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Modulation of BIN2 kinase activity by HY5 controls
hypocotyl elongation in the light
Jian Li1,2, William Terzaghi 3, Yanyan Gong1, Congran Li1, Jun-Jie Ling 1, Yangyang Fan 1, Nanxun Qin 1,

Xinqi Gong 4✉, Danmeng Zhu 1✉ & Xing Wang Deng 1,2✉

ELONGATED HYPOCOTYL 5 (HY5), a basic domain/leucine zipper (bZIP) transcription

factor, acts as a master regulator of transcription to promote photomorphogenesis. At present,

it’s unclear whether HY5 uses additional mechanisms to inhibit hypocotyl elongation. Here, we

demonstrate that HY5 enhances the activity of GSK3-like kinase BRASSINOSTEROID-

INSENSITIVE 2 (BIN2), a key repressor of brassinosteroid signaling, to repress hypocotyl

elongation. We show that HY5 physically interacts with and genetically acts through BIN2 to

inhibit hypocotyl elongation. The interaction of HY5 with BIN2 enhances its kinase activity

possibly by the promotion of BIN2 Tyr200 autophosphorylation, and subsequently represses

the accumulation of the transcription factor BRASSINAZOLE-RESISTANT 1 (BZR1). Leu137 of

HY5 is found to be important for the HY5-BIN2 interaction and HY5-mediated regulation of

BIN2 activity, without affecting the transcriptional activity of HY5. HY5 levels increase with

light intensity, which gradually enhances BIN2 activity. Thus, our work reveals an additional

way in which HY5 promotes photomorphogenesis, and provides an insight into the regulation

of GSK3 activity.
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L
ight is not only the ultimate source of energy but also one of
the most important environmental signals for plants. Light
plays a key role in the morphogenesis of Arabidopsis seed-

lings1. One of the most remarkable events in light-controlled
morphogenesis is hypocotyl elongation. While germinating under
soil without light, seedlings accelerate hypocotyl elongation in
order to reach the light. Upon reaching the light, hypocotyl
elongation is finely controlled to match the ambient light
intensity2,3.

The light signal is transduced from various photoreceptors to
downstream transcription factors, which regulate hypocotyl
elongation by modulating transcription. HY5 is one of these light-
responsive transcription factors that play a key role in repressing
seedling hypocotyl elongation4,5. It belongs to the basic leucine
zipper (bZIP) family of transcription factors6. The C-terminal
domain of HY5 harbors a basic region that binds DNA and a
leucine zipper for dimerization6,7. HY5 regulates transcription by
directly binding to cis-acting elements in promoters, including the
G-box, Z-box, and others8. Genome-wide ChIP-chip analyses
demonstrated that HY5 directly bound the promoters of nearly
3000 genes and regulated the transcription of one-third of all
genes8. The transcriptional activity of HY5 is influenced by its
physical interaction with other transcription factors. HYH, the
homolog of HY5, can form heterodimers with HY5 to promote
HY5 activity9,10. In contrast, the B-box-containing protein BBX28
can repress the transcriptional activity of HY5 by direct interac-
tion11. HY5 protein is degraded by COP1-mediated ubiquitina-
tion in the dark3,12. The COP1-HY5 module represents the core
regulatory mechanism that regulates seedling morphogenesis,
including hypocotyl elongation. Many other proteins, such as
CALMODULIN7 (CAM7), WRKY DNA-BINDING PROTEIN
36 (WRKY36), and SHI-RELATED SEQUENCE5 (SRS5), reg-
ulate hypocotyl elongation by modulating the transcription of
HY513–15, suggesting a central role of HY5 in the inhibition of
hypocotyl elongation.

It has long been recognized that brassinosteroids (BRs) are also
involved in light-controlled hypocotyl elongation16. BR-deficient
mutants show shorter hypocotyls than wild type in the dark,
suggesting BR promotes hypocotyl elongation16,17. As the key
transcription factor responding to BR, BZR1 can promote hypo-
cotyl elongation through its transcriptional activity18. The stability
and DNA-binding activity of BZR1 protein is negatively regulated
by BIN2, the Arabidopsis ortholog of human GLYCOGEN SYN-
THASE KINASE 3 (GSK3) kinase. BIN2 blocks DNA binding and
promotes degradation of BZR1 through phosphorylation19,20,
which results in the inhibition of hypocotyl elongation.

The dwarf phenotype of bri1-5, a weak mutant of BR receptor
BR INSENSITIVE 1 (BRI1), can be partially rescued by crossing it
with mutants lacking PHYTOCHROME B (phyB)21, suggesting
complicated regulatory interactions between light and BR signals.
Several reports studying the molecular interactions involved in
the cross-talk between light and BR signaling found that physical
association of transcription factors acting in the two signaling
pathways played a critical role in modulating hypocotyl elonga-
tion. Notably, BZR1 can directly interact with PHYTOCHROME-
INTERACTING FACTOR 4 (PIF4)22. They share nearly 2000
common target genes, and act interdependently in promoting
hypocotyl elongation. BZR1 can also directly regulate the level of
GATA2 mRNA23, a transcription factor repressing hypocotyl
elongation acting downstream of both light and BR signals.
Recent studies revealed that the photoreceptors UV RESIS-
TANCE LOCUS 8 (UVR8) and CRYPTOCHROME 1 (CRY1)
could interact with BES1 in UV-B or blue light, respectively, to
inhibit its DNA-binding ability and thereby inhibit hypocotyl
elongation24,25. CRY1 could also regulate BZR1 by repressing its
transcriptional activity and promoting its phosphorylation by

BIN226. However, as the core factor in light signaling, the
mechanism whereby HY5 regulates hypocotyl elongation in
response to the cross-talk between light and BR signals remains
unclear. In addition, a previous study showed that overexpression
of HY5 reduced BZR1 protein levels in the light but the
mechanism remains unknown27.

Here we show that in addition to its function as a transcription
factor, HY5 can enhance BIN2 kinase activity through physical
interaction, thereby promoting BIN2-mediated phosphorylation
and degradation of BZR1, which represses BR-mediated hypo-
cotyl elongation in the light.

Results
HY5 physically interacts with BIN2. To investigate the cross-talk
between light and BR signaling, we performed yeast two-hybrid
analyses and found that BIN2, the key negative regulator of BR
signaling, interacted with HY5 (Fig. 1a). Likewise, the two
homologs of BIN2, BIN2-Like1 (BIL1) and BIN2-Like2 (BIL2),
also interacted with HY5 in yeast (Supplementary Fig. 1a). To
map the subdomain of HY5 required for BIN2 interaction, we
first divided the full-length HY5 CDS into N- and C-terminal
domains and tested their interactions with His-BIN2 by in vitro
pull-down assays. We found that the C-terminal domain of HY5
was sufficient for it to interact with BIN2 (Fig. 1b, c). Deletion of
the leucine zipper (LZ) in the C-terminal domain of HY5 abol-
ished the interaction between HY5 and BIN2 in vitro. Next, the
in vivo interactions between full-length or truncated HY5 with
BIN2 were confirmed using firefly luciferase complementation
imaging (LCI) (Fig. 1d, Supplementary Fig. 1b) and co-
immunoprecipitation (Co-IP) assays (Fig. 1e–g). Together, these
experiments showed that the C-terminal domain of HY5, espe-
cially the LZ motif, was essential for interaction with BIN2.

HY5 genetically interacts with BIN2 and BZR1. Next, we
investigated whether HY5 could genetically interact with BIN2 by
crossing hy5 into bin2-1, a gain-of-function mutant of BIN228.
We found that the hypocotyls of double mutant hy5bin2-1
seedlings were the same length as those of bin2-1 when grown in
the dark (Supplementary Fig. 2), indicating that HY5 had no
effect on the short hypocotyl phenotype of bin2-1 in the dark.
However, hy5bin2-1 hypocotyls were dramatically shorter than
those of hy5 grown under continuous white light (cWL) (Fig. 2a).
Likewise, seedlings overexpressing HY5 (HA-HY5) in bin2-
3bil1bil2, the triple mutant of BIN2 and its two homologs,
exhibited longer hypocotyls than those of HA-HY5 in cWL
(Fig. 2b), suggesting that HY5 and BIN2 genetically interacted to
regulate hypocotyl elongation. To further evaluate the contribu-
tion of BR signaling to the short hypocotyls of light-grown HA-
HY5 seedlings, we applied bikinin (BK)29, a specific inhibitor of
GSK3-like kinases including BIN2, to WT and two independent
HA-HY5 lines. As shown in Fig. 2c, hypocotyls of HA-HY5 lines
significantly elongated after BK treatment. In addition, the HY5
protein stability was not influenced by BIN2 in the light (Sup-
plementary Fig. 3). Taken together, these results suggest that
BIN2 and its homologs act epistatically to HY5 in the control of
hypocotyl elongation.

It was previously reported that a key step in BR signaling is the
phosphorylation of BZR1 by BIN2 to mark it for degradation to
control hypocotyl elongation30. We therefore tested whether
BZR1 was involved in the HY5-mediated inhibition of hypocotyl
elongation. We used the CRISPR/Cas9 genome editing system to
generate bzr1bes131, a double mutant knocking out both BZR1
and its homolog BES1. We then crossed bzr1bes1 into hy5
mutants, and found that the hypocotyls of the triple mutants were
shorter than those of hy5 (Fig. 2d). This suggested that BZR1 acts
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downstream of HY5 to antagonize its function in controlling
hypocotyl elongation in the light.

HY5 represses BZR1 accumulation in a BIN2-dependent
manner. Previous reports have suggested that HY5 and BIN2
have similar effects on BZR1 protein accumulation20,27. To gain
further insight into their interplay, we checked BZR1 mRNA and
protein levels in the hy5 and HA-HY5 lines. Our RT-qPCR results
showed that the levels of BZR1 transcripts in hy5 and HA-HY5
were similar to those in wild type (Supplementary Fig. 4a), sug-
gesting that HY5 did not affect the transcription of BZR1.
However, the level of BZR1 protein was significantly higher in
hy5 than in wild type, and this elevated level was repressed by the
introduction of bin2-1 (Fig. 3a). This result suggested that HY5
might regulate the stability of BZR1 in a BIN2-dependent man-
ner. In agreement with previous observations27, the decline in
BZR1 protein level mediated by overexpression of HY5 was
dependent on HY5 dosage (Supplementary Fig. 4b). Moreover,
HY5 promoted the degradation of BZR1 via the 26S proteasome
(Supplementary Fig. 4c). In addition, the reduced expression of
BZR1 in HA-HY5 was restored when HA-HY5 was crossed into
the bin2-3bil1bil2 triple mutant (Fig. 3b). Consistent with this
result, the application of BK to the two independent HA-HY5
transgenic lines restored BZR1 protein levels to those of wild
type (Fig. 3c). These results, taken together, indicate that in
the light HY5 negatively regulates BZR1 accumulation in a BIN2-
dependent manner.

Next, to confirm whether BZR1 contributed to the altered gene
expression in hy5, we selected several BZR1-regulated genes
involved in hypocotyl elongation and measured their expression
in hy5 and hy5bzr1bes1 by quantitative real-time PCR (qPCR).
Our results showed that the altered expression of these genes in
hy5 could be partially restored by the absence of BZR1 and BES1
(Fig. 3d). This indicated that part of the way in which HY5
regulates expression of genes controlling hypocotyl elongation is
by destabilizing BZR1.

HY5 interaction with BIN2 enhances BIN2 kinase activity. To
further identify the mechanism by which HY5 regulated BIN2 in
the light to destabilize BZR1, we first checked whether HY5
regulated the mRNA and/or protein levels of BIN2. As shown in
Supplementary Fig. 5, both the mRNA and protein levels of BIN2
were similar in hy5 and WT, suggesting that HY5 does not affect
the expression of BIN2. Next we tested whether HY5 influenced
the interaction of BIN2 with BZR1 by in vivo Co-IP assays. These
showed that the amounts of BZR1 Co-IPed by BIN2-FLAG were
similar in hy5 and wild type (Supplementary Fig. 6), indicating
that HY5 had no effect on the interaction between BIN2 and
BZR1. This prompted us to test whether HY5 modulated the
kinase activity of BIN2 to regulate the phosphorylation of BZR1.
We therefore performed in vitro kinase assays with His-BIN2 and
MBP-BZR1, and found that BIN2 directly phosphorylated BZR1
in our system (Fig. 4a). Interestingly, we found that the phos-
phorylation levels of BZR1 were positively correlated with the
amounts of HY5-His added to the kinase reactions (Fig. 4a,
Supplementary Fig. 7), suggesting a synergistic effect of HY5 on
BZR1 phosphorylation by BIN2. In addition, the autopho-
sphorylation level of BIN2 was also significantly increased
(Fig. 4a), suggesting that HY5 upregulated BIN2 activity in a
dosage-dependent manner. To confirm this effect of HY5 in vivo,
we performed cell-free kinase assays using total lysates of wild
type and hy5 seedlings supplemented with equal amounts of His-
BIN2 and MBP-BZR1. The phosphorylation levels of BZR1 were
clearly higher in WT than in hy5 extracts prepared from light-
grown seedlings but not in the extracts prepared from the seed-
lings transferred from light to the dark (Fig. 4b). This suggests
that the phosphorylation of BZR1 by BIN2 is enhanced in the
presence of HY5 in the light.

To further confirm that the enhancement of BIN2-mediated
BZR1 phosphorylation by HY5 is dependent on HY5-BIN2
interactions, we conducted in vitro kinase assays using derivatives
of truncated recombinant HY5 proteins. Our data showed that
adding either the full-length HY5 (HY5-F) or C-terminal domain
of HY5 (HY5-C) could increase BIN2-mediated phosphorylation
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levels of BZR1 to about two-fold higher than the control (Fig. 4c).
Furthermore, inhibition of HY5-BIN2 binding by expressing HY5
lacking the LZ region completely abolished its capacity to
upregulate BIN2 activity (Fig. 4c). This emphasizes the
importance of HY5-BIN2 interactions in HY5 modulation of
BIN2 activity. Next, we generated transgenic plants overexpres-
sing either HY5-F or HY5-C in the hy5 mutant background. As
expected, overexpression of HY5-C or HY5-F in the hy5
background could suppress the over-accumulation of BZR1 in
hy5, while overexpression of HY5-ΔLZ in hy5 failed to inhibit the

over-accumulation of BZR1 (Fig. 4d). These results support the
notion that binding of HY5 via its LZ region to BIN2 is essential
for enhancing BIN2 activity. This increases the phosphorylation
and degradation of BZR1 in the light.

HY5 L137D mutation reduces BIN2 activity. To understand
which amino acid residues of HY5 were important for its inter-
action with BIN2, we screened BIN2-interacting sites in the HY5
LZ region. As shown in Fig. 5a, changing HY5 Leu137 (L137) to
Asp (named HY5-M) attenuated interaction of HY5 with BIN2 in
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yeast. In vitro pull-down and LCI assays confirmed the attenuated
interaction between HY5-M and BIN2 (Fig. 5b, c). Together with
these results, we demonstrated that the L137 site of HY5 is
important for its interaction with BIN2.

Next, we chose the promoter of EXP2, one of the target genes
of HY532, to test transcriptional activation activity of HY5-M.
Yeast one-hybrid assays showed that HY5-M protein could bind
to the EXP2pro as well as HY5-WT (Fig. 5d). Protoplast transient
expression assays in Arabidopsis showed that HY5-M could
activate the transcription of EXP2pro: LUC at normal levels
(Fig. 5e, f). Taken together, L137 of HY5 is not necessary for its
transcriptional activation activity.

Because of the attenuated interaction between HY5-M and
BIN2, we performed in vitro kinase assays to test whether HY5-M
could regulate the kinase activity of BIN2. However, adding HY5-
M protein did not obviously increase the phosphorylation level of
BZR1 (Fig. 5g), indicating that HY5-M greatly reduced the ability
to regulate BIN2 activity in vitro. Consistent with this, the
dephosphorylated forms of BZR1 accumulated to higher levels in
HY5-M/hy5 lines than in HY5-WT/hy5 (Fig. 5h). Likewise, the
hypocotyls of HY5-M/hy5 lines were significantly longer than
those of HY5-WT/hy5 (Fig. 5i).

HY5 facilitates the autophosphorylation of BIN2 Y200. To gain
further insights into the mechanism by which HY5 modulates
BIN2 activity, we analyzed the structure of the HY5-BIN2 com-
plex by the computational protein-protein docking method. We
found that HY5 interacts with BIN2 through hydrophobic
interactions between L137 of HY5 and V247 and F277 of BIN2
(Fig. 6a), in agreement with our finding that L137 of HY5 was
important for the HY5–BIN2 interaction.

When we further studied the structure of the HY5–BIN2
complex by coarse-grained functional simulations we found that
the amplitude of the functional motion between the N and C
domains of BIN2 was much greater in the presence of HY5
(Fig. 6b, Supplementary Movies 1 and 2). It is worth noting that
with HY5, the direction of BIN2 motion also changed from
twist to open-close, which lead to the intramolecular approach of
active catalytic sites of BIN2 to its Y200 residue. Given that the
intramolecular phosphorylation of BIN2 Y200 residue (pTyr200) is
critical for its kinase activity33 and that the access of Y200 to
active catalytic pocket should promote the autophosphorylation
of Y200 of BIN2 (Fig. 6b), we speculated that HY5 may affect the
level of pTyr200 in vivo. Indeed, when we used a specific antibody
for detecting pTyr200 of BIN233, we found that the lack of HY5
led to a decline in pTyr200 level, suggesting that the HY5–BIN2
interaction was important for BIN2 activity.

Light adjusts HY5-mediated regulation of BIN2 activity. It has
been shown in Arabidopsis that increased light intensities result in
the gradual accumulation of HY5 proportional to the reduction in
hypocotyl length3 (Fig. 7a). We therefore determined the effect of
varying light intensities on BZR1 phosphorylation and stability
regulated by the HY5-BIN2 module. The levels of BIN2-F protein
were very similar in the seedlings grown under increasing light
intensities (Fig. 7b). We then analyzed the abundance of BZR1 in
WT and hy5 mutant seedlings. Interestingly, as the light intensity
increased, the levels of BZR1 protein decreased in WT. The rate
of this decrease was obviously slower in hy5, suggesting that light
intensity regulated BZR1 stability in a partially HY5-dependent
manner (Fig. 7c). In agreement with this result, using cell-free
kinase assays we found that the BZR1 phosphorylation levels were
much higher in WT lysates than in those of hy5 extracted from
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seedlings grown under increasing light intensities (Fig. 7d). These
results demonstrated that light intensity promoted BIN2-
mediated BZR1 phosphorylation and degradation at least in
part by controlling HY5 abundance.

To further determine the effect of the HY5-BIN2 module on
regulating hypocotyl elongation, we compared the hypocotyl
lengths of bin2-1, hy5, and hy5bin2-1 seedlings grown under
various light intensities. The hypocotyl lengths of bin2-1 and
hy5bin2-1 were comparable in the dark (Fig. 7e). Under low light
(1.7Wm−2), the hypocotyls of hy5bin2-1 were slightly longer
than bin2-1, but still much shorter than wild type. In contrast,
under high light (20Wm−2), the hypocotyls of hy5bin2-1 were
much longer than bin2-1, and were as long as wild type (Fig. 7e).
Taken together, HY5 increasingly contributed to BIN2 activity as
light intensity increased. Therefore, by responding to varying
light intensity, seedlings could adjust hypocotyl elongation by
modulating the HY5-mediated regulation of BIN2 activity.

Discussion
To date, HY5 has been shown to function as a transcription factor
that regulates gene expression. Many genes involved in hypocotyl
elongation are the targets of HY5, such as LONG HYPOCOTYL IN
FAR-RED 1 (HFR1)8, FAR-RED ELONGATED HYPOCOTYL 1

(FHY1)34, INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19)35,
EXPANSIN 2 (EXP2)35. There is no doubt that HY5 is a high level
regulator of the transcriptional cascades controlling photo-
morphogenesis8. However, in this study, we revealed that HY5
repressed BR-mediated hypocotyl elongation in a way distinct from
its function as a transcription factor. At low light intensities, the
abundance of HY5 is limited by COP1-mediated ubiquitination
and degradation. BIN2 was at least in part inactive at low HY5
levels, which led to the accumulation of BZR1 and its transcrip-
tional activation of genes promoting hypocotyl elongation. As the
light intensity increased, HY5 could accumulate due to the inacti-
vation of COP1, thereby enhancing BIN2 activity through physical
interaction. This sequentially promoted BIN2-mediated phos-
phorylation and degradation of BZR1 to inhibit transcription of
genes downstream of BZR1, with the end result of repressing
Arabidopsis hypocotyl elongation. Moreover, with increasing light
intensity, an increasing amount of HY5 protein could bind BIN2 to
greater enhance its activity (Supplementary Fig. 8). Therefore,
in order to respond to varying light intensities, plants have used
the flexible HY5-BIN2-BZR1 cascade to subtly adjust hypocotyl
growth.

It has long been uncertain whether light regulates BR signaling
or BR regulates light signaling. Restricted by insufficient energy
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and resources, plants must balance their growth with survival.
Therefore, hypocotyl elongation must be precisely regulated, since
the coordination of light signaling with signaling by internal
hormones (including BR) is important for plant survival and
growth. Previous work showed that addition of BL did not affect
HY5 stability27. In turn, our work showed that HY5 destabilized
BZR1 by promoting the kinase activity of BIN2 in the light,
indicating BR signaling acted epistatically to light signaling.
Recent studies revealed that the light-repressed transcription
factors PIF4 and PIF5 bound to the promoter regions of key BR
biosynthetic genes to directly promote their expression, thereby
inducing BR synthesis36,37. Taken together, light signaling may
repress BR signaling by inhibiting PIF-induced BR synthesis and
promoting HY5-induced BIN2 activity in Arabidopsis.

Previously, several key players have been identified in the
regulation of BIN2 stability or activity. For instance, BRI1 SUP-
PRESSOR 1 (BSU1) and HISTONE DEACETYLASE 6 (HDA6)
repress BIN2 activity through dephosphorylation and deacetyla-
tion of BIN2, respectively33,38, while OCTOPUS (OPS) directly
represses BIN2 function by sequestering it to the plasma mem-
brane39. KINK SUPPRESSED IN bzr1-1D (KIB1) acts as an F-
box E3 ubiquitin ligase that promotes the degradation of BIN240.
However, little is known about positive regulators promoting
BIN2 activity. Our work identified HY5 as one of the positive
regulators important for the regulation of BIN2 activity in vivo. It
is interesting that we observed the strong effect of HY5 over-
expression on the reduction of BZR1 expression while the up-
regulation of BZR1 in the hy5 mutant is relatively mild (Figs. 3
and 4). These data suggest that HY5 may have functional
homologs in modulating BIN2-dependent regulation of BZR1. It
will be of great interest to define and characterize these factors in
the future study.

Previous studies have shown that Y216 in GSK3β is conserved
in all GSK3s identified so far, and its phosphorylation is essential
for full kinase activity of GSK3s41,42. Y216 phosphorylation in
GSK3β was an intramolecular autophosphorylation event in
mammalian cells43, and required the presence of HEAT SHOCK
PROTEIN 90 (HSP90)44. In this study, we found that, similar to
HSP90 in humans, HY5 plays a role in promoting the autopho-
sphorylation of BIN2 Y200, the homolog of GSK3β Y216, to
modulate its kinase activity. Our work expands the understanding
of regulation of GSK3 kinase activity in general.

Methods
Plant materials and growth conditions. The ecotypes of all wild-type Arabidopsis
thaliana used in this study were Columbia-0 (Col) and Wassilewskija-2 (Ws). The

bin2-1, bzr1bes1, hy5, and bin2-3bil1bil2 mutants were reported
previously17,31,45,46. Seeds were sterilized with 15% bleach. After 2 days of strati-
fication at 4 °C, seeds were grown on MS medium (pH 5.7) supplemented with 1%
sucrose and 0.6% Agar (A1296; Sigma-Aldrich). Six-day-old seedlings grown under
cWL were used in this study unless otherwise indicated. For MG132 or BK
treatment, seedlings grown in the light were transferred to liquid MS solution
supplemented with 30 μM MG132 or 10 μM BK, respectively, for 6 h before
harvest.

Plasmid construction and generation of transgenic lines. To generate the
pLacZi-EXP2pro construct for yeast one-hybrid assays, the subfragment of the EXP2
promoter32 was amplified and inserted into the KpnI/XhoI sites of the pLacZi
vector47.

To generate pB42AD-HY5 constructs for yeast two-hybrid assays, fragments
containing full-length HY5 coding sequence (CDS) (1-168 aa), and truncated HY5
CDS including HY5-N (1-77 aa), HY5-C (78-168 aa), and HY5-ΔLZ (deletion of
115-147 aa) were amplified and inserted into the EcoRI/XhoI sites of the pB42AD
vector (Clontech). For the BD-BIN2, BD-BIL1 and BD-BIL2 constructs, DNA
fragments encoding full-length BIN2, BIL1, and BIL2 CDS were amplified and
inserted into the EcoRI/BamHI sites of the pLexA vector (Clontech).

For purification of His-BIN2, GST-HY5, and HY5-His recombinant proteins,
the full-length BIN2 CDS fragment was inserted into the EcoRI/SalI sites of the
pET28a vector, full-length and truncated HY5 fragments were inserted into the
EcoRI/XhoI sites of the pGEX4T-1 vector or NcoI/NotI sites of the pET28a vector.
The MBP-PIF3 construct was reported previously47.

To generate HY5-nLUC constructs, full-length and truncated HY5 fragments
were cloned into the KpnI/SalI sites of the pCAMBIA1300-nLUC vector. The
cLUC-BIN2, cLUC-BIL1, and cLUC-BIL2 constructs were reported previously48.

To generate the EXP2pro-LUC construct, a DNA fragment with 1021 bp
upstream of the ATG together with 49 bp downstream of the ATG of EXP2 was
amplified and cloned into the KpnI/NcoI sites of the pGreenII 0800-LUC vector49.

The bzr1bes1 double mutant was generated by egg cell-specific promoter-
controlled CRISPR/Cas931, and then crossed with hy5 to get a hy5bzr1bes1 triple
mutant. To generate transgenic plants overexpressing 3×HA-tagged HY5, the
promoter of Arabidopsis UBQ10 was amplified from genomic DNA50, then the
UBQ10pro:3×HA-HY5-3’UTR-OCSterminator DNA fragment was obtained by overlap
extension PCR, and cloned into the EcoRI/KpnI sites of the pCAMBIA1300 vector.
The UBQ10pro:3×HA-HY5L137D fragment was amplified by primer-based site-
directed mutagenesis and then also cloned into the EcoRI/KpnI sites of the
pCAMBIA1300 vector. For stable transformation, Agrobacterium tumefaciens
strain GV3101 carrying the construct was then used to transform the transgenes
into Col, Ws, and other related mutants using the floral dip method51.
Homozygous lines were screened based on hygromycin resistance. Generation of
BIN2-FLAG transgenic plants was reported previously48. All the cloning and
genotyping primers are listed in Supplementary Table 1.

Western blot and antibodies. For protein extraction, seedlings were frozen in
liquid nitrogen, ground into powder, then resuspended in 2× SDS buffer (0.125M
Tris-HCl [pH 6.8], 4% SDS, 20% glycerol, 1× cocktail of protease and phosphatase
inhibitors, 1 mM PMSF). Samples were heated for 10 min at 65 °C, then centrifuged
at 13,000 × g for 10 min at room temperature. The supernatants were transferred
into new tubes, and the total protein concentrations were determined by the BCA
method. Equal amounts of total proteins were separated in 10% sodium dodecyl
sulfate (SDS)-polyacrylamide gels and then transferred onto PVDF membranes.
The subsequent immunoblots were performed as previously described52.

HY5

BIN2

V247 
L137

F277

BIN2

C.S.

Y200

BIN2

C.S.

Y200

P

HY5

BIN2

C.S.

Y200 Y200
BIN2

P

HY5

kDa

45

45

1.00 1.01

1.00

Col hy5

BIN2-FLAG

pTyr
200

BIN2-FLAG

a b c

Col

0.64

Fig. 6 HY5 promotes the autophosphorylation of the BIN2 Y200 residue. a (Left) The interaction of HY5 (green) with BIN2 (blue) predicted by

computational protein–protein docking. HY5 LZ region, pale green. (Right) Zoom in on the interaction between HY5 and BIN2. Blue sphere, V247 and F277

of BIN2 respectively. Pale green sphere, L137 of HY5. b A cartoon diagram showing the intramolecular movement of BIN2 in the presence of HY5. C.S.,

active catalytic sites. P in yellow ball, phosphate group. Y200 residue of BIN2 is shown as red ball. The dotted lines represent the structural state of BIN2

before binding with HY5. The thickness of long arrows indicates the relative autophosphorylation level of Y200 of BIN2. c Immunoblots showing the levels

of BIN2 pTyr200 in vivo. BIN2-FLAG immunoprecipitated by anti-FLAG antibody were used to detect the pTyr200 of BIN2. Numbers under each lane

indicate the band intensities of pTyr200 or total BIN2-FLAG, respectively. Source data are provided as a source data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15394-7

8 NATURE COMMUNICATIONS |         (2020) 11:1592 | https://doi.org/10.1038/s41467-020-15394-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Antibodies used in this study were anti-HY5 (A gift from Rongcheng Lin’s lab,
1:1000 dilution), anti-BZR1 (A gift from Jianming Li’s lab, 1:1000 dilution), anti-
Histone H3 (05-499, Millipore, 1:1000 dilution), anti-HSP (AbM51099-31-PU,
Beijing Protein Innovation, 1:5000 dilution), anti-HA (H9658-.2 ML, Sigma-
Aldrich, 1:2000 dilution), anti-Flag (F3165-.2MG, Sigma-Aldrich, 1:2000 dilution),
Anti-phospho-GSK3 (Tyr279/Tyr216) (05-413, Millipore, 1:1000 dilution), anti-
MBP (#E8031S, New England Biolabs, 1:5000 dilution), anti-His (H1029-.2ML,
Sigma-Aldrich, 1:2000 dilution), and anti-GST (#2625, Cell Signaling Technology,
1:1000 dilution).

Yeast one-hybrid and two-hybrid assays. Yeast one-hybrid assays were per-
formed as described previously11. Briefly, pB42AD-HY5 (effector) and pLacZi-
EXP2pro (reporter) were co-transformed into yeast strain EGY48, the transformants
were plated on minimal synthetic defined (SD) base supplemented with the −Ura/
−Trp dropout (DO) mix and X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyr-
anoside) for blue color development. Yeast two-hybrid assays based on the LexA

system were performed according to the standard protocol (Clontech). The yeast
strain used in this study was EGY48 containing p8oplacZ vector.

In vitro pull-down assays. For in vitro pull-down assays, 1 μg GST-HY5 and 1 μg
His-BIN2 proteins were incubated in 1 ml binding buffer (25 mM Tris-Cl [pH 7.5],
100 mM NaCl, 0.1% NP40) at 4 °C for 1 h. Ten microliters GST beads pre-washed
with PBS were added into the binding buffer and incubated with the proteins for
another 1 h. After that, the beads were washed three times with washing buffer
(25 mM Tris-Cl [pH 7.5], 500 mM NaCl) at 4 °C. GST beads were heated for 5 min
in 1× SDS loading buffer at 100 °C. The eluted proteins were then analyzed by
immuno-blotting using anti-GST and anti-His antibodies.

Co-IP assays. For in vivo Co-IP assays, 0.5 g seedlings were frozen in liquid
nitrogen, ground into powder, and added into lysis buffer (25 mM Tris-HCl [pH
7.5], 150 mM NaCl, 1 mM EDTA, 10% glycerol, 0.5% Tween-20). Samples were
centrifuged at 15,000 × g for 10 min, and then total protein concentrations of the
supernatants were determined by the Bradford method. One milligram total pro-
teins were incubated with 10 μl anti-FLAG beads in 1 ml lysis buffer for 3 h at 4 °C.
After that, the beads were washed three times with washing buffer (25 mM Tris-Cl
[pH 7.5], 150 mM NaCl, 0.1% Tween-20) at 4 °C. The proteins were eluted from
the beads with the addition of 3× FLAG peptide (F4799, Sigma-Aldrich). Eluted
proteins were analyzed by immuno-blotting using anti-BZR1, anti-FLAG. and anti-
HSP antibodies.

For semi-in vivo Co-IP assays, total proteins of Col or BIN2-FLAG seedlings
were extracted using the lysis buffer (25 mM Tris-HCl [pH 7.5], 150 mM NaCl,
1 mM EDTA, 10% glycerol, 0.1% NP40). Five hundred micrograms total proteins
were incubated with 8 μg GST-HY5 protein in 0.5 ml lysis buffer for 2 h at 4 °C,
then 10 μl anti-FLAG beads were added and incubated with the mixture for three
more hours at 4 °C. After that, the beads were washed three times with 25 column
volumes of washing buffer (25 mM Tris-Cl [pH 7.5], 500 mM NaCl, 1 mM EDTA,
10% glycerol). The proteins were eluted with 3× FLAG peptide and analyzed by
immuno-blotting using anti-GST, anti-FLAG, and anti-HSP antibodies.

LCI assay. The LCI assays were performed as previously described with some
modifications53. In brief, GV3101 colonies containing different constructs were
inoculated into 5 ml LB medium supplemented with kanamycin, and grown at
28 °C for 16 h. In all, 0.1 ml of the cultures were transferred to 5 ml LB supple-
mented with 10 mMMES (pH 5.6) and 40 μM acetosyringone. Bacteria were grown
at 28 °C for 16 h, and harvested by centrifugation. The bacteria were resuspended
in buffer containing 10 mM MES (pH 5.6), 10 mM MgCl2, and 100 μM acetosyr-
ingone. Related bacteria were mixed and each bacterium had a final concentration
of OD600= 0.5. The bacteria were kept at room temperature for 3–5 h without
shaking. Infiltration was performed with a 2-ml syringe without needle. The plants
were subsequently kept away from light for 12 h, and then grown in the light for
2 days before the analysis. The luciferase signals were analyzed with Night SHADE
LB 985 (Berthold Technologies).

Protoplast transient expression assays. Protoplasts from Arabidopsis mesophyll
cells were prepared and transformed as described previously54. The effector plas-
mid UBQ10pro:HA-HY5, reporter EXP2pro:LUC, and control 35S:REN were co-
transformed into protoplasts and incubated under weak light for 12 h. Then the
protoplasts were harvested, and the luminescent signals of LUC and REN were
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detected with the Dual-Glo® Luciferase Assay System (E2920, Promega). The LUC
expression levels were quantified as the ratio of LUC/REN enzyme activities.

Quantitative real-time PCR. Total RNA was extracted from seedlings using
RNeasy Plant Mini Kits (74904, QIAGEN). One microgram of total RNA was
incubated with DNase I at 37 °C to remove the genomic DNA, and then the
prepared RNA was used as a template for RevertAid Reverse Transcriptase
(EP0442, Thermo Scientific) to generate first-strand cDNA. qPCR was performed
using a 7500 Fast Real-Time PCR System (Applied Biosystems). The CT values
were used to calculate the expression levels of different genes normalized to PP2A.
All the RT-qPCR primers are listed in Supplementary Table 1.

In vitro kinase assays. In vitro and cell-free kinase assays were performed as
previously described with some modifications55. For in vitro kinase assays, 50 ng
His-BIN2 were pre-mixed with HY5-His, the mole ratio of BIN2/HY5 ranging
from 1:1 to 1:8 as indicated, then 1 μg MBP-BZR1 was incubated with the mixture
in 20 μl kinase buffer (20 mM Tris-HCl [pH 7.5], 100 mM NaCl, 12 mM MgCl2,
0.1 mM ATP, 0.2 μCi [γ-32P] ATP) at 30 °C for 30 min. For the cell-free kinase
assays, total proteins were extracted from Col and hy5, respectively, in the buffer
(20 mM Tris-HCl [pH 7.5], 100 mM NaCl, 12 mM MgCl2) containing 1× cocktail
of protease and phosphatase inhibitors, and 1 mM PMSF. Five micrograms total
proteins were incubated with 1 μg MBP-BZR1 and 50 ng His-BIN2 in 20 μl kinase
buffer containing 1× cocktail of protease and phosphatase inhibitors. After incu-
bation at 30 °C for 30 min, the reactions were terminated in 1× SDS loading buffer,
and samples were separated in 10% SDS-polyacrylamide gels. 32P signals were
detected with Typhoon FLA7000 (GE Healthcare).

Computational methods. The monomeric HY5 and BIN2 proteins were modeled
using JACKAL56 and ITASSER programs57. The models with the highest scores
were chosen as the results. The predicted structure was then minimized using
molecular dynamics simulation package Gromacs 4.558.

The complex formed by the interaction between HY5 and BIN2 was predicted
by the docking method HoDock59, which incorporates an initial rigid docking and a
refined semi-flexible docking. A total of 200,000 complex structures were generated
and scored to select the final correct complex structure model. The docked complex
model was also minimized using the molecular dynamics simulation package
Gromacs 4.5. The interface contact residues were calculated by the Cartesian
coordinates of non-hydrogen heavy atoms C, N, and O. Those residues with at least
one pair of heavy atoms within 4 Å were denoted as interface contact residues.

The minimized monomeric BIN2 and complex BIN2-HY5 structures were used
to simulate the functional motions by a coarse-grained anisotropic network
model60. All data were depicted and presented using PyMOL software. The movies
were created using the PyMOL frame pictures and Matlab script.

Primer sequences. The sequences for all primers used in this study are listed in
Supplementary Table 1.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data generated and analyzed in this study are provided as a Source Data file.
All relevant data are available from the corresponding authors upon request. There are
no restrictions on data availability.
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