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Abstract— We investigate the performance degradation of basic
modulation schemes in a rapidly time varying channel using a
first order autoregressive channel model. Various performance
metrics are used to indicate the relative advantages of each
modulation scheme. We find that noncoherent frequency shift
keying (FSK) is suitable for operating at very high mobility and
high SNR, ideal for some military applications. We then propose
a partially coherent detector for FSK and differential phase
shift keying (DPSK) that exploits partial channel knowledge to
enable the receiver to operate effectively in both fast and slow
fading. The maximum likelihood rule (ML) obtained for the
partially coherent FSK turns out to be a linear combination of
coherent and noncoherent detection rules. Results demonstrate
that significant performance improvement can be achieved over
the best of coherent and noncoherent FSK detection. The detector
is robust to estimation errors present in the channel statistics.
We also propose a few adaptive schemes that employ various
combinations of modulation schemes to increase the robustness
of the system in fast fading.

Index Terms— Fast fading, rapidly time varying channel,
partially coherent detection, intra-block adaptation, inter-block
adaptation

I. INTRODUCTION

With the rapid growth of wireless networks and multimedia
applications, next generation wireless systems are not only
expected to support very high data rates, but also very high
quality of service, stressing the need for robustness under all
channel conditions. These systems must be able to operate
reliably in rapidly fading environments and therefore the
detrimental effects of mobility must be mitigated. A mobile
traveling at a speed of 75mph (miles per hour) and operating
at a carrier frequency of 5GHz can give rise to a Doppler
shift as high as 550Hz. There are also scenarios in which an
even higher Doppler is encountered such as in satellite com-
munications and some military applications like unmanned
airborne vehicles (UAV). This poses a major impediment to
many existing wireless systems which would breakdown under
such a large Doppler shift. Some of the effects of mobility on
major communication blocks are studied in [1].

In this paper, we consider the problems posed by a rapidly
time varying channel on modulation and detection in sim-
ple receivers. Almost all modulation schemes operating in
the band limited regime [2] either require accurate channel
estimate at the receiver or at least require the channel to
remain invariant for a certain time duration. However these

requirements might be very hard to satisfy in a rapidly time
varying channel. For a coherent scheme to operate well in a
time varying channel, the channel has to be estimated quite
frequently leading to spectral efficiency loss. Thus, nonco-
herent schemes like differential phase shift keying (DPSK)
and noncoherent frequency shift keying (FSK) are preferred
in a fast fading channel as the cost and complexity associated
with channel estimation becomes prohibitive. However, even
differential schemes suffer from an error floor [3] in rapidly
fading environment when the channel does not remain constant
for two symbol periods. For most schemes the rapid channel
variations translate to loss in effective SNR. Noncoherent FSK,
which is commonly employed in power limited systems [2],
finds application in satellite communication systems where it
counters a large Doppler and at the same time provides a
low power solution. Ideally FSK is not suited for bandlimited
systems due to its spectral inefficiency. However, the rapidly
fading channel creates a level playing field by degrading the
modulation schemes that are suitable for operation in the
bandlimited regime. An important question in this context is
to determine the relative performance of FSK in bandlimited
systems with high mobility. We address this question in
Section III.

Nodes that are deployed in wireless sensor and ad-hoc
networks can only afford simple processing of the received
signal and are required to operate at minimum energy to
enhance the longevity of the network. Existing results [4],
[5] establish that the system must operate at a very low
rate (after modulation and coding) to minimize the energy
spent per bit. This result cannot be directly applied in a time
varying scenario (without considering coding), as increase in
transmission duration may violate the basic requirements of
the modulation scheme. Therefore decreasing the rate might
not be the direct solution for simple receivers operating in
rapidly varying channel. Circuit energy consumption and delay
constraints are the other problems [6] that should be dealt with,
when increasing the transmission duration.

Many existing works in the literature [2], [7]–[9] approach
the detection problem in fading channels under two extreme
cases: the coherent case with perfect channel knowledge avail-
able at the receiver, and the noncoherent case with absolutely
no knowledge of the channel. As the second case is more
pertinent in time varying channels, non coherent detection has
been a unanimous choice for data detection in time selective



channels. However the channel knowledge at the receiver in
practical wireless channels lies in between these two extremes.
It is not unrealistic to assume partial channel knowledge at the
receiver even in a rapidly varying channel and then perform a
combination of coherent and noncoherent detection. Partially
coherent detection was first proposed in [10] for AWGN
channels with phase noise arising from the phase locked loop
(PLL). The receiver has imperfect phase estimates with the
phase errors assuming Tikhonov densities. This is extended to
fading channels in [11] and optimal decision rule found. In
both these cases, the optimal rule turns out to be be a linear
combination of coherent and noncoherent detection rule. In
Section IV, we propose partially coherent detectors for BFSK
and DPSK that utilize channel information consisting of both
amplitude and phase uncertainties. Interestingly, for BFSK,
the optimal maximum likelihood (ML) rule for the proposed
partially coherent detector turns out to be a linear combination
of coherent and noncoherent ML detectors similar to [10].

Throughout this paper, we identify the parameters that
different modulation schemes are sensitive to, and propose
some adaptive strategies in a time varying scenario. The
choice of the modulation scheme critically depends on the
rate at which the channel varies. The varied performances
of coherent, differential and noncoherent schemes provide us
the opportunity to use these schemes effectively depending on
the channel conditions. In Section VII, we propose two ways
of adapting the modulation scheme at the transmitter, namely
intra-block adaptation and inter-block adaptation. Results are
provided to substantiate the merits of the schemes. Finally, we
conclude with Section VIII.

II. SYSTEM MODEL

We assume complex baseband notation throughout the pa-
per. Consider a communication link consisting of a single
antenna transmitter and receiver that operates in a time selec-
tive and frequency nonselective Rayleigh fading environment
modeled by a first order autoregressive process.

hk = ahk−1 +
√

1− a2wk, (1)

where a is the correlation parameter, 0 < a ≤ 1 and wk,
the varying component of the channel is an independent and
identically distributed (i.i.d.) random process with density
CN (0, σ2

h). It can be noticed from the above equation that
the lower the value of a, the greater is the channel variation
rate. The channel realizations become i.i.d. when a = 0 while
a = 1 models quasi-static fading. The relationship between
the Doppler frequency and a can be approximated using Jakes
autocorrelation model [7] and it is given by

a = J0(2πfdTs), (2)

where J0 (x) is the zeroth order Bessel function of the first
kind, fd = fcv

c = v
λ is the Doppler shift and Ts is the symbol

duration. A mobile at a velocity of 75 mph results in a Doppler
shift of 550 Hz at a carrier frequency of 5 GHz. For a data
rate less than 5 kbps, the value of a according to this model
is less than 0.999. Note that a decreases with decrease in data
rate or increase in carrier frequency or mobile velocity.

The input-output relationship of the single antenna link is
given by

yk = hkxk + nk, (3)

where nk is complex additive white Gaussian noise (AWGN)
with power spectral density N0. We assume that an accurate
estimate of the channel is obtained at the receiver after every
N data symbols. With this information, the channel knowledge
at the receiver can be described as a complex Gaussian random
process,

ĥk v CN (akh0, 1− a2k). (4)

Note that a = 1 indicates perfect CSI (channel state informa-
tion) while a = 0 denotes no CSI at the receiver. We do not
assume any error in estimating h0. In general, if the estimation
error has to be included in the model, the MMSE estimator
will be ĥ0 = σ2

h

√
Es

σ2
hEs+N0

y0. In the next subsection, we quantify
the performance loss in basic modulation schemes for simple
receivers due to channel variations. For ease of exposition,
we confine our analysis to binary modulation schemes and
we therefore consider coherent and noncoherent detection for
BPSK and BFSK modulation.

A. Coherent BPSK

Let the symbol transmitted at the kth symbol duration be

xk =
√

Ese
jφk , (5)

where φk is the transmitted phase and Es is the symbol energy.
The received symbol at kth symbol duration is given by (3).
The transmitted phase φk takes value from {0, π}, the BPSK
constellation set. We assume that channel state information is
obtained at the receiver through training and the quality of the
estimate depends on the frequency of estimation. In our model,
the channel is estimated during first symbol slot of every block
and it is used for decoding subsequent symbols in the block.
With such a model for channel estimation, the estimation error
is dependent on the symbol position and is greater for symbols
far apart from the training symbol. The estimation error for
the kth data symbol is given by σ2

CE = 1 − a2k. With the
channel knowledge acquired through training, the distribution
of the channel knowledge at the receiver is a time varying
Gaussian denoted by CN (akh0, 1− a2k).

Conditioned on the transmitted sequence and partial channel
knowledge, the individual received symbols are not indepen-
dent and therefore the optimal rule to employ will be the
maximum likelihood sequence estimation [12]. The complex-
ity associated with this decision rule grows exponentially with
the block size. Such a decision rule cannot be implemented
in simple receivers and therefore the need arises for symbol
by symbol detection, even though it is suboptimal. It should
be noted that the error floor is not eliminated even with
sequence estimation [10]. For symbol by symbol detection,
the optimal rule turns out to be co-phasing of the received
symbols with the noisy estimate h0. The decision variable for
the kth received signal obtained by equalizing its phase with
the estimate h0 is

h∗0
|h0|yk = ak|h0|xk + zk, (6)



where the effective noise term zk is Gaussian with variance
(1 − a2k)Es + N0. Then the instantaneous effective SNR γk

is given by

γk =
a2k|h0|2Es

(1− a2k)Es + N0
. (7)

The average effective SNR for the kth symbol position Γk is

Γk =
a2kEs

(1− a2k)Es + N0
. (8)

The effective SNR depends on the symbol location and it
decreases with time until a new channel estimate is obtained.
Each symbol in the block has different average SER. The
closer it is to the training symbol the lower the probability of
symbol error. The average error probability of the kth symbol
position for a coherent BPSK system is given by

Pe(k) =
1
2

(
1−

√
Γk

1 + Γk

)
(9)

=
1
2

(
1− ak

√
Es

Es + N0

)
. (10)

The overall average BER for the N -symbol block is

Pe =
1

N

NX
k=1

Pe (k). (11)

Substituting (9) in (11) and upon simplification, we obtain

Pe =
1

2

"
1− a

N

�
1− aN

1− a

�r
Es

Es + N0

#
. (12)

The error floor of coherent BPSK due to constrained channel
estimation rate can be calculated from (12) above and is given
by

Pe =
1

2

�
1− a

N

�
1− aN

1− a

��
. (13)

From the above equation it can be said that, with very high
channel estimation rate, coherent schemes can perform well
even in a very rapidly varying channel (lesser value of a)
while in a slow fading channel they can still perform poorly
if the channel estimation rate is very low.

B. Differential Detection: DPSK

DPSK has found widespread use in wireless communica-
tions due to its simplicity and robustness as it eliminates
the carrier phase recovery problem commonly associated with
fading channels. It also removes the effect of slow phase drift
in local oscillators. The modulation scheme works exceedingly
well when the channel stays approximately constant over
two symbol periods. However in rapidly varying channels,
where the channel cannot be assumed to be constant over two
consecutive symbol durations, it is susceptible to an error floor
as well.

The optimal decoding would involve joint detection of the
entire block using the knowledge of the channel statistic a and
the estimate h0. But the simplicity of DPSK will be lost when
resorting to sequence detection. Also the encoding window can
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Fig. 1. BER performance of the schemes at a=0.999 & N=100.

be increased to improve the performance when joint detection
is permitted [13], [14]. Since we are interested in simple
receivers, we employ conventional differential detection. We
discuss the effect of this operation on the overall capacity in
Section III.

For the differential system, the phase of the transmitted
symbol during the kth symbol duration is encoded as φk =
φk−1+θk where θk is a point in the BPSK signal constellation.
The following operation is performed at the receiver to obtain
the decision variable.

y∗kyk+1 = (h∗kx∗k + n∗k) (hk+1xk+1 + nk+1)

= (h∗kx∗k + n∗k)
(
ahk +

√
1− a2wkxk+1 + nk+1

)

= a |hk|2 uk+1 + zk+1,

where uk+1 is the actual data symbol and zk+1 contains all
the noise terms. We neglect the product of Gaussian random
variables wkn∗k and nk+1n

∗
k in the calculation of the SNR and

the error probability. The instantaneous post detection SNR
γdif is,

γdif =
a2|hk|2Es

(1− a2) Es + (1 + a2)N0
. (14)

Unlike coherent schemes, the SNR here is independent of the
position of the symbol and thus all symbols in the block have
the same SNR. The average post detection effective SNR is
given by

Γdif =
a2Es

(1− a2)Es + (1 + a2)N0
. (15)

The probability of error for a DPSK system [15] with an
average SNR Γdif is given by

Pe =
1
2

(
1− 2a2Es

(1 + a2) (Es + N0)

)
. (16)

From the above equation, the error floor caused due to channel



variation within successive symbol durations in DPSK can be
obtained as

Pe =
1
2

(
1− a2

1 + a2

)
. (17)

For a transmit diversity system employing differential space
time codes [16] that require the channel to be constant for
two codewords, the effect of rapid variations in channel will
be more pronounced.

C. Coherent FSK Detection

Coherent FSK is usually not preferred because there is a
3dB degradation in its performance when compared to BPSK.
Apart from that, there is a bandwidth expansion for operating
in two orthogonal channels. Furthermore it requires accurate
channel estimate at the receiver for reliable operation. The
probability of error can be obtained from the probability of
error of BPSK in (12), by modifying the noise power.

Pe =
1
2

[
1− a

N

(
1− aN

1− a

) √
Es

Es + 2N0

]
(18)

This expression is valid when the bandwidth of each orthog-
onal band is equal to the total bandwidth of BPSK scheme. It
is shown in [2] that the bands should be separated by at least

1
2Ts

for orthogonality, resulting in a total bandwidth in excess
of 3

2Ts
. The spectral efficiency becomes 0.5 b/s/Hz when there

is no overlap between bands. To obtain the probability of error
for the same total bandwidth, the value of a should be modified
to account for the increase in symbol duration, which results
in more pronounced fast fading. The error floor of coherent
FSK due to constrained channel estimation rate in a fast fading
channel is

Pe =
1
2

[
1− a

N

(
1− aN

1− a

)]
. (19)

It can be noted that this error floor is same as in (13). A
unique advantage of FSK is that it can be detected coherently
or noncoherently, depending upon the receiver’s capability.

D. Noncoherent FSK (NCFSK) Detection

Noncoherent FSK, the most popular form of FSK, is com-
monly used in power limited systems like satellite communi-
cations. Unlike DPSK, it does not exhibit an error floor1 in
rapidly varying channel. The average SNR for a noncoherent
BFSK system is

Γ =
σ2

hEs

N0
. (20)

The average probability of error is then given by

P e =
1

(2 + Γ)
. (21)

The bit error performance of the modulation schemes in a
rapidly time varying channel is shown in Fig. 1 for a=0.999
and N =100. It can be seen that FSK is the ideal modulation
scheme to employ at high SNR as the other schemes suffer

1We do not consider the error floor caused from frequency interference [17]
caused by Doppler shifts, which is negligible.
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Fig. 2. BER as a function of a at SNR=2 dB and N=5 symbols.

from error floors. At low SNR, the noise power is comparable
to the error due to channel variation and hence BPSK and
DPSK perform better than NCFSK. In Table I, the best per-
forming modulation scheme for various ranges of the channel
variation rate(a) and channel estimation rate(N ) is listed.
DPSK is the best choice in a slow fading or medium scale
fast fading channel when it is difficult to obtain an accurate
channel estimate. Similarly BPSK can perform well, even in
a fast fading channel when accurate estimates are easier to
obtain. However in the “rapidly varying” regime (a < 0.999),
only NCFSK provides reliable performance.

However it must be noted that the BER plot in Fig. 1 does
not capture the data rate mismatch between the schemes as
FSK operates at half the data rate of BPSK and DPSK for the
same bandwidth. With increase in constellation size, the data
rate mismatch between MFSK and MPSK or MQAM widens.
To account for the data rate of the modulation schemes, we
consider their capacity in the next section.

III. HARD DECISION CAPACITY OF MODULATION
SCHEMES

We determined in the previous section that orthogonal
schemes are effective in mitigating the effects of rapid chan-
nel variations and channel uncertainty. This is evident from
Figures 1 and 2 where noncoherent BFSK performs well
in rapid mobility scenarios while the other schemes suffer
from an error floor. However, an important aspect of the
modulation schemes is neglected in the analysis: the rate of
the modulation schemes. For the same rate, BFSK requires
twice the bandwidth of BPSK and DPSK modulation. For the
same bandwidth, BFSK operates only at half the data rate of
BPSK and DPSK. We therefore need a performance metric that
takes into account all the relevant parameters of the modulation
schemes. Therefore we investigate the capacity of schemes.
While the complexity of capacity achieving codes may be
infeasible for simple receivers, a capacity perspective allows
a direct comparison between these schemes. Furthermore, a
capacity notion will be relevant in a relay network scenario
where the intermediate nodes perform only demodulate and
forward [18], while the message is encoded at the source and



a : N N < 40 (symbols) 40 < N < 100 N > 100
a > 0.9999 (slow fading) BPSK BPSK DPSK

0.9999 < a < 0.999 (medium scale fast fading) BPSK DPSK DPSK
a < 0.999 (rapidly varying channel) NCFSK NCFSK NCFSK

TABLE I
BEST MODULATION SCHEME (IN TERMS OF ERROR PROBABILITY) AT SNR=20 dB

decoded at the destination. Thus the capacity obtained from
this model will be useful in finding the maximum rate of
data transfer when coding is employed over the modulation
scheme at the transmitter while at the receiver symbol level
demodulation is performed followed by full decoding.

To gain a capacity perspective we consider the system
shown in Fig. 3.

The effective channel that includes the effect of modu-
lator/demodulator, interleaver/deinterleaver and the physical
channel is described by the following relationship:

V̂k = Vk ⊕ Zk, k = 1...N, (22)

where ⊕ is the binary XOR operation. The distribution of
the error variable Zk depends on the demodulating function
f(Yi,H0) of the demodulator. For BPSK modulation, the
distribution of Zk is given by

Zk =
{

1 if Re{H∗
0 (
√

EsHk + nk)} < 0
0 otherwise (23)

We assume that the coded symbols from multiple code-
words are interleaved so that different symbols from the same
codeword experience independent channels. The scheme is
relevant from a practical standpoint as interleaving is often
used to avoid bursts of errors. We assume each codeword is
decoded in isolation from the rest of the codewords. Under
these assumptions, the channel is a memoryless channel from
the decoder’s perspective, allowing a single letter capacity
characterization that can be easily computed. The capacity in
this case is expressed as:

C =
1
N
I(V N ; V̂ N |H0) (24)

=
1
N

(
H(V̂ N |H0)−H(V̂ N |V N ,H0)

)
(25)

= 1− 1
N
H(ZN |H0) (26)

= 1− 1
N

N∑

k=1

H(Zk|H0, Z
k−1) (27)

= 1− 1
N

N∑

k=1

H(Zk|H0) (28)

= 1− 1
N

N∑

k=1

EH0 [H2(Prob(Zk = 1|H0))] , (29)

where H2(x) = −x log2 x − (1 − x) log2(1 − x), the binary
entropy function. (28) is obtained from the fact that Zk is
independent of Zk−1 due to interleaving across independent
channels.

Fig. 4 compares the hard decision capacity of BPSK,
DPSK, and coherent and noncoherent BFSK with memoryless
interleaving. It can be seen that DPSK is the best performing
modulation scheme at high SNR while BPSK seems to be an
ideal choice at low SNR. This result is in total contrast with
the BER performance plot in Fig. 1, where the bandwidth
expansion in BFSK is not accounted for. However, it can be
easily predicted that MFSK will fare very poorly in terms
of capacity when compared with MQAM or MPSK, due
to its spectral inefficiency. However, for extreme cases of
mobility, when the channel takes i.i.d values, noncoherent FSK
is preferable.

While we are interested in the capacity perspective for the
system described above, for the sake of completeness we
also address the capacity of this system without interleaving.
In the absence of interleaving, the memory in the channel
experienced by different symbols of a codeword can be utilized
by the decoder to achieve a higher capacity. While the memory
of the channel does not allow a direct single letter capacity
characterization, such an upperbound can be obtained when
perfect channel knowledge is provided by a genie to the
decoder. From (27), we have

C = 1− 1
N

N∑

k=1

H(Zk|H0, Z
k−1) (30)

≤ 1− 1
N

N∑

k=1

H(Zk|H0,H1..Hk, Zk−1) (31)

= 1− 1
N

N∑

k=1

H(Zk|H0,H1..Hk) (32)

= 1− 1
N

N∑

k=1

EH0,Hk
[H2(Prob(Zk = 1|Hk,H0))] ,

where the inequality in (31) is obtained by providing additional
channel state information to the decoder.

Capacity upperbounds when channel memory is utilized by
the decoder are presented in Fig. 5. We see that, providing full
channel state information to the decoder helps the coherent
schemes more than the noncoherent schemes.

IV. PARTIAL CHANNEL KNOWLEDGE

In a fast fading channel, the channel estimate obtained from
training gets outdated so quickly that coherent detection cannot
be performed. Nevertheless the outdated channel information
can still be utilized in the detection process if it would result
in a considerable performance improvement. The channel
information in this context (4) has both amplitude and phase
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Fig. 5. Capacity upperbounds of modulation schemes for a = 0.98, N=25

uncertainties. In this section, we explore ways to utilize this
partial channel knowledge in basic noncoherent schemes like
FSK and DPSK, without increasing the complexity. Ideally we
require the receiver to perform symbol by symbol detection
taking into account the channel knowledge. It is obvious that
the additional channel knowledge will improve the system
performance but what remains interesting to know is the
amount of gain that can be obtained and the extra complexity
it entails. We find that a gain as much as 2 dB can be obtained
over the best of coherent and noncoherent FSK, with partial
channel information. Interestingly the ML detection rule turns

out to be a linear combination of ML rules of coherent and
noncoherent BFSK. However for DPSK, the ML rule remains
complex and the partial channel knowledge does not result in
significant performance improvement.

V. BFSK WITH PARTIAL CHANNEL KNOWLEDGE

The transmitted symbol xk for FSK modulation as-
sumes one of the two possible states xk =

[
x1

k, x2
k

]T =
[0, 1]T or [1, 0]T representing a binary symbol dk. Receivers
for FSK have a unique advantage of operating coherently
and noncoherently as the transmission is same for both the
schemes. Suppose we have the estimate of the channel h0

obtained at the start of the block, then the coherent detection
rule for symbol by symbol demodulation will be

Re
(
h∗0

(
y1

k − y2
k

))
≷0

1
0. (33)

Discarding the outdated channel estimate, the noncoherent ML
rule will be (|y1

k|2 − |y2
k|2

)
≷0

1
0, (34)

where Re(x) and |x| denotes the real part and absolute value
of the complex number x respectively. If the receiver is
aware of the channel statistic a, the channel estimate h0 and
the symbol position k, a partially coherent detection can be
performed. The ML rule is

Pr
(
y1

k, y2
k|a, h0, dk = 0

)
≷0

1
Pr

(
y1

k, y2
k|a, h0, dk = 1

)
.

(35)
Pr

(
y1

k, y2
k|a, h0, dk

)
= Pr

(
y1

k|a, h0, x
1
k

)
Pr

(
y2

k|a, h0, x
2
k

)
.

(36)
It is straightforward to arrive at the following densities.

Pr
(
y1

k|a, h0, dk = 1
) ∼ CN (akh0, 1− a2k + N0)

Pr
(
y2

k|a, h0, dk = 1
) ∼ CN (0, N0)

Pr
(
y1

k|a, h0, dk = 0
) ∼ CN (0, N0)

Pr
(
y2

k|a, h0, dk = 0
) ∼ CN (akh0, 1− a2k + N0)

The final decision rule for the kth symbol, obtained after
solving (35) and simplifying the terms is

2akN0 Re
(
h∗0

(
y1

k − y2
k

)) √
Es

+
(
1− a2k

)
Es

(|y1
k|2 − |y2

k|2
)

≷0

1
0.

(37)

The decision rule obtained above is a linear combination of
the optimal ML rules coherent and noncoherent detection with
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Fig. 6. Performance improvement in FSK with partial CSI for a=0.999 and
N=100.

the weights determined by the channel variation rate and SNR.
The decision rule is analogous to MRC combining as coherent
detection is given more emphasis at slow fading and at low
SNR while noncoherent detection is prominent at fast fading
and high SNR. It can be noted that a = 1 results in a purely
coherent detection while complete noncoherent detection takes
place at a = 0. For intermediate values of a, both coherent
and noncoherent detection take place. The knowledge of the
channel statistic a and N0 is required for implementing this
rule, which can be obtained by monitoring the reverse link.
A significant advantage of the detector is that the quality of
the channel estimate i.e. the amount of coherence, does not
drastically affect the system performance, unlike PSK systems.
The performance of this system along with the conventional
coherent and noncoherent BFSK system is shown in Fig. 6.
It can be seen that it outperforms the best of coherent and
noncoherent BFSK for all SNRs. A gain of 2 dB is obtained
over a wide range of SNRs.

A very tight upper bound for the probability of error for this
detector can be readily obtained by noting that the detector
performs better than the best of coherent and noncoherent
detection for any a and N .

Pe(k) ≤ min
(

Pe
C
(k), Pe

NC
)

(38)

≤ min

(
1
2

(
1− ak

√
Es

Es + 2N0

)
,

1
2 + Es

N0

)

As the quality of the channel estimate degrades with k, non-
coherent FSK will outperform coherent FSK after k reaches
a threshold. The probability of error Pe(k) averaged over k

yields

Pe ≤ N −Nt

N

�
N0

2N0 + Es

�
+

Nt

2N
− a

2N

�
1− aNt

1− a

�s
Es

Es + 2N0
.

(39)
The value of Nt is chosen such that

P
C
e (Nt) = P

NC
e (Nt) . (40)

An adaptive scheme based on this upper bound is discussed
in Section VII.

A. Effect of inaccurate channel statistic a

The ideal coherent detector in (37) combines coherent
and noncoherent detection in an ideal fashion such that the
performance is better than the individual detectors. Hence we
obtained the inequality in (39). However, when the detector
possesses inaccurate knowledge of a, the ML rule combination
is imperfect and results in an increased or decreased weight
for both the coherent and noncoherent detection. This leads to
a performance degradation with respect to the ideal detector.
The greater the deviation of â, the greater is the performance
degradation. In the worst case scenarios, in cases where (a <
â = 1 or a > â = 0) only one of the detectors will be utilized.
Thus, the error probability of the detector can be bounded as

P e ≤ max(P
C
e , P

NC
e ).

Table II shows the error probability of a non-ideal detector for
extreme values of a and â.

a â P e

1 1 P C
e

1 0 P NC
e

0 1 0.5
0 0 P NC

e

TABLE II
ERROR PROBABILITY OF PARTIALLY COHERENT DETECTION FOR

EXTREME VALUES OF a AND â

1) â < a: When a is underestimated, it results in an
overemphasis of noncoherent detection. This suggests that the
channel knowledge is not completely utilized by the coherent
part of the partially coherent detector. Its effect is more
pronounced at low SNR.The performance of the detector is
bounded as

P e ≤ P
NC
e =

1
(2 + Es

N0
)
.

The worst case scenario is when the channel is assumed to be
invariant when it is i.i.d, i.e â = 0 < a = 1. It can be readily
noticed that the performance loss in this case is 3dB. However
such a mismatch is not realistic and the performance loss
for practical cases is insignificant as shown by the simulation
results in Fig. 7 for a = 0.985 and â = 0.999.

2) â > a: When the channel correlation is assumed to
be higher than the actual value, coherent detection will be
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Fig. 7. Performance degradation due to imperfect estimate of a(0.985): over-
estimated coherence (â = 0.999), under-estimated coherence (â = 0.95) and
the ideal case (â = a = 0.985).

overemphasized by the partially coherent detector. Thus we
have,

P e ≤ P
C
e =

1
2

[
1− a

N

(
1− aN

1− a

) √
Es

Es + 2N0

]
.

The worst case scenario occurs when â = 1 > a = 0. The
corresponding performance loss or the increase in the error
probability is given by

D =
1
2
− 1

(2 + Es

N0
)
,

where the first term corresponds to the probability of error
of the mismatched detector and the second term is the error
probability of the ideal detector The effect of this type of error
is more pronounced at high SNR.

B. A Practical Scheme

From the preceding discussion, it is quite clear that the
impact of inaccurate a is not drastic. The performance loss
is insignificant when the correlation estimate is less than the
actual value. This leads to a practical scheme in receivers that
employ the minimum value of the correlation parameter.

â = amin = J0(2πfmax
d Ts)

where fmax
d = vmaxfc

C corresponds to the Doppler shift
associated with the maximum mobility allowed by the system.

It can be easily noted that assuming lower channel co-
herence than the actual channel correlation does not result
in significant performance loss. The reduced coherence plot
in Fig. 7 represents the performance of a partially coherent
detector employing this scheme. Significant gain is obtained
over the best of the coherent and noncoherent detector and
the performance loss is not significant when compared to the

ideal detector. Thus the partially coherent detection can be
performed even without explicitly determining the channel
correlation parameter a.

VI. DPSK WITH PARTIAL CSI

In this section, we derive a partially coherent detector for
DPSK. Suppose uk and xk represent the actual data and
transmitted symbol respectively at the kth time slot. The
received symbol can be written as

yk = hkxk + nk (41)
yk+1 = hk+1xk+1 + nk+1 (42)

= hk+1xkuk+1 + nk+1. (43)

The maximum likelihood detection will be

Pr (yk, yk+1|a, h0, uk+1 = −1) ≷−1

1
Pr (yk, yk+1|a, h0, uk+1 = 1) .

(44)
Now the required probability is written as a mixture of two
Gaussian distributions,

Pr (yk, yk+1|a, h0, uk+1 = sm) =
1
2

Pr (yk, yk+1|a, h0, uk+1 = sm, xk = 1) +

1
2

Pr (yk, yk+1|a, h0, uk+1 = sm, xk = −1) .

(45)

The joint probability distribution of the received vector con-
ditioned on uk+1, xk, h0 and a is given by

Pr
(
yk|uk+1, xk, h0, a

)
=

1
π2 det (Ky)

e
−
h
(yk−mk)†K−1

y (yk−mk)
i

(46)
where yk = [yk, yk+1]

T

and mk =
[
akh0xk, ak+1h0xkuk+1

]T

.

The covariance matrix Kk
y is obtained as

Kk
y =

[
1− a2k + N0

(
a− a2k+1

)
uk+1(

a− a2k+1
)
uk+1 1− a2k+2 + N0

]
.

The detection rule in (44) cannot be further simplified after
substituting (45) and therefore it is quite complex to imple-
ment. The performance of a DPSK system employing this
detection rule is shown in Fig. 8. Although the performance
is better than the conventional DPSK for all SNR and fading
rate a, the gain achieved from the channel knowledge is at
most 1 dB at low SNR range.

VII. ADAPTIVE SCHEMES

It is clear from the previous sections that the performance of
modulation schemes is sensitive to many parameters. The var-
ied performance of the modulation schemes in a time varying
channel provides us the opportunity to adapt the modulation
schemes to the channel conditions. Due to the time varying
nature of the channel, the quality of the channel estimate
in coherent schemes degrades with symbol position, thereby
making the probability of error dependent on the symbol
position. This motivates us to employ coherent modulation
for certain number of symbols in the block till the channel
estimate quality is good and operate noncoherently for the
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Fig. 8. Performance improvement in DPSK with partial CSI for a=0.999.

rest of the symbols in the block . We call this as an intra-
block adaptation. From the BER plots in Fig. 1 and from the
ML rule in (37), it is clear that an ideal modulation scheme
should exhibit the performance of a coherent scheme at low
SNR and low Doppler while noncoherent behavior is desired
at high SNR or high Doppler. This is the basis for adaptation
in inter-block adaptation.

A. Intra-Block Adaptation

With accurate channel estimate at the receiver, coherent
BPSK is the best modulation and detection scheme. Ideally it
is 3dB and 6dB superior to DPSK and NC-BFSK respectively.
Therefore, if we can employ BPSK modulation in some part of
the data transmission when the quality of the channel estimate
is good, the overall performance will be better than with a
wholly noncoherent operation. The symbol error probability of
individual symbol positions with BPSK and DPSK are given
by (10) and (16) respectively. It can be seen that for small
values of k, BPSK performs better than DPSK regardless of
a and SNR. Thus the transmission strategy is to send first Nt

symbols with BPSK modulation and the remaining (N −Nt)
symbols with DPSK modulation.

φk =
{

θk k ≤ Nt

φk−1 + θk k > Nt
(47)

The value of Nt is chosen such that

P
BPSK
e (Nt) = P

DPSK
e (Nt) . (48)

The average symbol error probability is then given by

Pe =
∑Nt

i=1 P
BPSK
e (i) + (N −Nt) P

DPSK
e

N
(49)
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Fig. 9. Performance of the intra-block adaptation scheme at a=0.999 and
N=100.

Upon substituting (12) and (16), the average probability of
error of the intra block adaptation scheme (49) becomes

Pe =
1

2

 
1− a

N

�
1− aNt

1− a

�r
Es

Es + N0
− (N −Nt) a2Es

N (1 + a2) (1 + N0)

!
(50)

If the average error probability alone is the metric to minimize,
without considering the rate loss associated with FSK, adap-
tation strategy can include FSK modulation as well. In that
case, the modulation scheme that has superior performance
for that channel variation rate a should be selected. When
the performance of NCFSK is superior to DPSK, the average
probability of error for this adaptation is

Pe =
∑Nt

i=1 P
BPSK
e (i) + (N −Nt) P

NCFSK
e

N
. (51)

Upon substituting (21), the above expression becomes

Pe =
N −Nt

N

�
N0

2N0 + Es

�
+

Nt

2N
− a

2N

�
1− aNt

1− a

�r
Es

Es + N0
.

(52)
Fig. 9 shows the performance of intra-block adaptive scheme
versus the individual modulation schemes. A gain of about 1
dB is achieved for a wide range of SNR values.

B. Inter-Block Adaptation

Even though the modulation schemes like BPSK and DPSK
are susceptible to error floors in a fast fading channel, they
are optimal at low SNR when the noise power is comparable
to the SNR loss caused due to channel decorrelation. Thus
the knowledge of the received SNR is crucial in employing
optimal modulation strategies. Therefore an adaptive scheme
should also consider shadowing, which causes deviations in
received SNR. A model to include shadowing is

h(k) =
√

Gr(k).



where G is the local mean received power which varies slowly
due to shadowing and r (k) is the fast fade that follows the
autoregressive model given by (1). We assume a lognormal
distribution for the shadowing in which an entire block of
N symbols experience a particular realization of lognormal
shadowing and the shadowing parameter for the next block
is independent of the previous block. Shadowing results in
the average received power to slowly vary and can be tracked
by the transmitter using the reverse transmission link. Fig. 10
shows the performance of inter-block adaptive scheme versus
the individual modulation schemes for a standard deviation of
7 dB for the log-normal distribution. The performance gain
is maximum near the cross over of the curves, as shadowing
alters the order of the performance of the modulation schemes.
The inter-block adaptive scheme in general can also include
intra block adaptation.

VIII. CONCLUSION
Rapid channel variations caused by mobility, lead to loss

in effective SNR for modulation schemes operating in the
bandlimited regime of the capacity curve [2] resulting in an
error floor. This is true even for differential schemes that do not
require channel knowledge at the receiver. The performance
loss due to mobility is lesser with orthogonal modulation
schemes operating noncoherently, compared to differential or
coherent schemes. We analyzed noncoherent FSK as a possible
candidate for bandlimited systems with high mobility and
found that its spectral inefficiency makes it unsuitable for
operating at nominal values of Doppler and SNR. However
FSK (and similar orthogonal modulation schemes like PPM
that allow noncoherent detection) are the ideal modulation
schemes for systems that need to operate under very large
mobility as in some military applications.

Finally, as noncoherent schemes are increasingly being
deployed in many wireless systems, there is a scope for
significant performance improvement in these systems when
the role of partial CSI is considered. The partially coherent
detector that we derived for FSK is simple and at the same
time provides significant performance improvement over both
coherent and noncoherent FSK detection. We also showed that
opportunistic adoption of various modulation schemes within a
block or between blocks can result in substantial performance
improvements.
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