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Abstract: Numerical simulations of the onset phase of continuous wave 
supercontinuum generation from modulation instability show that the 
structure of the field as it develops can be interpreted in terms of the 
properties of Akhmediev Breathers. Numerical and analytical results are 
compared with experimental measurements of spectral broadening in 
photonic crystal fiber using nanosecond pulses. 
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1. Introduction 

Modulation instability (MI) is a characteristic feature of a wide class of nonlinear dispersive 
systems, associated with the dynamical growth and evolution of periodic perturbations on a 
continuous wave background [1,2]. In the initial stage of evolution, the spectral sidebands 
associated with the instability experience exponential amplification at the expense of the 
pump, but the subsequent wave dynamics is more complex and various scenarios of energy 
exchange between the spectral modes are possible. This dynamics is closely related to the 
celebrated Fermi-Pasta-Ulam (FPU) recurrence phenomenon, and several important studies in 
an optical context have been reported [3–5]. 

In optics, MI has been extensively studied in the context of fiber propagation as described 
by the nonlinear Schrödinger equation (NLSE). This has been motivated both by interest in 
the fundamental dynamics relating to FPU recurrence [3], as well as by potential applications 
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in ultrashort pulse train generation and parametric amplification [6–8]. The spontaneous 
development of MI seeded from noise has also been shown to underlie the initial stages of 
fiber supercontinuum generation seeded by continuous wave (CW) radiation or picosecond or 
nanosecond pulses [9–11]. Links between this phase of spontaneous MI and the development 
of “optical rogue wave” instabilities have also recently been proposed [12,13]. 

Somewhat surprisingly, although exact solutions describing MI dynamics have existed in 
the mathematical physics literature for nearly 25 years [14], subsequent studies have either 
developed similar ideas independently [15,16] or have focused on approximate truncated or 
purely numerical approaches [17–21]. However, there is increasing appreciation that the 
results of Ref [14]. provide a powerful framework with which to interpret a wide range of MI-
related dynamics, and the particular class of solution exhibiting FPU-like growth-return 
evolution is now widely referred to within the fluid dynamics community as the Akhmediev 
Breather (AB) [22–25]. In this paper, we focus on particular applications in optics, 
highlighting a number of “rediscovered” features of these analytic breather solutions in the 
context of current studies of MI dynamics and supercontinuum generation. 

Specifically, we use numerical simulations to examine the evolution of a modulated CW 
field as it nonlinearly compresses to a periodic train of ultrashort pulses, and we confirm that 
the AB theory quantitatively describes the “maximally-compressed” pulse characteristics over 
a wide parameter range. We then show that the AB theory also provides significant insight 
into the properties of the initial phase of CW supercontinuum generation seeded by noise-
driven MI. We discuss how the temporal structure that develops from spontaneous MI can be 
naturally interpreted in terms of the characteristics of AB evolution, and we show in particular 
how the frequency-domain properties of the maximally-compressed AB solution reproduce 
the characteristic triangular shape of the MI spectrum when plotted on a semi-logarithmic 
scale. Numerical and analytic results are confirmed by experimental studies of quasi-CW 
spectral broadening induced by nanosecond pulse pumping in the anomalous dispersion 
regime of a photonic crystal fiber (PCF). Our experiments are carried out at fixed fiber length, 
but the quantitative agreement between the slope of the spectral wings of the MI spectrum and 
the analytic AB spectrum nonetheless provides evidence for the presence of breather 
dynamics. These results thus complement more direct studies of dynamical evolution 
measuring energy exchange between sidebands as a function of power or length [3,26]. 
Finally, we briefly discuss directions for future research that may potentially link these results 
with rogue wave instabilities. 

2. Theoretical summary and the breather dynamics of modulation instability 

We first review the theory of Ref. 14 and present a series of simulation results that illustrate 
its application to describing induced MI. We write the NLSE in dimensional form [27]: 
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| | 0 ,
2

A A
i A A

z T
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γ

∂ ∂
+ + =

∂ ∂
 (1) 

where |A|2 has dimensions of instantaneous power in W and the dispersion and nonlinearity 

coefficients β2 (< 0) and γ have dimensions of ps2 km−1 and W−1 km−1 respectively. The 
Akhmediev Breather is an exact analytic solution describing the evolution with z of a wave 
with initial constant amplitude on which is superimposed a small periodic perturbation taking 
the form of a T-dependent modulation with amplitude that is a fraction of that of the CW field. 
The solution consists of an evolving train of ultrashort pulses that is periodic in time (T) and 
that exhibits a FPU-like growth-return cycle in propagation distance (z). In contrast to soliton 
solutions which are localized in T, the ideal FPU growth-return behavior localizes the breather 
solution in the z direction. As we shall see below, certain initial conditions can also yield 
periodic evolution along the z-direction, but even in this case, the pulse train characteristics 
nonetheless remain well-described by the analytic AB solution. 

The AB solution to Eq. (1) is written explicitly in the form [14]: 
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which shows growth-return evolution over –∞ < z < ∞. Equation (2) represents a family of 
solutions with a variable independent parameter ωmod which is a perturbation frequency (of 
the initial temporal modulation). The coefficients a and b depend on ωmod and are defined by:  
2a = [1 – (ωmod/ ωc) 

2] and b = [8a (1-2a)]1/2 with ωc
2 = 4 γ P0 / |β2| and P0 the power of the 

CW field at large |z|. The solution is valid over the range of modulation frequencies that 
experience MI gain: ωc > ωmod > 0. The coefficient a then varies in the interval 0 < a < 1/2 
while the parameter b > 0 governs the MI growth. The maximum gain condition b = 1 occurs 

for a = 1/4, i.e. ωmod = ωc / 2 . Note that these conditions that follow from the properties of 
Eq. (2) are identical to the well-known results obtained using linear stability analysis [2,27]. 
The solution in Eq. (2) describes an evolving periodic train of ultrashort pulses with temporal 
period Tmod = 2π/ωmod. The individual temporal peaks or sub-pulses have maximum amplitude 
and minimum temporal width at z = 0. The solution at this point describes the “maximally-
compressed” AB, and is given by: 

 mod
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mod

(1 4 ) 2 cos( )
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The nonlinear evolution of a modulated CW wave can be studied in general by solving the 

NLSE numerically for an input field of the form A(z = z0,T) = 0P  [1 + αmod cos(ωmodT)], 

where the modulation parameter αmod is in general a small complex number. When αmod 
depends on ωmod and takes the particular form αmod = � [1 + i(2b/ωmod

2)] with � real, the 
evolution is described by the exact result in Eq. (2) which sweeps a heteroclinic orbit in terms 
of nonlinear dynamics. Any other form for the parameter αmod does not lead to an ideal return 
to steady state and decay to a plane wave, but rather yields a more complex solution that lies 
near the heteroclinic orbit with periodicity along the z-direction; that is, we see multiple 
growth-return cycles and periodic energy exchange between sidebands. Albeit more complex, 
this evolution can still be fully described analytically in terms of Jacobi elliptic functions (see 
Eq. (18) of Ref [14]; See also [28–31]). 

On the other hand, extensive simulations of the non-exact case with real-valued αmod as 
initial condition show that Eqs. (2) and (3) nonetheless accurately describe the evolution over 
at least the first growth-return cycle and, moreover, the pulse train at the point of maximum 
initial temporal compression can be predicted near-exactly by the analytic solution in Eq. (2) 
for modulation amplitudes over a large range 0 < αmod < 0.25. This is an important 
observation, because real-valued initial modulation amplitudes correspond to conditions that 
are more straightforward to achieve experimentally using dual-frequency excitation [32]. 
Figures 1 and 2 illustrate this explicitly by showing a selection of simulation results where the 
NLSE is integrated numerically using the initial conditions described above and for real-
valued αmod. The simulations use standard single mode fiber parameters at 1550 nm with β2 = 

–20 ps2 km−1, γ = 1.1 W−1 km−1, and we assume P0 = 30 W. With these parameters, MI gain is 
observed for modulation frequencies fmod = ωmod/2π in the range 0 – fc where fc = ωc/2π = 

408.88 GHz. Maximum gain at a = 0.25 corresponds to modulation frequency fmod = fc / 2  = 
289.12 GHz. In contrast to Eqs. (2) and (3) above, these figures are plotted with the origin z = 
0 corresponding to the point of injection of the initial field, and the propagation coordinate z is 

scaled relative to the characteristic nonlinear length LNL = (γP0)
−1 = 30.3 m. 

Firstly, in Fig. 1, we consider a fixed modulation frequency fmod = 289.12 GHz at the peak 
of the MI gain, but we vary the modulation parameter αmod. We use a grayscale representation 

to show the evolution of both the temporal intensity |A(z,T)|2 and spectral intensity 2|  ( , ) |A z fɶ , 

where ( , ) ( , )A z T A z f↔ ɶ are Fourier transform pairs. The evolution is shown over at least one 

growth-return cycle along z and the graphs below the grayscale figures compare the shape of 

#116781 - $15.00 USD Received 4 Sep 2009; revised 8 Oct 2009; accepted 8 Oct 2009; published 10 Nov 2009

(C) 2009 OSA 23 November 2009 / Vol. 17,  No. 24 / OPTICS EXPRESS  21500



the pulse train at the point of maximal temporal compression and spectral expansion 
(indicated by arrows) with the predicted maximally-compressed AB solution given by Eq. (3). 
The horizontal axes on the grayscale plots are normalized relative to fmod. The results show 
how increasing αmod decreases the characteristic distance over which periodic growth-return 
occurs. Figure 1(c) also illustrates how disagreement between numerical simulations and the 
predictions of the AB theory begins to become apparent as the modulation amplitude 
increases beyond αmod = 0.25. 

 

Fig. 1. Grayscale plots show simulated spectral and temporal evolution for a = 0.25; fmod = 
289.12 GHz and with modulation amplitudes αmod as shown. Arrows and labels indicate the 
point of maximum temporal compression during the first growth-return cycle. Graphs A, B, C 
below compare simulation results (circles) with analytic results describing the maximally-
compressed AB sub-pulses (lines) from Eq. (3). 

Figure 2 shows a second set of results. Here we choose a fixed modulation amplitude of 
αmod = 0.01 (where the AB theory provides an accurate description of the dynamics), but we 
vary the parameter a to span a range of modulation frequencies fmod. We can thus see how the 
qualitative form of the AB solution changes across the MI gain band. Specifically, Fig. 2 (a) 
shows the minimal reshaping observed as the frequency approaches the upper limit of MI 
gain, whilst Figs. 2(b) and (c) show cases of decreasing modulation frequency, which would 
approach the Peregrine soliton in the limit a = 0.5 [31]. The evolution is plotted so as to 
highlight the growth up to the first point of maximal temporal compression. In interpreting 
Fig. 2, note that the characteristic distance of the initial growth phase up to this point itself 

depends on fmod, asymptotically increasing to ∞ at a = 0 and a = 0.5, whilst attaining its 
minimal value at the peak of the MI gain when a = 0.25; recall that the evolution for this latter 
case is shown in Fig. 1(a). 

The results in Figs. 1 and 2 show impressive agreement between the properties of the 
temporal sub-pulses at the point of initial compression extracted from simulations, and the 
analytic predictions describing the maximally-compressed AB calculated from Eq. (3). This 
agreement has been confirmed over a range of modulation amplitudes and for various 
modulation frequencies across the MI gain curve. At first sight, however, this may seem 
surprising, however, because the case of a purely real-valued initial modulation amplitude 
does not precisely correspond to the initial conditions of the analytic breather solution derived 
in Ref. [14]. But in this context, it is important to note that whilst one can obtain an exact 
solution of the NLSE for each arbitrary initial condition with purely real or imaginary 
modulation amplitude, all the periodic solutions nonetheless lie very close to a heteroclinic 
orbit when we move along the trajectories far from the saddle point of the nonlinear phase 
space [14]. There is thus significant robustness in the ability of the analytic AB solution to 
describe the initial compression phase for a very wide range of initial conditions. 
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Fig. 2. Grayscale plots show simulated spectral and temporal evolution for fixed αmod = 0.01 
but varying modulation parameters (a and thus fmod) as shown. Arrows and labels indicate the 
point of maximum temporal compression during the first growth-return cycle. Graphs A, B, C 
below compare simulation results (circles) with analytic results describing the maximally-
compressed AB sub-pulses (lines) from Eq. (3). 

3. Akhmediev Breather dynamics and the onset of supercontinuum generation 

It is well-known that MI plays a central role in the initial dynamics of quasi-CW 
supercontinuum generation in the anomalous dispersion regime [10]. In this section we now 
consider how this onset dynamics can be interpreted in terms of the properties of Akhmediev 
Breathers. We begin by showing experimental results: Fig. 3(a) shows spectral measurements 
at the output of 3.9 m of a highly nonlinear PCF for various peak powers using 1 ns pulses at 
1064 nm. The fused silica fiber used was the same as that employed in the experiments of 
supercontinuum generation by Ranka et al. [33], and its structure and parameters have been 
extensively studied (see for example Ref [10].). 

The experimental results are compared with fully realistic generalised NLSE (GNLSE) 
simulations shown in Fig. 3(b), assuming 1 ns Gaussian input pulses. Note that the source 
linewidth (> 10 GHz) of the laser used in these experiments (a passively Q-switched 
microchip laser) was such that stimulated Brillouin scattering could be neglected in the 
simulations. A broadband one photon per mode noise background, Raman gain, higher-order 
dispersion and higher-order nonlinear terms are all included [10]. The simulations average 
over 10 realisations and are convolved with a spectral resolution function to match 
experiments (see caption.) 

The agreement between experiment and simulation is very good over the full range of 
powers considered and the results clearly illustrate how the spectral characteristics vary 
significantly with power. Firstly, at the lowest power of 26 W, the spectrum consists of small 
number of distinct MI sidebands separated by the frequency of peak MI gain. As the power 
increases to 43 W, we enter an “extended MI” regime where we can still resolve sidebands 
close to the pump, but we also see the development of continuous low amplitude wings that 
appear triangular when plotted with a semi-logarithmic y-axis. The spectral width in this 

regime approaches 60 nm at the −40 dB level, and we note the first sign of a very low 
amplitude Raman peak around 1120 nm. Finally at 98 W, we see a significant increase in 

bandwidth to ~400 nm at the −40 dB level, and the spectrum assumes characteristics of a 
“fully-developed” supercontinuum [10]. 
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Fig. 3. Experimental (left) and simulation (right) results for 1 ns pulses at 1064 nm injected into 
highly nonlinear PCF at peak powers as shown. Simulation results are averaged and convolved 
with a spectral resolution function matching the bandwidth of the spectrum analyzer used in the 
experiments (0.1 nm for 26 W results; 0.4 nm for 43 W results; 1.6 nm for 98 W results). 

We focus here on the characteristics of the extended MI spectrum at 43 W peak power. 
This is a regime where the increased bandwidth precludes the application of truncated 
sideband models, yet we still remain in an “NLSE dynamics” regime before the onset of 
higher-order effects. Note that at this power, the experimentally-measured sideband separation 
from the pump agrees very well with the 1.32 THz peak frequency of MI gain calculated for 

P0 = 43 W and fiber parameters β2 = −75 ps2 km−1 and γ = 60 W−1 km−1. The corresponding 
temporal period of 758 fs is much shorter than the 1 ns duration of the input pulses so that 
these experimental conditions are close to the ideal CW excitation case where AB theory 
would be expected to be valid. We also remark that we can neglect higher-order dispersion 
because the pump wavelength of 1064 nm is far from the fiber zero dispersion wavelength 
around 780 nm. 

To examine how the analytic results of the AB theory above can be applied to interpret the 
properties of the broadened spectrum seen at 43 W, Fig. 4 presents simulation results showing 
in more detail how the spectrum develops with distance. The simulations are for the NLSE 
only with fiber parameters corresponding to experiment, and assuming a 43 W peak power 
CW field with a one photon per mode noise background. Simulations using the full GNLSE 
yield essentially identical results in this regime. The grayscale plots show results of a single 
numerical realization illustrating the temporal evolution of the input field over 3.9 m. The 
time and frequency axes of the grayscale plots are normalized relative to the frequency of 
peak MI gain fmod = 1.32 THz. The spectral bandwidth first reaches its maximum extension at 
a distance of 3.5 m where we extract the corresponding temporal and spectral profiles. 
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In contrast to the narrowband modulation case considered in the Section 2 above, the use 
of a broadband noise seed results in significant variation in the structure of the individual 
temporal peaks across the extracted profile. Under these conditions, an exact comparison with 
the ideal AB evolution characteristics with z and T is not possible, but we find that the highest 
amplitude peaks in the temporal profile are nonetheless fitted very well by the maximally-
compressed AB sub-pulses calculated from Eq. (3) using fmod = 1.32 THz at the peak of the 
MI gain. This is shown explicitly in the expanded view of the shaded section in Fig. 4(a). In 
fact, analysis of the highest-amplitude peaks at other regions of the profile (not shown) reveals 
similarly good agreement with the calculated maximally-compressed AB solution, and we 
have confirmed that simulations using different noise seeds reveal the same characteristics. 
Moreover, we have also checked that the maximally-compressed AB characteristics at peak 
MI gain fit the highest peaks of the modulated field profiles for simulations of MI over a 
much wider source and fiber parameter range, indicating that this is a general characteristic of 
the MI process. Indeed, this can be understood in physical terms because the ABs associated 
with the peak MI gain frequency experience a higher growth rate and thus would be expected 
to make a predominant contribution to the field at the point of initial spectral expansion. 

In this regard, we also remark that although the extracted profiles in Fig. 4 are taken at the 
first point of maximum spectral expansion, additional simulations show that the spectral and 
temporal characteristics do not change significantly over distances from 3.5 to 4 m, and the 
agreement with the AB solutions remains very good over this range. With further propagation 
however, the validity of a simple NLSE model breaks down as the spectral bandwidth for 
generated for the parameters used here approaches the peak of the Raman gain for fused silica 
around 13 THz. 

 

Fig. 4. Single shot NLSE simulations for a CW field undergoing spontaneous MI showing:  
(a) temporal and (b) spectral evolution over 3.9 m. The figure also shows temporal and spectral 
profiles at 3.5 m. The shaded region in the temporal trace is shown in detail in the rightmost 
figure comparing simulations (solid line) with the AB solution calculated for a modulation 
frequency corresponding to peak MI gain (dashed line). The axes in the grayscale plots are 
normalized relative to the frequency of peak MI gain: fmod = 1.32 THz. 

These results allow us to propose a new physical interpretation for the development of the 
temporal structure in spontaneous MI. Firstly, spontaneous MI leads to the development of a 
very large number of temporal breathers with different initial amplitudes and transverse 
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frequencies within the bandwidth over which MI gain is observed. Secondly, the highest 
amplitude breathers at the point of initial spectral expansion correspond to the maximally-
compressed AB solution calculated at peak MI gain which sees the highest growth rate. To 
our knowledge, our interpretation here is the first proposed link of spontaneous MI dynamics 
and the analytic properties of the AB solutions. 

Significantly, we note that the highest amplitude breathers in fact possess an equivalent 
“soliton number” close to unity. For example, referring to Fig. 4(a) for the highest amplitude 
peaks with Pmax = 250 W and �τ = 115 fs (FWHM), we estimate N = [γ P0 (�τ/1.763)2 / |β2]

1/2 
= 0.92. This now allows us to propose a physical scenario which may be useful in interpreting 
the development of a fully developed broadband supercontinuum from a regime of extended 
MI. Specifically, we would expect that subsequent perturbations to the MI-generated breather 
structures would stimulate their evolution towards ideal fundamental solitons, subject of 
course to the fact that the chaotic initial conditions, higher-order dispersion, Raman effects 
and self-steepening result in different pulse accelerations such that collisions can also play a 
role in the subsequent dynamics. Of course, higher-order dispersion can also mediate the 
generation of dispersive wave radiation [10]. 

But the central feature of this scenario is that it suggests that, for the case of quasi-CW 
supercontinuum dynamics, the emergence of solitons is linked to the perturbation of high 
contrast pre-solitonic sub-pulses (the maximally-compressed ABs) that develop from an initial 
phase of breather evolution, and that are generated right across the pulse profile. This is in 
contrast to the process of sequential ejection of fundamental solitons from a single higher-
order soliton pulse due to soliton fission, as is the case when using femtosecond pulse 
pumping [34,35]. Of course, we stress that this picture needs to be complemented by more 
detailed studies to isolate the precise processes that stimulate the evolution of breather 
structures into solitons. Of particular importance will be analysis of the transition dynamics 
between the regime of extended MI where the field may usefully be described in terms of 
breathers and the fully developed supercontinuum where it has evolved into a “sea” of 
solitons. 

In addition to providing a physical interpretation of the temporal structure of the MI field, 
the analytic properties of the maximally-compressed ABs also provide insight into the form of 
the triangular spectrum observed in Figs. 3 and 4. In fact, in the case of induced MI at a fixed 
modulation frequency fmod, it is possible to obtain a general analytic description showing that 
the AB spectrum consists of discrete frequency sideband modes with separation fmod, and 
intensities that decrease following a geometric progression [14]. For the particular case of the 

maximally-compressed solution of Eq. (3), the spectral mode intensities are: S0 = P0 ( 2 -1)2 

for the pump component, and Sn = 2 P0 ( 2 -1)2|n| (where n =  ± 1, ± 2, ± 3, …) for the 
sidebands. Thus the pump and sideband intensities follow the relative progression {I0, I1, I2, I3, 
I4…} = {1, 2, 0.3431, 0.0589, 0.0101…} so that there is a 3 dB increase from the pump (n = 

0) to the first sideband (n =  ± 1) and then a constant decrease of 20 log10( 2 -1) = −7.66 dB 

between subsequent sidebands. This geometric progression describing the decrease in 
sideband amplitudes yields a characteristic triangular shape in the wings of the spectrum when 
plotted semi-logarithmically. These spectral characteristics are plotted in Fig. 5 for the case of 
the maximally-compressed AB described above with fmod = 1.32 THz. 

#116781 - $15.00 USD Received 4 Sep 2009; revised 8 Oct 2009; accepted 8 Oct 2009; published 10 Nov 2009

(C) 2009 OSA 23 November 2009 / Vol. 17,  No. 24 / OPTICS EXPRESS  21505



 

Fig. 5. Time and frequency domain characteristics of the ideal maximally-compressed AB. The 
modulation frequency fmod = 1.32 THz determines the spectral mode separation. 

The characteristics of the AB spectrum shown in Fig. 5 suggest an immediate physical 
interpretation for the spectral characteristics of the spontaneous MI case seen in Fig. 4(b). 
However, because spontaneous MI is seeded by broadband noise, the resulting spectral 
structure does not contain only discrete frequency modes, but rather consists of a continuous 
span of frequencies (corresponding to a range of excited AB structures) without discrete gaps 
in the spectrum. Nonetheless, as with the time domain characteristics, because we can expect 
the spectral characteristics to contain a dominant component from the maximally-compressed 
AB solution calculated at peak MI gain, we can anticipate that the decay of the spectral wings 
of spontaneous MI will indeed follow the expected analytic geometric progression of the AB 
sideband amplitudes. 

A more detailed analysis of the spontaneous MI spectrum along these lines is shown 
explicitly in Fig. 6. The figure compares both numerical and analytic results with the 
experimental results of Fig. 3 for P0 = 43 W where we would expect analysis in terms of 
NLSE propagation and AB characteristics to be valid. The experimental results here are 
shown as the solid black line, and we first compare these with two sets of numerical 
simulations: the previous simulations shown using the full GNLSE including Raman 
scattering and assuming a 1 ns pulse input field (blue, short dashes), and also simulations 
using only the NLSE with a CW input field (red, long dashes). Note that the single-shot 
simulations exhibit fine-structure in the spectra similar to that shown above in Fig. 4(b), but 
this is not apparent in Fig. 6 which plots averages over multiple realisations (10) and also 
includes convolution with a 0.4 nm (0.1 THz) spectral response function to match experiment. 

It is clear that the GNLSE and NLSE simulations produce very similar results, although 
the GNLSE result yields a slightly improved fit to experiment in showing the expected 
spectral asymmetry from Raman scattering. It is also clear that both sets of simulations agree 
quantitatively with experiment in reproducing the amplitude and slope of the wings of the MI 
spectrum. We can also see how (in contrast to the single shot results in Fig. 4) the averaging 
of the spectral structure is advantageous in more clearly showing both clear MI sidebands 
about the pump, as well as the clear triangular characteristic of the spectral wings. 
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Fig. 6. Comparison between experiments (solid black line), numerical simulations using the 
full GNLSE (blue dashed line), numerical simulations using the NLSE only (red dashed line), 
and the calculated spectrum of the maximally-compressed AB (green lines from zero). 

In addition to the numerical results, the figure also shows the discrete frequency modes 
associated with the analytic form of the maximally-compressed AB spectrum. Because the 
experimental and numerical spectra are generated from broadband noise and are thus 
continuous, an exact quantitative comparison with the absolute amplitudes of the modes of 
analytic AB spectrum is not possible. This is especially the case for the relative amplitude of 
the pump and first sidebands where noise has a particular effect on pump depletion dynamics. 
Nonetheless, by normalising the amplitude of the n =  ± 1 sideband modes of the AB spectra 
to the average first sideband amplitude seen in experiments, we find that the subsequent decay 
of spectral intensity with frequency seen in both experiment and simulations is reproduced 
very well by the analytic geometric progression of the maximally-compressed AB breather. 

4. Conclusions and Discussion 

There are several major conclusions to be drawn from this work. Firstly, the analytic 
formalism of Akhmediev Breather propagation has been shown to accurately describe the 
initial stage of induced modulation instability over a wide range of conditions. Even for a non-
ideal real-valued modulation amplitude, the maximally-compressed breather characteristics 
obtained numerically are well-described by the expected AB solution. We anticipate that these 
results will motivate interest into studies of the more general analytic formalism for arbitrary 
initial modulation conditions and equal amplitude dual mode fields [14]. Important 
applications of this work can also be envisaged in the optimization of experiments studying 
nonlinear compression and frequency comb generation [36–38]. 

Secondly, numerical studies of the temporal and spectral properties of spontaneous MI 
have shown that the characteristics of both the modulated temporal profile and the associated 
spectrum can be explained in terms of the development of high amplitude AB sub-pulses. 
Specifically, the well-known triangular form of the spontaneous MI spectrum when plotted 
semi-logarithmically has been explained naturally in terms of the analytic geometric 
progression describing the frequency dependence of the AB modal amplitudes. The analytic 
form of the AB spectrum has also been shown to be in very good quantitative agreement with 
the wings of the spontaneous MI spectrum observed in experiments studying the onset of 
quasi-CW supercontinuum generation. 
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In an optical context, an important implication of these results has been to propose a new 
scenario for the development of long pulse supercontinuum generation from an initial phase of 
spontaneous MI. Whilst the soliton fission model remains an appropriate description of 
supercontinuum generation for femtosecond pulse pumping where the input pulse is clearly a 
higher-order soliton [10], our results suggest that the onset of long pulse supercontinuum 
generation from spontaneous MI can be interpreted in terms of the simultaneous generation 
across the pulse profile of pre-solitonic Akhmediev breather structures. An important next 
step is to examine in more detail the dynamics of the propagation of these pre-solitonic pulses 
in the presence of perturbations. It is also possible that studies of breather propagation beyond 
the initial point of spectral expansion will reveal particular dynamical scenarios preferentially 
associated with optical rogue soliton trajectories that experience enhanced Raman self-
frequency shift. Examining the effects of interactions and collisions between the generated 
breather sub-pulses may also be important in developing a more complete understanding of 
these instabilities and continuing the development of improved physical modelling of the 
supercontinuum [39]. Also of potential importance is the application of the AB formalism (or 
related theoretical approaches) to reconsider the way in which techniques of supercontinuum 
tailoring and control can be optimised more rigorously [40,41]. 

Finally, in a more general hydrodynamics context, our results highlight the fact that even 
when shot-to-shot measurements of a fluctuating field profile are not possible, the presence of 
high amplitude AB sub-pulses can nonetheless be inferred through quantitative analysis of the 
spectral wings. In fact, this technique may possibly be of general significance in removing the 
uncertainty into the role that nonlinear MI and breather propagation play in the development 
of oceanic rogue waves. 
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