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Abstract

Recent studies have demonstrated a role for Staphylococcus aureus cidA-mediated cell lysis and genomic DNA release in
biofilm adherence. The current study extends these findings by examining both temporal and additional genetic factors
involved in the control of genomic DNA release and degradation during biofilm maturation. Cell lysis and DNA release were
found to be critical for biofilm attachment during the initial stages of development and the released DNA (eDNA) remained
an important matrix component during biofilm maturation. This study also revealed that an lrgAB mutant exhibits increased
biofilm adherence and matrix-associated eDNA consistent with its proposed role as an inhibitor of cidA-mediated lysis. In
flow-cell assays, both cid and lrg mutations had dramatic effects on biofilm maturation and tower formation. Finally,
staphylococcal thermonuclease was shown to be involved in biofilm development as a nuc mutant formed a thicker biofilm
containing increased levels of matrix-associated eDNA. Together, these findings suggest a model in which the opposing
activities of the cid and lrg gene products control cell lysis and genomic DNA release during biofilm development, while
staphylococcal thermonuclease functions to degrade the eDNA, possibly as a means to promote biofilm dispersal.
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Introduction

Bacterial biofilm is defined as an ordered assembly of bacterial

cells contained within a polymeric matrix [1,2]. Not only does the

matrix provide a structural and protective physical barrier against

harsh environmental conditions such as the host immune response

and desiccation, it also provides a physiological niche in which the

cells become more resistant to the killing effects of antibacterial

agents. Recent studies demonstrate that the biofilm matrix can be

comprised of a variety of important structural components

including polysaccharides, proteins, and DNA [3–9]. The

importance of extracellular genomic DNA (eDNA) as a structural

component of biofilm was first demonstrated in Pseudomonas

aeruginosa [10] but has subsequently been demonstrated in a

variety of bacterial species using experiments in which eDNA is

removed from the biofilm or that utilize lysis defective mutants

unable to release normal amounts of genomic DNA into the

matrix [6,7,11, Rice, 2007 #22,12–15]. Recent data also suggest

that the presence of DNA within the matrix may contribute to the

recalcitrance of biofilms to antibiotics by inducing expression of

antibiotic resistance genes [16].

The molecular mechanisms facilitating release of eDNA have

been studied in P. aeruginosa [17], S. aureus [7], and Enterococcus

faecalis [12]. The results of a study by Webb et al. [17] suggest

that bacteriophage-mediated cell death and lysis of P. aeruginosa

promotes microcolony development and dispersal. In experi-

ments with Enterococcus faecalis, Thomas et al. [12] demonstrated

the effects of two secreted proteases, GelE and SprE, on biofilm

development. The GelE protease is the effector of lysis while

the SrpE protease was described as an immunity factor that

opposes the effects of GelE. It was proposed that a balance

between these two proteases affects cell wall hydrolysis and lysis

of a subpopulation of cells resulting in release of genomic DNA

and enhanced biofilm formation [12]. Although the specific

mechanisms controlling cell death and lysis are likely to vary

among species, these studies demonstrate that the control of

these processes has a significant impact on biofilm develop-

ment.

In S. aureus, cell death and lysis have been shown to be

controlled by the cid and lrg operons, which have opposing effects

on murein hydrolase activity and antibiotic tolerance during

planktonic growth [18,19]. The products of the cidA and lrgA genes

are proposed to function as holins and antiholins, respectively,

regulating cell lysis in a manner thought to be analogous to that

observed during bacteriophage-mediated cell lysis [18,20,21].

Expression of the cid and lrg operons is regulated by the LytSR [22]

and CidR [23] regulators which function in response to changes in

membrane potential [24] and glucose metabolism-mediated acetic

acid accumulation in the culture medium [25], respectively.

Recently, the cidA gene was shown to promote cell lysis and the

release of DNA during the development of a biofilm [7]. The

importance of this eDNA in biofilm formation was demonstrated
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by the observation that biofilm adherence could be reduced by

treatment with exogenously added DNase I. These studies suggest

that the biological function of the Cid/Lrg system involves the

coordinated regulatory control of cell lysis during biofilm

development.

In the study presented here, we examined additional elements

affecting eDNA levels within a developing S. aureus biofilm.

Consistent with our previous findings, the S. aureus cidA gene

displayed a positive role in cell lysis during biofilm development

[7] while the lrg operon, as an inhibitor of lysis [19], exhibited a

negative role. Interestingly, mutations in both of these operons

led to aberrant biofilm maturation, indicating that balanced

expression of these genes is important in biofilm development.

Finally, staphylococcal thermonuclease was also shown to be

important in biofilm development, suggesting that the eDNA

produced as a result of lysis is countered by nuclease-mediated

degradation.

Materials and Methods

Bacterial strains and growth conditions
The Staphylococcus aureus strains used in this study were derived

from the previously characterized osteomyelytis isolate, UAMS-1

[26], and are listed along with plasmids used in Table 1. All the

experiments were initiated using fresh overnight cultures grown at

37uC in tryptic soy broth (TSB) (EMD Biosciences, Gibbstown,

NJ) using a 10:1 flask to volume ratio.

DNA manipulations
An lrgAB mutation was generated in the UAMS-1 background

using a deletion plasmid previously used to make the lrgAB mutant

in strain RN6390 [19]. This plasmid was transformed into S. aureus

strain RN4220 by electroporation, spread onto tryptic soy agar

(TSA) plates containing Erm and incubated at 30uC overnight.

The plasmid was then transferred into UAMS-1 by phage-

mediated transduction [27]. Transductants were grown at the

non-permissive temperature (43uC) in the presence of tetracycline

to select for cells in which the plasmid had integrated into the

chromosome via homologous recombination. To promote a

second recombination event, a single colony was inoculated into

antibiotic-free TSB and grown at 30uC for five days after

performing 1:1000 dilutions into fresh antibiotic-free media each

day. After the fifth day the culture was diluted and plated on TSA

medium to yield isolated colonies. The colonies were then

screened for ErmR and TcS. Verification that the lrgA and lrgB

genes had been deleted was carried out by PCR amplification and

Southern blot analyses. The confirmed mutant strain was

designated KB1045.

Complementation of the lrgAB mutation was achieved using a

plasmid expressing the lrgAB operon using its native promoter.

The S. aureus sequence for strain MRSA252, which has been

shown to be most closely related to UAMS-1 [28], was used to

design an oligonucleotide primer (lrgA-pro-BamHI-F; 59-

CGCGGATCCGAATCGTTATGAAAAACGATTGAATCC-

39) that annealed to the sequence starting 308 bp upstream of the

lrgA locus while inserting a BamHI restriction endonuclease

cleavage site at the 59 end of the fragment. Another primer (lrgB-

KpnI-R; 59-GCGGGTACCTTAGAAGAATATTGCTACAAA-

GACAGGC-39) was designed to anneal near the end of the lrgB

gene and incorporate a KpnI restriction site at the 39 end of the

amplified DNA fragment. After PCR amplification, the lrgAB-

containing DNA fragment was sub-cloned using the TA cloning

kit (Invitrogen, Carlsbad, CA) and pCR2.1 into E. coli strain

DH5a and subsequently sequenced to ensure that no mutations

had been introduced during PCR-amplification. Next, the lrgAB

insert was excised by digestion with BamHI and KpnI, and

inserted into the low-copy vector, pJE04 (Table 1). This resulting

complementation plasmid, designated pDR45, was transformed

into S. aureus RN4220 by electroporation and then into KB1045

generating strain KB1046 (Table 1).

Static biofilm assays
To determine the sensitivity of biofilms to DNase I and

polyanethole sulfonate (PAS), static biofilm assays were performed

as described previously [7]. Costar 3596 (Corning Life Sciences,

Acton, MA) plates were pre-coated for 24 h with 200 ml of 20%

(vol/vol) human plasma (Sigma, St. Louis, MO) in bicarbonate

buffer. Wells were inoculated with 200 ml of overnight S. aureus

cultures diluted in tryptic soy broth (TSB) supplemented with

3.0% (wt/vol) NaCl and 0.5% (wt/vol) glucose (TSBsg) to an

OD600 of 0.05. Where indicated, 28 U of DNase I per well or

500 mg/ml PAS per well was added. Static biofilms comparing the

phenotypes of the UAMS-1, KB1050, KB1045, and KB1046

strains were performed similarly except that 16% plasma was used

to coat all the wells, and the media used was supplemented with

0.5% glucose (TSBg). Static biofilms were grown for 24 h and

adherence was analyzed by washing twice with 200 ml phosphate

buffered saline (PBS), fixing with 100 ml ethanol for 1 min, and

staining with 100 ml crystal violet for 1 min as previously

described. Biofilm quantification was performed by measuring

the amount of crystal violet retained in the wells (at A595) with a

Victor3 Multilabel Counter (Perkin Elmer, Waltham, MA).

Isolation of eDNA from static biofilms was performed as described

previously [7]. After 24 h, the plates were chilled at 4uC for

15 min, and 1.0 ml of 0.5 M EDTA was added to each well. The

supernatants were discarded, and the unwashed biofilms were

harvested by resuspension in 50 mM TES buffer (Tris_HCl;

Table 1. Strains and plasmids used in this study.

Strain or

plasmid Description Reference

Escherichia coli

DH5a Host strain for construction of
recombinant plasmids

[49]

Staphylococcus aureus

RN4220 Highly transformable strain;
restriction-deficient

[50]

UAMS-1 Clinical isolate [26]

KB1050 UAMS-1 cidA:Em [25]

KB1045 UAMS-1 lrgAB::Em This work

KB1046 UAMS-1 lrgAB::Em (pDR45) This work

UAMS-1471 UAMS-1 Dnuc [41]

UAMS-1552 UAMS-1471 (pLI50::nuc) [41]

USA300 LAC USA300-type isolate [51,52]

Plasmids

pCR2.1 E. coli PCR cloning vector Invitrogen

pCN50 Shuttle vector conferring CmR [53]

pCN8298 Low-copy shuttle vector [53]

pJE04 pCN8298, CmR replacing EmR This work

pDR45 pJE04::lrgAB This work

pAH9 sarA promoter P1-RFP, AmpR/ErmR [3]

doi:10.1371/journal.pone.0005822.t001
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pH 8.0/10 mM ETDA/500 mM NaCl) and transferred into pre-

chilled tubes. After centrifugation for 5 min at 4uC, 100 ml of each

supernatant was transferred to a tube containing 300 ml of TE

buffer (10 mM Tris_HCl; pH 8.0/1.0 mM EDTA), and extracted

once with an equal volume of phenol/chloroform/isoamyl alcohol

(25:24:1) and once with chloroform/isoamyl alcohol (24:1). The

aqueous phase of each sample was then mixed with 1/10 volume

of 3.0 M Na-acetate (pH 5.2) and three volumes of ice-cold 100%

(vol/vol) ethanol and stored at 20uC. The next day, the ethanol-

precipitated DNA was collected by centrifugation for 20 min at

4uC and 18,0006g, washed with ice-cold 70% (vol/vol) ethanol,

air-dried, and dissolved in 20 ml of TE buffer. Q-PCRs were

performed on 1:10 dilutions of each sample with the LightCycler

DNA Master SYBR Green I (Roche) using four primer sets [7].

Both the static biofilm assay and eDNA concentration levels were

statistically analyzed based on the repeated measures ANOVA

method adjusting for gene effects.

Flow-cell biofilm assays
Flow-cell biofilm assays were performed using an FC271 flow-

cell apparatus (Biosurfaces Technology Inc, Bozeman, MT)

containing a 2 mm thick polycarbonate coupon and assembled

according to manufacturer’s instructions. Biofilm formation was

initiated by inoculating with overnight cultures that had been

adjusted to an OD600 of 2.0 and then diluted 1:1,000 in TSB. A

total of 3.0 ml of the diluted culture was injected into the chamber

and allowed to incubate statically for 2 hours. After this incubation

period, 5% TSB (vol/vol) supplemented with 0.125% glucose was

constantly perfused over the biofilm in a once-through system

using a Rainin RP-1 Peristaltic Pump (Rainin Instrument LLC,

Woburn, MA). Media was pumped at a rate of 0.25 ml/min. For

high-inoculum biofilms, the growth conditions were similar except

that the media was adjusted to 2% TSB supplemented with 0.2%

glucose, and a 1:100 dilution of overnight culture was used to

inoculate the flow-cell chamber.

After three days of biofilm development, macroscopic images

were taken using a Canon EOS camera with a macroscopic lens

(18–55 mm) (Canon Inc, New York, NY). For confocal laser

scanning microscopy (CLSM) analysis, the media flow was stopped

and fluorescent dyes were injected into the flow-cell chamber.

Syto-9 (1.3 mM final concentration) was applied to identify viable

cells in the biofilm, propidium iodide (PI; 4.0 mM final

concentration) was added to stain dead cells, and Toto-3

(2.0 mM final concentration) was used to stain both dead cells

and eDNA. The media tubing was then clamped and the biofilm

was imaged using a Zeiss 510 Meta CLSM with an Achroplan

4060.8 n.a. water dipping objective. The Syto-9 and PI

fluorophores were exited with an argon laser at 488 nm, and the

emission band-pass filters used for Syto-9 and PI were 515615 nm

and 630615 nm, respectively. Excitation of Toto-3 was achieved

using a HeNe 633 nm laser and emissions were collected using a

680630 nm filter. Examination of high-inoculum biofilms was

performed using strains each containing pAH9 which confers RFP

fluorescence (Table 1) using a Radiance 2100 system (Biorad) with

a Nikon Eclipse E600 microscope. Z-stacks were collected at

1.0 mm intervals and the images were compiled to generate three-

dimensional renderings. All confocal parameters were set using

wild-type biofilm and were used as standard settings for

comparison to the biofilms produced by the mutant and

complementation strains. Regions of interest within the biofilms

were selected from similar areas within each flow-cell chamber

and each confocal experiment was repeated a minimum of four

times. CLSM z-stack processing was performed using both the

Zeiss ZEN LE software package (Carl Zeiss, Jena, Germany) and

the Volocity software (Improvision, Lexington, MA). Measure-

ments of the biofilms produced were performed using the

COMSTAT software package [29] calculating the biomass,

thickness, and roughness coefficients of the biofilm data accumu-

lated for at least three separate image z-stacks.

Sensitivity of mature, low-inoculum biofilms to DNase I was

assessed by growing the biofilms in an FC271 flow-cell apparatus

as described above. After one or three days of biofilm

development, a mixture of RNase-free DNase I (Qiagen, Valencia,

CA; final concentration of 0.5 knitzUNml21) and 20 mM CaCl2
was added to the growth medium and biofilm growth was

continued for an additional six hours. High-inoculum biofilms

were grown for two days before the addition of RNase-free DNase

I and 20 mM CaCl2 for a total of three days. All macroscopic

images were taken using a Canon EOS camera with a

macroscopic lens as described above.

Results

Early lysis is important for biofilm adherence
It has been established that eDNA released as a result of cell

lysis aids in the formation of an adherent staphylococcal biofilm

[6,7,14,30]. To probe the temporal requirements for lysis during

the initial stages of biofilm formation, we performed a time-course

experiment in which cell lysis was blocked at various time points

during development by the addition of polyanethole sulfonate

(PAS), a chemical lysis inhibitor that does not affect growth

[31,32]. After 24 hours of biofilm development, the wells were

washed and the amount of biofilm remaining was assessed by

staining with crystal violet and quantifying the amount of stain that

was retained [7]. Despite the presence of similar amounts of

bacterial growth (data not shown), PAS treatment at the zero and

two-hour time points resulted in a dramatic reduction in the

amount of adherent biomass (Fig. 1) and correlates with lower

eDNA levels measured from biofilms grown in the presence of

PAS as previously reported [7]. In contrast, the addition of PAS as

early as four hours post-inoculation had little effect on biofilm

Figure 1. Extracellular DNA-mediated attachment of static
biofilm. S. aureus UAMS-1 static biofilms were treated with either
DNase I (grey bars) or PAS (black bars) at the time of inoculation (t = 0),
and at 2, 4, 6, 10, and 24 hours post-inoculation. All biofilms were
grown at 37uC for a total of 24 hours. 24-hour biofilms were allowed to
grow for several hours after PAS or DNase I addition, to allow full
penetration and activity of the compound on the biofilm. The biofilms
were washed, stained with crystal violet, and retained biomass was
quantified by measuring the absorbance of each well at an absorbance
of 655 nm. Mean values from three independent experiments are
shown and error bars represent the SEM.
doi:10.1371/journal.pone.0005822.g001
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adherence. In parallel, biofilms were exposed to DNase I at each

point during this time course experiment to gauge the contribution

of eDNA to biofilm adherence. Unlike PAS treatment, the

addition of DNase I at all time-points diminished cell adherence

(Fig. 1) without having a demonstrable effect on bacterial growth

(data not shown). These results indicate that cell lysis during the

initial stage of biofilm development releases a sufficient amount of

genomic DNA to mediate adherence. Furthermore, removal of

this eDNA at any point during biofilm development in this static

model of biofilm growth results in decreased biofilm adherence.

Effect of lrgAB on biofilm development
Previous results from our laboratory [7] have also demonstrated

the dependence of cell lysis during biofilm development on the S.

aureus cidA gene encoding a known effector of murein hydrolase

activity [18,25,33]. In the current study, we have extended our

analysis of cell lysis to address the impact of the cid counterpart, lrg,

on biofilm formation. After several unsuccessful attempts to

demonstrate a reproducible phenotype of the lrgAB mutant in

the static biofilm assay (unpublished data), we reasoned that the

high level of NaCl (3.0% wt/vol) in the biofilm media may

suppress any effect of lrgAB on the biofilm. We based this

reasoning on data indicating that a high concentration of NaCl

inhibits lrgAB expression [34] and because high NaCl levels are

known to enhance autolysis [31]. Thus, static biofilm assays were

repeated using medium lacking NaCl supplementation. Under

these conditions, the lrgAB mutant (KB1045) biofilm displayed

significantly enhanced adherence compared to the parental strain

(Fig. 2). Furthermore, wild-type levels of biofilm adherence were

restored in the complementation strain (KB1046) expressing lrgAB

from a plasmid (Fig. 2A). As observed previously, the cidA mutant

(KB1050) exhibited a reduced capacity for biofilm adherence

compared to wild-type (Fig. 2A). As biofilm adherence was

previously shown to be dependent on the amount of eDNA

associated with the biofilm [7], we also measured the relative

concentration of eDNA in each biofilm using quantitative real-

time PCR (qRT-PCR). As observed previously [7], the cidA

mutant biofilm contained significantly reduced levels of eDNA

associated with the biofilm (Fig 2B). Conversely, the lrgAB mutant

biofilm demonstrated significantly increased levels of eDNA

compared to wild-type (Fig. 2). Importantly, the adherence and

eDNA associated with the biofilm produced by the lrgAB

complement were not significantly different compared to the

wild-type strain. Overall, the results of these experiments suggest

that the lrgAB operon has an inhibitory role in cell lysis and

adherence during biofilm formation.

Analysis of biofilm maturation
Since static assays only measure the early events during biofilm

development and not biofilm maturation, we tested the effects of

the cid and lrg mutations during later stages of biofilm development

by performing flow-cell experiments in which the biofilms were

allowed to develop over a period of three days. As shown in

Figure 3 (A & B), wild-type S. aureus (UAMS-1) produced biofilm

with distinct structures randomly formed throughout the surface of

the flow-cell chamber, reminiscent of the three-dimensional tower

structures formed by other well-characterized biofilm producers

[9,11,12,17,35]. Staining of the UAMS-1 biofilm with the LIVE/

DEAD BacLight viability stain and visualization by CLSM

revealed that the tower structures arose from and were surrounded

by a flat mat or ‘‘lawn’’ of densely packed cells that was

approximately 10 mm thick. The variation in the sizes of the

structures formed is evident in macroscopic images taken after

three days of biofilm growth (Fig. 3A). Although there is a clear

indication of live (green) and dead (red) cells homogeneously

scattered throughout the lawn, an increased concentration of dead

cells localized within the towers is apparent (Fig 3B), similar to

observations of P. aeruginosa biofilm [11]. The tower structures

were not observed in static assays and were only visible in the flow-

cell assays macroscopically after the second day of incubation

(unpublished results). Furthermore, the flow-cell biofilm structures

form abundantly using dilute TSBg media and an initial inoculum

of approximately 56105 CFU. This is in contrast to flatter, less

structured biofilms grown using higher inoculums to initiate

Figure 2. Static assays and eDNA quantification. S. aureus static
biofilms were grown for 24 hours. (A) Washed biofilms were stained
with crystal violet and quantified spectrophotometrically at an
absorbance of 595 nm. The decrease in the cidA mutant (KB1050)
biofilm adherence observed compared to the wild-type strain (UAMS-1)
was statistically significant (p = 0.0004; ANOVA), as was the increased
lrgAB mutant (KB1045) biofilm adherence (p = 0.021). There is no
significant difference between the complementation strain (KB1046)
(p = 0.39) and the UAMS-1 phenotype. (B) Extracellular DNA was isolated
from the biofilm matrices of UAMS-1, KB1050, KB1045, and KB1046 and
qRT-PCR of four chromosomal loci were amplified, gyr (black bars), lue
(slashed bars), lys (grey bars), and fhu (white bars). The relative biomass
was quantified at OD600, and the eDNA measurements were normalized
to total biofilm biomass as described previously [7]. The relative
concentration of eDNA decreases in the cidA mutant (p,0.0001) and
increases in the in the lrgAB mutant (p = 0.020) compared to the wild-
type. There is no significant difference between the complementation
strain (KB1046) (p = 0.36) and the wild-type. Results are depicted as
averages of three independent experiments and error bars represent
the SEM.
doi:10.1371/journal.pone.0005822.g002
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biofilm growth, conditions similar to those used in the static

biofilm assay. These observations are consistent with the

observation that limiting nutrients allows P. aeruginosa biofilm to

form better secondary structure [9].

In contrast to the parental UAMS-1 strain, the cidA (KB1050)

and lrgAB (KB1045) mutants formed biofilms after three days

growth that lacked obvious tower structures (Fig. 3; panels C-F).

CLSM data demonstrated that the cidA and lrgAB mutants

produced biofilms under these conditions that were homogeneous

in nature, lacking the densely-packed lawn and tower structures

that are characteristic of the wild-type biofilm. As shown in figure 3

(panels G & H), complementation of the lrgAB mutation partially

restored the wild-type biofilm phenotype as indicated by the

presence of tower structures and the characteristic dense, flat basal

biofilm. However, as was observed with the static assay,

complementation was incomplete as the tower structures were

not as well defined and fewer dead cells were present. The visible

abundance of the lawn in the UAMS-1 biofilm compared to the

mutants agreed favorably with the roughness coefficients calculat-

ed using COMSTAT analysis of the CLSM images, which were

0.23860.056 for the wild-type biofilm and 0.79060.121 and

0.94160.119 for the cidA and lrgAB mutants, respectively. The

complemented strain generated a roughness coefficient that was

intermediate between the wild-type and mutant strains

(0.56360.071) consistent with the observed architecture visualized

in figure 3G and 3H. The average maximum thickness

(determined from multiple images) of the biofilms produced by

the cidA and lrgAB mutants (143.6662.40 and 112.75610.14 mm,

respectively) were higher compared to the parental and lrgAB

complemented strains (94.5066.69 and 110.8063.54 mm, respec-

tively). In addition, the COMSTAT data indicated that the wild-

type biofilm contained greater biomass (15.3561.43 mm3/mm2)

compared to the cidA and lrgAB mutant biofilms (8.7161.56 mm3/

mm2 and 4.8060.56 mm3/mm2, respectively). As above, the

reduced biomass generated by the lrgAB mutant was partially

complemented (8.6960.813 mm3/mm2) by the presence of the

lrgAB expression from a plasmid. Finally, the CLSM images also

revealed a pattern of LIVE/DEAD staining that was distinct in the

mutant strains. Notably, the dead cells in the cidA mutant biofilm

accumulated to high numbers (Fig. 3D), consistent with the

observation that this mutant exhibits normal cell death in

stationary phase planktonic cultures but does not lyse [36]. In

contrast, the lrgAB mutant appeared to contain more live cells

compared to the wild-type strain (Fig. 3; compare panels B & F).

Combined, these observations provide further support for the

importance of the cid and lrg operons during biofilm formation.

Since the heterogeneous nature of the flow-cell biofilms made

QRT-PCR quantification of eDNA difficult, we chose to visualize

the eDNA produced within the biofilm using the nucleic acid-

specific fluorophore, Toto-3. The advantage of this stain is that it

has greater fluorescence enhancement compared to PI and Syto-9

when bound to nucleic acid, thereby facilitating visualization of

eDNA by CLSM [37]. As illustrated in Figure 4 (panel A), Toto-3

staining was most prominent in the wild-type biofilm tower

structures and was diffuse in nature suggesting that it is detecting

eDNA. In contrast, the lrgAB mutant biofilm stained more

intensely with Toto-3 throughout the biofilm consistent with the

increased levels of eDNA detected in the static assays (Fig. 2). As

observed in the previous experiment (Fig. 3), the dense 10 mm

basal layer of biofilm and well-defined structures were also absent

in the lrgAB mutant. Importantly, complementation of the lrgAB

mutant resulted in Toto-3 staining that was more similar to the

parental strain, although the diffuse staining associated with the

towers was not observed (Fig. 4). Combined, these studies support

the model in which the cid and lrg operons encode effectors and

inhibitors of cell lysis, respectively, and that they are important for

the control of DNA release during biofilm development [20,38].

Susceptibility of mature staphylococcal biofilm to
DNase I
In figure 1, we demonstrated that static biofilms are sensitive to

DNase I treatment at any stage during the 24 hour growth period,

indicating that eDNA is an important part of the biofilm matrix

during the initial stages of biofilm development. To investigate the

role of eDNA in more mature biofilm, S. aureus UAMS-1 was

grown in the flow-cell biofilm model and treated with DNase I at

both early (24 hr) and late (72 hr) time points. The biofilms were

then allowed to grow for an additional six hours and visualized. As

shown in figure 5, the biofilms exposed to DNase I were visibly

disrupted compared to the biofilms imaged immediately prior to

DNase I exposure. In contrast, biofilms treated with DNase I after

72 hr growth appeared to be largely resistant to DNase I when

comparing pre- and post-DNase I treatment images (Fig. 5).

Interestingly, wild-type biofilms initiated with higher inoculums

(approximately 16108 cfu/ml versus 56105 cfu/ml), resulted in

greater sensitivity to DNase I as demonstrated by the nearly

complete removal of a three-day old biofilm as determined by

CLSM (Fig. 5B). These results indicate that biofilm dispersal is

impacted by the age of the biofilm as well as number of bacterial

cells used to initiate biofilm growth, illustrating the fact that

biofilms established using different conditions are distinct from

each other.

Staphylococcal nuclease effects biofilm maturation
Given the effect of exogenously added DNase I on S. aureus

biofilm, we considered the possibility that staphylococcal thermo-

nuclease has a previously unappreciated role in biofilm develop-

ment. Indeed, the nuc gene encoding staphylococcal thermonu-

clease was found to be differentially regulated within a biofilm

[39,40] and was recently shown to diminish adherence of UAMS-

1 biofilm under conditions where it is over-produced [41].

Therefore, we grew the recently characterized nuc mutant

(UAMS-1471) in our flow-cell assay to determine the impact of

staphylococcal thermonuclease on biofilm formation. Interestingly,

the nuc mutant biofilm exhibited increased Toto-3 staining

compared to the parental and complementation strains (Fig. 6).

The increased fluorescence intensity can be attributed to

increased eDNA levels in the matrix as dilution plating

experiments revealed similar viable cell densities between these

strains (data not shown). The nuc mutant also had a higher

roughness coefficient (0.66760.058) relative to the parental

(0.23860.056) and complementation strains (0.52360.174)

indicating that the altered level of eDNA had an significant

effect on biofilm architecture. The effect of the nuc mutation was

Figure 3. Flow cell biofilm assays. S. aureus 3-day biofilms were grown and representative images were taken using a macroscopic camera
(panels A, C, E, and G) or CLSM (panels B, D, F, and H). The samples were stained with Syto-9 (green) and propidium iodide (PI; red) to indicate live and
dead cell populations, respectively. The UAMS-1 (A and B), cidAmutant (C and D), lrgABmutant (E and F), and lrgAB complemented (G and H) biofilms
were grown for three days in the flow-cell model prior to imaging. The images shown are representative of four independent experiments.
doi:10.1371/journal.pone.0005822.g003

Modulation of eDNA Release

PLoS ONE | www.plosone.org 6 June 2009 | Volume 4 | Issue 6 | e5822



Modulation of eDNA Release

PLoS ONE | www.plosone.org 7 June 2009 | Volume 4 | Issue 6 | e5822



even more pronounced in biofilms initiated with higher

inoculums, resulting in a doubling in thickness from approxi-

mately 10 mm to approximately 20 mm (Fig. S1). These results

demonstrate that staphylococcal thermonuclease plays a signif-

icant role in biofilm development possibly by degrading the

eDNA associated with the biofilm.

Discussion

The S. aureus cid and lrg operons have been previously shown to

have opposing effects on the control of murein activity and lysis in

cells grown in planktonic culture. The cidA gene is an effector of

these processes as indicated by the observation that a cidA mutant

displays reduced murein hydrolase activity and stationary phase

lysis [18,25,36]. In contrast, the lrgAB operon is associated with the

inhibition of murein hydrolase activity [19]. Combined with the

similarities of the cidA and lrgA gene products to bacteriophage-

encoded holins, it has been proposed that these proteins function

in a manner similar to holins and antiholins, respectively

[18,20,21,42]. The results of the current study support this model

by demonstrating the opposing effects of the cid and lrg operons in

the control of cell lysis during biofilm development and provide

Figure 5. Mature biofilm sensitivity to DNase I. (A) S. aureus UAMS-1 biofilms were grown in the flow-cell model with low inoculum for one or
three days. The images of untreated biofilms where taken immediately before DNase I exposure and the images of the same biofilms treated with
DNase I were taken five hours later. (B) S. aureus UAMS-1 biofilms harboring a constitutively-expressed gene (rfp) encoding red fluorescence protein
were grown in the same flow-cell model using a higher inoculum for two days. The biofilm was then treated with DNase I for a total of 24 hours after
which CLSM z-stacks were taken. Renderings of the z-stack CLSM data were performed using the Volocity software.
doi:10.1371/journal.pone.0005822.g005

Figure 4. Visualisation of eDNA. S. aureus flow-cell biofilms were stained with Syto-9 and Toto-3 to indicate the location of live cells (green) and
dead cells (punctuate red) and extracellular DNA (diffuse red). A yellow appearance is observed where live cells and eDNA are both present. The
UAMS-1 (A), cidA mutant (B), and lrgAB mutant (C) biofilms were grown for three days prior to imaging and representative CLSM images are shown.
The images shown are representative of three independent experiments.
doi:10.1371/journal.pone.0005822.g004
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additional insight into factors modulating the release and

metabolism of genomic DNA within a biofilm.

Building on the observation that an inhibitor of lysis, PAS,

reduced genomic DNA release and biofilm adherence [7], we

assessed the temporal requirements for lysis during the early stages

of biofilm development. As shown in figure 1, addition of PAS

within the first four hours of development resulted in the reduced

capacity of the biofilm to adhere to the surface of microtiter wells.

Interestingly, this effect of PAS was lost after the biofilm was

greater than four-hours old, presumably due to the accumulation

of sufficient levels of eDNA in the biofilm matrix to allow for

adherence throughout the entire time-course of the experiment.

Although more mature flow-cell biofilms were also sensitive to

DNase I treatment, the effect diminished after three days of

growth (Fig. 5), suggesting that the biofilm matrix either becomes

less dependent on eDNA over time, or that the matrix becomes

resistant to the effects of the DNase I treatment. Recently

published results, however, demonstrate that protease treatment

can also disrupt a mature biofilm [3,41], indicating that a

proteinaceous component also exists in the biofilm matrix that

either protects the eDNA from degradation or independently

maintains mature biofilm adherence.

In addition, this is the first study to examine the effect of lrgAB

on biofilm development. Since the lrg operon is the inhibitory

counterpart to cid, an lrg mutation would be expected to produce

an opposing phenotype compared to that of a cid mutation.

Indeed, the lrgAB mutant exhibited enhanced biofilm adherence

and increased eDNA associated with the biofilm matrix relative to

the parental and complemented strains (Figs. 2, 3, and 4). In the

static assay, this phenotype was found to be partially dependent on

the level of NaCl used in the assay media, likely due to the

repressive effects that NaCl has on lrgAB expression (unpublished

results) and/or the stimulatory effects it has on lysis [31].

Importantly, these data are consistent with the proposed role of

lrgA gene product as an antiholin [18,19], inhibiting the activity of

the cidA-encoded holin and allowing increased activity of murein

hydrolases.

Another finding of this study was that tower structures, which

formed in more mature biofilms, were associated with what

appeared to be large quantities of eDNA (Fig. 4). Our CLSM data

revealed that the internal regions of the tower structures are

devoid of intact cells and are comprised, in part, of eDNA (diffuse

red staining) beneath a layer containing a combination of dead

cells and eDNA (intense red staining) (Fig. 4A). Interestingly, the

tower structures exhibited a lack of staining near the base

suggesting that the eDNA in this region has either diffused away,

or has been degraded, forming a microenvironment lacking

bacteria or eDNA (Fig. 4A). These results are consistent with

observations of P. aeruginosa and S. epidermidis biofilms, which also

form hollow voids within tower structures [11,43]. Furthermore,

the preponderance of eDNA in towers has also been observed in P.

aeruginosa biofilms [11] and mutations in the cid and lrg homologues

of this organism also had opposing effects on cell lysis during

biofilm development [44].

In previous studies, our laboratory has described regulatory

signals and transcription factors that control cid and lrg expression

during planktonic growth [7,24,25,45]. During biofilm develop-

ment, however, it has been hypothesized that the expression of the

cid and lrg operons is differentially regulated within individual cells

in the biofilm population and that this control dictates which cells

are destined for death and lysis and, on the other hand, which cells

remain viable [38]. For example, this model predicts that those

cells expressing high levels of cid and low levels of lrg will ultimately

die and lyse, while those expressing low levels of cid and high levels

of lrg will remain viable. Importantly, the balance between these

two opposing operons may be critical in determining the

proportion of live and dead cells within a biofilm [20].

Furthermore, the ‘‘tipping point’’ may vary depending on the

environmental conditions. Indeed, recent data suggests that

staphylococcal biofilms are comprised of distinct anaerobic

microenvironments [46] and that cell lysis is enhanced within

the anaerobic portions of the biofilm (Philip Stewart; personal

communication). Recent studies also indicate that cidA expression

is induced under anaerobic conditions and that this leads to cell

lysis in these regions of the biofilm (data not shown). Whether or

not known regulators of cid and lrg expression, such as LytSR and

CidR [22,23,45,47], are involved in the control of their expression

within a biofilm remains to be determined.

In general the environmental conditions under which biofilms

are grown have a dramatic effect on biofilm development. After

several attempts to optimize biofilm structure formation in S.

aureus, we observed that a more dilute starting inoculum aided the

generation of tertiary structure within the biofilm. The lower

inoculum led to pronounced tertiary structure formation in

biofilms produced by UAMS-1 (Figs. 3 and 4), as well as those

produced by USA300 LAC (data not shown). It is hypothesized

that growth of biofilms using a high inoculum may subvert tower

formation due to the high density of cells on the substratum,

resulting in thicker initial biofilms. In contrast, the propagation of

biofilms using low inoculums may allow the biofilm to mature

more gradually, allowing both temporal and spatial signals needed

for secondary structure formation. The initial cell density on the

substratum may also explain why ‘‘low inoculum’’ biofilms are

more resistant to DNase I treatment at the three-day time point in

comparison to ‘‘high inoculum’’ biofilms. For example, since the

initial steps of biofilm adherence are lysis dependent (Fig. 1),

increased numbers of cells used to initiate biofilm formation may

lead to a proportionally increased number of cells undergoing cell

lysis and, consequently, an enhanced dependence of biofilm

adherence on eDNA and increased sensitivity to DNase I

treatment. Alternatively, the greater concentration of cells on the

substratum may provide an environment promoting cell lysis and

DNA release due to the metabolic activity of thick biofilms [46].

Regardless of the mechanism, continued investigations should lead

to important information related to the initial events needed for

biofilm development.

Because of the sensitivity of the S. aureus biofilm to DNase I, we

explored the possibility that staphylococcal thermonuclease may

play a role in biofilm development. This is consistent with the

recent finding that nuc makes a significant contribution to the

biofilm deficient phenotype of a sarA mutant [41]. In the current

study, biofilms produced by the nuc mutant (UAMS-1471) were

thicker and contained increased levels of eDNA in the matrix

compared to the parental and complemented strains (Fig. 6).

Importantly, these phenotypes were observed in biofilms produced

using both low (Fig. 6) and high initial inoculums (Fig. S1). Thus,

these results suggest that the lysis-mediated release of genomic

DNA may be balanced by the active degradation of eDNA by

Figure 6. Staphylococcal thermonuclease affects biofilm structure. Representative CLSM z-stacks of UAMS-1 (A), nuc mutant (B), and nuc
complemented (C) biofilms stained with Syto-9 (green) and Toto-3 (red). Syto-9 represents the live cells and Toto-3 represents dead cells and eDNA.
The images shown are representative of three independent experiments.
doi:10.1371/journal.pone.0005822.g006
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thermonuclease, leading to an optimized level of eDNA associated

with the biofilm. Whether this activity is also important in the

dispersal of cells from the biofilm, as has been well-documented in

S. aureus [3,48], remains to be determined.

Overall, the results of this study provide further insight into the

regulatory mechanisms controlling cell death and lysis during

biofilm development and are consistent with the previously

proposed functions of the cid and lrg operons in the control of

cell lysis. Furthermore, these studies support the role of genomic

DNA in biofilm formation and suggest that its degradation may be

an important aspect of biofilm maintenance that was not

previously recognized. Continued studies of the Cid/Lrg system,

including the analysis of the metabolic, temporal, and spatial

factors that affect expression of this system should be important for

gaining a full understanding of biofilm formation and the specific

roles of these proteins in this process.

Supporting Information

Figure S1 High inoculum nuclease mutant biofilms. Biofilms of

UAMS-1, nuc mutant, and nuc complemented strains each

harboring pAH9 conferring RFP fluorescence where initiated

with a 1:100 inoculum. The three-day biofilms of each were

imaged using CLSM and z-stacks were rendered using Volocity

software.

Found at: doi:10.1371/journal.pone.0005822.s001 (0.74 MB TIF)
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