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Autoimmune diseases and autoinflammatory diseases are two types of the immune
system disorders. Pyroptosis, a highly inflammatory cell death, plays an important role in
diseases of immune system. The gasdermins belong to a pore-forming protein gene family
which are mainly expressed in immune cells, gastrointestinal tract, and skin. Gasdermins
are regarded as an executor of pyroptosis and have been shown to possess various
cellular functions and pathological effects such as pro-inflammatory, immune activation,
mediation of tumor, etc. Except for infectious diseases, the vital role of gasdermins in
autoimmune diseases, autoinflammatory diseases, and immune-related neoplastic
diseases has been proved recently. Therefore, gasdermins have been served as a
potential therapeutic target for immune disordered diseases. The review summarizes
the basic molecular structure and biological function of gasdermins, mainly discusses their
role in autoimmune and autoinflammatory diseases, and highlights the recent research on
gasdermin family inhibitors so as to provide potential therapeutic prospects.
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INTRODUCTION OF AUTOIMMUNE AND
AUTOINFLAMMATORY DISEASES

The immune system mainly consists of innate immune system and adaptive immune system.
Disorders in our immune system lead to a range of diseases, including autoimmune diseases and
autoinflammatory diseases. Deficiency and/or overactivation of multiple factors within innate or
adaptive immune systems may participate in the occurrence and development of these diseases,
such as experimental autoimmune encephalomyelitis (EAE), Inflammatory bowel disease (IBD),
psoriasis, etc. (1). During the occurrence of autoimmune diseases, the immune system is out of
balance and immunocytes are overactive, the release of cytokines further lead to abnormal secretion
of autoantibodies, resulting in inflammation and damage to tissues and organs (2, 3). While the
progression of the diseases can be accelerated because of other key factors, such as gene,
environment, hormones, and so on. In 1999, the genetic mechanism of a rare familial disease
characterized by recurrent inflammatory episodes which are defined as tumor necrosis factor
receptors associated periodic fever syndrome (TRAPS) was discovered. Another Familial
Mediterranean Fever (FMF), an autosomal recessive hereditary disease characterized by recurrent
peritonitis. TRAPS and FMF are both autoinflammatory diseases (4, 5). Gill et al. envisaged
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autoinflammatory diseases as counterparts to autoimmune
disorders, and proposed that autoinflammatory diseases are
related to innate immune system dysfunction and are
determined by genes (1). McGonagle and McDermott proposed
that dysfunction of the innate immunity or the adaptive immune
system is the differentiated element of autoimmune diseases and
autoinflammatory diseases (6). Approximately, disorders of innate
immune system represent autoinflammatory diseases, while
disorders of adaptive immune system reflect autoimmune
diseases. However, innate and adaptive immunities are
inextricably intertwined and influence each other (7).

Autoimmune diseases afflict nearly 5%-8% of the population
worldwide and represent a major global socioeconomic issue (8,
9). So far, there are no fewer than 80 autoimmune diseases have
been discovered which are divided into systemic or organ-
specific. Systemic Lupus Erythematosus (SLE) and Central
Nervous System (CNS) reflect the systemic autoimmune
diseases, while type 1 diabetes images the organ-specific
autoimmune diseases such as the pancreas (9, 10). During such
diseased conditions, the immune system is out of balance,
immunocytes are overactive, and there is imbalance of
cytokine which further leads to abnormal secretion of
autoantibodies, resulting in inflammation and damage to
tissues and organs (11). At this stage anti-inflammatory and
immunosuppressive therapy are commonly used in the
treatment of autoimmune diseases to the symptoms (12–16).
Because of the complex mechanisms involved in the
pathogenesis of the autoimmune diseases, there is yet no
effective treatment available, and therefore, it is important to
understand these processes.

Autoinflammatory diseases are characterized by antigen-
independent-immune pathways overactivation arising
primarily inflammation. Common autoinflammatory diseases
include FMF, TRAPS, Cryopyrin-associated periodic syndrome
(CAPS) and Mevalonate kinase deficiency (MKD), but not all
autoinflammatory diseases manifest in their canonical forms.
Hyperactivity of proinflammatory cytokine is found to mediate
and participate in autoinflammatory diseases. FMF was
identified as the first autoinflammatory disease, which is an
inflammasomopathy that arises from the MEFV gene
mutations, coding pyrin (expressed predominately by innate
lineages) (4, 17). Other autoinflammatory diseases mostly arise
out of NF-kB and/or aberrant TNF activity, interferon
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production and complement activation, and excessive
interleukin-1 (IL-1) signaling (7, 18, 19). So far, IL-1 blockers
have been approved for a variety of autoinflammatory diseases.
New categories of autoinflammatory disease and more treatment
will emerge over time.

Autoimmune diseases and autoinflammatory diseases are
difficult to cure and seriously affect the quality of life of
patients which involve various pathogenic mechanisms such as
genes, immunity, inflammation, etc. Therefore, the existing
research is summarized to deepen the understanding of the
disease and provide help for the diagnosis and treatment of
those diseases.
GASDERMIN FAMILY, PYROPTOSIS
AND INFLAMMASOMES

As early as in 2000s, the gasdermin family was first discovered as
a gene family associated with corneal opacity in mice (20, 21).
The gasdermin family is predominantly expressed in immune
cells, gastrointestinal tract, and skin and linked with many
diseases including autoimmune diseases and autoinflammatory
diseases (Table 1). This family consists of six genes in humans,
GSDMA through GSDMF. In mice, it encodes ten members,
which respectively are GSDMA1 to GSDMA3, GSDMC,
GSDMC2 to GSDMC4, GSDMD, GSDME, and DFNB59 (22,
23). All of these members possess a semblable molecular
structure except DFNB59. A pore-forming N-terminal domain
and a regulatory C-terminal domain connected by highly
variable and flexible linking regions compose the nuclear
structure, which is thought to be necessary for GSDM
activation (24). The N-terminal domain (GSDM-NT) is
required for forming pores in membranes while the auto-
inhibitory C-terminal domain (GSDM-CT) is asked to keep its
inactivation (24, 25). Structurally, GSDM-NT predominantly
contains loops and b-strands, and sustains drastic
conformational changes in pore formation (24). Nevertheless,
GSDM-CT is nearly a-helical and remains a compact globular
conformation. GSDM-CT forms electrostatic, hydrophobic, and
hydrogen bonding interactions after folding back on GSDM-NT
(24–26). In vitro, GSDM-NT and GSDM-CT keep bound
without lipids, even if the interdomain container is cleaved,
this finding suggests that the lipid may play a critical role in
TABLE 1 | Gasdermin family members, functions, and disease correlation.

Human
GSDM

Gene
location

Predominant expression Biological function Associated disease

GSDMA 17q21 esophagus, stomach, skin, mammary gland Apoptosis cell proliferation IBD, SSc, RA, asthma in children
GSMDB 17q21 immune cells, airway, liver, gastrointestinal epithelial,

neuroendocrine
pyroptosis IBD, asthma, type I diabetes.

GSDMC 8q24.1-
8q24.2

colon, spleen, trachea, esophagus, caecum, small
intestine

Not known Not known

GSDMD 8q24.3 skin, immune cells, astrointestinal tissue Pyrotpsis, caspase-1, LPS-
activatedcaspase-11,

EAE, FMF, NOMID

GSDME 7p15 brain, heart, kidney, cochlea, placenta Apoptosis, pyroptosis Hearing loss, several inflammatory skin
diseases
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the separation of GSDM-NT from GSDM-CT. In simple terms,
lipid binding, oligomerization, and membrane insertion make up
the pore formation of GSDM (25, 27).

Pyroptosis is a kind of programmed cell death (PCD)
associated with inflammation, which plays an important role in
autoimmune and autoinflammatory diseases (28, 29).. Pyroptosis
is a protective host defense that protect the cell from intracellular
infection by removing the injured cells and concurrently
triggering an inflammatory response that executes the
following activation of caspase-1 or caspase-11 (21). Activated
caspase-1 or caspase-11 cleaves GSDMD independently,
releasing the N-terminal fragment (GSDMD-NT) associated
with the cytoplasm membrane, which forms the cell membrane
pores by oligomerization. Then, the cell swelling causes the
membrane lysis and finally leads to pyroptosis (Figure 1)
(30–33).

Inflammasome plays a crucial role in the process of
pyroptosis. Inflammasomes are cytosolic protein complexes
consisting of sensor, adaptor, and effector which are whole
protein that is stimulated by pathogen-associated molecular
patterns (PAMPs) and endogenous danger-associated
molecular patterns (DAMPs) (34). Upon activation by diverse
danger signals, members of the NOD-like receptor (NLR) and
pyrin and HIN domain-containing (PYHIN) protein families as
sensors to combine with apoptosis-associated speck-like protein
containing a caspase recruitment domain (ASC) adaptor,
subsequently recruit effector caspase-1 to form canonical
inflammasome so as to initiate a downstream signal.
Frontiers in Immunology | www.frontiersin.org 3
Subsequently, the activated caspase-1 cleaves pro-inflammatory
cytokines interleukin 1b (IL-1b) and interleukin 18 (IL-18),
allowing them to mature and secret (35, 36). The non-
canonical inflammasome is activated by bacterial cell wall
component lipopolysaccharide (LPS), and executed by caspase-
11 (human caspase-4/5) (30, 31, 37–39). Therefore, both
canonical and non-canonical inflammasome participate in the
occurrence of pyroptosis by cleaving GSDMD into GSDMD-NT
so as to form a pore in the cell membrane (Figure 1).

Gasdermin family is well known to play a vital role in
pathogen infection, while more and more studies show that
both pyroptosis and its related inflammatory cytokines IL-1b
and IL-18 are the key factor in the process of non-infection
related diseases. IL-1b induces vasodilation, inflammation and
immunity extravasation, and also takes part in formation of
adaptive immune responses. IL-18 promotes natural killer (NK)
cells, T helper 1 (TH1) cells and cytotoxic T cells to produce
interferon-g (IFN-g) in these cells, and promotes T helper 2
(TH2) cells maturation, and triggers local inflammation. These
findings suggest that gasdermins, and autoimmune as well as
autoinflammatory disease are inextricably linked (40–43).
Therefore, the following section will focus on introducing the
gasdermin family and summarizing the role of gasdermins in
autoimmune and autoinflammatory diseases.
THE ROLES OF GASDERMINS IN
AUTOIMMUNE AND
AUTOINFLAMMATORY DISEASES

Multiple functions of pyroptosis and inflammasomes are
identified in various pathophysiological conditions, and their
role in autoimmune and autoinflammatory diseases have been
extensively studied recently. Therefore, we will summarize the
relation between each subtype of the gasdermin family (GSDMA,
GSDMB, GSDMC, GSDMD, GSDME) and autoimmune and
autoinflammatory diseases.
GSDMA

The human GSDMA gene is located at 17q21. It is widely
expressed in the epithelial cells of the esophagus, stomach, skin
and mammary gland, but is often not expressed in primary and
the gastric cancer cell lines. It has been suggested that GSDMA
suppresses the growth of human gastric epithelial pit cells as it
possibly takes part in a regulatory pathway for apoptosis (44).
The high expression of GSDMA in non-IBD colonic,
noninflamed samples was linked with the IBD susceptibility
allele (rs2872507) (45). In childhood asthma, there was a
significant correlation of GSDMA (rs7212938) with it as
GSDMA may drives the frequency of asthma (46). In addition,
GSDMA has been reported to carry rs3894194, which is rich in
gene, and regarded as being linked with certain immune diseases
such as IBD, asthma and rheumatoid arthritis (RA) (47). Aida
et al. reported that the function of r3894194 in systemicsclerosis
FIGURE 1 | The mechanism of gasdermin-dependent-pyroptosis: In the
canonical pyroptosis pathway, ASC recruits intracellular pro-Caspase-1 to
bind to the inflammatory complex, and then pro-caspase-1 auto-cleaves into
activated Caspase-1, which cleaves GSDMD and promotes IL-1b and IL-18
to maturate. In the non-canonical pyroptosis pathway, inflammatory
stimulators such as lipopolysaccharide (LPS) directly bind to Caspase-4/5/11
and cause oligomeric activation of Caspase-4/5/11, activated Caspase-4/5/
11 cleaves GSDMD and triggers pyroptosis.
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(SSc) could be mediated by GSDMA expression in macrophages.
They found that GSDMA was upregulated in SSc monocyte-
derived macrophages, and was an important expression
quantitative trait locus (e-QTL) in interferon gamma (IFN-g)
or LPS-triggered monocytes and SSc macrophages (48). Overall,
GSMDA is linked with several autoimmune diseases, while the
exact pathogenesis still remains blurred, GSDMA may affect
those diseases via effects on apoptosis and cell proliferation. It
warrants further experimental investigation.
GSDMB

GSMDB is located at 17q12 in the human chromosome (22, 49).
It clusters with GSDMA (50). GSDMB is also broadly expressed
in the immune cells, airway, gastrointestinal epithelial, liver, and
neuroendocrine (51–53). Genome-wide association studies
(GWAS) implicated that the polymorphisms in GSDMB were
markedly associated with IBD, asthma, and type I diabetes. The
minor allele A of rs2872507 in GSDMB was the risk allele for RA
and IBD (Crohn’s disease and ulcerative colitis) but was a
protective allele for asthma (47). While another study found
that the levels of GSDMB were increased remarkably in patients
with asthma, and were associated with the severity of asthma
(54). A recent study showed that GSDMB was increased in
intestinal epithelial cells (IECs) in IBD, and it participated in
the regulation of cell proliferation, migration, and adhesion
rather than mediating pyroptosis. GSDMB-linked IBD single-
nucleotide polymorphisms (SNPs) hinder epithelial recovery/
repair (55). Moreover, Luke Jostins et al. reported that numerous
IBD loci also contributed to immune diseases (most obviously
with ankylosing spondylitis and psoriasis) (56). Those
consequences indicate that GSDMB increases the risk for
various autoimmune diseases, but the detailed molecular
mechanisms remain unclear. There was reported that the
GSDMB can bind with caspase-4 to promote non-canonical
pyroptosis and facilitate the GSDMD cleavage. This may be
associated with the pathogenesis of autoimmune diseases (57).
GSDMC

GSDMC gene has been located at 8q24.1-8q24.2 and is highly
expressed in colon, spleen, trachea, esophagus, caecum, and
small intestine (38, 49, 58). There are few studies on GSDMC.
Lumbar disc degeneration (LDD) mainly manifests as low back
pain, disc herniation, spinal stenosis, spinal instability, and
radiculopathy. A recent study suggested that autoimmunity
may be possible pathogenesis of this disease (59). GWAS in a
Chinese population reported that GSDMC was associated with
lumbar disc degeneration (LDD). In patients with LDD, the
mRNA level of GSDMC was apparently increased and the
plasma expression level of GSDMC was also apparently
upregulated which were linked with the rs6651255 and
rs7833174 (60). GSDMC was also expressed in skin
keratinocytes, and the UV radiation increased its expression by
Frontiers in Immunology | www.frontiersin.org 4
triggering NFATc1 signaling (61, 62). Nevertheless, the
mechanism of GSDMC in other autoimmune and
autoinflammatory diseases is not yet well-understood.
GSDMD

The GSDMD gene is located at 8q24.3 in the human
chromosome. It has been extensively studied for decades. As
the key substrate of caspase-dependent-pyroptosis, GSDMD was
widely expressed in skin, immune cells (especially macrophages
and dendritic cells), and gastrointestinal tissue (63).
Approximately 480 amino acids constitute GSDMD, which is
in two domains: the N-terminal (GSDMD-NT) and the C-
terminal (GSDMD-CT). GSDMD is cleaved by activated
caspase-1, LPS-activated caspase-11 (human caspase-4/5) to
form pore-forming GSDMD-NT (31). The pores of GSDMD-
NT can bind with phosphatidylserine and phosphatidylinositol
phosphates, causing cell lysis and releasing of IL-1b, IL-18, and
HMGB1. GSDMD-NT also combines with cardiolipin in the
bacteria membranes, and kills them quickly. In addition,
neutrophil elastase (ELANE) and cathepsin G are both able to
activate the GSDMD (24, 64–66).

Recent studies have shown that GSDMD is involved in the
process of immune and inflammatory responses. Catherine R
et al. reported that AIM2 inflammasome took part in
neurodevelopment through regulating GSDMD activation
instead of IL-1 and/or IL-18 production. In this study, the
DNA damage-induced cell death was significantly reduced
in CNS cells lacking GSDMD or caspase-1/11, which means
that GSDMD activation may hinder neurodevelopment (67).
Sheng Li et al. firstly demonstrated that GSDMD was necessary
for EAE and could promote neuroinflammation and
demyelination (68). During impaired neurodevelopment, a
large amount of DNA damage is produced, which may
immunologically activate signals that can cause autoimmune
diseases of the nervous system. Another research provided that
TPPU (a potent soluble epoxide hydrolase) can attenuate chronic
EAE by suppressing caspase-11 and GSDMD in the CNS of EAE
mice, a model of multiple sclerosis (MS) (69). Dataset analysis
showed a significant elevation of caspase-4/5, pro- IL-1b, and
GSDMD in human psoriatic lesions. Besides, caspase-11
contributed to the pathogenesis of imiquimod-induced
psoriasis in mice through the mediation of GSDMD activation
and cell death (70). The process of GSDMD-dependent
pyroptosis also took part in RA through the releasement of
inflammatory mediators (71). Another research found that
inhibition of the caspase-11 (executor of pyroptosis) could
enhance mesenchymal stromal cells (MSCs) efficacy in
inflammatory diseases, such as IBD and EAE. MSCs present
immunosuppressive properties and were currently being used as
promising treatments for various inflammatory diseases,
including MS (46, 72, 73). A report demonstrated that the
pathogenesis of FMF, an IL-1b-dependent autoinflammatory
disease, relies on the GSDMD-dependent-pyroptosis (74).
Neonatal-onset multisystem inflammatory disease (NOMID) is
June 2022 | Volume 13 | Article 841729
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the most severe phenotype in cryopyrinopathies (a spectrum of
autoinflammatory disorders), and there has been reported that
all NOMID-related inflammatory symptoms were prevented in
GSDMD-deficient NOMID mice compared to wildtype NOMID
mice (75). Overall, these findings suggest that activation of
GSDMD aggravates the pathogenesis of various diseases
induced by inflammasomes. Targeted GSDMD may provide
new perspectives for the treatment of autoimmune and
autoinflammatory diseases.
GSDME

GSDME is located at 7p15 in the human chromosome. It was
defined as a mutated gene (DFNA5) firstly that was associated with
progressive hearing loss (76–83). Subsequent studies found that the
DFNA5 might be crucial to chondrocyte development. GSDME is
widely expressed in brain, heart, kidney, cochlea, and placenta (76,
84). Similar to GSDMD, GSDME plays a critical role in apoptosis
and pyroptosis (85, 86). GSDME releases N-terminal fragment
(GSDME-NT) after its cleavage and activation by caspase-3 (27).
In addition to forming pores and triggering necrosis or pyroptosis,
GSDME-NT permeabilizes the mitochondrial membrane, leading
to release cytochrome C, and eventually enhances the activation of
caspase-3 during apoptosis (25).

Several studies revealed a link between GSDME and
immunity/inflammation. Oncostatin M (OSM), an IL-6 family
member, has been found to be overexpressed in several
inflammatory skin diseases [including keloid (87), scleroderma
(88, 89), and psoriasis (90, 91)]. The level of GSDME in human
keratinocytes (HaCaT cells) was up-regulated, while OSMR
knockout blocked the upregulation of GSDME. Besides,
GSDME knockout inhibited OSM-induced keratinocyte
pyroptosis. This study suggested that GSDME played a role in
OSM-mediated inflammation (92). Another study found that
GSDME-mediate pyroptosis was critical for the trigger of renal
tubule injury induced by ureteral obstruction and promoted
kidney inflammation and fibrosis (93). Overall, GSDME has
pro-inflammatory functions and may be involved in the
pathogenesis of more inflammatory diseases.
THERAPY TARGETING OF
GASDERMIN FAMILY

Based on the important role of gasdermin family in autoimmune
and autoinflammatory diseases, this study further summarizes
the inhibitors targeting gasdermin family to provide new
prospection for disease treatment.

Among all subtypes of the gasdermin family, inhibitors
targeting GSDMD have been revealed the most due to its rich
biological functions. Necrosulfonamide (NSA) was originally
proved to be an inhibitor of necrosis by targeting the Cys86
Residue of MLKL to reduce MLKL-dependent pore formation
and death (94). In the work of Joseph K. Rathkey’s group, they
found that NSA inhibited pyroptosis and IL-1b release by
Frontiers in Immunology | www.frontiersin.org 5
b i nd i n g t o GSDMD and b l o c k i n g p 3 0 -GSDMD
oligomerization in vitro, and NSA did not block GSDME-
dependent pyroptosis and the upstream inflammasome
activation (95). NSA promoted survival rate and decreased
inflammatory cytokine level of sepsis model in vivo (95).
Conversely, another study showed that NSA blocked canonical
NLRP3 inflammasome priming and activation so as to reduce
pyroptosis (96). Both studies showed that NSA inhibited
GSDMD-dependent pyroptosis to play a role in treating
diseases by two different mechanisms, suggesting that NSA
may provide a theoretical basis for the treatment of GSDMD-
related inflammatory diseases. Besides, Jun Jacob Hu et al.
discovered that disulfiram, a drug used to treat alcohol
addiction, inhibited GSDMD-mediated pyroptosis rather than
other subtypes of gasdermin family. Disulfiram targeted Cys191/
Cys192 in GSDMD so as to inhibit pore formation and IL-1b
release, and protected against septic death in mice (97). In
another study, LDC7559 from a chemical library was found to
inhibit GSDMD-dependent pyroptosis and IL-1b release so as to
reduce neutrophil extracellular traps (NETs) formation (98).
Activated macrophages present as the Warburg effect, which is
characterized as a metabolic change from glycolysis to aerobic
glycolysis and the accumulation of Krebs’ cycle intermediates.
The alteration of metabolism further impacts the immune state
of macrophages (99). Fumarate (DMF), an intermediate of
Krebs’ cycle, blocked GSDMD oligomerization and the related
pyroptosis by inducing S-(2-succinyl)-cysteine of GSDMD.
Dimethyl fumarate with the cell-permeable ability, reduced
septic shock and familial Mediterranean fever, and
experimental autoimmune encephalitis (100).

Collectively, several studies have found various inhibitors of
gasdermin family (mainly GSDMD), and they can improve a variety
of diseases. Although these diseases are mainly sepsis, there is also
involved to autoimmune and autoinflammation diseases.
CONCLUSIONS

Our knowledge of gasdermins function becomes increasingly
extensive based on a large of recent studies. Most subtypes of
gasdermin play a pro-inflammatory role in the autoimmune and
autoinflammation diseases, including IBD, RA, SSc, EAE,
psoriasis, etc. Among the whole types of gasdermin, GSDMD
is the most studied subtype of gasdermins due to its tight
correlation with inflammasomes activation and the related
inflammatory cytokines release. Mice GSDMD deficiency
presents a protection role in certain autoinflammatory diseases,
which suggests that the gasderim family prospects be the key
target for the treatment of autoimmune and autoinflammation
diseases. Targeted GSDMD has also developed a variety of
inhibitors, which are expected to be used for clinical treatment.
Besides, GSDME is crucial in several complicated inflammatory
skin diseases which are both autoimmune and autoinflammation
related, such as psoriasis, keloid, etc.

Although there are more and more researches on gasdermin
family in autoimmune and autoinflammation diseases, there are still
June 2022 | Volume 13 | Article 841729

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liang et al. Modulation of Immune System-Gasdermins
a lot of unanswered research questions out there: whether GSDMD
deficiency or inhibitor play a protective role in various immune-
related diseases? Whether targeting GSDME improve the
progression of immune disordered diseases? GSDMA and
GSDMB have been shown to be important in IBD, whether other
family members also play important roles in IBD? At present, the
research of GSDMC is relatively lacking, and further discussion is
required. To sum up, better understanding of the gasdermin family
and exploring targeted inbitors may improve treatment efficiency of
autoimmune diseases, and autoinflammatory diseases.
Frontiers in Immunology | www.frontiersin.org 6
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