The geometry assumed will be the same as for the
experimental setup of Peccianti et al. [16,24] for which the two
different static fields were applied through thin film electrodes
with a straight gap separating them. This gap lies at a slope
in the (y,z) plane and can be described by y = μ1z + μ2.
The change in biasing field, and therefore the change in the
pretilting angle, is modeled with a sharp discontinuity. This
is consistent with experiments for which the electric field was

found to vary smoothly between two constant values over a
distance of the order of the gap between the electrodes, of about
50 μm [23,24]. Hence the background pretilt is approximated
by

ψb =
{
ψbl, μ1z + μ2 < y,

ψbr, y < μ1z + μ2,
(5)

and q takes the two values

q =
{

ql, μ1z + μ2 < y,

qr , y < μ1z + μ2.
(6)

The simplified nematicon equations, Eqs. (3) and (4), do
not possess an exact solitary wave solution, even in the case
when ψb and q are constant. To obtain an analytical model for
nematicon evolution, a modulation theory based on suitable
trial functions for the electric field and director distribution
profiles has been found useful [25] and is employed here. The
nematicon equations (3) and (4) have the Lagrangian

L = i(E∗Ez − EE∗
z ) − i�(E∗Ey − EE∗

y ) − |∇E|2
+ 2 sin(2ψb)θ |E|2 − ν|∇θ |2 − 2qθ2. (7)

Suitable trial functions for the electric field and director
distribution [25] are

E = a sech

√
x2 + (y − ξ )2

w
eiσ+iV (y−ξ ) + igeiσ+iV (y−ξ ),

(8)

θ = α sech2

√
x2 + (y − ξ )2

β
.

Here a and w are the amplitude and waist of the nematicon, α

and β are the amplitude and width of the director distribution,
ξ is the nematicon position (beam axis), V is the propagation
constant, giving the angle of propagation of the nematicon in
the (y,z) plane, and σ is the nematicon phase. The parameter g

measures the height of the shelf of low wave number diffractive
radiation which accumulates under the solitary wave as it
evolves [25,30]. An input beam evolves to a steady-state
nematicon through the shedding of conserved quantities via
radiation; this shelf does not remain flat, but matches into
diffractive radiation propagating away from the nematicon.
Hence g is assumed to be nonzero in the disk of radius
R, 0 �

√
x2 + (y − ξ )2 � R, centered on the nematicon. All

the nematicon parameters are functions of z. In the nonlocal
limit the diffractive radiation shed by a nematicon has a
significant effect on its evolution only for large values of z [25];
however, as propagation is considered hereby for z = O(10),
the effect of this shed radiation is ignored in the present
work.

Substituting the trial functions (3) and (4) into the La-
grangian (7) and averaging by integration in x and y from
−∞ to ∞ results in the averaged Lagrangian [31]

L=−2(I2a
2w2 + �g2)

[
σ ′ − V ξ ′ − 1

2
V 2

]
− 2I1aw2g′

+ 2I1w
2ga′ + 4I1awgw′ − I22a

2 − 4νI42α
2

+ A2B2αβ2a2w2

2Q
[sin(2ψbl) erfc(λ1)+sin(2ψbr) erfc(−λ1)]
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+ 1

2
B2a2w2V [�l erfc(λ2) + �r erfc(−λ2)]

− 1

4
D2α2β2[ql erfc(λ3) + qr erfc(−λ3)]. (9)

Here �l = �(ψbl), �r = �(ψbr), and erfc(ζ ) is the comple-
mentary error function [32]. The arguments of the comple-
mentary error functions are

λ1 =
√

A2β2 + B2w2

ABβw
(μ1z + μ2 − ξ ),

λ2 = μ1z + μ2 − ξ

Bw
, λ3 =

√
2(μ1z + μ2 − ξ )

Dβ
, (10)

Q = A2β2 + B2w2.

Finally, the various integrals Ii and Iij appearing in this
averaged Lagrangian are given in Appendix B and � = R2/2,
the area of the shelf of low wave number radiation under
the beam, modulo 2π . Taking variations of this averaged
Lagrangian with respect to the parameters results in the
modulation equations governing the refraction of the self-
confined beam at the interface. These modulation equations
are given in Appendix A.

III. RESULTS AND COMPARISON WITH
NUMERICAL SOLUTIONS

The nematicon equations (3) and (4) were solved using
the pseudospectral method of Fornberg and Whitham [33].
In order to eliminate spurious numerical effects, the discon-
tinuities in ψb and q across y = μ1z + μ2 were smoothed
using tanh(y − μ1z − μ2)/wt to link the orientations ψbl and
ψbr and ql and qr . For small wt this smoothing made no
difference to the solutions, other than to eliminate unphysical
beam deformations and possible splitting, which occurred as
wt → 0. As noted in the previous section, in experiments
the pretilting field and the background director distribution
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FIG. 1. (Color online) Comparison of refracted propagation
constant Vf − �r versus incident propagation constant V0 − �l as
given by the full numerical and modulation solutions. The parameter
values are a = 4.5 and w = 2.5, with ν = 200, ψbl = 0.4, ψbr = 0.9,
ql = 1.0, qr = 1.3, μ1 = 2, and μ2 = −20. Numerical solution,—
(solid red line); modulation solution,– – –(dashed green line).
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FIG. 2. (Color online) The error in the refracted propagation
constant Vf − �r as given by the modulation theory compared
with the numerical solution as a function of incident propagation
constant V0 − �l . The parameter values are a = 4.5 and w = 2.5,
with ν = 200, ψbl = 0.4, ψbr = 0.9, ql = 1.0, qr = 1.3, μ1 = 2, and
μ2 = −20. (a) Error e. (b) Percentage error ep .

varied smoothly, and rapidly, between the two constant
values [23,24]. Therefore, smoothing this change for the
numerical solution is more appropriate than applying boundary
conditions at the interface, as in previous studies of two media
with different properties separated by an interface [18,19]. The
modulation equations of Appendix A were solved using the
standard fourth-order Runge-Kutta method.

In the experiments of Peccianti et al. [16] the angle of
refraction of the nematicon was changed by varying the relative
voltage difference between the two portions of the NLC cell
across the interface. In the present work the relative voltage
difference is kept constant for each case of propagation into
higher and lower optically dense media. The angle of refraction
will be changed by varying the input angle of the beam, i.e.,
the angle of incidence. In this context, it should be noted that
changing the angle of the interface is equivalent to changing
the incidence angle of the nematicon. The values of the
background director angle ψb and the other parameter values
were chosen to be within the experimental ranges [16].

Let us first consider a typical case of a nematicon propa-
gating from a less to a more optically dense medium. Figure 1
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FIG. 3. (Color online) Beam behavior types as it propagates
from more to less optically dense medium. Inset shows schematic
of possible beam trajectories. 1, refraction,—(solid red line); 2,
Goos-Hänchen type reflection,— — —(long dash green line); 3, total
internal reflection at the interface,– – –(short dash dark blue line); 4,
total internal reflection with beam axis in more dense medium, · · ·
(dotted pink line); 5, unchanged beam path,– - – - –(dash dot light
blue line). The interface is the thick straight solid line (black).

shows a comparison between the final propagation constant
as a function of the input propagation constant as given by
the full numerical and modulation solutions. V0 refers to the
input value of V and Vf refers to the steady value after
passing the interface. The propagation constant is the tan of
the angle that the tangent to the beam trajectory makes with
the z axis. It can be seen that the modulation equations give
results in excellent agreement with the numerical solutions for
a wide range of input angles. This is further confirmed by the
difference between the modulation value of Vf − �r and the
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FIG. 4. (Color online) Comparison of the refracted propagation
constant Vf − �r versus incident propagation constant V0 − �l as
given by the full numerical and modulation solutions, respectively.
The parameter values are a = 5 and w = 2, with ν = 200, ψbl = 0.8,
ψbr = 0.6, ql = 1.3, qr = 1.0, μ1 = 2.0, and μ2 = −8.0. Numerical
solution,—(full red line); modulation solution,– – –(dashed green
line).
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FIG. 5. (Color online) The error in the refracted propagation
constant Vf − �r as given by the modulation theory compared with
the numerical solution as a function of the incident propagation
constant V0 − �l . The parameter values are a = 5 and w = 2, with
ν = 200, ψbl = 0.8, ψbr = 0.6, ql = 1.3, qr = 1.0, μ1 = 2.0, and
μ2 = −8.0. (a) Error e. (b) Percentage error ep .

numerical value shown in Fig. 2. The difference between these
two values is shown in Fig. 2(a) and the percentage error is
shown in Fig. 2(b). The percentage error in the modulation
propagation constant is generally less than 5%. The exception
is for input V0 − �l between 0.05 and 0.3. This is because the
refraction angle is 0 at V0 − �l = 0.1, so that the percentage
error is not a good measure of the difference around this input
angle. While the refraction process for propagation into a
more optically dense medium is nonlinear, in most respects
it resembles linear, Snell-type refraction. Nonlinear effects
become most apparent when propagation into a less optically
dense medium is considered.

Let us now consider a solitary beam propagating from a
more to a less optically dense medium. For such a change
in optical density, a linear wave would either refract or
undergo total internal reflection. However, a nematicon is an
isolated, nonlinear wave packet with an extended transverse
profile which results in a variety of possible behaviors, as
schematically illustrated in Fig. 3. The nematicon can undergo
refraction when passing into the less dense medium, type 1
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TABLE I. V0 = V0 − �l ranges for refraction types to an
optically less dense medium. The behavior types are classified as
in Fig. 3. The parameter values are a = 5 and w = 2, with ν = 200,
ψbl = 0.8, ψbr = 0.6, ql = 1.3, qr = 1.0, μ1 = 2.0, and μ2 = −8.0.

Refraction type Numerical Modulation

1 V0 � 1.67 V0 � 1.709
2 1.68 � V0 < 1.812 1.71 � V0 < 1.800
3 V0 = 1.812 V0 = 1.800
4 1.812 < V0 � 2.02 1.800 < V0 � 2.019
5 V0 � 2.03 V0 � 2.020

of Fig. 3, or proceed straight without a change in its trajectory
if it does not approach the interface, type 5. For high angles
of incidence, the nonlocal solitary wave shows three types of
total internal reflection. The nematicon can enter the less dense
medium, turn around, and reenter the more dense medium,
resulting in Goos-Hänchen reflection [16,18,19,23,24,27],
type 2 of Fig. 3. On increasing the angle of incidence, at a
specific angle the nematicon undergoes total internal reflection
with its axis exactly tangential to the interface, type 3 behavior.
On further increase of the angle of incidence, the nematicon
undergoes total internal reflection with its peak remaining in
the denser medium, behavior type 4. In this case, reflection
occurs due to the nematicon tail entering the less optically
dense medium.

Figure 4 shows a comparison between the input and
output propagation angles as given by the full numerical and
modulation solutions. There is again excellent agreement, but
an increasing difference as V0 − �l approaches 1.6, which
is confirmed by the difference and percentage differences
shown in Fig. 5. The propagation constant curve in Fig. 4
has a peak around V0 − �l = 1.85. This peak is due to the
nematicon changing from refraction to total internal reflection.
A comparison between the ranges of V0 − �l for the different
behaviors, illustrated schematically in Fig. 3, as given by the
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FIG. 6. (Color online) Comparison of trajectory ξ for an example
of Goos-Hänchen reflection, behavior type 2 in Fig. 3. The parameter
values are a = 5, w = 2 and V0 = 1.85, with ν = 200, ψbl = 0.8,
ψbr = 0.6, ql = 1.3, qr = 1.0, μ1 = 2.0 and μ2 = −8.0. Numerical
solution,—(solid red line); modulation solution,– – –(dashed green
line); interface, · · · (dotted blue line).
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FIG. 7. (Color online) Comparison of trajectory ξ for an example
of reflection in the denser medium, behavior type 4 in Fig. 3. The
parameter values are a = 5, w = 2, and V0 = 1.95, with ν = 200,
ψbl = 0.8, ψbr = 0.6, ql = 1.3, qr = 1.0, μ1 = 2.0, and μ2 = −8.0.
Numerical solution,—(solid red line); modulation solution,– – –
(dashed green line); interface, · · · (dotted blue line).

modulation and numerical solutions is provided in Table I.
Again, excellent agreement for the different regime ranges
as predicted by the modulation solution is seen. Refraction
changes to Goos-Hänchen reflection [16,18,19,23,24,27], type
2 of Fig. 3, at V0 − �l = 1.67, with the beam passing through
the interface, before bending back into the input region, as
observed in experiments [16,23,24] and previous theoretical
studies [18,19]. A typical case of Goos-Hänchen reflection
is illustrated in Fig. 6. The agreement in the trajectories
between the numerical and modulation solutions is excellent.
At V0 − �l = 1.812 Goos-Hänchen reflection stops and the
nematicon undergoes total internal reflection exactly at the
interface, type 3 of Fig. 3. After this value of V0 the nematicon
is totally internally reflected without its peak reaching the
interface, as illustrated in Fig. 7, type 4 of Fig. 3. This is due
to the interface being an extended (graded index) structure
and the nematicon being a nonlocal solitary wave. Its tail
can then enter the less optically dense medium, resulting in
reflection, which gets weaker as a smaller portion of the tail
enters the less dense medium, as shown by the smaller angle
of reflection after V0 − �l = 1.812 seen in Fig. 4. Eventually
no change in trajectory occurs for V0 − �l � 2.03 as there
is insufficient overlap of the tail with the graded region to
change the trajectory of the nematicon. It should be added that
the total internal reflection of the nematicon is nonspecular due
to the nonlinear response involved and to the anisotropy of the
uniaxial medium with inherent walk-off, with the difference
between the angles of incidence and reflection being up to
about 2◦ for the example considered here, comparable to the
4.5◦ for experiments [23]. Of course, the exact value of the
difference depends on the operating parameters used.

IV. CONCLUSIONS

The refraction of a nonlinear self-guided wave in nematic
liquid crystals, a nematicon, at the interface between two re-
gions with different director orientations, and hence refractive
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indices, has been investigated using modulation theory. In
previous experimental studies, these two orientations were
produced by applying two different external voltages across
the cell [16,23,24]. Our modulation theory is based on a
Lagrangian formulation of the nematicon equations and their
full numerical solutions. The angle of refraction is changed by
altering the angle of incidence of the beam on the interface for
a fixed external voltage difference, in contrast to experiments
in which the beam was not tilted. Despite this difference, the
present theoretical investigation reproduces the broad features
of the experimental ones [16,23,24]. Similar changes in the
propagation angle of the nematicon were found, ranging
between −5◦ for refraction from a less to a more optically
dense medium and +10◦ for total internal reflection from a
more to a less optically dense medium. Excellent agreement
was found between the full numerical solutions and the
predictions of the modulation theory.

The most diverse range of refraction behavior was found
for a beam propagating into a less optically dense medium.
In analogy with linear wave refraction, total internal reflection
can occur and take a number of forms. The beam axis can
enter the less dense medium, refract, and reenter the more
dense medium, so-called Goos-Hänchen reflection [18,19,27],
as found in previous experimental studies [16,23,24]. The
beam can also reflect without its peak entering the less dense
medium, the refraction resulting from its tail interacting with
the less dense medium. The reflection of the nematicon was
found to be nonspecular, in accord with experimental results
[23]. Excellent agreement was found between the ranges of
these different types of refraction behavior as given by full
numerical solutions and modulation theory.

This study of nematicon refraction fits in with a number
of such studies which show the power and accuracy of mod-
ulation theory in giving simple, low-dimensional models in
excellent agreement with numerical and experimental results
[11,14,15,17].
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APPENDIX A: MODULATION EQUATIONS

Taking variations of the averaged Lagrangian (9) results
in the modulation equations describing the evolution of the
nematicon:

d

dz
(I2a

2w2 + �g2) = 0, (A1)

dξ

dz
= V − 1

2
[�l erfc(λ2) + �r erfc(−λ2)], (A2)

dV

dz
= BV

2
√

πI2w
(�l − �r )e−λ2

2

+ ABαβ

2
√

πI2w
√

Q
(sin 2ψbl − sin 2ψbr)e

−λ2
1

−
√

2Dα2β

4
√

πI2a2w2
(ql − qr )e−λ2

3 , (A3)

I1
d

dz
aw2 = �g

(
σ ′ − V ξ ′ + 1

2
V 2

)
, (A4)

I1
dg

dz
= I22a

2w2
− A2B4αβ2aw2

4Q2
[sin(2ψbl) erfc(λ1)

+ sin(2ψbr) erfc(−λ1)]

+ A3Bαβ3a

4
√

πwQ3/2
[sin 2ψbl − sin 2ψbr]e

−λ2
1

+ BaV

4
√

πw
(μ1z + μ2 − ξ )(�l − �r )e−λ2

2 , (A5)

dσ

dz
− V

dξ

dz
+ 1

2
V 2

= − I22

I2w2
+ A2αβ2(A2β2 + 2B2w2)

2Q2
[sin(2ψbl) erfc(λ1)

+ sin(2ψbr) erfc(−λ1)]

− A3Bαβ3

4I2wQ3/2
(sin 2ψbl − sin 2ψbr)e

−λ2
1

+ 1

2
V [�l erfc(λ2) + �r erfc(−λ2)]

− BV

4
√

πI2w
(μ1z + μ2 − ξ )(�l − �r )e−λ2

2 , (A6)

together with the algebraic equations

α = A2B2β2a2w2

Q

× sin(2ψbl) erfc(λ1) + sin(2ψbr) erfc(−λ1)

16νI42 + D2β2[ql erfc(λ3) + qr erfc(−λ3)]
, (A7)

A2B4βa2w4

Q2
[sin(2ψbl) erfc(λ1) + sin(2ψbr) erfc(−λ1)]

+ AB3a2w3

√
πQ3/2

(sin 2ψbl − sin 2ψbr)(μ1z + μ2 − ξ )e−λ2
1

− 1

2
D2αβ[ql erfc(λ3) + qr erfc(−λ3)]

− D√
2π

α(ql − qr )(μ1z + μ2 − ξ )e−λ2
3 = 0. (A8)

The modulation equation (A1) is the equation for conservation
of optical power, which is termed mass conservation in the
sense of the scale invariance of the Lagrangian (7) [20]. The
modulation equation (A3) is the equation for conservation of
linear momentum. The trajectory of the beam is governed by
this momentum equation and the modulation equation (A2).
Unlike previous studies of the refraction of nematicons by
changes in the liquid crystal medium, the trajectory equations
(A2) and (A3) are not independent of the amplitude and width
evolution of the nematicon as the position equations explicitly
depend on the waist w of the nematicon via the complementary
error functions in these equations [15]. The medium changes
across the interface, so that the amplitude a and width w of
the nematicon show significant adjustments.

The shelf radius R is given by Minzoni et al. [25]. However,
due to the different scalings used in the nematicon equations (3)
and (4), R must be replaced by R

√
2/ sin(2ψb) and q must be

replaced by 2q/ sin(2ψb) in Ref. [25].
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APPENDIX B: INTEGRALS

The integrals Ii and Ii,j in the modulation equations are

I1 =
∫ ∞

0
ρf (ρ) dρ, I2 =

∫ ∞

0
ρf 2(ρ) dρ,

I22 =
∫ ∞

0
ρ

[
df

dρ

]2

dρ, Ix32 =
∫ ∞

0
ρ3f 2(ρ) dρ,

I42 = 1

4

∫ ∞

0
ρ

[
d

dρ
f 2(ρ)

]2

dρ, I4 =
∫ ∞

0
ρf 4(ρ) dρ.

(B1)

For f (ρ) = sech ρ,

I1 = 2C, I2 = ln 2, I22 = 1

3
ln 2 + 1

6
,

Ix32 = 1.352 314 016 . . . , (B2)

I42 = 2

15
ln 2 + 1

60
, I4 = 2

3
ln 2 − 1

6
.

Here C is the Catalan constant C = 0.915 965 594 . . . [32].
The constants A, B, and D arising in the modulation

equations are

A = I2

√
2√

Ix32
, B =

√
2I2, and D = 2

√
I4. (B3)
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