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We present a simple approach based on photonic reservoir computing (P-RC) for modulation format identifi-
cation (MFI) in optical fiber communications. Here an optically injected semiconductor laser with self-delay
feedback is trained with the representative features from the asynchronous amplitude histograms of modulation
signals. Numerical simulations are conducted for three widely used modulation formats (on–off keying, differ-
ential phase-shift keying, and quadrature amplitude modulation) for various transmission situations where the
optical signal-to-noise ratio varies from 12 to 26 dB, the chromatic dispersion varies from −500 to 500 ps/nm, and
the differential group delay varies from 0 to 20 ps. Under these situations, final simulation results demonstrate
that this technique can efficiently identify all those modulation formats with an accuracy of >95% after opti-
mizing the control parameters of the P-RC layer such as the injection strength, feedback strength, bias current,
and frequency detuning. The proposed technique utilizes very simple devices and thus offers a resource-efficient
alternative approach to MFI. © 2020 Chinese Laser Press

https://doi.org/10.1364/PRJ.409114

1. INTRODUCTION

Fiber-optic communication systems are expected to be capable
of adaptively adjusting various transmission parameters such as
modulation formats, line rates, and spectrum assignments,
based on the varying channel conditions and traffic demands
in order to maximize the spectral and energy efficiencies [1–4].
The dynamic variation of transmission parameters imposes new
requirements for the optical receivers in such elastic optical net-
works (EONs). To demodulate the transmission signal at the
digital receivers, one must know the type of modulation format.
Consequently, correct identification of modulation formats is
rather crucial for high-quality communication [5,6].

The feature-based (FB) approach is an effective way to
achieve modulation format identification (MFI) [7–11], carried
out by using different tools to analyze the associated feature
parameters from transmission signals. For instance, Nandi et al.

completed an identification of amplitudemodulation (AM), fre-
quency modulation (FM), M-ary amplitude shift-keying
(MASK), and M-ary frequency-shift keying (MFSK) signals
by analyzing their instantaneous phase and frequency informa-
tion using the decision tree algorithm [9]. Park et al. realized the

identification of MASK, MFSK, and M-ary phase-shift keying
(MPSK) signals by employing the support vector machine to

analyze the frequency features of modulated signals [10].
Khan et al. confirmed that using artificial neural network (ANN)
can achieve the identification of six widely used modulation for-

mats [including on-off keying (OOK), differential phase-shift
keying (DPSK), M-ary quadrature amplitude modulation

(MQAM), etc.] through analyzing their amplitude features [11].
Among them, ANN-based MFI technologies especially at-

tract great attention due to their enormous calculation power
and high accuracy. Typically, Wong et al. identified commonly
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used MASK, MFSK, and MQAM signals using a multilayer

perceptron (MLP) neural network [12]. O’Shea et al. success-

fully realized the identification of OOK, BPSK, MASK,

MPSK, and MQAM signals by analyzing higher-order statistics

with a convolutional neural network (CNN) [13]. Wang et al.
implemented MFI on quadrature phase-shift keying (QPSK),
phase-shift keying (PSK), and MQAM signals through a con-
stellation diagram employing a deep neural network (DNN)
with multiple nonlinear layers [14]. However, it should be
pointed that a typical ANN architecture consists of at least
three layers (i.e., the input layer, the hidden layer, and the out-
put layer) with neuron nodes between two adjacent layers in-
terlinked by variable trained weights.

Time-delayed reservoir computing (RC) [15] is a new type of
ANN consisting of one nonlinear node under delayed feedback.
For time-delayed RC, the nonlinear component under delayed
feedback is used as the reservoir. Moreover, the output layer
weight in the whole system is the only part that needs to be
trained, and the process can be completed with low complexity.

Up to now, there have been many RCs reported based on
optoelectronic or all-optical devices [16–30]. As far as we are
aware of, the RC systems can complete complex computational
tasks with high performance such as spoken digit recognition
[17], nonlinear time series prediction [18], and wireless channel
equalization [19]. In particular, photonic reservoir computing
(P-RC) based on semiconductor lasers with time-delayed feed-
back is very promising for high-speed implementation of the
RC. For instance, the P-RC performs the identification and
classification of a packet header for switching in an optical net-
work application [31,32]. In addition, the P-RC has been also
proposed to address signal recovery in optical communication
systems [33,34].

In this paper, the P-RC with semiconductor lasers is, for the
first time to our knowledge, introduced to the field of MFI.
After extracting representative features of amplitude histograms
through asynchronous sampling OOK, differential quadrature
phase-shift keying (DQPSK), and 16 quadrature amplitude
modulation (16QAM) signals, we numerically implement cor-
rect identification results by means of the P-RC constructed
with a delay-feedback semiconductor laser. Herein, we point

out that memory is a typical advantage of RC, especially com-
pared to a feedforward NN. Memory in an RC originates from
the recurrent network connections, allowing information to
remain in the network over finite time. Past information
therefore mixes with the current input. In our photonic RC,
optical delayed feedback introduces recurrences resulting in
the ring topology, so that the optical reservoir possesses this
memory property. As the input of the reservoir in our task,
the envelope of the asynchronous amplitude histogram from
any modulation signal is almost continuous and shows a
short-time relevance. Therefore, the memory in our RC needs
to vanish after some time to allow responses to be influenced
only by the recent past. This property is referred to as fading
memory [35] and plays an important role in improving the
identification performance.

Experiences demonstrate that the reservoir layer in the ab-
sence of input information should work in the nonlinear region
to exhibit sufficiently different dynamical responses to input
with different classes [20]. To accurately fix the corresponding
nonlinear regime, we examine these critical hyperparameters
(i.e., injection strength, feedback strength, response laser cur-
rent, and frequency detuning) in a reasonable range based on
the bifurcation diagram of the semiconductor lasers. Besides,
based on our research on the nonlinear dynamics of semicon-
ductor lasers [36,37], we find that the order of the hyperpara-
meters does not matter. After that, we finally achieve an MFI
with an overall estimation accuracy as high as 95%.

2. THEORETICAL MODEL

Figure 1 shows the schematic of the MFI based on the P-RC
with semiconductor lasers. The whole system consists of three
parts: input layer, reservoir, and output layer. In our implemen-
tation, the various modulation formats (OOK, DQPSK,
QAM) commonly used in long-haul optical communication
systems obtained their amplitude feature u�n� through asyn-
chronous sampling. Specifically, the input u�n� is generated
in the following way: 10 Gbps OOK, 40 Gbps DQPSK,
and 100 Gbps 16QAM signals transmit over the emulated
communication channel with different optical signal-to-noise

Fig. 1. Schematic of the MFI based on the P-RC with semiconductor lasers. This system consists of three parts: input layer, reservoir, and output
layer. The input u�n� is multiplied by a mask with a period of T , and then the resulting stream S�t� � Mask × u�n� is fed into the reservoir through a
modulator. The reservoir is a master-slave configuration constructed by a response laser (R-Laser) with a self-delay feedback loop injected by a drive
laser (D-Laser). Note that there are N virtual nodes at each interval θ in the feedback loop with a delay time of T . The transient states of the R-Laser
X i are read out for training the connection weightsW i between the reservoir and the output layer. The final output nodes are weighted by the sums
of the transient states

P

X iW i .
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ratios (OSNRs)/chromatic dispersions (CDs)/differential group
delays (DGDs) and are then asynchronously sampled at a sam-
pling rate of 500 MSa/s in a duration time of 0.2 ms to obtain
100,000 amplitude samples. After normalizing all of the
sampled amplitudes, we form the associated asynchronous am-
plitude histograms (AAHs) containing 100 bins as shown in the
following Fig. 3. Finally, 11,700 sample data sets are generated
and used as the input information u�n�. The input information
is a one-dimensional data vector u�n�, where n ∈ Z is the dis-
crete time. In the input layer, u�n� is preprocessed and multi-
plied by a mask sequence, which plays the role of random
weight connections from the input to the reservoir layer.
Note that different kinds of mask sequences can induce differ-
ent effects on the RC performance. In the simulation, we ac-
tually investigated three kinds of commonly used mask signals,
which are binary [38], six-level [39], and chaos masks [40],
respectively. After analyzing their effect on the identification
performance in the following Section 3, we finally select the
chaos signal as the mask for RC. The amplitude feature
u�n� first undergoes a sample-hold operation, where each sam-
pling point has a duration of T and then is multiplied by a
chaos mask sequence with a length of T . The resulting se-
quence S�t� � Mask × u�n� is further injected into the follow-
ing photonic reservoir.

In the reservoir, the optical signal from the drive laser
(D-Laser) is modulated by the loaded signal S�t� from the in-
put layer and then injected into the response laser (R-Laser)
with a time-delayed optical feedback. Following ideas intro-
duced in RC with the delay system, the input information
generates nonlinear transient states in the context of previous
input responses. This is because the induced transient states at
time t depend on the output of the nonlinear node within the
time interval [t − τ, t], with τ being the delay time. In addition,
the dynamics of the delay system exhibit the properties of high
dimensionality and short-term memory, which accord well with
the requirements of the P-RC. Within one delay interval of
length τ, the feedback delay loop contains N virtual nodes
at each interval time θ (θ � τ∕N ). We denote these N equi-
distant points as “virtual nodes,” as their roles are actually analo-
gous to the nodes of a traditional reservoir. The values of the
delayed variable at each of the N points define the states of the
virtual nodes, which show the transient response of the reser-
voir when the input information is at the specific time. The
whole working process in the reservoir can be modeled by
Eqs. (1) and (2) [30,40,41]:

dE�t�

dt
�

1� iα

2

�

g �N �t� − N 0�

1� εjE�t�j2
−

1

τp

�

E�t�

�
kf

τin
E�t − τ� exp�−i2πντ�

�
kinj

τin
E inj�t� exp�i2πΔνt� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2βN �t�
p

χ�t�, (1)

dN �t�

dt
� J −

N �t�

τs
−

g �N �t� − N 0�

1� εjE�t�j2
jE�t�j2, (2)

where E is the slowly varying complex electric field andN is the
average carrier density. The parameters kf and kinj represent the

feedback strength of external cavity of the R-Laser and the in-
jection strength from the D-Laser to the R-Laser, respectively.
ν denotes the frequency of the free-running R-Laser, and Δν

denotes the frequency detuning from the D-laser to the R-laser.
J is the injection current. The carrier density at transparency
N 0 � 4.55 × 1023 m−3, the linewidth-enhancement factor
α � 5.0, the differential gain coefficient g � 1.414 ×
10−12 m3⋅ s−1, the gain saturation coefficient ε � 2.0 × 10−23,
the internal cavity round-trip time τin � 7.38 ps, the photon
lifetime τp � 1.17 ps, and the carrier lifetime τs � 2.5 ns, re-
spectively. The feedback delay time τ is 8 ns, and duration
T � τ · χ�t� is a white Gaussian noise with zero mean and
unity variance, used to model the spontaneous emission noise.
β is the strength of the spontaneous emission noise. [Note that
the following simulation results are obtained at β � 0, except
for the results in Table 3, where β � 1.5 × 10−6.] Considering
that the input signal is multiplied with the mask being used to
modulate the optical signal through phase modulation, the in-
jected slowly varying complex electric field E inj is written as
Eq. (3):

E inj�t� �
ffiffiffiffiffi

I d
p

exp�iπS�t��, (3)

where I d is the photon number of continuous-wave output
from the D-Laser, I d � 3.757 × 1020. S�t� represents the
masked input signal.

In the output layer, the transient states of the R-Laser X i are
read out for training the connection weights W i between the
reservoir and the output layer as defined in Eq. (4). Specifically,
the optimal readout weights are calculated using the ridge re-
gression algorithm in our work. The final output target Y �n� of
three identified modulation formats is provided by using one-
hot encoding [42] as follows. In the training stage of the P-RC,
each input vector u�n� has a correspondingM × 1 binary vector
Y with only one nonzero element. The location of ‘1’ in Y
indicates the signal modulation format type:

Y �n� �
X

X iW i : (4)

Once the training process of the P-RC is completed, we employ
the error rate (ER) to evaluate the MFI performance by a sep-
arate set of data called testing data set as defined in Eq. (5). In
the testing stage, the location of the largest element in each
corresponding output vector v, argmaxfvg, is used as an iden-
tifier of the signal modulation format. The identified modula-
tion formats are compared with true ones, which are provided
by labels Y of the testing data set. Herein, Q represents the
total of the samples of the testing data set, while b is the number
of erroneous identification samples:

ER �
b

Q
× 100%: (5)

3. NUMERICAL RESULTS AND DISCUSSIONS

As mentioned before, we choose 10 Gbps OOK, 40 Gbps
DQPSK, and 100 Gbps 16QAM modulation format signals
commonly used in long-haul fiber communication systems to
validate the feasibility of our MFI proposal based on the
P-RC in simulations. As shown in Fig. 2, these signals with three
modulation formats transmit over a 30 km standard single-mode
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fiber (SMF; dispersion coefficient is 16 ps/(nm · km), attenua-
tion factor is 0.2 dB/km, and nonlinear coefficient is
1.27 km−1 ·W−1), respectively. An erbium-doped fiber amplifier
(EDFA) is used to add amplified spontaneous emission (ASE)
noise into the signals, while a variable optical attenuator
(VOA) is used to adjust the OSNRs. A CD and a polarization
mode dispersion (PMD) emulator are used to introduce variable
amounts of CDs and DGDs into the signal, respectively. After
removing the redundant noise by an optical band-pass filter
(BPF) and direct detection by a photodetector (PD), the result-
ing electrical signal is asynchronously sampled to form asynchro-
nous amplitude histograms (AAHs). The OSNR ranges
considered in this work are the ones used in practice for reliable
data transmission with the abovementioned signal types. There
are various losses in the signal transmission process of optical fiber.
Specifically, we investigate the three types of signals in the follow-
ing scenarios: (i) their OSNRs are adjusted, ranging from 12 to
26 dB through a VOA at a step of 1 dB; (ii) their CDs are set,
ranging from −500 to 500 ps/nm via a CD emulator at a step of
80 ps/nm; (iii) their DGDs are located by a PMD emulator in the
range of 0−20 ps with a step of 5 ps. Here we want to point out
that using a fixed length of standard SMF with different OSNR
and CD following is a commonmethod to simulate the transmis-
sion system for asynchronous amplitude histogram generation
[11,43]. In this way, the OSNR and CD can be easily adjusted
to obtain associated data. Thus, we also apply this method in our
simulation. Note that the nonlinear effects are very weak in
the 30 km fiber propagation, and thus their impact is almost
negligible.

Based on the above scenarios, 11,700 samples of modula-
tion format signals in total are collected, and the randomly se-
lected subsets of this large data set are then used for training and
testing the performance of the P-RC. The examples of ampli-
tude histograms for OOK, DQPSK, and 16QAM signals after
asynchronous sampling are typically shown in Fig. 3. Herein,
the OSNRs in each column are 12, 19, and 26 dB from left to
right, but the corresponding CD and the DGD are fixed at
80 ps/nm and 5 ps, respectively. From each column, it can
be clearly seen that different modulation formats exhibit dis-
tinct shapes. Even though the associated shapes change with
various OSNRs from the first column to the third column,
three types of modulation formats maintain distinct character-
istics for each format. Therefore, the characteristic features of
the asynchronous amplitude histograms have been widely ac-
cepted to be exploited for MFI.

In the following, we will use the features from the asynchro-
nous amplitude histograms to train and test the P-RC so that

MFI can be realized. At the first stage, we confirm the appro-
priate number of samples and the optimized size of the virtual
nodes in the P-RC for high efficiency. In our scheme, we adopt
the commonly used k-fold cross-validation algorithm [44] to
eliminate the impact of the specific division of the available data
samples between training and testing. This means that the en-
tire process of training and testing is repeated k times (with
k � 5) on the same data, but each time with a different assign-
ment of data samples to each of the two stages. The final ER in
testing on the y axis is the mean across these k � 5 runs. We
compared the identification results with different types of mask
signals (the binary mask, six-level mask, and chaos mask) by
varying the sample numbers. The binary mask consists of a
piecewise constant function with a randomly modulated binary
sequence {−1, 1}. Similar to the binary mask, the six-level mask
is composed of a random sequence {�1, �0.6, �0.3}. The
chaos mask signal is generated from another semiconductor la-
ser with optical feedback [45]. Here the amplitude of the chaos
mask is rescaled so that the standard deviation of the chaos
mask is set to 1 and the mean value is set to 0. As shown
in Fig. 4(a), the ER tends to be a stationary value when the
sample number reaches around 2700. Meanwhile, it is clear
that the chaos mask performs better than the other two types
of masks. Thus, we select the chaos signal as the final mask in
the following simulation. On the other hand, it can be observed
that no matter whether the number of virtual nodes N in the
P-RC is set as 300 or 400, the ER exhibits the same changing
trend. Meanwhile, it should be noted that the ER correspond-
ing to the virtual node number N � 400 is lower than that in
the other cases of N � 300.

As shown in Fig. 4(b), the ER decreases with the increase of
the sample number and tends to be a stationary value. The red
curve is the corresponding red curve (chaos mask) in Fig. 4(a).
Consequently, 2700 samples of modulation signals and the vir-
tual node number N � 400 are selected in our simulation.

Furthermore, we analyze the effect of the four key param-
eters in the P-RC layer on the MFI performance, which are the

Fig. 2. Sketch of the emulated transmission system for asynchro-
nous amplitude histogram generation. EDFA, erbium-doped fiber
amplifier; SMF, single-mode fiber; CD/PMD, chromatic dispersion/
polarization mode dispersion; BPF, band-pass filter; PD, photodetec-
tor; AAH, asynchronous amplitude histogram.

Fig. 3. Typical asynchronous amplitude histograms for (a1)–(a3)
OOK, (b1)–(b3) DQPSK, and (c1)–(c3) QAM formats after propa-
gation through the emulated communication channel. From left to
right, each column has an OSNR of 12, 19, and 26 dB, while the
corresponding CD and the DGD are fixed at 80 ps/nm and 5 ps,
respectively.
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injection strength kinj from the D-laser to R-laser, feedback
strength kf of the R-laser, bias current IR of the R-laser,
and frequency detuning Δν from the D-laser to R-laser.
Figure 5 depicts the associated influence of the injection
strength. When there is no input, the P-RC is a typical
master-slave laser configuration. From its bifurcation diagram
[Fig. 5(a)], one can observe that when the injection strength kinj
is less than 0.21, the output of the P-RC layer is in a chaotic
state. With increase of the injection strength kinj, the P-RC laser
changes from the periodic oscillation state to a single-cycle
state. On the other hand, Fig. 5(b) shows the dependence
of the identification ER on the injection strength when the in-
put is considered. It can be seen from Fig. 5(b) that the ER is
first decreased but then increased with the increase of the in-
jection strength kinj. The lowest ER of 5.21% can be obtained
when the optimum value of injection strength kinj is equal
to 0.2. Comparing its corresponding bifurcation diagram
[Fig. 4(a)], it can be found that when kinj is around 0.2, the
delay-coupled semiconductor laser reservoir system in the
absence of input works at the edge of the chaos region. This
phenomenon is consistent with that in Ref. [15], where elec-
trical reservoir computing based on a single dynamical node is
used for standard benchmarking tasks such as spoken digit rec-
ognition and nonlinear time series prediction.

Figure 6 shows the effect of the feedback strength kf of the
R-laser on the identification performance. Here the injection
strength kinj is set at 0.2, while other parameters remain un-
changed (IR � 1.3I th and Δν � −10 GHz). When the feed-

back strength kf varies from 0.01 to 0.35, it can be seen from
the corresponding bifurcation diagram in Fig. 6(a) that the out-
put of the reservoir without the input follows a quasiperiodic
route to chaos with the increase of the feedback strength kf .
After the input is considered, the final identification ER of our
P-RC in Fig. 6(b) is decreased at first and then increased with
increasing feedback strength kf . When the feedback strength
kf is 0.15, the ER reaches a minimum value of 5.09%. When
the feedback strength grows, the system is in the chaotic state
and is more sensitive to changes in initial conditions. So the
identification performance will decline.

Figure 7 illustrates the influence of the bias current IR of the
R-laser in the system. In the analysis, the injection strength kinj
and the feedback strength kf are set to be 0.2 and 0.15, respec-
tively. Figure 7(a) is the corresponding bifurcation diagram of
the output optical intensity versus the bias current IR of
R-Laser. As can be seen, the RC subsystem will gradually leave
a single-cycle state to the chaotic region when the bias current
of the R-Laser increases from 1.01I th to 1.6I th. Note that I th
corresponds to the threshold current of the R-Laser. On the
other hand, the identification ER in Fig. 7(b) first decreases
and then increases with the increase of IR. Finally, a minimum
ER of 4.25% can be obtained when the bias current of the
R-Laser equals 1.25I th.

Figure 8 investigates the influence of the frequency detuning
Δν between the D-Laser and the R-Laser on the identification
results. Figure 8(a) gives the bifurcation diagram as a function
of the frequency detuning Δν. In the bifurcation diagram, the

Fig. 5. (a) Bifurcation diagram of the output optical intensity versus
the injection strength kinj for kf � 0.18, IR � 1.3I th, and
Δν � −10 GHz. (b) Identification error rate (ER) at different injec-
tion strengths kinj (blue dots), while the red curve is plotted by execut-
ing a sliding window averaging to the associated data points.

Fig. 6. (a) Bifurcation diagram of the output optical intensity versus
the feedback strength kf for kinj � 0.2, IR � 1.3I th, and Δν �

−10 GHz. (b) Identification ER at different feedback strengths kf
(blue dots), while the red curve is plotted by executing a sliding win-
dow averaging to the associated data points.

Fig. 7. (a) Bifurcation diagram of the output optical intensity versus
the bias current of the R-Laser IR for kinj � 0.2, kf � 0.15, and
Δν � −10 GHz. (b) Identification ER at different bias currents of
the R-Laser IR (blue dots), while the red curve is plotted by executing
a sliding window averaging to the associated data points.

Fig. 4. (a) Identification error rate on the total (training and test)
sample numbers of the binary mask (black), the six-level mask (blue),
and the chaos mask signals (red). (b) Dependence of the identification
error rate on the total (training and test) sample numbers at different
virtual node sizes of 300 (blue) and 400 (red).
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RC without the input can be observed in a single-cycle state
when the frequency detuning Δν is −15 GHz. With the
increase of the frequency detuning Δν, it starts to enter a
chaotic state at Δν � −10 GHz. Figure 8(b) shows that the
identification ER exhibits the same changing trend as
Figs. 5(b), 6(b), and 7(b). That is, the ER decreases first
and then increases with the increase of frequency detuning
Δν. When the frequency detuning Δν is −10 GHz, the ER
can be reduced to a lowest value of 4.07%. Obviously, this best
identification result is obtained at the edge of the chaos region
by contrast with the bifurcation diagram. In this state, the RC
has an infinite dimensional space so the input signal is mapped
to the higher dimensional space and achieves the optimal iden-
tification results.

After the above processes, all key parameters in our P-RC
can be adjusted to reach the optimum state as follows.
(i) The number of virtual nodes N is chosen to be 400. (ii) The
injection strength kinj from the D-laser to the R-laser is set to be
0.2. (iii) The feedback strength kf of the R-laser is set as 0.15.
(iv) The bias current IR of the R-Laser is 1.25I th. (v) The fre-
quency detuning Δν between the D-Laser and R-Laser is set
to −10 GHz.

Under these conditions, we utilize the P-RC system to
identify 1000 test cases with each type of modulation format
for a considerable range of OSNRs (12−26 dB), CDs
(−500−500 ps∕nm), and DGDs (0−20 ps). Table 1 lists
the associated test results of the proposed MFI technique
through combining the ridge regression algorithm with the
laser-based P-RC system. From it, one can confirm that the
identification accuracies of OOK, DQPSK, and 16QAM sig-

nals can reach 95.1%, 95.7%, and 95.5%, respectively.
These simulation results demonstrate that the proposed tech-
nique can effectively classify the modulation formats in fiber
communication with an overall estimation accuracy of more
than 95% and also in the presence of various link impairments
such as OSNR, CD, and DGD. Meanwhile, in order to check
the performance of our proposal, we also analyzed the MFI ac-
curacy using only the ridge regression algorithm. In this case,
the whole system only contains two layers: the input and out-
put layers. The whole training process is as follows. The result-
ing sequence S from the input layer and the target matrix Y are
directly used to calculate the final output connection weightW
by means of the ridge regression algorithm. That is, there is no
nonlinear mapping induced by the reservoir layer. The associ-
ated results on identification accuracies for different modula-
tion formats are shown in Table 2. It is evident that the
identification accuracies of all three modulation formats in
the system only using the ridge regression algorithm are less
than 76%. Therefore, we confirm that the identification accu-
racies can be significantly improved based on the proposed
P-RC MFI system in our work.

Further, we investigate the influence of spontaneous emis-
sion noise on the performance of the P-RC. Table 3 shows the
identification accuracies for different modulation formats using
the MFI technique through the P-RC system under a typical
spontaneous emission β � 1.5 × 10−6 [46]. Comparing
Table 1 and Table 3, one can find that our P-RC is extremely
robust against spontaneous emission noise. That can be ex-
plained by the fact that the modulation format identification
is a classification task that only requires a winner-takes-all de-
cision. Note that the noise from the photodetector is additive,
which can be eliminated using balance detection technology.
Thus, the detection noise is not considered in this work.

Fig. 8. (a) Bifurcation diagram of the output optical intensity versus
the frequency detuning Δν between the D-Laser and the R-Laser for
kinj � 0.2, kf � 0.15, and IR � 1.25I th. (b) Identification ER at
different frequency detunings Δν (blue dots), while the red curve
is plotted by executing a sliding window averaging to the associated
data points.

Table 1. Identification Accuracies for Different

Modulation Formats Using the MFI Technique Through

Our Laser-Based P-RC Systema

Identified Modulation Formats

OOK DQPSK QAM

Actual Modulation
Formats

OOK 95.1% 1.4% 1.7%
DQPSK 3.2% 95.7% 2.8%
QAM 1.7% 2.9% 95.5%

aThe overall MFI accuracy is more than 95%.

Table 2. Identification Accuracies for Different

Modulation Formats Using Only the Ridge Regression

Algorithm (Without the Reservoir Layer in the System)a

Identified Modulation Formats

OOK DQPSK QAM

Actual Modulation
Formats

OOK 75.2% 8.2% 8.5%
DQPSK 15.7% 72.6% 16.7%
QAM 9.1% 19.2% 74.8%

aThe overall MFI accuracy is less than 76%.

Table 3. Identification Accuracies for Different

Modulation Formats Using the MFI Technique Through

the P-RC System with a Typical Noise Value of

β � 1.5 × 10−6
a

Identified Modulation Formats

OOK DQPSK QAM

Actual Modulation
Formats

OOK 95.0% 1.2% 1.8%
DQPSK 3.5% 95.5% 2.9%
QAM 1.5% 3.3% 95.3%

aThe overall MFI accuracy is more than 95%.
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Finally, we want to point out that direct comparison with
other works is difficult in modulation format identification as
mentioned in Refs. [12,47]. There are two main reasons for this
difficulty. (i) There is no single unified database available.
When different modulation formats with different symbol rates
are applied, different accuracies will result for NN-based modu-
lation format identification. (ii) Identification accuracy is fre-
quently reported as a function of OSNR and CD. There are no
benchmarking systems universally agreed upon these indexes.
For instance, Guesmi et al. reported an identification accuracy
of 90% for 16 Gbps QPSK and 16QAM when the OSNR is
14−26 dB and the CD is 800 ps/nm [48]. Saif et al. showed an
identification accuracy of 98% for 10 Gbps QPSK and
16QAM when OSNR is about 20 dB; however, when the sym-
bol rate is enhanced into 20 Gbps, the associated identification
accuracy is decreased to 90% [49]. Xiang et al. reported an
identification accuracy of 100% for 28 Gbps QPSK and
16QAM when the CD is −60−60 ps∕nm; but when the
CD is in the other range, the identification accuracy is de-
creased below 90% [43].

There are at least two benefits to the P-RC. (i) High speed.
Our P-RC is based on the all-optical nonlinearity of laser di-
odes. Such a system might even reach processing speeds at the
level of 100 GHz using off-the-shelf photonic components for
telecommunication applications [50]. (ii) Low energy con-
sumption. At this stage we can only provide a conservative es-
timate, according to Ref. [16]. Our all-optical transient
computing scheme, including all-optical data input and read-
out hardware, would be of the order of 10 mJ per signal, com-
pared with 2 J per signal required by a standard desktop
computer.

In addition, the current accuracy level in this work is mainly
constricted by the number of used nodes due to the limited
sample size. Once the sample size is sufficiently large (that
means more nodes are fully trained), there are two approaches
to further achieve higher accuracy levels with P-RC. One is to
improve the complexity of the mask [40]. In P-RC, the mask is
equivalent to the input connection weight in the traditional
RC. It can bring rich nonlinear states for P-RC and thus
map the input data into a high-dimensional space. So it is ex-
pected that using a more complicated random signal (such as
amplified spontaneous noise) as the mask may further enhance
the identification accuracy. The other is to introduce the multi-
ple feedback loops [30]. Usually, the P-RC system with multi-
ple optical feedback results in a much more complex response
of the R-laser compared to that with a single optical feedback.
Consequently, higher dimensional transformation of the input
signal and thus higher accuracy levels may be achieved with
P-RC.

4. CONCLUSION

In this paper, we propose a simple MFI technique for fiber-
optic communications by using P-RC trained with amplitude
features extracted from the OOK, DQPSK, and 16QAM
signals through asynchronous sampling. Numerical results
demonstrate over 95% identification accuracy for three widely
used modulation formats in various situations under
OSNRs (12−26 dB), CDs (−500−500 ps∕nm), and DGDs

(0−20 ps). Considering the good performance and its concep-
tual simplicity, it can be expected that P-RC may provide an
efficient tool for realizing the wide application of MFI in future
fiber communication systems.
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