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We study modulation instability (MI) of the discrete constant-background wave of the Ablowitz-Ladik (A-L)

equation. We derive exact solutions of the A-L equation which are nonlinear continuations of MI at longer

times. These periodic solutions comprise a family of two-parameter solutions with an arbitrary background

field and a frequency of initial perturbation. The solutions are recurrent, since they return the field state to the

original constant background solution after the process of nonlinear evolution has passed. These solutions can

be considered as a complete resolution of the Fermi-Pasta-Ulam paradox for the A-L system. One remarkable

consequence of the recurrent evolution is the nonlinear phase shift gained by the constant background wave after

the process. A particular case of this family is the rational solution of the first-order or fundamental rogue wave.

DOI: 10.1103/PhysRevE.83.046603 PACS number(s): 05.45.Yv, 45.05.+x, 02.30.Ik

I. INTRODUCTION

Modulation instability (MI) is a universal phenomenon that

occurs in many physical systems. It has been studied in optics

[1], hydrodynamics [2], and even in biology [3]. In the ocean,

modulation instability may cause the inception of the infamous

rogue waves [4]. It is less commonly known that a developed

stage of modulation instability can result in breather-type

solutions that are presently known as “Akhmediev breathers”

(ABs) [5–9]. Remarkably, modulation instability exists not

only in continuous media but can develop in discrete systems,

such as those described by the Ablowitz-Ladik (A-L) equation

[10]. A discrete electrical lattice employing inductors and

nonlinear capacitors in a transmission line is a relevant

realization described by the A-L and related equations [11].

The authors of Ref. [11] have presented regions of MI for

this case, while energy localization via MI has been studied in

Ref. [12].

There are many publications relating to the A-L equation

and discrete systems in general. These include a review

article [13] on wave transmission in nonlinear lattices. In

particular, it gives an overview of the A-L equation and other

discretizations of the nonlinear Schrödinger equation (NLSE),

with applications to optical and electrical systems. One of

the basic questions that has not been answered yet is: In

discrete systems, does MI result in breather-type solutions?

We show, in this work, that indeed, exact solutions starting

with modulation instability do exist, and we present explicit

forms for them. Our preliminary studies have been presented in

Ref. [14] and here we give a more detailed answer to the above

question. Interestingly, these solutions have the property of

recurrence in the Fermi-Pasta-Ulam (FPU) sense [15], i.e., on

starting from a ground state of homogeneous background, they

eventually return the system to the same state of homogeneous

background, apart from a nonlinear shift in phase. This phase

shift is, in a sense, analogous to the Berry phase shift [16],

but is a specific property of nonlinear systems. It was first

discovered for the NLSE in the work of Ref. [17]. We show

here that the breather solution of the A-L equation also causes

the background state to shift its phase nonlinearly when the

localized formation defined by it has passed.

A specific feature of our derivation of the A-L breather

solution here is a special ansatz that has been suggested in

Ref. [17] for the NLSE. Namely, real and imaginary parts

of the solution are coupled by a linear relation. We use the

same ansatz for the A-L equation. Despite the fact that the

A-L system is a very special discretization of the NLSE, a

similar ansatz proves to be useful, as it allows us to find the

breather-type exact solution.

The standard form of the integrable A-L equation can be

written as [18,19]

i
∂ψn

∂t
+ (ψn−1 + ψn+1)(1 + |ψn|2) − 2ψn = 0, (1)

where t is the continuous evolution variable (time or longitu-

dinal spatial variable) and n = 0, ± 1, ± 2, . . . are integers.

In contrast to the original NLSE, this discretization has a

nonlinear term which is nonlocal. Thus, we cannot directly

discretize the solutions that have been obtained for the NLSE.

However, the A-L equation is also integrable, thus providing

a chance of deriving discrete solutions which are similar

to solutions of the NLSE. In Sec. II, we give a perturba-

tion solution, which is only valid for the initial growth of

a small ripple on the cw background. However, the results in

Secs. III–X are all exact solutions of the A-L equation.

II. MODULATION INSTABILITY

First, we will present results for modulation instability

of the A-L equation. Namely, we wish to find the range of

spatial frequencies which can grow due to MI on a “constant

background” (CB) solution. This solution is

ψn = −q exp(i2q2t + iφ), (2)

where q is the real background amplitude with the correspond-

ing propagation constant 2q2. The wave can have arbitrary

phase φ, while the minus sign is written here for convenience.

To eliminate fast oscillations in t , we can work with the

functions �n(t) such that

ψn(t) = �n(t) exp(i2q2t).
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Then this function satisfies the modified A-L equation

i
∂�n

∂t
+ (�n−1 + �n+1)(1 + |�n|2) − 2(q2 + 1)�n = 0,

(3)

If we know one set of functions, say, �n(t), it is easy to

transform it to the original set ψn(t) and vice versa.

Suppose we apply a small periodic perturbation to the CB.

Then the approximate solution the of A-L equation, Eq. (3),

can be written in the form

�n(t) = {−q + [a(t) + ib(t)] cos(κn)} exp(iφ), (4)

We assume that a(t) and b(t) are small real functions and that

κ is the transverse frequency of perturbation. Although we

take the perturbation in the form of a cosine function, it is

defined on a discrete set of points. Thus, strictly speaking, the

perturbation is not periodic. It is periodic only when the period

T = 2π/κ is an integer. However, the functions we are dealing

with can be continuously shifted, i.e., the discrete variable n

can be replaced by n − n0, with n0 being a real noninteger

parameter. Solutions remain valid for any real n0. This means

that, to some extent, we can operate with the variable n as a

continuous one, and thus we deal with periodic functions.

Substituting Eq. (4) into the A-L equation, Eq. (3), leads to

a set of coupled differential equations:

a′(t) = 4(1 + q2)b(t) sin2

(

κ

2

)

(5)

b′(t) = 2[q2 − 1 + (q2 + 1) cos(κ)]a(t). (6)

Eliminating a(t) produces the second-order equation

b′′(t) = δ2b(t), (7)

which has an exponentially growing or decaying solution

b(t) = b0 exp(±δt) with real δ which can be found from

δ2 = 8(1 + q2) sin2

(

κ

2

)

[q2 − 1 + (q2 + 1) cos(κ)]. (8)

Simplifying this equation, we find

δ = 2
√

q4 − [(1 + q2) cos(κ) − 1]2. (9)

Of course, −δ is equally valid. Solutions of Eq. (7) can be

a linear combination of exponential functions,

b(t) = b01 exp(+δt) + b02 exp(−δt),

or linear combination of hyperbolic functions

b(t) = b03 cosh(δt) + b04 sinh(δt),

with small real constants b0i . This shows that the CB wave

solution, Eq. (2), or

�n = −q exp(iφ),

is a saddle point of the infinite-dimensional dynamical system

defined by the A-L equation. As it can have arbitrary phase φ,

any point on a circle around the origin on the complex plane

with the radius q is a saddle point. When either of the two

constants b01 or b02 is zero, the trajectories start or finish at

the saddle point, thus defining the beginning or the end of the

homoclinic or heteroclinic orbit.

FIG. 1. (Color online) Growth rate of MI, δ, defined by Eq. (9).

From upper to lower, the curves are calculated for q = 2,1.5,1, and

0.5, respectively.

In Fig. 1, we plot δ (the growth rate), which is real and

positive in the interval of allowable κ values:

0 < κ < (κ)max. (10)

The upper limit of unstable frequencies,

(κ)max = arccos

(

1 − q2

1 + q2

)

,

depends on the CB amplitude q. Perturbations with frequencies

within the instability band experience growth due to modula-

tion instability. Depending on the relation between a and b,

they can equally well experience decay. The maximum value

of the instability growth rate,

δmax = 2q2,

also depends on the amplitude of the background q and occurs

at κ = arccos( 1
1+q2 ). Qualitatively, the curves of instability

are similar to those obtained for the continuous NLSE (see

Fig. (3.17) of Ref. [20]).

In order to eliminate trigonometric functions from δ, we

define

v = sin2

(

κ

2

)

. (11)

Then the MI growth rate, Eq. (9), can be written in the form

δ = 4
√

(1 + q2)v[q2(1 − v) − v]. (12)

III. LINEAR ANSATZ

Clearly, the solution Eq. (4) is approximate. Sometimes

approximate solutions are used, with variational principles,

etc. In that case there is a choice of various similar functions.

However, this is not our approach here, and we stress that,

henceforth, all solutions in the rest of this paper are exact. In

order to find an exact solution that is a continuation of Eq. (4)

when the perturbation increases, we use a special ansatz. The

continuous NLS equation can be solved with a linear ansatz

which was first used in the work of Ref. [17]. This ansatz leads

to a rich family of first-order solutions of the NLSE [21]. Thus,

a whole class of solutions can be derived from first principles.

046603-2



MODULATION INSTABILITY, FERMI-PASTA-ULAM . . . PHYSICAL REVIEW E 83, 046603 (2011)

Our conjecture here is that the same ansatz can be used

for the A-L equation, Eqs. (1) or (3). Generally, the complex

function �n(t) can be written explicitly as

�n(t) = [Rn(t) + iJn(t)] eiφ, (13)

where Rn(t) and Jn(t) are real and imaginary parts of �n

without the phase factor. The exponential eφ defines the initial

phase of the CB. We propose that the real and imaginary parts

of the solution in the complex plane are linearly related, i.e.,

for arbitrary n, we can write

Jn(t) = m(t) [Rn(t) + q] , (14)

where the coefficient m(t) depends only on t . If this is the

case, we can use Eqs. (13) and (14) in Eq. (3) and obtain exact

solutions.

First, from Eq. (14), we have

J ′
n(t) = m′(t)(Rn(t) + q) + m(t)R′

n(t). (15)

Then, substituting Eqs. (14) and (15) into Eq. (3), we separate

the real and imaginary parts of the A-L equation and, as a

result, obtain two real equations,

(Rn−1 + Rn+1)[1 + (Rn)2 + m2(Rn + q)2]

− 2(1 + q2)Rn − m′(Rn + q) − mR′
n = 0 (16)

and

m(Rn−1 + Rn+1 + 2q)[1 + (Rn)2 + m2(Rn + q)2]

+R′
n − 2(1 + q2)m(Rn + q) = 0. (17)

Now, we substitute Rn−1 + Rn+1 from Eq. (16) into Eq. (17)

and get a first-order differential equation in Rn(t). We simplify

this further by defining

Pn(t) =
1

Rn(t) + q
. (18)

Then we obtain

P ′
n(t) = 2qm(t) +

m(t)[m′(t) − 4q2]

1 + m2(t)
Pn(t). (19)

This can be regarded as a compatibility condition between

Eqs. (16) and (17). Various simple forms of the slope m(t)

admit specific solutions of Eq. (19) and hence exact solutions

of the A-L equation itself. However, m(t) is not an arbitrary

function.

IV. EXACT SOLUTIONS AS CONTINUATION OF

MODULATION INSTABILITY

First, we use a slope of the form

m(t) =
δ

4v(1 + q2)
tanh(δt)

for arbitrary real background q and real v. Its time dependence

is similar to that used for the NLSE [17]. Clearly, the parameter

v has to be in the range 0 < v <
q2

1+q2 . Then, Eq. (19) can be

written in explicit form.

The limit m(∞) is finite. Moreover, m′(∞) = 0. Thus,

Pn(∞) is also finite. We can see directly from Eq. (19) that

Pn(∞) =
1

2q
[1 + m2(∞)] =

q

2v(1 + q2)
.

Solving the differential equation (19) with the above

condition at infinity gives

Pn(t) =
q ± a(n)sech(δt)

2v(1 + q2)
. (20)

This is valid because the function a(n) does not involve t .

When we now substitute Eq. (20) into Eqs. (16) and (17), we

get difference equations for the function a(n). It is easily seen

that these are satisfied by

a(n) = c1 cos(κn) = c1 cos[2n arcsin(
√

v)],

where the constant c1 is given by

c1 =

√

q2(1 − v) − v

1 − v
,

and we have used Eq. (11), i.e., κ = 2 arcsin(
√

v), to write the

solution in simple form.

Using Rn(t) = 1/Pn(t) − q from Eqs. (18) and (14), after

simple transformations we can derive the “breather” (if we

may use this word in the broad sense) solution,

�n(t) =

[

2(1 + q2)v cosh(δt) + i δ
2

sinh(δt)

q cosh(δt) ± c1 cos(κn)
− q

]

eiφ,

(21)

where κ belongs to the interval of instability, Eq. (10). For

arbitrary coefficients, direct substitution into Eq. (1) shows

that this solution is valid. This solution is a direct analog of

solution (38) of the work of Ref. [21] derived for the NLSE.

It describes the growth and decay of modulation with period

κ on a constant background field q.

The solution given by Eq. (21) starts (at t = −∞) with

a constant background field slightly perturbed by a periodic

modulation. Due to the instability, the modulation increases

until it reaches its maximum value (at t = 0) and de-

creases symmetrically afterward until t = ∞. Mathematically

speaking, this solution is a heteroclinic orbit in the infinite

dimensional phase space of the dynamical system given by

the A-L equation. The starting and ending saddle points of

this orbit are generally different. We stress that the solution

is a two-parameter family. It depends on two independent

parameters, κ and q. We also assume that the discrete variable

n is taken in general form n − n0, thus allowing us to keep

one more free parameter, n0, in the solution. This parameter

results in translations along n axis when n0 is an integer, but

changes the profile of the solution when n0 is not integer.

The solution (21) can be derived as one of the limiting cases

of the family of Narita solutions [14]. However, we should

note that Narita solutions are presented in a form that requires

solution of a coupled set of transcendental equations [22]. The

result is still complicated and has to be further simplified to

obtain Eq. (21). The solution in the form of Eq. (21) is explicit

and is directly comparable with the corresponding solution of

the NLSE [21].

Fixing one of the parameters, we can additionally simplify

the solution. In order to do that, we can choose a special

value of one of the independent parameters. Namely, if

for κ , we choose the point of the maximum growth rate,

κ0 = arccos( 1
1+q2 ), then the dependent parameters will take

046603-3
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FIG. 2. (Color online) Breather solution of the A-L equation for

maximum growth rate, given by Eq. (22). The evolution starts with

a constant background, q, which is slightly modulated. Then the

modulation increases to reach its maximum at t = 0, and finally the

solution returns to the original background, q, but with a nonlinear

phase shift 	φ. Here, q = 1 and κ = π/3, thus providing an integer

period, T = 6, along the n axis. Additionally, we take n0 = 0, thus

locating the maxima of the solution at sites of the discrete set.

the following values: δ = 2q2, v = q2

2(1+q2)
, and c1 = q

√

1+q2

2+q2 .

In this special case, the solution can be reduced to the form

�n(t) = iq

[

√

2 + q2 sinh(2q2t) ∓ i
√

1 + q2 cos(κ0n)
√

2 + q2 cosh(2q2t) ±
√

1 + q2 cos(κ0n)

]

eiφ,

(22)

where κ0 is fixed, as given above. In this form, we have a

complete analogy with the AB solution (11) of the work of

Ref. [17]. This solution is illustrated in Fig. 2. Here, we have

also fixed q = 1. This choice provides an integer value for

the period along the n axis. When the shift n0 is zero, the

maximum values of the solution are located on discrete sites.

V. CONSERVED QUANTITIES

As the A-L equation is completely integrable, there is an

infinite number of conserved quantities related to it. Here,

we consider only the two lowest-order ones. However, as our

solutions are on a constant background, the definitions are

different from the standard case.

In fact, for localized solutions with zero background at

infinity, i.e., when n → ±∞, there is an “energy invariant”
∑∞

n=−∞ Qn that is conserved. If the background is not zero

but has a finite value q, we need to redefine energy, since, with

the standard definition, it would be infinite. Specifically, for a

solution ψn, located on a background field q, we define [14]

Q =
∞

∑

n=−∞
Qn, (23)

where

Qn = 1
2
(ψnψ

∗
n+1 + ψ∗

nψn+1) − q2. (24)

The redefined Q is conserved, as can be seen from the simple

considerations below.

When T is an integer, the proof can be made analytically.

For the important case of maximum growth rate, q = 1 with

κ = π/3, we see that T = 6, v = 1/4, δ = 2, and c1 =
√

2/3,

so we only need to add six terms in each case, since ψn+6 = ψn,

so Qn+6 = Qn. Now, for n0 = 0,

Q0 = Q5 = −
3[2 +

√
6 cosh(2t)]

5 + 3
√

6 cosh(2t) + 3 cosh(4t)
,

Q1 = Q4 = −
6

2 + 3 cosh(4t)
, (25)

Q2 = Q3 =
3[−2 +

√
6 cosh(2t)]

5 − 3
√

6 cosh(2t) + 3 cosh(4t)
.

Clearly
∑5

n=0 Qn = 0, so that the complete quantity Q = 0,

i.e., it is conserved.

When T is not an integer, taking the sum analytically

becomes cumbersome. However, numerical evaluations, even

for a finite (but large) number of elements in the sum, Eq. (23),

show that Q does not depend on t for the solution (21) with

arbitrary coefficients.

The second conserved quantity is the momentum,

M =
∞

∑

n=−∞
Mn, (26)

where Mn = i(ψnψ
∗
n+1 − ψ∗

nψn+1). Thus Mn+6 = Mn. In

contrast to Q, the expression for the momentum is the same

for solutions on zero or nonzero background. For the above

case, q = 1 and κ = π/3 (again with n0 = 0), we have

M5 = −M0 = −
2
√

6 sinh(2t)

5 + 3
√

6 cosh(2t) + 3 cosh(4t)
,

M4 = −M1 = −
4
√

6 sinh(2t)

2 + 3 cosh(4t)
, (27)

M3 = −M2 = −
2
√

6 sinh(2t)

5 − 3
√

6 cosh(2t) + 3 cosh(4t)
.

Simple calculations show that
∑5

n=0 Mn = 0, thus leading

to M = 0. Thus, the momentum is also conserved. The

derivation is valid for arbitrary values of the offset, n0. For

example, if n0 = 1
2
, then M5 = −M1 and M2 = −M4, while

M3 = −M0 = 0, so M = 0. In fact, for arbitrary values of q

and κ , with n0 = 1
2
, the solution is not periodic, but we have

Mn = s

(

1

r + c1 cos
[

k
(

1
2

− n
)] −

1

r + c1 cos
[

k
(

1
2

+ n
)]

)

where r = q cosh(δt) and s = δq sinh(δt). This clearly equals

−M−n, while M0 = 0. Hence, using Eq. (26), M = 0.

VI. MAXIMUM AMPLITUDES

Now, the question is what absolute maximum amplitude

the breather, Eq. (21), can reach for any particular value of κ .

From Eq. (21), we can find

|�n(t)|max =
2(1 + q2)v

q − c1

− q,
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FIG. 3. (Color online) Maximum value of field defined by

Eq. (28). From upper to lower, the curves are for q = 2,1.5,1, and

0.5, respectively.

or, in terms of κ ,

|�n(t)|max = q[q2 + (1 + q2) cos(κ)] +
√

2(1 + q2) cos(κ/2)

×
√

(1 + q2) cos(κ) − 1 + q2. (28)

We present the dependence of the maximum amplitude on κ in

Fig. 3. For any given q, we can expect the highest amplitude

when κ → 0 while the maximum is reduced to the background

value q at the edges of the instability interval. At the point

of maximum growth rate, κ0 = arccos( 1
1+q2 ), the maximum

amplitude is given by

|�n|max = q
√

q2 + 1(
√

q2 + 1 +
√

q2 + 2).

It depends only on q. If, additionally, q = 1, then |�n|max =
2 +

√
6.

The maximum value of �n is of great interest in potential

applications of these results, since this type of solution for the

continuous NLSE has been suggested as a prototype for rogue

waves in a number of publications [5–9]. Rogue waves can also

appear in discrete systems [23]. Thus, from this point of view,

the particular solution with κ = 0, where the period along the

n axis tends to infinity, deserves special consideration. This

will be done in Sec. X.

Despite the close analogy with the NLSE AB solutions,

there are also significant differences. One of them is the fact

that the background amplitude q could be eliminated in the

NLSE case, but not here. Indeed, for NLSE, there is the

so-called scaling transformation (see Eq. (2.3) of Ref. [20])

that allows us to transform any solution with a given amplitude

to one with unit amplitude. The reverse also holds: A solution

with amplitude one can be generalized to a solution with

an arbitrary amplitude. In particular, the background value

q in the case of the NLSE can always be transformed to the

unit background case. This operation will rescale the other

variables as well. There is no similar transformation in the

case of A-L equation. Thus, we have to keep the parameter

q in the solution, Eq. (22), as an independent parameter that

controls the value of the background in the solution.

Another significant difference is that the discrete variable n

can be shifted by any real constant n0, i.e., we can replace

n by n − n0 in all equations above. If n0 is an integer, the

solution will be identical to the original solution but shifted

along the n axis. On the other hand, if n0 is not an integer, then

the solution, which is defined only at discrete sites, will be

different. We recall that, in the NLSE case, translations along

the transverse variable lead to a solution which has the same

profile but is just shifted. We present the solution in Fig. 2 as

being continuous, but we need to remember that it is defined

only at integer values of n. The grid lines here correspond to

n = 0, ± 1, ± 2, . . . .

VII. EVOLUTION OF SPECTRAL COMPONENTS

In many practical applications, we are interested in the

spectra of the field distribution. Making a theoretical study of

them provides us with more insight into the physical system

itself. To study the spectral components of the field, we can

take a discrete Fourier transform of N points along the n axis

for any t , using the definition

νk(t) =
1

N

N−1
∑

n=0

�n (t) exp(−2πink/N ). (29)

Clearly, νk+N (t) = νk(t). The period of the solution is T =
2π/κ . We mostly take this to be an integer and so we can set

N = T . If T is not an integer, then it has to be sufficiently

large to get a good approximation of the spectral components.

Ideally, we should consider the limit of infinite N , thus

obtaining an infinite number of spectral components. However,

if T is an integer, then it is sufficient to take a sum over the

period T . The number of spectral components then is finite.

We note that the spectral components of a discrete chain are

basically the normal modes of the system under consideration.

Generally, the number of normal modes is infinite for a chain

with an infinite number of oscillators. However, if the period of

excitation is an integer, the number of normal modes is finite,

since all higher-order ones are the same as those in the set of the

finite number of the lowest-order modes. Thus, by controlling

the parameter κ , within the infinite dimensional dynamical

system, we can isolate finite-dimensional sub-systems.

Let us consider the spectra for the solution in simplest

form, Eq. (22), which is shown in Fig. 2. For the maximum

growth case, where q = 1 and κ = π/3, the transverse period

T = 2π/κ = 6, i.e., it is an integer. For this case, the highest

harmonic (or normal mode) is k = 3. To start with, we take

zero offset, n0 = 0. All four components can be calculated

analytically:

|ν0(t)|2 =
(

4

D

)2

[(1 + 3 cosh(4t))2 + 81 sinh2(8t)],

|ν1(t)|2 = |ν−1(t)|2 =
24

D2
cosh(4t)[1 + 3 cosh(4t)]2,

(30)

|ν2(t)|2 = |ν−2(t)|2 =
(

12

D

)2

cosh2(2t) cosh(4t),

|ν3(t)|2 = |ν−3(t)|2 =
96

D2
cosh(4t).

where D = 5 + 6 cosh(4t) + 9 cosh(8t). Clearly, we have

ν−k(t) = eikκνk(t) so that |ν−k(t)| = |νk(t)|.
The t evolution of these spectral components is shown in

Fig. 4. The fundamental component, ν0, initially (at t → −∞)
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FIG. 4. (Color online) Evolution of the components of the discrete

Fourier transform of the breather solution given by Eq. (22) for n0 =
0. Here, q = 1 and κ = π/3. The fundamental spectral component

(|ν0|2) approaches 1 for large |t | and is in blue, while the other three

curves show successively the components |ν1|2 (magenta, upper),

|ν2|2 (olive, mid), and |ν3|2 (green, lower). Thus, the amplitudes and

their maxima decrease as k increases from 1 to 3. See Fig. 3.7 of

Ref. [20] for the analogous spectra of AB solutions of the NLSE.

contains all the energy (∼|ν|2), and other components have

none. At the point of the maximal development of MI

(t = 0), this fundamental component is depleted and reaches

its minimum, while other components gain a considerable

fraction of the energy, as can be seen in Fig. 4. After the

evolution is completed (at t → +∞), all the energy returns

to the central component.

The moduli of the spectral components (not squared)

at the point of maximum modulation, t = 0, are shown in

Fig. 5. The nearest sidebands, |ν±1|, at this point have the

highest amplitude, while the amplitudes of higher components

decrease with k. This distribution is also similar to the spectra

of AB solutions of the NLSE case, despite the fact that here

we are dealing with a finite number of components.

The spectra are symmetric when the offset n0 is either an

integer or half integer. It turns out that we get results of the sim-

plest form for the latter case, when the offset n0 = 1/2. Then

the number of spectral components is reduced by one so there

are only three independent values of �n. Consequently, we

FIG. 5. (Color online) Lowest-order spectral components |νk|
shown by thick blue dots at t = 0 for n0 = 0.

FIG. 6. (Color online) Lowest-order spectral components |νk|
shown by thick blue dots at t = 0 for n0 = 1/2.

have only three independent spectral components. Calculating

the squared moduli of these components, we find

|ν0(t)|2 = 1
9
[9 − sech2(4t) − 4 sech(4t)],

|ν1(t)|2 = |ν−1(t)|2 = 2
3
sech(4t)

(31)
|ν2(t)|2 = |ν−2(t)|2 = 1

4
sech2(2t)sech(4t).

|ν3(t)|2 = |ν−3(t)|2 = 0.

These components at t = 0 are shown in Fig. 6. Qualitatively,

the plot is similar to the distribution of components in Fig. 5,

except for the fact that the components |ν±3| are zero.

Since there are only a few components (N = 6), it is easy

to verify Parseval’s theorem here:

A(t) =
1

N

N−1
∑

n=0

|�n(t)|2 =
N−1
∑

k=0

|νk(t)|2. (32)

Interestingly, the “total energy” defined as Q =
∑

Qn, where

Qn = 1
2
(ψnψ

∗
n+1 + ψ∗

nψn+1) − q2, and the summation is over

the period T , is independent of t , i.e., it is conserved, while

the function A(t) is not. In fact, for n0 = 1/2,

A(t) =
[

1 − 1
3
sech2(2t) + 4

3
sech(4t)

]

.

A qualitatively similar evolution pattern for spectral com-

ponents can be obtained for the general case, Eq. (21). One

example is shown in Fig. 7. Here, the number of independent

spectral components is seven and their distribution is close

to being triangular. We note here that triangular spectra

are distinctive features of processes that involve modulation

instability (see Fig. 5(b) of Ref. [24]). For periods T that are

not integers, we have to consider an infinite number of spectral

components. In this instance, their evolution is very similar to

that of the AB solution of the continuous NLSE [17].

VIII. FPU RECURRENCE

As we have seen in the previous section, the breather

solution has a unique property. Namely, the process defined by

this solution starts with all the energy in a single normal mode

of the system. The energy is distributed between other spectral

components in the middle of the process, at t = 0. Finally, all
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FIG. 7. (Color online) Lowest-order spectral components |νk|
shown by thick blue dots at t = 0 when κ = π/6, q = 1 and n0 =
1/2. The period T in this case occupies 12 sites.

the energy is returns to the initial central mode. This property

is presently known as “recurrence.”

This is exactly what occurred in the numerical simulations

of Fermi, Pasta, and Ulam [15] for a fixed chain of 64 oscilla-

tors. At that time (1954), this feature of the nonlinear chain was

viewed as a paradox, since the authors expected equipartition

of energy between the modes, rather than its return to the

initial mode. Thus, our results provide a compete solution of

the FPU paradox for a system defined by the A-L equation.

Indeed, the system is discrete, just as in the original FPU

problem. Moreover, as we discussed above, it can be reduced

to a finite dimensional one. Our equations allow us to choose

any number of oscillators. The recurrence was a surprise at the

time of the first studies [15] but seems to be natural behavior

for nonlinear systems such as the NLSE [25,26].

Various models admit FPU recurrence [27,28]. The time

evolution of normal modes for them is similar to those in Fig. 4.

However, in the case of nonintegrable models, the recurrence

is always approximate, while for integrable models such as

A-L equation, the recurrence is exact. Moreover, the spectral

components that are basically normal modes of the system can

be expressed in analytical form and this possibility is a major

step forward in solving the FPU paradox.

A closer investigation of the recurrence feature of the

solution, based on the trajectories of the solution on the

complex plane, can be made. Let us analyze a particular case,

Eq. (22), presented in Fig. 2. Figure 8 shows the evolution of

the complex amplitude �n(t) of the field in time at the site

n = 0. To be definite, we have chosen the phase φ = π/2.

This corresponds to the initial point −iq on the complex plane

of �n. At t = −∞, the trajectory starts at this saddle point,

makes a full loop (as shown by the green curve), and returns to

another saddle point, located at +iq. The shorter (blue) curve,

with arrows connecting the two saddle points, corresponds to

�n(t) in between the two maxima, e.g., at n = 3.

The curves for other values of n are also ellipses (not shown)

that connect the two saddle points. We can notice that the two

sets of trajectories in Fig. 8 are symmetric. The upper point

+iq can equally well be the starting point of evolution, which

then ends at the lower point −iq. This is a consequence of

the fact that any point on a circle of radius q is a saddle,

and the whole complex plane can be rotated by any angle φ.

FIG. 8. (Color online) Trajectories on the complex plane defined

by the solution, Eq. (22), for q = 1 and κ = arccos( 1

1+q2 ) = π/3,

n = 0, and n = ±3. The solid (blue) circle around the origin is the

locus of starting points of the breather solution with phase φ. When

φ = ±π/2, the upper and lower points on this circle are the starting

and final saddle points of the modulation instability. This figure shows

clearly the nonlinear phase shift π that the CB wave has gained when

the breather solution evolves from t = −∞ to t = ∞.

Thus, generally speaking, the trajectories shown in Fig. 8 are

heteroclinic orbits, since they connect two different saddle

points in the phase space.

To conclude this section, let us show analytically that all

trajectories in complex plane are ellipses. In fact, for q = 1

and κ = π/3 (and n0 = 0), the real and imaginary parts for all

n are related as follows:

[5Rn(t) − 1]2 + 5J 2
n (t) = 6, n = 1,2,4,5,7, . . . ,

[Rn(t) − 2]2 + 2J 2
n (t) = 6, n = 0,3,6, . . . .

Clearly, these are equations defining ellipses in the complex

plane.

If we retain κ = π/3 so that the period is still T = 6, then

we can generalize these equations to arbitrary q, again taking

n0 = 0:

[(1 + 9q2)Rn(t) + q(3q2 − 5)]2

+ (1 + q2)(1 + 9q2)J 2
n (t) = F,

for n = 1,2,4,5,7, . . . , while

[2Rn(t) − q(1 + 3q2)]2 + 4(1 + q2)J 2
n (t) = F,

for n = 0,3,6, . . . , where F = 3(3q2 − 1)(1 + q2)2. From

Eq. (4), we need q > 1/
√

3.

For offset n0 = 1/2, the results are even simpler:

[Rn(t) − q]2 + J 2
n (t) = 3q2 − 1, n = 0,1,3,4,6, . . . ,

so the trajectories lie on a circle of radius
√

3q2 − 1 with its

center at (q,0). Again, q > 1/
√

3. For n = 2,5, . . . , we have

Rn(t) = 1−q2

2q
, which is a constant, indicating that the trajectory

is just a vertical line.

IX. NONLINEAR PHASE SHIFT OF THE BACKGROUND

As we have seen, the description using trajectories in the

complex plane also demonstrates the recurrence. The CB

solution at the lower point −iq is transformed to the upper

point +iq on the circle which is also a CB solution, but with

shifted phase. In the case with the maximum growth rate, the

shift is π . Thus, after the breather has developed, the plane
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FIG. 9. (Color online) Phase diagram Arg[�n(t)] for MI solution

defined by Eq. (22). Here, q = 1 and κ = π/3. The development of

the breather causes a nonlinear phase shift 	φ to the background. In

the case of the maximum growth rate, 	φ is equal to π .

wave has gained a phase shift of π . This is a phase shift that

the initial state has suffered as a result of a nonlinear process

on top of a CB wave.

The nonlinear phase shift (NPS) depends on the spatial

frequency, κ . It is zero at the upper limit of instability and

increases to 2π as κ → 0. Generally, trajectories in Fig. 8,

defined by Eq. (22), connect two saddle points, which have a

specific phase difference between them, on a circle at the com-

plex plane. The starting point is defined by the arbitrary phase

φ. The final point of the evolution gains an additional phase,

	φ = 2 arccos

[

2
1 + q2

q2
sin2

(

κ

2

)

− 1

]

, (33)

which depends on q and κ. Hence, the total phase when

t → ∞ will be φ + 	φ. In other words, the initial CB wave

is transformed from � = −q exp(iφ) into

� = −q exp(iφ + i	φ),

with an additional phase 	φ.

This transformation is illustrated in Fig. 9. The figure

shows evolution of the phase of the solution in t defined

as Arg[�n(t)] for the whole breather solution, Eq. (22). The

resulting phase after the breather has evolved and disappeared

is clearly different from the phase of initial CB solution.

Thus, in absence of any perturbation, the CB wave would

stay unperturbed, while in presence of the breather, it gains an

additional phase shift. The phase shift gained after the breather

with the maximum growth rate is equal to π . Otherwise, it

varies from 0 to 2π within the instability band as shown in

Fig. 10.

This is a remarkable result. To some extent, this phase shift

is analogous to the Berry phase [16,29] gained by quantum

states and other physical systems after a certain sequence

of processes which involve the system. However, we should

remember that the Berry phase is essentially a linear effect. For

breather solutions of the NLSE and A-L equations, the phase

shift is nonlinear. This is an example of a carrier phase shift

caused by the wave envelope being involved in a nonlinear

process. Thus, we call it the “nonlinear phase shift” (NPS).

The NPS is an additive phenomenon. When two breathers

are excited simultaneously or one after the other, the total

FIG. 10. (Color online) Nonlinear phase shift (NPS) 	φ vs κ .

From upper to lower, the curves are calculated for q = 2,1.5,1, and

0.5, respectively.

phase shift of the background is equal to the sum of the phase

shifts caused by each of the breathers. This is similar to the

phase shifts generated by ABs of the NLSE (see Fig. 3.19

of Ref. [20]). The largest phase shift of 2π is expected when

κ → 0 (see Fig. 10). Clearly, this is a case that deserves special

consideration.

X. FUNDAMENTAL ROGUE WAVE

The long-period limit of the solution, Eq. (21), can be

obtained by taking the parameter v (or κ) to be small. The

infinite period limit of the periodic solution means that |�|
has only one peak instead of a periodic pattern along the

n axis. In this case we find that the growth rate,

δ → 2q
√

1 + q2κ = 4q
√

v(1 + q2),

tends to zero. Choosing the minus sign for c1 and expanding

terms to order v, i.e., κ2, we obtain the rational solution (see

Eq. (34) below) which depends on the ratio of two polynomials.

Instead of considering a limit, we can also derive the rational

solution directly using our linear ansatz. In order to do this,

we note that Eq. (19) simplifies greatly if the last term in it is

zero, i.e., if m′(t) = 4q2. The slope m(t) is then given by the

linear function of t :

m(t) = 4q2t.

Now Eq. (19) is

dPn

dt
= 8q3t.

It has a solution

Pn(t) = 4q3t2 + k(n).

The simplest form for k(n) is to try k(n) = s + pn2 with

unknown coefficients s and p. On substituting into the real part

of the expansion, Eq. (16), we find that s = 1/[4q(1 + q2)] and

p = q/(1 + q2), so that

Rn(t) + q =
1

Pn(t)
=

4q(1 + q2)

1 + 4n2q2 + 16q4(1 + q2)t2
,

Thus

�n(t) =
[

4q(1 + q2)(1 + 4iq2t)

1 + 4q2n2 + 16q4(1 + q2)t2
− q

]

eiφ, (34)
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FIG. 11. (Color online) Rational solution of the first order defined

by Eq. (34). Here, q = 1/3.

which is indeed a solution of the A-L equation. This result,

Eq. (34), can be called the first-order (j = 1) rational or

fundamental rogue wave solution. It is shown in Fig. 11. The

solution is localized in both n and t directions.

This solution is analogous to the Peregrine solution of

the NLSE (see Ref. [4] and Eq. (3.47) in the book [20]).

Although the structure of the solution is basically the same as

for the NLSE, the q dependence is far from being trivial. Thus,

deriving this solution is not a straightforward exercise, even

when a similar solution of the NLSE is known. This remark

can be related to all exact solutions of the A-L equation.

The peak amplitude of the solution is |�|max = q(3 + 4q2).

Instead of exponential growth, this solution increases in t only

algebraically (since δ → 0). In fact, ψ ∼ −q + i
qt

for large |t |.
The solution can also be written in a more general form:

�n(t) = q

[

4(1 + q2)
Gn(t) + 4iq2tHn(t)

Dn(t)
− 1

]

eiφ, (35)

where Gn(t) = 1, Hn(t) = 1, and Dn(t) = 1 + N2 + T 2 with

scaling factors N (n) = 2qn and T (t) = 4q2
√

1 + q2t. This

form is convenient for writing higher-order rational solutions

�n(t) [14].

The phase diagram for the solution, Eq. (34), is shown in

Fig. 12. The phase of the CB has a phase jump 2π , in contrast

FIG. 12. (Color online) Phase diagram Arg[�n(t)] for the first-

order rogue wave solution defined by Eq. (34). Here, q = 1/3. This

nonlinear event causes a phase addition of 2π across the rogue wave.

to the case considered above. Although this NPS seems to be

equivalent to a zero shift, we cannot ignore the continuous

evolution through all the stages of phase change at the center

of the disturbance. If any carrier wave is involved in the

evolution, as happens in most practical problems, the phase

shift of 2π occurring within a short distance in the middle of

a rogue wave may dramatically change the overall dynamics.

Thus, the NPS considered here can influence events involving

rogue waves in this unusual way. Higher-order rational

solutions [14] have nonlinear phase shifts which are multiples

of 2π , thus significantly complicating the processes related

to them.

XI. CONCLUSION

We have studied modulation instability of discrete systems

described by the Ablowitz-Ladik equation and given exact

solutions that are a direct continuation of this instability at

larger amplitudes. We emphasize that our solutions do not in-

volve approximate functions which merely resemble the actual

ones. Exact solutions are similar to those derived previously

for the NLSE [17,21], although direct discretization of the

continuous breather solutions seems to be highly nontrivial.

These solutions are of great importance for mathematical

physics as they represent a complete solution of the Fermi-

Pasta-Ulam paradox of recurrence in discrete systems modeled

by the A-L equation: Namely, the nonlinear discrete system

that starts the evolution in one of the normal modes, distributes

the initial energy between other normal modes, but returns it

to the original mode when the evolution is completed.

Another remarkable property of the recurrence is the

nonlinear phase shift (NPS) that the initial mode gains as a

result of the nonlinear process. The NPS is the difference

between the phases of the normal mode after and before

the event. It depends on the spatial frequency of the initial

perturbation and varies from 0 to 2π within the instability

band. The NPS can be a property of a wide variety of nonlinear

processes when the evolution starts in a single normal mode of

a system. This phenomenon deserves further studies, as it can

influence the carrier waves in optics, ocean waves, and other

branches of physics.

Finally, we also derived a rogue wave solution of the A-L

equation and showed that it is a particular case of the family

of breather solutions when the spatial period of the initial

perturbation becomes infinite. This solution is localized both

in space and time and represents a unique event that “appears

from nowhere and disappears without a trace” [30,31].

One of the possible applications of the results that we

obtained in this work is to arrays of optical waveguides [23].

Although the equations governing the latter system are slightly

different from the A-L equations, qualitatively similar effects

are still observable. Clearly, one of these effects is the rogue

wave [23].
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