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Abstract

Alkylating agents are widely used chemotherapeutics in the treatment of many cancers, in-

cluding leukemia, lymphoma, multiple myeloma, sarcoma, lung, breast and ovarian cancer.

Melphalan is the most commonly used chemotherapeutic agent against multiple myeloma.

However, despite a 70–80% initial response rate, virtually all patients eventually relapse

due to the emergence of drug-resistant tumour cells. By using global proteomic and tran-

scriptomic profiling on melphalan sensitive and resistant RPMI8226 cell lines followed by

functional assays, we discovered changes in cellular processes and pathways not previous-

ly associated with melphalan resistance in multiple myeloma cells, including a metabolic

switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative

stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto re-

ductase levels of the AKR1C family involved in prostaglandin synthesis contribute to the re-

sistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were

targeted by inhibitors, several of which displayed a selective cytotoxicity against the mel-

phalan-resistant cells and should be further explored to elucidate their potential to overcome

melphalan resistance.

Introduction

Multiple myeloma (MM) is an incurable bone marrow disease and the second most common

hematological cancer. The median age of onset is 65 years and progression often leads to severe

complications including immunodeficiency, osteolytic bone disease and renal failure [1].
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Although current therapies may improve the patient’s survival, disease progression and ac-

quired drug resistance remain unsolved issues. Since the 1960s, the alkylating drug melphalan

(L-phenylalanine mustard) has been employed in combination with corticosteroids as first-line

therapy for MM [2]. Novel agents such as bortezomib and lenalidomide have recently been in-

troduced, but melphalan remains the standard therapy for transplant-ineligible patients and is

the basis for high-dose therapy associated with autologous stem cell transplant [3]. Melphalan’s

efficacy has been attributed to its ability to induce cytotoxic interstrand cross-links (ICLs) in

DNA [4], but it may also induce other lesions in DNA [5], RNA, proteins and lipids [6]. The

mechanisms by which melphalan kills tumor cells thus remain elusive and identifying factors

that attenuate melphalan sensitivity is crucial to improving therapeutic outcomes.

Acquired melphalan resistance in MM has been associated with reduced drug uptake [7], in-

creased drug detoxification [8,9], reduced ICL formation and enhanced DNA repair of ICL le-

sions [10–12], modulation of DNA base excision and strand break repair [13,14], adaptation to

reactive oxygen species (ROS) [15] and decreased apoptosis [16]; however, there are no robust

biomarkers that predict melphalan resistance.

Here we have used transcriptomics and proteomics to investigate cellular changes associated

with acquired melphalan resistance in the RPMI8226 multiple myeloma cell line. We observed

a metabolic switch conforming to the Warburg effect in the melphalan-resistant cell line ac-

companied by an increased oxidative stress response and enhanced survival and proliferation

signaling. The increased survival was partially mediated through VEGF- and IL8-induced

PI3K/p38 signaling and upregulated expression of the AKR1C family of aldo-keto reductases.

We demonstrate that targeting enzymes within the affected pathways by specific inhibitors can

overcome acquired melphalan resistance.

Materials and Methods

Reagents and antibodies

For Western analysis antibodies to AKR1C2 (H00001646-D01, Abnova), AKR1C3

(H00008644-B01, Abnova), AKR1C4 (H00001109-M01, Novus), AKT1 (#2967, Cell Signal-

ing), Caspase3 (sc-7148, Santa Cruz), SLC16A3 (OAAB08662, Aviva Systems Biology) PARP-1

(sc-74470, Santa Cruz), STAT3 (sc-81385, Santa Cruz), pSTAT3 (S2690, Sigma) and β-actin

(ab8226, Abcam) primary antibodies and HRP-conjugated secondary antibodies (Dako) were

used. Melphalan, ursodeoxyholate, indomethacin, flufenamic acid, dichloroacetic acid,

2-deoxy-D-glucose, sodium oxamate, metformin, oligomycin, antimycinA, FLLL31, wortman-

nin, rapamycin, methyl glyoxal, acetylsalicylic acid, ibuprofen, (Sigma Aldrich), tert-butyl per-

oxide (Fluka), LY294002, SB203580 and BIRB0796 (Cell Signaling) were used in

viability assays.

Cell lines and preparation of cell extracts

MM cell lines RPMI8226 and RPMI8226-LR5 were kindly donated by Prof. William S. Dalton

at the H. Lee Moffitt Cancer Center & Research Institute, Tampa, USA. Cells were maintained,

treated with melphalan and cell extracts prepared as previously described [13].

mRNA isolation and analysis

mRNAwas isolated from six batches each of control and melphalan-treated RPMI8226 and

RPMI8226-LR5 cells using the mirVana mRNA isolation kit (Ambion). RNA concentration and

quality were determined using NanoDrop ND-8000 (NanoDrop Technologies) and Agilent 2100

Bioanalyzer (Agilent). RIN values of RNA samples used for cRNA amplification ranged from 8.5
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to 10 (mean = 9.49). The Illumina TotalPrep RNA amplification Kit (Ambion) was used to am-

plify mRNA for hybridization on Illumina BeadChips. First strand cDNAwas synthesized from

each mRNA sample. Following second strand synthesis and purification, cRNA was synthesized

for 12 hours. Gene expression profiles were measured using Illumina HumanHT-12_V3 Expres-

sion BeadChip. Raw data were exported from Illumina GenomeStudio to R using the Bioconduc-

tor package `lumi`version 2.1.3. [17]. Data were quantile normalized and log2 transformed. The

groups were compared using a t-test with empirical Bayes correction from the Bioconductor

package `Limma`[18]. The fold change was used to demonstrate rate of changes in average gene

expressions between studied groups. Statistical analyses were performed using the false discovery

rate (FDR) with a significance threshold of 0.01. The transcriptomic data have been deposited to

the GEO repository with the identifier GSE60970 [19].

Western analysis, viability assay and mROS analysis

Western analysis and MTT assays were performed as described [13]. mROS was analyzed

using MitoSOX Red (Molecular Probes) according to the manufacturer’s protocol. Briefly, cells

(0.5 × 106 cells/ml) were pretreated with inhibitors for 6 h, washed with HBBS and incubated

with MitoSOX for 10 min at 37°C. Flow cytometry was performed at 510 nm excitation and

580 nm emissions.

Cytokine and lactate analysis

Briefly cells (0.5 × 106 cells/ml) were incubated in RPMI1640 medium until they reached ap-

proximately 1 × 106 cells/ml and 80% viability. Medium (50 μl) was used for cytokine measure-

ments in duplicates using the Bioplex 27-plex human cytokine kit from BioRad as per

manufacturer's instructions. Bioplex manager software was used for calculation of cytokine

concentrations. Standard curves were optimized by the software and verified manually. Lactate

levels were measured using the L-Lactate Assay Kit according to the manufacturer’s protocol

(Cayman). Extracellular lactate level was measured in medium, intracellular lactate in 15 × 106

cells. Results were normalized and are shown as concentration of lactate/1 × 106 cells.

Stable isotope labeling with amino acids in cell culture (SILAC) and
LC-MS/MS analysis

RPMI8226 and RPMI8226-LR5 cells were grown in light (12C6-lysine) and heavy (13C6-lysine)

medium, respectively (Pierce SILAC protein Quantitation kit-RPMI1640). Sensitive and resis-

tant cells were mixed 1:1 and cell extracts prepared as above. Proteins were separated on

4–12% denaturing NuPAGE (Invitrogen) and stained with Simply BlueTM (Invitrogen). Thir-

teen bands were excised, reduced and alkylated prior to trypsin in-gel digestion as described

[20]. Peptides were eluted with 50% acetonitrile in 5% formic acid and lyophilized before MS

analysis. LC-MS/MS was conducted on an EASY-nLC (Proxeon) coupled to an LTQ-Orbitrap

XL mass spectrometer (Thermo). Reconstituted samples were separated on an in-house 15 cm

fused silica column (100 μm i.d., 375 μm o.d.) using a 50 min gradient up to 32% ACN in 0.1%

formic acid and 250 nl/min flow rate. MS scans (300–1800 m/z) were acquired at a resolution

of 60,000 (m/z 400) in the Orbitrap. During each duty cycle, up to five of the most intense pep-

tides were selected for CID fragmentation in the ion trap. Raw files were processed in Max-

Quant v.1.0.13.8, with Mascot searches utilizing human IPI database (version 3.52) containing

extra entries for reverse protein sequences. Search criteria included carbamidomethylation as

fixed modification, deamidation (NQ) and oxidation (M) as variable modifications, maximum

of two missed cleavage sites and MS/MS tolerance of 0.6 Da. FDR thresholds for peptide and

protein identifications were set to 1%. A minimum of two unique peptides was specified for
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protein identifications, with protein quantification requiring at least two ratio measurements.

The proteomics data have been deposited to the ProteomeXchange Consortium [21] via the

PRIDE partner repository with the identifier PXD001276 [22].

Statistical analysis

Significance and p-value in viability assays were obtained from the GraphPad Prism software

(GraphPad Software). Each experiment was conducted in triplicate, data were analyzed using

one-way ANOVA and student—Newman-Keuls multiple test, where: ns—p>0.05, �-

0.05�p>0.01, ��- 0.01�p>0.001, ��� - p� 0.001.

Results

Illumina and SILAC gene expression profiling

To investigate large scale alterations in gene expression accompanying melphalan resistance,

we used the multiple myeloma cell line RPMI8226 and its melphalan-resistant derivative LR5.

The stable isotope labeling by amino acids in cell culture (SILAC) approach resulted in the

identification of 1042 proteins, of which 668 were quantified using MaxQuant (PEP<0.01) (S1

Table). The histogram of the log2 SILAC ratios showed a normal distribution centered at zero,

supporting similar overall protein loads of the H/L samples (Fig. 1A). Illumina HumanHT-

12_V3 annotation data were used for mapping mRNA expression and led to 4580 identifica-

tions with p-values< 0.05 (S2 Table). We considered differentially expressed genes (DEGs) ex-

hibiting an absolute fold change above 1.25 because the cell lines were isogenic and proliferated

similarly. This resulted in 424 and 2842 unique proteins and mRNAs, respectively (S1and S2

Tables), of which 175 proteins and mRNAs overlapped (Fig. 1B). We observed a high correla-

tion of expression data from the protein and mRNA analyses (up-regulated R2 = 0.91, down-

regulated R2 = 0.72, Fig. 1C). The most differentially regulated proteins in the SILAC analyses

are listed in Table 1 together with their corresponding fold changes at the mRNA level.

Melphalan-resistant RPMI8226 cells display altered expression of
metabolic enzymes conforming to the Warburg effect

To search for modified biological pathways in the resistant cells, gene identifiers in the SILAC

dataset were mapped in the Ingenuity Knowledge Base, entered into Ingenuity Pathway Analy-

sis (IPA) and plotted onto canonical pathways. Glycolysis was identified as the most signifi-

cantly altered pathway (p = 1.31 × 10-9), and several other respiratory metabolism pathways

were also significantly altered (Fig. 1D, E). Specifically, most of the glycolytic and pentose phos-

phate pathway (PPP) enzymes were up-regulated in the resistant cells, whereas the tri-carbox-

ylic acid (TCA) cycle and electron transport chain proteins were down-regulated (Fig. 2). Such

a metabolic switch is a characteristic feature of the Warburg effect [23], which is considered a

survival mechanism in cancerous tissues [24] that also mediates resistance to apoptosis [25]

and to oxidative stress [26]. The underlying mechanisms leading to the Warburg effect are not

well understood. However, a number of oncogenes, including c-MYC, are known to enhance

the expression of glycolytic enzymes, such as lactate dehydrogenase (LDHA) [27]. Although c-

MYC was not quantified by SILAC, its mRNA was 1.8-fold up-regulated in the melphalan-re-

sistant cells (S2 Table) and 1.5-fold upregulated as quantified by western blot (data not shown).

Modulated Metabolism Contributes to Melphalan Resistance
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Fig 1. SILAC andmRNA quantitative profiling. (A), histogram of log2 SILAC ratios. (B), Venn diagram of
DEGs identified in SILAC and mRNA analyses (threshold 1.25 fold change). (C), Scatter plot illustrating fold
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Melphalan-resistant cells display markedly increased sensitivity towards
inhibitors targeting turnover of glycolytic intermediates

To further analyze the significance of carbohydrate metabolism in melphalan resistance, sensi-

tive and resistant cells were grown in the presence or absence of glucose. Glucose deprivation

had a significantly stronger growth-inhibitory effect in resistant cells compared to sensitive

cells (Fig. 3A). We then subjected both cell lines to treatment with enzyme inhibitors that target

different steps in glycolysis and the PPP. 2-deoxy-D-glucose (2-DG) inhibits hexokinase (HK)

and phosphoglucoisomerase (GPI) and thus funneling of precursors into both glycolysis and

PPP. Blocking glycolysis causes ATP depletion, cell cycle arrest and cell death, while blocking

PPP inhibits NADPH synthesis and reduces the antioxidant capacity of the cells. 6-aminonico-

tinamide (6-AN) potently inhibits glucose-6-phosphate dehydrogenase (G6PD) and selectively

inhibits PPP. G6PD was more than two-fold up-regulated in the melphalan-resistant cells ac-

cording to the SILAC analyses. Sodium oxamate (SO) inhibits the conversion of pyruvate to

lactate by LDHA, thus inhibiting glycolysis by depleting NAD+ [28]. Finally, dichloroacetate

(DCA) inhibits all pyruvate dehydrogenase kinase (PDK) isoenzymes, thus increasing the ac-

tivity of pyruvate dehydrogenase (PDH) and increasing the acetyl-CoA introduced into the

TCA cycle [29]. All of these inhibitors had a significantly stronger growth-inhibitory effect

upon melphalan-resistant cells and this was also observed when inhibitors were combined with

2.5 μMmelphalan (Fig. 3A). This corroborates that a metabolic switch towards aerobic glycoly-

sis contributes to the melphalan-resistant phenotype.

Melphalan-resistant cells display increased tolerance to overall oxidative
stress, but are sensitive to mitochondrial electron transport inhibitors

DCAmediated the largest selective effect against the resistant cells (Fig. 3A). This inhibitor

does not directly target glycolytic or PPP enzymes. We thus measured mitochondrial ROS sub-

sequent to DCA-treatment to examine whether increased metabolic flux into mitochondria

was less tolerated by the melphalan-resistant cells. As illustrated in Fig. 3B increased mitochon-

drial ROS was selectively induced in the melphalan-resistant cells subsequent to DCA-treat-

ment. Western analysis of PARP1 and caspase-3 revealed weak induction of PARP1 cleavage

in both cell lines subsequent to DCA treatment, whereas combined DCA/melphalan treatment

mediated markedly increased cleavage of both PARP1 and caspase-3 in the melphalan-resistant

cells (Fig. 3C).

Increased mitochondrial stress may reduce the mitochondrial capability to regenerate

NAD+ to support glycolytic ATP-production. This would more severely impact the resistant

cells given their increased dependence upon glycolytic ATP-production. We tested this by

treating the cells with electron transport chain inhibitors (metformin and antimycin A) or with

the ATP synthase inhibitor oligomycin. Metformin and antimycin A were more toxic to the re-

sistant cells both in the presence and absence of 2.5 μMmelphalan, whereas oligomycin was

more toxic to the sensitive cells under both conditions (Fig. 3D). Oligomycin inhibits mito-

chondrial ATP synthase and does not directly affect the NAD+-generating steps. These results

change relationships between DEGs identified in SILAC and mRNA analyses. (D), Most affected canonical
pathways as identified by IPA analysis of SILAC data (threshold 1.25x change). The orange line represents
the ratio of the number of genes represented within each pathway to the total number of genes in the
pathway. (E), Distribution of DEGs in GO: biological process categories.

doi:10.1371/journal.pone.0119857.g001
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Table 1. Most up- and downregulated genes in melphalan-resistant cells as determined from SILAC and Illumina analysis.

Gene symbol Protein name REFSEQ Fold change SILACa Fold change Illuminaa

AKR1C3 aldo-keto reductase family 1, member C3 NP_003730 12,053 25,507

VIM vimentin NP_003371 4,212 2,208

MACF1 microtubule-actin crosslinking factor 1 NP_149033 3,968 2,263

POLR1A polymerase (RNA) I polypeptide A, 194kDa NP_056240 3,345

CBR1 carbonyl reductase 1 NP_001748 2,839 1,159

UAP1 UDP-N-acteylglucosamine pyrophosphorylase 1 NP_003106 2,836 1,654

KHDRBS1 KH domain containing, RNA bindingSAM68 NP_006550 2,796 1,193

ANXA5 annexin A5 NP_001145 2,789 1,859

G3BP1 GTPase activating protein (SH3 domain) binding protein 1 NP_005745 2,759 -1,192

KPNA2 karyopherin alpha 2 (RAG cohort 1, importin alpha 1) NP_002257 2,549 1,093

PRPF19 PRP19/PSO4 pre-mRNA proc.factor 19 NP_055317 2,483 -1,311

PSME3 proteasome (prosome, macropain) activator subunit 3 NP_789839 2,441 1,169

ARD1A ARD1 homolog A, N-acetyltransferase (S. cerevisiae) NP_003482 2,307 1,212

HNRNPA3 heterogeneous nuclear ribonucleoprotein A3 NP_919223 2,272 1,945

HSPA8 heat shock 70kDa protein 8 NP_006588 2,237 1,158

XPO5 exportin 5 NP_065801 2,199 1,287

ABCE1 ATP-binding cassette, sub-family E (OABP), member 1 NP_001035809 2,177 1,721

PPID peptidylprolyl isomerase D NP_005029 2,162 -1,015

ACTN4 actinin, alpha 4 NP_004915 2,156 1,396

CKAP5 cytoskeleton associated protein 5 NP_001008938 2,136 1,237

G6PD glucose-6-phosphate dehydrogenase NP_000393 2,101 1,935

DDX19A DEAD (Asp-Glu-Ala-As) box polypeptide 19A NP_060802 2,088 1,467

NAPG splicing factor proline/glutamine-rich NP_003817 2,054 2,813

MYO1C N-ethylmaleimide-sensitive factor attachment protein γ NP_001074248 2,025

PTBP1 polypyrimidine tract binding protein 1 NP_002810 2,022 1,328

CBR3 carbonyl reductase 3 NP_001227 2,019 1,430

LRBA LPS-responsive vesicle trafficking, beach and anchor c. NP_006717 2,007 1,670

RRBP1 ribosome binding protein 1 homolog 180kDa (dog) NP_001036041 -2,618 -1,773

SERPINH1 serpin peptidase inhibitor, clade H member 1 NP_001226 -2,639 -1,609

MESDC2 mesoderm development candidate 2 NP_055969 -2,733

FN1 fibronectin 1 NP_997647 -2,849

SFN stratifin NP_006133 -2,859 -2,069

PCK2 phosphoenolpyruvate carboxykinase 2 (mitochondrial) NP_004554 -2,894 -1,22

NSDHL NAD(P) dependent steroid dehydrogenase-like NP_001123237 -2,904 -1,155

DCI dodecenoyl-Coenzyme A delta isomerase NP_001910 -2,956 -2,122

MAN2A1 mannosidase, alpha, class 2A, member 1 NP_002363 -3,007 -1,378

STT3B STT3, subunit of oligosaccharyltransferase compl. hom. B NP_849193 -3,016 -1,356

PDIA5 protein disulfide isomerase family A, member 5 NP_006801 -3,019 -1,946

DNAJB11 DnaJ (Hsp40) homolog, subfamily B, member 11 NP_057390 -3,045 -1,130

ERP44 endoplasmic reticulum protein 44 NP_055866 -3,070

DDOST dolichyl-diphosphooligosaccharide-protein glycosyltransf. NP_005207 -3,163 -1,347

PDIA4 protein disulfide isomerase family A, member 4 NP_004902 -3,271 -1,835

PDIA6 protein disulfide isomerase family A, member 6 NP_005733 -3,419 -2,008

ERP29 endoplasmic reticulum protein 29 NP_006808 -3,487 -2,231

IGF2R insulin-like growth factor 2 receptor NP_000867 -3,530 1,248

STAT1 signal transducer and activator of transcription 1, 91kDa NP_009330 -3,536 -1,883

ASS1 argininosuccinate synthetase 1 NP_000041 -3,543 -2,069

(Continued)
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further confirm the increased dependence of the melphalan-resistant cells to glycolytic

ATP production.

The melphalan-resistant cells were also more tolerant towards the unspecific pro-oxidant

tert-butyl hydroperoxide (t-BHP) (Fig. 3D). The cytotoxic effects of t-BHP have been shown to

be counteracted by activation of the NRF2-mediated stress response [30]. In affirmation of

this, we observed that NRF2 mRNA was significantly up-regulated (1.5 ×) in the resistant cells

and the NRF2-mediated oxidative stress response was reported to be significantly

(p = 1.03 × 10-4) modulated in the IPA analysis. From these results we concluded that the mel-

phalan-resistant cells are more tolerant of oxidative stress, mediated at least partially by NRF2,

but are selectively sensitive towards drugs that inhibit NAD+ regeneration.

Lactate accumulation and IL8/VEGF signaling contribute to increased
survival in the melphalan-resistant cells

The observed metabolic shift should result in increased lactate production in the resistant cells

to regenerate NAD+ and facilitate glycolytic ATP production. We found a higher intracellular

but lower extracellular lactate content in the melphalan-resistant cells (Fig. 4A), indicating that

lactate is retained in the melphalan-resistant cells. Lactate is exported from cells by the mono-

carboxylate transporters of the SLC16 family, of which SLC16A3 (MCT4) is the major lactate

transporter in leukocytes [31]. SLC16A3 was 4.7-fold down-regulated at the mRNA level in the

melphalan-resistant cells (S2 Table), but was not quantified in the SILAC analysis. Western

analysis of SLC16A3 revealed no significant reduction in the melphalan-resistant cells

(Fig. 4B).

Lactate can serve as metabolic fuel in certain cell types via the proposed cytoplasmic/mito-

chondrial lactate shuttle [32,33]. In addition, lactate may act as a signaling molecule inducing a

pseudo-hypoxic condition leading to up-regulation of NF-κB/IL-8 and pro-angiogenic VEGF

[34]. The latter is also supported by the co-regulated expression of lactate dehydrogenase and

VEGF in tumor cells [35]. We found that IL-8 was 4.4-fold up-regulated at the mRNA level (S2

Table) and both IL-8 and VEGF secretion were increased (>12- and 1.7-fold, respectively) in

the melphalan-resistant cells (Fig. 4C). IL-8 and VEGF can mediate pro-survival and prolifera-

tion responses through alternative downstream pathways. One of the downstream effectors of

IL-8 is STAT3 [36], which has emerged as a potential oncogene target in many solid and hema-

tologic cancers, including MM [37]. However, we found no difference in STAT3 mRNA levels

Table 1. (Continued)

Gene symbol Protein name REFSEQ Fold change SILACa Fold change Illuminaa

STOML2 stomatin (EPB72)-like 2 NP_038470 -3,594 -1,335

CKB creatine kinase, brain NP_001814 -3,615 -1,126

CANX calnexin NP_001019820 -3,675 -3,408

IDH2 isocitrate dehydrogenase 2 (NADP+), mitochondrial NP_002159 -3,819 -1,977

EPHX1 epoxide hydrolase 1, microsomal (xenobiotic) NP_000111 -3,983 -1,13

PHGDH phosphoglycerate dehydrogenase NP_006614 -6,014 -4,343

C2orf30 endoplasmic reticulum lectin 1 NP_056516 -8,235 -1,340

PDIA2 protein disulfide isomerase family A, member 2 NP_006840 -14,947

MYO6 myosin VI NP_004990 -20,807

MX1 myxovirus resistance 1, interferon-inducible protein p78 NP_002453 -39,202 -12,073

aStatistically significant values are highlighted in bold.

doi:10.1371/journal.pone.0119857.t001
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in the sensitive and resistant cells (S2 Table). Moreover, western analysis revealed no induction

of total- or phosphorylated (pY705) STAT3 protein in the resistant cells (Fig. 4D). We also sub-

jected the cells to treatment with the STAT3 inhibitor FLLL31, and found that the inhibitor se-

lectively reduced viability in the melphalan-sensitive cells both in the absence and presence of

2.5 μMmelphalan (Fig. 4E). An explanation to this could be that alternative survival pathways

Fig 2. Overview of DEGs in the glycolytic and oxidative metabolic pathways. The observed up-regulation of factors in the glycolytic- and pentose
phosphate pathways and down-regulation of factors in the TCA cycle and the mitochondrial electron transport chain conform to a Warburg type
metabolic switch.

doi:10.1371/journal.pone.0119857.g002
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are up-regulated in the melphalan-resistant cells making them less dependent on

STAT3 signaling.

To further investigate the impact of IL-8/VEGF signaling, we subjected the cells to inhibi-

tors that target downstream effectors of IL-8 and VEGF, specifically within the PI3K and p38

Fig 3. Melphalan-resistant cells are selectively sensitive to inhibitors targeting enzymes in glycolytic- and pentose phosphate pathways as well as
complexes in the mitochondrial electron transport chain. (A), Bar diagram illustrating effect of inhibitors targeting various enzymes in carbohydrate
metabolism (2-DG, 1 mM, 6-AN, 1 mM, SO, 20 mM, DCA, 10 mM) when administered in the presence or absence of 2.5 μMmelphalan (Mel). (B), DCA
treatment selectively mediates increased mitochondrial ROS in the resistant cells. (C), Western analysis of the apoptotic markers PARP1 (upper panels) and
caspase-3 (bottom panels) illustrating increased cleavage of both proteins subsequent to co-treatment of the resistant cells with DCA and melphalan. (D),
Bar diagram illustrating effect of inhibitors targeting the mitochondrial electron transport chain or ATP synthesis (metformin, 3 mM, antimycin A, 30 μM,
oligomycin, 10 μM) and the general pro-oxidant tBHP (20 μM) when administered in the presence or absence of 2.5 μMmelphalan. (E), Western analysis of
AKT1 and pAKT1 in the sensitive and resistant cells.

doi:10.1371/journal.pone.0119857.g003
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MAPK signaling pathways. LY294002 and wortmannin are kinase inhibitors that target PI3K,

and rapamycin inhibits mTOR downstream of PI3K. All the PI3K/mTOR inhibitors were

more cytotoxic to the melphalan-resistant cells and abolished the selective proliferation advan-

tage of the resistant cells observed with 2.5 μMmelphalan alone (Fig. 4E). The mTOR pathway

has been suggested to be a potential therapeutic target in myeloma characterized by up-regulat-

ed AKT1 [38]. We did not observe a difference in mTOR and AKT1 mRNA levels between

melphalan-resistant and sensitive cells (S2 Table) and could not quantify the proteins by

SILAC. We therefore measured AKT1 by western blot and found that AKT1 and pAKT1 ex-

pression is decreased in melphalan-resistant cells (Fig. 4F). Thus, mTOR inhibition does not

fully explain the selective cytotoxicity of these inhibitors in melphalan-resistant cells.

The p38 MAPK inhibitor SB203580 is strictly selective for p38α and β, whereas BIRB0796

inhibits p38α, β, δ and γ [39]. In addition, SB203580 inhibits CK1, GSK3, RIP2 and GAK, and

BIRB0796 inhibits JNK2 [38]. BIRB796 was much more cytotoxic in the melphalan-resistant

cells, having little effect on the resistant cells, whereas SB203580 showed no selectivity towards

either cell line when administered alone. However, both inhibitors reversed the selective

growth advantage of the melphalan-resistant cells in 2.5 μMmelphalan (Fig. 4B). Taken to-

gether, the selective cytotoxicity of inhibitors acting downstream of IL-8/VEGF supports a role

of IL-8/VEGF-signaling in acquired melphalan resistance in MM.

A potential role of aldo-keto reductases in melphalan resistance

The aldo-keto reductase AKR1C enzymes constitute a family of oxidoreductases that catalyze

NADPH-dependent reduction of a wide variety of substrates [40]. Here, AKR1C1–3 regulate

ligand occupancy and trans-activation of androgen-, estrogen- and progesterone receptors, the

peroxisome proliferator-activated receptor (PPARγ) as well as the prostaglandin metabolism

[41]. AKRC1 members displayed the most pronounced up-regulated expression in both the

SILAC and mRNA profiling analyses (Fig. 5A). Due to their extensive sequence homology

(84% to 98%), AKR1C1–4 were collectively reported as 12-fold up-regulated in SILAC.

AKR1C2, 3 and 4 mRNA were 37-, 25- and 22-fold up-regulated, respectively. We also mea-

sured AKR1C2, C3 and C4 by western blot and observed the most prominent up-regulation of

AKR1C2 and C3 (15.6- and 28.2-fold, respectively, Fig. 5A, B). Moreover, enzyme levels did

not increase in either cell line after 50 μMmelphalan treatment (Fig. 5B), indicating that their

up-regulation is a result of adaptation to prolonged treatment with low dose melphalan rather

than an immediate stress response mediated by short time exposure to high dose melphalan.

To explore the potential role of AKR1C2 and C3 in the melphalan resistance mechanism,

melphalan-sensitive and-resistant cells were treated with aldo-keto reductase inhibitors. Flufe-

namic acid (FA) is a non-steroidal anti-inflammatory drug (NSAID) that has anti-inflammato-

ry and antipyretic properties and acts as a broad-spectrum AKR1C inhibitor. In addition it

modulates several channel activities and is an activator of AMP-activated protein kinase [42].

Indomethacin (IM) is an NSAID commonly used to reduce fever and pain by inhibiting the

production of prostaglandins, and inhibits AKR1C3 much more potently than AKRC1 and

AKRC2 [43,44]. IM and FA are also nanomolar and micromolar inhibitors, respectively, of

COX-1/2 (PTGS1/2) [45]. Previous work suggests, however, that the antiproliferative effect of

IM upon myeloma cells is independent of COX-2 [46]. Notably FA and IM were moderately

selectively cytotoxic to the melphalan-resistant cells when administered alone (Fig. 5C, left

panel). When administered together with melphalan, both inhibitors markedly reversed the re-

sistant phenotype (Fig. 5C, right panel). To further investigate the specific role of AKR1C in

the melphalan-resistant cells we also tested the non-NSAID drug ursodeoxycholate (UDC).

UDC is a bile acid drug that reduces cholesterol absorption and is used to treat primary biliary
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cirrhosis. It inhibits both AKR1C2 and C3 and has been shown to have pro- and anti-apoptotic

properties depending on the cell lines and experimental systems employed [47,48]. Important-

ly, UDC mediated a nearly complete reversal of the melphalan-resistant phenotype, similar to

that seen with FA (Fig. 5C, right panel). These results strongly suggest that AKR1C2 and C3

Fig 4. Lactate accumulates in melphalan resistant cells andmaymediate increased IL8- and VEGF signaling. (A), Bar diagrams demonstrating
significantly increased lactate accumulation in melphalan-resistant cells (left panel), and significantly lower lactate in the extracellular medium (right panel).
(B), Western analysis revealed no significant change in expression of the major lactate exporter SLC16A3 (C), Bioplex cytokine profiling demonstrated
markedly elevated synthesis of IL8 (left panel) and VEGF (right panel) in the melphalan-resistant cells. (D), Western analysis demonstrated no induced
activation of STAT3 in the melphalan resistant cells as probed with anti-pSTAT3 (Y705 antibody). (E), Bar diagram illustrating the effects of various inhibitors
targeting STAT3 (FLLL31, 3μM), PI3-kinases (LY294002, 10 μM, wortmannin, 2 μM, rapamycin, 5nM) and p38 MAP kinases (SB203580, 10 μM, BIRB796,
10 μM). (F), Western analysis demonstrating down-regulation of p-AKT1 and AKT1 in the melphalan-resistant cells.

doi:10.1371/journal.pone.0119857.g004
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contribute to melphalan resistance in the myeloma cells. However, to further investigate

whether a general effect mediated by NSAID treatment was involved in reversal of resistance,

the cells were also treated with acetylsalicylic acid or ibuprofen. As demonstrated in Fig. 5D,

such treatment did not mediate any change in the relative resistance of the myeloma cells, fur-

ther substantiating that FA and IM primarily affect melphalan resistance by AKR1C inhibition.

In a recent study of aldehyde toxicity in neuroblastoma cells, Lyon et al. [49] demonstrated

that the AKR1C3 protein level could be induced by short-time treatment with sub-lethal doses

of either methyl glyoxal or 4-hydroxy-2-nonenal (4HNE). These reactive aldehydes are in-

creased in several neurodegenerative diseases [50] and recombinant AKR1C1–3 have been

shown to possess high specific activities against 4HNE [51]. Incubation of the melphalan-sensi-

tive and-resistant cells in 1 μMmethyl glyoxal for 24 h mediated a strong up-regulation of

AKR1C3 in the melphalan-sensitive cells whereas the AKR1C3 level remained unaltered in the

resistant cells. AKR1C2 was also up-regulated by the pretreatment, but much weaker than

AKR1C3 (Fig. 5E). The treatment did not mediate any cytotoxic effect in the cells (Fig. 5F).

However, subsequent treatment of the cells in 2.5 μMmelphalan demonstrated that the methyl

glyoxal pretreatment mediated a resistant phenotype in the parental RPMI8226 cells resem-

bling that of the LR5 derivative (Fig. 5F). These results corroborate the inhibitor studies and

support a role of AKR1C aldo-keto reductases in mediating melphalan resistance in the

myeloma cells.

Discussion

MM is a complex and heterogeneous disease and as such, many factors likely contribute to ac-

quired melphalan resistance. Here we used a transcriptomic and proteomic approach to identi-

fy key proteins involved in melphalan resistance in isogenic myeloma cell lines. We thereby

demonstrated an active involvement of a metabolic switch in melphalan-resistant cells towards

aerobic glycolysis accompanied by an increased tolerance towards oxidative stress. Aerobic gly-

colysis (Warburg effect) has been largely ignored in cytostatic resistance research, but several

recent findings indicate that combining cytostatics with targeted inhibition of aberrant cellular

metabolism may overcome chemorefractoriness [52]. We similarly targeted the glycolytic path-

way with 2-DG, 6-AN and SO and found that they were selectively cytotoxic to melphalan-re-

sistant cells. 2-DG has recently been implemented in phase-I clinical trials in patients with

advanced solid tumors [53] and its cytotoxicity has been partially attributed to

glycolytic inhibition.

DCA was also selectively cytotoxic to the melphalan-resistant cells, and this is corroborated

by Sanchez et al., who demonstrated a selective effect of DCA in multiple myeloma cell lines

having high aerobic glycolysis [54]. DCA also increased the sensitivity of these cells towards

the proteasome inhibitor bortezomib. ROS induction has been demonstrated to play a critical

role in bortezomib-induced apoptosis by disrupting the mitochondrial membrane potential

[55], and DCA has been shown to synergistically inhibit proliferation in melanoma cells with

induced mitochondrial ROS [56]. Melphalan and other DNA cross-linkers increase mitochon-

drial ROS in HeLa and HCT cells [57] and oxidative stress has been shown to increase melpha-

lan cytotoxicity in chronic myeloid leukemia cells [58]. Thus, DCA could potentiate the effects

of melphalan (as well as other cytostatic drugs) by inducing cellular oxidative stress, possibly

because the mitochondrial metabolism is down-regulated to counterbalance the oxidative

stress induced by continuous drug exposure.

In addition to mediating increased mitochondrial ROS, DCA also depletes substrate from

the NAD+-generating LDHA step. This slows glycolytic ATP production, rendering the mel-

phalan-resistant cells more sensitive to treatment. The increased reliance of NAD+-dependent
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Fig 5. Aldo-keto reductases contribute to melphalan resistance in MM cells. (A), Diagram showing markedly up-regulated levels of the AKR1C family in
both SILAC and mRNA analyses, whereas members of other AKR subfamilies are not significantly altered. (B), Western analysis confirmed up-regulation of
AKR1C2 and C3, but not C4. (C), Bar diagram illustrating the effects of AKR inhibitors flufenamic acid (FA, 70 μM), ursodeoxycholate (UDC, 16 μM) and
indomethacin (IM, 16 μM) when administered in the presence or absence of 2.5 μMmelphalan. (D), Bar diagram illustrating that co-treatment of the myeloma
cells with NSAIDs acetylsalisylic acid (ASA) or ibuprofen (Ibu) with melphalan does not reverse the melphalan-resistant phenotype. (E), Western analysis
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aerobic glycolysis of the melphalan-resistant cells is also supported by the selective effect of the

electron transport chain inhibitors metformin and antimycin A, which target the NAD+-gener-

ating steps. Metformin is well tolerated and widely used in the treatment of diabetes, and it has

been shown to suppress breast and pancreatic tumor development and reprogram ovarian and

breast cancer cells to a non-cancerous state [59–63]; however, the molecular mechanisms by

which metformin displays an anti-cancer effect and is selectively cytotoxic to melphalan-resis-

tant myeloma cells require further study.

Both IL-8 and VEGF are important mediators of hypoxia and oxidative stress signaling that

stimulate proliferation and survival of MM cells [64]. In addition, IL-8 is a potent pro-inflam-

matory cytokine. Downstream signaling involves complex kinase networks including MAPKs,

PI3Ks and PKC [36]. The two PI3K inhibitors LY294002 and wortmannin were selectively cy-

totoxic to the melphalan-resistant cells. LY294002 broadly targets PI3Ks and has been shown

to inhibit CK2, mTOR and GSK3B [65], while wortmannin targets PI3K-C2β and weakly in-

hibits mTOR and DNA-PK [66,67]. The highly specific mTOR-inhibitor rapamycin was also

selectively cytotoxic to the resistant cells. Rapamycin inhibits mTORC1 and may also inhibit

mTORC2 in some cell types [68]. In the melphalan-resistant cells, mTOR signaling is appar-

ently not AKT dependent, since AKT1- and pAKT1-levels were both reduced. Moreover,

PTEN, which negatively regulates AKT, was more than twofold up-regulated at the mRNA

level in the resistant cells. AKT1-independent activation of mTOR has been reported in several

cell types, including B-lymphocyte cell lines [69] and follicular lymphoma cells [70]. In the

tumor syndrome tuberous sclerosis (TSC) mTOR is indirectly activated by MAPK-mediated

phosphorylation of TSC1 and 2 that alleviates inhibition of mTOR [71]. Notably we find that

both TSC1 and 2 are significantly down-regulated at the mRNA level in the resistant cells (S2

Table), potentially contributing to increased functional mTOR. Recent studies have assigned a

central role of mTOR2C in the control of metabolic reprogramming in cancer cells. This func-

tion is AKT-independent and rather involves up-regulation of c-MYC [72,73], which was

found to be 1.8-fold up-regulated at the mRNA level in the resistant cells. In addition, the glu-

cocorticoid-stimulated kinase SGK1, which is a downstream target of mTORC2 and an impor-

tant mediator of AKT-independent mTOR signaling [74] was fourfold up-regulated at the

mRNA level in the melphalan-resistant cells (S2 Table).

The p38MAPK inhibitors SB203580 and BIRB796 were both differently cytotoxic to the cell

lines. These inhibitors also exhibit different specificities, with SB230580 inhibiting p38α and β,

as well as CK1, GSK3, RIP2 and GAK, while BIRB796 inhibits p38α, β, γ and δ as well as JNK2.

The overlapping specificities of the inhibitors as well as the inherent complexity and crosstalk

between the various signaling pathways renders elucidation of the exact mechanisms involved

to be extremely challenging; however, the selective cytotoxicity of BIRB796 towards the mel-

phalan-resistant cells warrant further investigation into the involvement of JNK2 in melphalan

resistance. JNK2 has a central role in stress signaling, including oxidative stress, and also medi-

ates secretion of pro-inflammatory IL-8, thus potentially forming an autocrine stimulatory

loop in the melphalan-resistant cells.

The involvement of AKR1C enzymes in melphalan resistance was substantiated by inhibitor

studies as well as the ability of mehyl glyoxal-induced AKR1C3 to induce melphalan-resistance

in the parental RPMI8226 cells. The AKR1C subfamily plays essential roles in the metabolism

of steroid hormones and bile acids, and is involved in the pre-receptor regulation of nuclear

demonstrating strong induction of AKR1C3 and a weaker induction of AKR1C2 in the melphalan-sensitive cells (upper panel) subsequent to 20 h incubation
in various concentrations of methyl glyoxal (MG). MG treatment did not affect the AKR1C levels in the resistant cells (lower panel). (F), Bar diagram
illustrating that that MG pretreatment (1μM) induced a melphalan-resistant phenotype in the parental RPMI8226 cells similar to that of the resistant LR5 cells.

doi:10.1371/journal.pone.0119857.g005
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and membrane-bound receptors [75]. Dysregulated AKR1C2 and C3 expression has been

linked to the development of prostate, breast and endometrial carcinomas as well as leukemias,

likely due to their ability to modify steroid hormones and prostaglandins (PDGs) [75]. More-

over, AKR1C3 has been identified as a potential therapeutic target in leukemia because its

PGD2 reductase activity may prevent cell differentiation [76]. This activity also prevents for-

mation of the pro-apoptotic 15-deoxy-PGJ2 [77]. In a recent drug screen to identify specific

AKR1C3 inhibitors, tetracycline was initially identified as a potential AKR1C3-selective inhibi-

tor. However subsequent analysis by mass spectrometry and NMR revealed that the active in-

hibitor was a breakdown product of tetracycline, (4-methyl(de-dimethylamine)-tetracycline

(4-MDDT). Treatment of leukemia cells with 4-MDDT did not recapitulate the anti-leukemic

property of pan-AKR1C inhibitors, suggesting that multiple AKR1C inhibition is likely re-

quired to elicit an anticancer effect in leukemia [78], in agreement with our findings. In addi-

tion to endogenous substrates, AKR1C enzymes have been implicated in the metabolism of

several exogenous substrates, including drugs, carcinogens and reactive aldehydes such as

4-hydroxynonenal (4HNE) [49]. AKR1C1–3 has been shown to possess a high specific activity

for 4HNE reduction [51], one of the most cytotoxic products of lipid peroxidation that is likely

formed by melphalan-induced cellular peroxide [79] and increased plasma lipid peroxidation.

A potential role of AKR1C1–3 in melphalan resistance could thus be a result of 4HNE process-

ing. Although currently speculative, the AKR1C enzymes might also have a more subtle role in

regulating the redox balance of cells under oxidative stress. They act primarily as reductases in

vivo, (Kd for NADPH in the nanomolar range) and could potentially contribute to influence

the NADPH/NADP+ balance. Since NADPH potently inhibits NAD+-dependent oxidation re-

actions at low μM concentrations, such regulation could ensure sufficient NAD+ to allow active

glycolytic ATP-generation in the melphalan-resistant cells.

Conclusions

Our results reveal the presence of several previously unrecognized mechanisms for acquired

drug resistance against melphalan. The SILAC profiling approach identified a switch in metab-

olism towards aerobic glycolysis as well as modulated oxidative stress signaling in the resistant

cells. The metabolic switch was not evident from the mRNA results alone and underscores the

power of quantitative proteomic profiling to identify alterations in biological pathways under

significant translational control, such as metabolic pathways during chronic stress [80]. The

present in-depth analysis of a melphalan-sensitive cell line and its resistant derivative high-

lights several promising targets within metabolic and oxidative stress response pathways that

should be further explored to overcome melphalan resistance in MM. Such studies are now in

progress in our laboratory.
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