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Abstract

Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distinct site. There is growing
evidence that allosteric cooperativity can be communicated by modulation of protein dynamics without conformational
change. The mechanisms, however, for communicating dynamic fluctuations between sites are debated. We provide a
foundational theory for how allostery can occur as a function of low-frequency dynamics without a change in structure. We
have generated coarse-grained models that describe the protein backbone motions of the CRP/FNR family transcription
factors, CAP of Escherichia coli and GlxR of Corynebacterium glutamicum. The latter we demonstrate as a new exemplar for
allostery without conformation change. We observe that binding the first molecule of cAMP ligand is correlated with
modulation of the global normal modes and negative cooperativity for binding the second cAMP ligand without a change
in mean structure. The theory makes key experimental predictions that are tested through an analysis of variant proteins by
structural biology and isothermal calorimetry. Quantifying allostery as a free energy landscape revealed a protein ‘‘design
space’’ that identified the inter- and intramolecular regulatory parameters that frame CRP/FNR family allostery. Furthermore,
through analyzing CAP variants from diverse species, we demonstrate an evolutionary selection pressure to conserve
residues crucial for allosteric control. This finding provides a link between the position of CRP/FNR transcription factors
within the allosteric free energy landscapes and evolutionary selection pressures. Our study therefore reveals significant
features of the mechanistic basis for allostery. Changes in low-frequency dynamics correlate with allosteric effects on ligand
binding without the requirement for a defined spatial pathway. In addition to evolving suitable three-dimensional
structures, CRP/FNR family transcription factors have been selected to occupy a dynamic space that fine-tunes biological
activity and thus establishes the means to engineer allosteric mechanisms driven by low-frequency dynamics.
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Introduction

Small regulatory molecules frequently bind proteins at regions

remote from the active site. These allosteric events can switch

proteins between inactive and active states [1]. Knowledge of the

molecular basis of allostery derives from a wealth of theoretical

and experimental studies and traditionally describes the process in

terms of conformational change within the protein [2,3].

Combinations of X-ray crystallography and NMR have permitted

analysis of the ligand binding sites, intermolecular interactions,

and conformational fluctuations that underpin diverse allosteric

systems [4,5]. There is also considerable evidence that allosteric

cooperativity can be communicated between distant sites on

proteins through modulation of their dynamic properties, even in

cases where that are no structural changes between the ligand

bound (holo) and unbound (apo) forms [6–12]. Since the original

identification, by Cooper and Dryden [4], of this alternative route

of ‘‘allostery without conformational change,’’ there has been

considerable debate over the mechanisms by which dynamic

fluctuations are communicated between allosterically coupled sites

on proteins.

One hypothesis for fluctuation-induced allostery is that binding

modifies the structure of the thermally excited global normal

modes and thence the coupling interaction between cooperative

elements. This in turn affects the structural ensemble of the distant

sites and so the free energy of binding [13–15]. Another view

maintains that physically connected pathways of excited or

repressed dynamics, coupled along their trajectories, connect
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allosteric sites [16–18]. Here we propose the hypothesis that the

normal modes of protein structural motion, large-scale motions

dispersed across the entire protein, are important carriers of the

allosteric signal and act without requiring structural change.

Previous studies of the normal modes have demonstrated that

conformational transitions in proteins, including those that

underpin allosteric regulation dependent on conformational

change, are well described by one or a few low-frequency modes

[19–25]. The normal modes, however, can also be used to describe

the whole spectrum of internal fluctuations of a protein around a

mean structure. The low-frequency global modes, in particular,

can involve entire protein domains. Alteration of the normal

modes might therefore be communicated to distant sites of a

protein as a change in the degree of motion around a mean

structure without overall conformational change. Global low-

frequency fluctuation therefore represents an alternative theoret-

ical approach to allosteric communication that does not depend

upon conformational change. An important consequence of this

alternative mechanism of allosteric communication is that it can be

captured by coarse-grained representations and models, such as

the elastic network model (ENM). Here we develop this theory,

and the validity of a coarse-grained model approach, through a

computational and experimental study of the homodimeric CRP/

FNR family transcription factors Catabolite Activator Protein

(CAP) of Escherichia coli and GlxR of Corynebacterium glutamicum.

CAP is a 210-amino-acid transcription factor that binds cAMP

generated by adenylyl cyclase in response to the phosphorylated

form of Enzyme IIAGlc (phosphorylated in response to the

phosphoenolpyruvate-carbohydrate phosphotransferase system)

[26,27]. cAMP-bound CAP regulates the transcription of over

100 genes crucial for carbon utilization through its binding to a

specific promoter region and recruitment of RNA polymerase

[28]. Previous studies of the ligand binding domain of CAP

demonstrated negative cooperativity between cAMP binding sites

in the absence of structural change within this domain [10]. The

observed negative cooperativity in this isolated domain occurs

through a conformational entropic penalty for binding the second

molecule of cAMP, but there is no mechanistic description for how

such a phenomenon can occur in the full-length protein. Seven of

eight CAP mutants previously examined showed a direct

correlation between DDG and the adiabatic compressibility (bsu)

where proteins with a higher bsu (reflecting increased structural

flexibility in solution) demonstrated enhanced negative coopera-

tivity [29]. While it is therefore reasonable to hypothesize a role for

protein dynamics in allostery in CAP, there is no conceptual

framework to describe how these changes in motion might arise,

how they contribute to allostery, and how a resulting theory might

translate to related molecules. CAP is therefore a suitable model

system for a theoretical and experimental investigation of the

contribution of the normal modes to allostery.

Here we propose that changes to global low-frequency protein

backbone fluctuations are carriers of an allosteric signal in CAP

and present this in the context of a significant new quantitative

theory for allosteric coupling. We produce coarse-grained models

that describe global low-frequency protein backbone motions of

CAP and show a strong correlation between negative cooperativity

for cAMP and modulation of the delocalised normal modes on

ligand binding without a requirement for a spatially distinct

physical pathway or conformational change. We demonstrate

experimentally that altered connectivity between backbone

elements in CAP can give predictable alterations to cooperativity

for cAMP binding through altered mode amplitudes. We further

demonstrate a broader applicability for this theory using an

additional CRP/FNR family transcription factor, GlxR of C.

glutamicum. We unite our findings for CAP and GlxR to determine

the extent to which key inter- and intramolecular parameters

contribute to negative cooperativity in CRP/FNR family tran-

scription factors. We further demonstrate that amino acids that

contribute significantly to allosteric control are more likely to be

conserved in variant proteins from diverse species. The theoretical

and experimental work and associated data analysis provide both a

significant advance in our understanding of the mechanisms that

underpin the dynamic regulation of allostery and also a means for

informed rational engineering of cooperativity in proteins.

Results

An ENM for CAP Correctly Predicts Negative Allostery
To computationally address cases of allostery that arise from

fluctuation-modification, without conformational change, requires

a very different approach from those corresponding to the classic

Monod-Wyman-Changeaux case of conformational switching. On

the one hand, fully atomistic simulations are not capable of

attaining, in most cases, the long dynamical time scales explored

by the slow, global dynamic modes whose thermodynamics are

essential for the effect. On the other hand, because these modes by

their nature integrate many local interactions into their effective

geometries and potentials, coarser-grained models of protein

structure can possibly provide sufficiently accurate calculations of

the relevant dynamics, while allowing the computation of

dynamics to the necessary timescales. Models that represent

protein structures by Ca-atom positions alone reproduce low-

frequency modes well in comparison to experimental data [21,30].

We therefore used the co-ordinates from a high-resolution crystal

structure determination of the full-length cAMP bound CAP

homodimer to construct an ENM [31] for the apoprotein as well

as single and double ligand bound holoprotein states (Figure S1).

Free energies, DG, were calculated using the full harmonic

solution, and the negatively cooperative binding of cAMP to

wild-type full-length CAP confirmed by calculating a positive value

for DDG= (DGholo22DGholo1)2(DGholo12DGapo) = 179 cal mol21

consistent with experimentally obtained values (Table S2) [32–

35]. To confirm that the total motion within the ENM is not an

Author Summary

Allostery is a process by which a molecule binding to one
site of a protein alters the activity of the protein at another
site. Allostery is typically thought to occur through a
change in protein structure, but there is now clear
evidence that the dynamic properties of a protein can
also regulate allostery without a change in overall
conformation. Here we examine two members of a large
family of bacterial transcription factors and provide a
mechanism to describe the allosteric binding of their
activating ligands. We demonstrate, in these systems, that
allostery arises as a natural consequence of changes in
global low-frequency protein fluctuations on ligand
binding. We further demonstrate that the higher dimen-
sional parameter space that describes all potential variant
transcription factors can be reduced to a two-dimensional
free energy landscape that determines the key molecular
parameters that predominantly regulate allostery. We
additionally show that the amino acids we determine as
contributing sensitively to allosteric control tend to be
conserved in diverse bacteria; thus we identify a link
between residues that contribute to low-frequency fluc-
tuations and evolutionary selection pressures.

Global Low-Frequency Protein Motions in Allostery
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artefact of coarse-graining, we also carried out molecular

dynamics simulations [36] with full atomistic detail, including an

explicit water model, and performed principle component analysis

(PCA) on the generated trajectories [37]. B factors represent the

convolution of static and dynamic disorder in the crystal. Dynamic

disorder can be attributed to local motions of individual atoms,

whereas static disorder represents different atomic positions in the

individual protein molecules. The experimental B factors, albeit

constrained by crystal packing, therefore represent a reasonable

approximation of the local motions in solution [38]. ENMs and

atomistic PCAs represent overall unconstrained dynamic motions

and hence show much larger deviations in the termini and the

flexible loop regions (for example, residues 150–175 of Figure S2).

The crystallographic B factor data were qualitatively well

represented at either scale of coarse-graining (Figure S2a) and

the distribution of the normal mode frequencies agreed well

between ENM and PCA (Figure S2b). The total predicted motion

within the ENM, at least at the level of B factors and low-

frequency mode structure, is therefore similar to other methods of

analysis and not an arbitrary feature of the model. Since the

fluctuation-induced allosteric effect arises from the low-frequency

structure of the protein dynamics, the ENM level of analysis

applies to the experimental phenomena studied here.

We hypothesized that if side-chain replacement on amino acids

at sites distinct from the cAMP binding site of CAP do not cause

conformational rearrangement, yet increase or decrease amino

acid side chain hydrophobic or electrostatic forces in their local

environments, the normal modes of protein motion would be

altered without significant structural changes. If these changes to

the normal modes have sufficiently global effects, they will in turn

modify cooperativity between the cAMP binding sites through an

entropic contribution to the binding free energy. Amino acid side

chain replacement can therefore act as a sensitive probe of the

contribution of side chain connectivity to cooperativity and the

underlying mechanism for allostery within the elastic structure of

the protein. The change in allosteric free energy (DDG) as a

function of altering the entire primary amino acid sequence (one

residue at a time) can therefore be viewed as a quantitative map of

the contribution of the normal modes to cooperativity. Such a

quantitative map can be constructed either by simulation or

experiment; in practice, it is convenient, as we demonstrate below,

to use simulation of the entire allosteric map to guide mutagenesis

for experimental study. We therefore performed a scanning

computational mutagenesis of the entire CAP protein to investi-

gate the influence of side chain connectivity on cooperativity via

their influence on the normal modes.

Changing the effective elastic potential between protein

backbone carbon atoms in the neighbourhood of each residue of

the ENM in turn and calculating effects on DDG was used to

determine the scanning computational mutagenesis map. The

increase and decrease in elastic potential in the ENM was

hypothesized to simulate the effects of local strengthening and

weakening of side chain interactions in CAP. A color-coded map

corresponding to altered cooperativity with changing local

interaction strength is plotted graphically by amino acid residue

(Figure 1a) and in real space (Figure 1b). The global map for the

ENM (Figure 1a) demonstrates large regions where cooperativity is

susceptible to control by altering side chain connectivity. It is

important to note that these control regions are not necessarily

adjacent to the cAMP-binding site. For example, regions

corresponding to amino acids 127–137 (at the interface between

the two monomers) and 150–162 (within the DNA binding

domain, far from both the dimer interface and cAMP binding

regions) appear to exercise considerable control over cooperativity

without contributing to a spatially distinct dynamic pathway and

without direct interference with the cAMP binding site.

Residues of CAP That Modify the Normal Modes
Predictably Alter Allostery
To experimentally test the model and demonstrate rational

engineering and control of allostery, we selected the residues of

CAP highlighted in Figure 1b. We examined amino acids

predicted to show altered (V132, H160) or neutral (V140)

responses to altered amino acid side chain interactions (Table 1).

The removal (V132A) or addition (V132L) of a side chain methyl

group of V132 was engineered to decrease and increase,

respectively, the strength of hydrophobic interaction across the

dimer interface. Computation predicted that these mutations

would result in more negative and positive cooperativity in CAP,

respectively (Figure 2a) and that the most important contacts

contributing to this effect were with L62 and V132 of the opposing

monomer (Figure S3b). High-resolution X-ray crystal structures of

CAP mutants V132A and V132L demonstrated that these variants

possessed decreased and increased hydrophobic interactions across

the dimer interface, respectively (Figure 2b). Comparison of

variant crystal structures with wild-type demonstrated that there

was no statistically significant change in structure (Figure S4,

Table S1). Cooperativity for cAMP binding was studied by

isothermal titration calorimetry (ITC) for wild-type, V132A, and

V132L proteins to examine whether the experimentally observed

changes in cooperativity matched computational predictions

(Figure 2c–e, Table 1). The ITC data were well-described by a

three-site model, with two major and one minor cAMP binding

site (Figure S5) [39] and allowed derivation of the thermodynamic

parameters for all proteins (Table S2). The qualitative computa-

tional prediction for altered cAMP cooperativity was tested

experimentally including a significant controlled inversion of the

sign of the cAMP cooperativity (V132L). The thermodynamic

parameters for wild-type CAP demonstrated an overall favourable

entropy change and unfavourable enthalpy change on binding the

second molecule of cAMP consistent with a previous report [39].

A previous study of the truncated CAP ligand-binding domain

demonstrated that binding of the second molecule of cAMP was

entropically unfavoured [10]. The difference in thermodynamics

between our experiments (Table S2) and previous experiments

using the ligand-binding domain alone [10] is therefore likely due

to the contribution of motions of the DNA binding domain [40].

This interpretation is supported by previous analysis that has

calculated the thermodynamic contribution of the DNA binding

domains in the switch to the active conformation [41]. Previous

calculations and experiments anticipate that, while the contribu-

tion of the normal modes to allostery is entropically controlled (in

terms of the net allosteric free energy), coupling of the low-

frequency modes to side-chain motion generically gives rise to

additional, but compensating, contributions to enthalpy and

entropy and this is observed in our thermodynamic data (Table

S2) [9]. It is notable that, due to this self-cancelling of the

contribution of local fast modes within the total free energy, the

entropically driven ENM is able to predict qualitative changes to

experimental cooperativity despite the local mode contribution of

enthalpy to overall thermodynamics.

The ENM calculations predicted a reduction in the negative

cooperativity of CAP in response to a reduction in the strength of

the local interactions of residue H160 (Figure 3a). In particular,

H160 was predicted to form interactions that contribute to

allostery with D162 and Q165 (Figure S3a). The mutation H160L

was predicted to break these interactions while maintaining side

chain bulk; this was confirmed by X-ray crystallography of the

Global Low-Frequency Protein Motions in Allostery
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H160L CAP protein (Figure 3b). No overall change in H160L

protein structure was evident compared to wild-type (Figure S4,

Table S1). ITC experiments (Figure 3c) demonstrated that

cooperativity for cAMP became less negative as predicted by

computation (Table 1). This crucial experiment demonstrates that

altering low-frequency motions at a site distant from both the

ligand binding site as well as the dimer interface, and from any

presumed physical pathway of structural change connecting these

sites, can nonetheless give predictable effects on cooperativity.

Altering local interactions associated with V140 was predicted

by the ENM to have minimal effects on cooperativity (Figure 4a)

despite significant local hydrophobic interactions; we therefore

examined the effect of decreased and increased local hydrophobic

interactions in V140A and V140L variants as a control

experiment. The V140L mutant protein had no discernible effect

on protein structure (Figure S4). As predicted by the ENM

mutagenesis, measurement of cooperativity for cAMP in V140L

by ITC (Figure 4c) showed no differences when compared to wild-

type (Table 1). Interestingly, although V140A protein showed no

global change in structure (Figure S4), there is, in this mutation, a

significant local conformational change evident in the crystal

structure where the mutated V140A residue formed a new

hydrophobic contact with the rotated side chain of C179 that is

not present in the wild-type or V140L proteins (Figure 4b). When

included in the model, simulated as kC179/k=4, this new contact

revealed new interactions within the monomer (Figure S3a) that

drove CAP towards positive cooperativity on simulation (Table 1).

ITC experiments (Figure 4d) demonstrated that this CAP variant

with the identified side chain rearrangement was positively

cooperative, thus supporting the qualitative prediction of the

model.

A bar graph for the calculated and observed values for K2/K1
revealed the agreement in the direction of the change of

cooperativity on simulation and experiment (Figure S6a). A plot

of the experimentally observed value for K2/K1 against that

predicted from the ENM demonstrated a correlated relationship

where observed increases to K2/K1 are associated with similar

changes to K2/K1 by the ENM (Figure S6b). The consistency in

prediction by the ENM and the quantitative correlation between

predicted and observed changes do not support the notion that the

agreement between experiment and the ENM is due to a chance

occurrence.

The ENM can provide further insight into the mechanism by

which allosteric control is associated with alterations to the

normal modes. No global structural changes were induced in the

ENM simulations or were evident from crystal structures of

variant proteins; only the pattern of coupled low-frequency

fluctuations was modified by the simulated side-chain mutations.

This appearance of ‘‘control at a distance’’ in the CAP

homodimer is explained, through contributions to binding

entropy, if there are correlations in the low-frequency motions

between cAMP binding sites and if ligand binding or side chain

mutation modifies this correlation [42]. As all fluctuating systems

dominated by locally harmonic interactions possess a structure of

normal modes, with just such distant correlations, they suggest

the mechanism for allostery in CAP. To examine whether the

mutations studied here can have such distant effects, we

calculated the change to local Ca flexibility in the case of

tightening and loosening side chain interactions at V132 at the

dimer interface (Figure 5a). Modifications to simulated backbone

flexibility are present throughout CAP with varying amplitude

and furthermore follow opposite signs at kV132/k= 0.25 (V132A)

and kV132/k= 4 (V132L). For example, kV132/k= 4 shows

significant tightening of the protein (compare Figure 5a and

Figure S3b). An examination of the effect of simulated mutations

at V140 and H160 on nonlocal Ca flexibility reinforces this

finding (Figure S7). The predominantly neutral mutation, V140L,

simulated as kV140/k=4 has little effect on protein backbone

flexibility, except at sites where V140 has calculated interactions,

consistent with the absence of any effect on allostery on both

simulation and experiment. In the case of H160 (kH160/k=0.25;

at a surface loop distant from both the cAMP binding site and

dimer interface) and V140A (kC179/k=4, kV140/k= 0.25), the

simulated mutations create a uniform decrease in flexibility

Figure 1. A global map for dynamic regulation of allostery in CAP. (A) Global map for the ENM plotting amino acid number for the CAP
monomer and dimensionless change in spring constant (kR/k; corresponds to kamino acid number/relative spring strength). The colour chart represents
changes in the ratio of the second to first dissociation constants for cAMP. White corresponds to values of K2/K1 predicted by the wild-type ENM. Red
corresponds to increased values of K2/K1 (increased negative cooperativity) and blue corresponds to decreased values of K2/K1 (decreased negative
cooperativity and positive cooperativity). (B) The global map plotted in real space onto the wild-type CAP homodimer structure at kR/k= 0.25. The
specific residues investigated in this study are indicated.
doi:10.1371/journal.pbio.1001651.g001

Global Low-Frequency Protein Motions in Allostery

PLOS Biology | www.plosbiology.org 4 September 2013 | Volume 11 | Issue 9 | e1001651



throughout the monomer except for the straightforward loosen-

ing/tightening at the site of the mutations. There is a general

trend, therefore, for those simulated mutations that decrease

negative cooperativity to be associated with decreased protein

backbone motion nonlocally.

A specific requirement of global low-frequency motion as an

underpinning mechanism for allostery at a distance is a coupling

between protein motion and the behaviour of the cAMP-binding

site. We find that the loosening and tightening effects of simulated

mutations is correlated with significant modulation of backbone

flexibility in the region of the cAMP-binding site (amino acids

71–74, 83–85, and 121) (Figure 5b). The figure shows that, in

general, changes in root-mean-square deviation (rmsd) at the

ligand-binding site induced by mutation correlate (in this case,

kR/k=0.25) with cooperativity. Mutations that increase motion at

the ligand bind site are associated with an increase in the extent

Figure 2. The influence of third-site mutations on allostery in CAP. (A) Predicted influence of mutation of V132 on allostery in CAP. The chart
represents the ratio of the second to first dissociation constants for cAMP (K2/K1) plotted against spring constant at V132 (kV132/k). The structures are
the proposed corresponding mutations. (B) Close-up of the X-ray crystal structures for CAP variants showing the hydrophobic interaction surface at
amino acid 132 in wild-type, V132L, and V132A proteins. (C–E) ITC traces (upper panel) and binding isotherms (lower panel; the different coloured
symbols represent individual experiments) for the calorimetric titration of cAMP to CAP wild-type (C), V132L (D), or V132A (E). The thermodynamic
parameters obtained are summarized in Tables 1 and S2.
doi:10.1371/journal.pbio.1001651.g002

Table 1. Calculated and experimental cAMP affinities for CAP proteins.

CAP Protein K2/K1 (ENM) S.E.M. (n) p Value Mean K2/K1 (ITC) S.E.M. (n) p Value

Wild-type 1.35 0.01 (16) — 1.68 0.04 (32) —

V132A kV132/k= 0.25 1.59 0.01 (16) ,0.001 4.78 0.33 (20) ,0.001

V132L kV132/k= 4 0.91 0.02 (16) ,0.001 0.58 0.03 (17) ,0.001

H160L kH160/k= 0.25 1.05 0.02 (16) ,0.001 1.36 0.03 (31) ,0.001

V140A kV140/k= 0.25, kC179/k=4 1.02 0.01 (16) ,0.001 0.61 0.05 (29) ,0.001

V140L, kV140/k= 4 1.31 0.01 (16) 0.733 1.56 0.05 (27) 0.999

The ratio of the second to first dissociation constants for cAMP (K2/K1) for wild-type and mutant CAP proteins were calculated from the ENMs or obtained by ITC. The p

value is for a comparison of means to the wild-type.
doi:10.1371/journal.pbio.1001651.t001

Global Low-Frequency Protein Motions in Allostery
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of negative cooperativity and vice versa. This is entirely consistent

with the controlling entropic allosteric mechanism in these cases,

providing that cAMP binding has the effect of increasing local

rigidity. This interaction between the heightened local motions

following the first cAMP-binding event creates an entropic

contribution to negative cooperativity in DDG [9]. Heightened

fluctuation at the second binding site (on binding the first

molecule of cAMP) is a general mechanism for negative

cooperativity without conformational change [6]. Positive co-

operativity without conformational change can be induced by

reducing the fluctuation amplitude (for example, the MetJ

transcription factor of E. coli [9]).

Global Low-Frequency Dynamics Regulates Allostery in
the CRP/FNR Family Transcription Factor GlxR
Studies using CAP have successfully demonstrated that

changes to global low-frequency protein dynamics are associated

with allostery. We investigated another protein to explore the

more general applicability of the mechanism. GlxR of C.

glutamicum is a cAMP binding homodimeric transcription factor

of the CRP/FNR family that activates genes required for aerobic

respiration, glycolysis, and ATP synthesis [43,44]. We solved the

X-ray crystal structure of the GlxR apoprotein to produce an

ENM for the non-cAMP bound state [45]. Coordinates from an

available crystal structure determination of the full-length cAMP

bound GlxR homodimer allowed us to construct an ENM for the

single and double ligand bound holoprotein states. Examination

of the structures for GlxR in the apo and holo forms revealed no

significant difference in structure. GlxR therefore represents a

new exemplar for allostery in the absence of conformation

change. Free energies, calculated from ENMs for GlxR,

predicted considerably greater negative cooperative binding of

cAMP (K2/K1=2.37; DDG=513 cal mol21) than for CAP (K2/

K1=1.35; DDG= 179 cal mol21). This prediction of enhanced

negative cooperativity was confirmed on experiment with an

observed value for K2/K1 of 19.47 (Table 2). A computational

scanning mutagenesis map was produced for GlxR, as done

previously for CAP, and altered cooperativity with changing local

interaction strength is plotted graphically by amino acid residue

(Figure 6a) and in real space (Figure 6b). Both local tightening

and loosening across the dimer interface, depending on the

residue, was predicted to reduce negative cooperativity and

therefore provides a robust experimental test of the model. We

generated dimer interface loosening (kL134/k=0.25; L134V;

Figure 7a) and tightening (kA131/k= 4; A131V; Figure 7b) GlxR

variants and compared simulated and experimental values for

cooperativity in these proteins. Both L134V and A131V showed

a clear reduction in negative cooperativity, as predicted, when

compared to wild-type (Table 2) by ITC (Figure 7c–e), despite the

fact that the mutants have opposing effects on hydrophobic

interactions across the dimer interface. Allostery is therefore

correlated with global low-frequency dynamics in an additional

CRP/FNR family transcription factor.

Figure 3. The influence of third-site mutations on allostery in CAP. (A) Predicted influence of mutation of H160 on allostery in CAP. The chart
represents the ratio of the second to first dissociation constants for cAMP (K2/K1) plotted against spring constant at H160 (kH160/k). The structure is the
proposed corresponding mutation. (B) X-ray crystal structures for CAP showing the hydrogen bonding network at amino 160 in wild-type and H160L
proteins. (C) ITC trace (upper panel) and binding isotherm (lower panel; the different coloured symbols represent individual experiments) for the
calorimetric titration of cAMP to CAP H160L. The thermodynamic parameters obtained are shown in Tables 1 and S2.
doi:10.1371/journal.pbio.1001651.g003
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Determining Design Parameters for Mapping
Dynamically Driven Allostery
Our findings indicate general biophysical principles that

describe the emergence of negative cooperativity in CRP/FNR

family transcription factors through the allosteric modulation of

normal modes. The property that allosteric effects are carried in

general by the more globally distributed, and so typically longer

wavelength, normal modes motivated the exploration of the

underlying physics by coarse-graining the CAP and GlxR

representations even further into rotational-translational block

representations [46]. Two coarse-grained blocks per monomer

(one is the entire DNA-binding region, coupled only to the other

block of its own monomer) emerged naturally from the many

residue–residue couplings internal to and between monomers at

the molecular level. Figure 8a and 8b display the block structure

and the corresponding ‘‘super-coarse-grained’’ model. A single

representative internal mode within each dynamically tight block

and the coupling strengths between the blocks (including coupling

across the dimer interface) were investigated as ‘‘design param-

eters’’ for a general class of cooperative homodimer. Figure 8c

(CAP) and 8d (GlxR) show allosteric cooperativity, calculated at

this high level of coarse-graining, as a function of the integrated

coupling strengths within the ligand binding domain (k1) and

between monomers (k12). Points below and above the z=0 plane

correspond to positive and negative cooperativity, respectively.

The wild-type proteins for both CAP and GlxR are offset from the

maxima of anti-cooperative ridges in the two-dimensional free

energy landscapes that emerge. At this position, loosening

coupling internal to monomers (k1) moves the system into a basin

of less negative cooperativity (GlxR) or positive cooperativity

(CAP), while loosening in the coupling region (k12) moves the

system for both CAP and GlxR to the top of the ridge (red) to

increase negative cooperativity. Further analysis demonstrated

consistency in the negative cooperativity arising through the

normal modes in the ENM and in the super-coarse-grained model.

For example, the simulated loosening (kV132/k=0.25; V132A) and

tightening (kV132/k=4; V132L) mutations of the CAP ENM and

the tightening (kA131/k=4; A131V) mutation of GlxR alter

cooperativity through generating effective changes in k12 at the

super-coarse-grained level. The super-coarse-grained model there-

fore effectively reveals the critical intra- and intermolecular

parameters that associate with cooperativity and how these

parameters can be altered to move within the allosteric free

energy landscape.

Figure 4. The influence of third-site mutations on allostery in CAP. (A) Predicted influence of mutation of V140 on allostery in CAP. The chart
represents the ratio of the second to first dissociation constants for cAMP (K2/K1) plotted against spring constant at V140 (kV140/k). The structures are
the proposed corresponding mutations. (B) X-ray crystal structures for CAP showing the hydrophobic interactions at amino 140 in wild-type, V140L,
and V140A proteins. (C–D) ITC traces (upper panel) and binding isotherms (lower panel; the different coloured symbols represent individual
experiments) for the calorimetric titration of cAMP to CAP V140L (C) and V140A (D) proteins. The thermodynamic parameters obtained are shown in
Tables 1 and S2.
doi:10.1371/journal.pbio.1001651.g004
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Amino Acid Residues That Contribute to Allostery in CAP
Are Evolutionarily Conserved
If cooperativity confers a selective advantage on the organism,

then the allosteric free energy landscape can also be viewed as

evolutionary landscape. In this case, the position of a protein

within the landscape depends upon selection pressures that impact

upon k1 and k12. This general hypothesis can be used to make an

additional significant experimental prediction. If the similar

position of CAP and GlxR within their respective free energy

landscapes is the result of a selection pressure, then we predict that

amino acids that contribute significantly to quantitative allosteric

control (Figure 1a and 6d) will be more invariant in related

proteins from different species. We therefore examined 163 CAP

variants from diverse bacterial species and plotted the frequency of

mutation of each amino acid residue against the contribution of

that amino acid to allostery (defined as absolute change (D) in K2/

K1 for that amino acid in the canonical CAP ENM at kR/k=0.25).

We found evidence that the rate at which an amino acid mutates is

negatively related to DK2/K1 (LRT, G2=33.7, p,0.001; Figure 9).

The coefficient quantifying this decrease, b1, was significantly

different from zero [95% CI= (23.34,21.49)]. Amino acids of

CAP that contribute to allostery through regulation of low-

frequency protein dynamics are therefore more likely to be

conserved in CAP variants through their contribution to protein

function. Note that a test for overdispersion was significant, even

after allostery had been accounted for (LRT, G1=1,663.9,

p,0.001), suggesting that other variables also have an influence

on mutation rates.

Discussion

Here we demonstrate that negative allostery in CRP/FNR

family transcription factors is correlated with modulation of the

normal modes of protein motion on ligand binding in the absence

of conformational change. The model makes key predictions that

we test at select sites of the CAP and GlxR proteins, the latter

identified as an important new exemplar for allostery in the

absence of conformation change. The alterations in protein

flexibility that are a signature for allostery in CRP/FNR family

transcription factors are a consequence of the global nature of

those normal modes responsible and mutations that predictably

alter cooperativity do so by influencing protein backbone

flexibility. Our theory describes how allostery can arise from

changes to low-frequency dynamics in the absence of any mean

structural change. The theory is particularly significant as it

describes allostery as a natural consequence of the dynamic

properties of a protein without a requirement for spatially localised

dynamic pathways between allosteric sites. The allostery observed

is unlikely to have microheterogeneity as an alternative explana-

tion as all CAP proteins crystallised as a single superimposable

structure. Any form of heterogeneity reduces the likelihood of

forming ordered crystals [47]. Microheterogeneity is therefore not

supported as a molecular cause for allostery in CAP.

The possibility of a direct interaction between cAMP binding

sites might also be considered as a mechanism to explain the

allostery observed. The closest distance between the two cAMP

molecules in the CAP dimer is 9.5 Å (the distance between the N6

atoms of the adenine ring). Although it is impossible to

conclusively eliminate small local changes that binding of the first

molecule of cAMP has at the second site, no conformational

changes have been reported in this region in previous NMR

studies, making this explanation unlikely. The possibility of a

direct interaction is made even more unlikely as, similar as to that

described above, any invoked direct interaction between cAMP

binding sites would have to consistently match not only the

qualitative aspects of the computational predictions for the role of

the global modes, but also their quantitative correlation with the

observed experimental values. Analysis of the relationship between

Cartesian distance and protein motions demonstrated strongly

correlated motions between allosteric sites at distances of ,10–

20 Å [48] and the global normal modes are a suitable candidate to

mediate such correlations in CRP/FNR family transcription

factors.

The range of available sites for side chain mutagenesis of CRP/

FNR family transcription factors do not constitute as large a set of

separate and independent control parameters as at first seems, but

in a good approximation explore a lower dimensional space (i.e.,

reducing the very high dimensional parameter-space of the entire

number of residues, just one slice of which is represented in

Figures 1a and 6d, to the two-dimensional parameter spaces of

Figure 8c–d). We hypothesize that this two-dimensional parameter

space is, in turn, related to an evolutionary landscape for a protein.

In the case of CAP and GlxR, our analysis reveals that

evolutionary selection has resulted in the location of the proteins

in a region close to maximizing negative cooperativity. The extent

Figure 5. Mapping local dynamics in CAP. (A) The effect of
mutation of V132 on local dynamics over the CAP monomer. The chart
represents the percentage variation in the calculated B-factor from the
wild-type ENM plotted against amino acid number. (B) The relationship
between local dynamics at the cAMP binding site and cooperativity.
The chart represents the percentage variation in the root mean square
deviation of the simulated CAP variant Ca atom from the wild-type
crystal structure at the cAMP binding site (amino acids 71–74, 83–85,
and 121) plotted against the ratio of the second to first dissociation
constants for cAMP (K2/K1) at kR/k= 0.25. The positions of simulated
mutations at V132 and H160 are indicated.
doi:10.1371/journal.pbio.1001651.g005
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Figure 6. A global map for dynamic regulation of allostery in GlxR. (A) Global map for the ENM plotting amino acid number for the GlxR
monomer and dimensionless change in spring constant (kR/k). (B) The global map plotted in real space onto the wild-type GlxR homodimer structure
at kR/k= 0.25. The specific residues investigated in this study are indicated.
doi:10.1371/journal.pbio.1001651.g006

Figure 7. The influence of third-site mutations on allostery in GlxR. (A) Predicted influence of mutation of L134 on allostery in GlxR. The chart
represents the ratio of the second to first dissociation constants for cAMP (K2/K1) plotted against spring constant at L134 (kL134/k). The structures are
the proposed corresponding mutations. (B) Predicted influence of mutation of A131 on allostery in GlxR. The chart represents the ratio of the second
to first dissociation constants for cAMP (K2/K1) plotted against spring constant at A131 (kA131/k). The structures are the proposed corresponding
mutations. (C–E) ITC traces (upper panel) and binding isotherms (lower panel; the different coloured symbols represent individual experiments) for
the calorimetric titration of cAMP to GlxR wild-type (C), L131V (D), and A131V (D) proteins. The thermodynamic parameters obtained are shown in
Tables 2 and S3.
doi:10.1371/journal.pbio.1001651.g007
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of negative cooperativity in CAP is generally small

(DDG=0.3 kcal mol21). However, the scale of biologically rele-

vant cooperative effects is set by the thermal energy

(RT<0.6 kcal mol21). The values of DDG observed and manip-

ulated experimentally are those that modulate the concentration

range of cAMP to which the system is sensitive by an order of 1.

Engineering of cooperativity is therefore possible by manipulating

DDG, as described here, with the caveat that it is likely only

possible over a thermodynamic range to which the protein is

responsive.

We find that there is a selection pressure against mutation of

residues that contribute to allostery in CAP variants. A significant

question that arises, therefore, is that of the selective advantage

provided through negative cooperativity in CAP. In general, the

advantages conferred by negative cooperativity in biological

systems are not well resolved [49]. It is proposed that negative

cooperativity reduces the sensitivity of a system and extends the

concentration range over which a response can be observed [50].

In metabolism, recent modelling suggests that there is a significant

overall advantage for metabolic pathway flux with components

showing negative cooperativity [51,52]. In transcriptional regula-

tion, negative cooperativity in the binding of D-camphor to the

CamR repressor of Pseudomonas putida is proposed to enable

coupling of high specificity for D-camphor with a physiological

response to high concentrations of the metabolite [53]. Against this

framework, it is reasonable to conjecture that negative coopera-

tivity in CAP offers a selective advantage by increasing the

concentration range over which a transcriptional response can be

generated [54]. The decreased sensitivity of the response to cAMP

in negative cooperativity might result in a selective advantage

through resource conservation when compared to amplifying

effect of a signal response in positive cooperativity [50]. The

position within the effective parameter space can also allow CAP

variants to further tune cooperativity in either direction without a

potentially disastrous influence on protein structure and therefore

function. Future experiments to experimentally validate the

selective advantage provided by negative cooperativity will

therefore be crucial and might typically combine high throughput

sequencing of extensive mutational libraries of CAP, after selection

in E. coli, with the simulated mutational map of this study [55].

The super-coarse-graining and finer-grained tools we have

developed and tested in this work suggest a route to artificial

protein design through modification of protein low-frequency

fluctuations without compromise of structure. The mechanism also

reflects an important balance between phenomena at different

length scales within molecular biology. The role of the global

normal modes in conveying allosteric signals requires a similarly

coarse-grained picture of the protein to identify and discuss the

mechanism. On the other hand, the exquisite specificity to local

biochemistry is preserved in the mechanism; a set of single

residues, themselves spatially distant from either binding site,

exercise significant control on the size (and sign) of the underlying

allosteric signal. The delicate interactions of effects at different

length scales are missed without such a multiscale approach to the

physics of protein dynamics. Changes to the normal modes are

presented as an important new theory to describe how allostery

can arise in the absence of structural change and provide an

important theoretical context within which to frame global issues

of allostery in proteins.

Table 2. Calculated and experimental cAMP affinities for GlxR
proteins.

GlxR Protein K2/K1 (ENM)

Mean K2/K1
(ITC) S.E.M. (n) p Value

Wild-type 2.37 19.47 1.12 (18) -

L134V kL134/k=0.25 2.07 4.34 0.21 (26) ,0.001

A131V kA131/k= 4 2.05 4.36 0.21 (30) ,0.001

The ratio of the second to first dissociation constants for cAMP (K2/K1) for wild-
type and mutant GlxR proteins were calculated from the ENM or obtained by
ITC. The p value is for a comparison of means to the wild-type.
doi:10.1371/journal.pbio.1001651.t002

Figure 8. Super-coarse-grained models of CRP/FNR family
transcription factors. (A) The elastic block representation that
emerges from constraining all residues whose relative spatial fluctua-
tions are less than 3 Å to a single rigid domain. This procedure creates
two blocks in each monomer. (B) The corresponding ENM model in
which each block is accorded a single internal mode. The plots of
cooperativity as a function of the reduced two-dimensional design
space of the effective internal and coupling elastic strengths of the
super-coarse-grained model are shown for CAP (C) and GlxR (D). All
other parameters for the models identified in (B) are set to wild-type
values deduced from the full ENMs.
doi:10.1371/journal.pbio.1001651.g008
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Materials and Methods

Protein Preparation
The open reading frame corresponding to the full-length CAP

protein was cloned into the BamHI and HindIII sites of pQE30 and

mutant variants constructed by site-directed mutagenesis. Wild-

type and mutant recombinant protein was expressed from E. coli

M182 DCAP F2 D(lacIPOZY)X74 galE15 galK16 rpsL thi+ lambda2

[pREP4] for 2 h at 37uC with 1 mM IPTG. Protein was purified

using sequential nickel-chelated sepharose affinity and Superdex

75 16/60 size exclusion columns (GE Healthcare). Protein

concentration was calculated using the Beer-Lambert Law and a

molar extinction coefficient of 20,065 M21 cm21 at 280 nm. Full-

length GlxR protein was expressed and purified as previously

described [56].

ITC
Protein was dialyzed against 100 mM KPO4 pH 7.8, 200 mM

KCl, 2 mM 1-thioglycerol at 4uC. Protein and buffer were

degassed under vacuum and degassed buffer used to dilute cAMP

ligand. cAMP concentration was calculated using the Beer-

Lambert Law and a molar extinction coefficient of 14,650 M21

cm21 at 259 nm. Data were generated using an iTC200

(MicroCal) by typically 40 sequential 1 mL injections of 4–6 mM

cAMP into 202 mL 130–400 mM protein. Data for the first

injection was routinely discarded as this is affected by diffusion

between the syringe and the protein solution during equilibration

prior to data collection.

Data Fitting for ITC
Ligand binding for cAMP to CAP was described by a sequential

three-site model (two major and one minor binding site [39]). The

presence of three cAMP binding sites in CAP was further

confirmed in the crystal structures from this study (Figure S5). A

sequential two-site model described ligand binding for cAMP to

GlxR. The free ligand concentration, [L], was calculated for each

injection using the bisection method, which allowed calculation of

the fraction of the protein in each bound state, Fi:

L½ �t~ L½ �z
X

3

i~1

iFi Fi~
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i
Ki
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Comparing the calculated heat content, Q, to the experimental

value allowed calculation of the best fit of the binding constants, Ki,
and the binding enthalpies, DHi, using the solver plug-in for Excel:

Q~ P½ �tV0
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Statistics
ITC and ENM data for mutant proteins was compared to the

wild-type by a comparison of means by one-way ANOVA.

Normal distribution of the data was confirmed by the Shapiro-

Wilk test. Homogeneity of variances was rejected for ITC data and

confirmed for ENM data using the Levene test. ITC data were

therefore examined using a Dunnett’s T3 post hoc test for pairwise

comparisons with unequal variances and ENM data examined

using a two-sided Dunnett’s post hoc test for pairwise comparisons

with equal variances.

Crystal Structure Determinations
CAP crystals were produced at pH 6.5 with 7–10% (w/v)

polyethylene glycol 3350 and 15–20% (v/v) 2-methyl-2,4-

pentanediol with 2 mM cAMP in 24-well hanging-drop vapour

diffusion plates. Crystals were cryoprotected using mother liquor

containing 30% (v/v) glycerol and flash cooled in liquid nitrogen

[57]. Diffraction data for the wild-type protein were collected in-

house using a Bruker MicroStar rotating anode and processed with

SAINT [58]. All CAP mutant data were collected at the Diamond

Light Source beams I-04 and I-24 and processed using Mosflm

[59] and Scala [60]. CAP structures were solved using molecular

replacement with Phaser [61] using CAP (PDB 1I5Z). Model

building and refinement were accomplished iteratively using

COOT [62] and Refmac5 [63] in CCP4 [59]. CAP structures

from crystals produced at pH 6.5 were indistinguishable from

those previously produced at pH 7.5 [64]. Structural and

refinement statistics are provided in Table S4. Full details of

GlxR crystallography and analysis of the structures will be

reported elsewhere [45]. Members of the CAP family often

crystallise with more than one protein chain in the asymmetric

unit. In these cases the functional protein dimer is either generated

by the crystallographic 2-fold axis on each of the protein chains or

by noncrystallographic symmetry leading to a varying degree of

asymmetry [65,66]. Significantly different conformations for each

monomer have been observed in some homodimeric bacterial

regulator proteins, most notably Mt-CRP [67]. The structures

presented here contain one dimer (wild-type CAP in space group

P21), two dimers (wild-type in space group P1), and three dimers

(V140A CAP in space group I2) (see Table S4). In all cases the

dimers are symmetric with no significant differences between the

two protein chains than for the functional dimer.

Coarse-Grained Simulations
ENM simulations were performed using our own code based on

the regular implementation [31,68]. The spring constants were set

Figure 9. CAP residues that contribute to allostery are
conserved in variants from diverse bacterial species. Relation
between the minimum number of times an amino acid needs to exhibit
a mutation to explain the variation in the set of sequence data ( = 165
proteins) and the contribution of that amino acid to allostery (DK2/K1 for
that amino acid at kR/k= 0.25). Each circle corresponds to one of 210
amino acids. The best fitting model predicts that mean mutation rate
declines with allostery (solid line). Note that absolute allosteric values
have been used and increased by 0.000001 to allow plotting of zeros.
doi:10.1371/journal.pbio.1001651.g009
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to a constant value of 1 kcal mol21 Å22 with a cutoff radius of

8 Å, and only the Ca atoms in the protein were considered. The

presence of cAMP effector at the binding site was treated by the

addition of one node at the mass weighted average coordinate for

each ligand. Varying the spring constant of any springs attached to

a single residue of the protein was used to represent side chain

mutations. The allosteric free energy was calculated by summing

over modes 1 to n. n was determined by examining where values

K2/K1 converged (Figure S8). The final results quoted used the

converged value of K2/K1. PDB files for constructing CAP ENMs

were 1CGP, 1G6N, 1HW5, 1I5Z, 1I6X, 1J59, 1O3T, 1RUN,

1RUO, 1ZRC, 1ZRD, 1ZRF, 2GZW, 4HZF (this work), and an

additional in-house file isostructural to 2GZW. The PDB file for

constructing the GlxR ENM was 3R6S.

Super-Coarse-Grained Model
The CAP and GlxR proteins were modelled as two blocks for

each monomer, one for the ligand binding domain and one for the

DNA binding domain. We assigned one internal breathing mode

to each subunit and allowed each subunit to move, producing

seven degrees of freedom. For the apo-protein the internal subunit

coupling strengths are characterized by k1 though k4 and the

intersubunit couplings by k12, k13, and k24 (Figure 4b). The effect of

one ligand binding was included by modifying k1 by a factor b, k12
by a, and k12 by c. The second ligand binding was therefore

represented by further modifying k2 by b, k12 by a further factor of
a, and k24 by c. The allosteric free energy was determined from

the determinant of the interaction matrix [69]. The couplings were

defined from PCA analysis of 300 ns molecular dynamics

simulations for the three states. In each case the protein was

divided into the four zones by performing a rotational-transla-

tional-block approximation (Figure 8a) [46,70]. Examination of

the couplings calculated for each of the three states allowed

calculation of the apo values and the ligand binding factors.

Varying the values of k1, k2, and k12 represents mutations in

residues affecting the intra- and the interblock interactions. Wild-

type values for CAP are: k1= k2=13.70, k12=27.08, k3= k4=3.98,

k13= k24=5.19 kcal mol21 Å22, a=1.30, b=0.560, and

c=0.901. Wild-type values for GlxR are: k1= k2=12.85,

k12=24.67, k3= k4=3.98, k13= k24=4.21 kcal mol21 Å22,

a=1.40, b=0.71, and c=0.99.

Atomistic Simulation
Molecular dynamics (MD) simulations employed the harmonic

force field equations used in the ff99SB and GAFF force fields

within the AMBER simulation program [71].
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The simulations employed the ff99SB force field for the CAP

protein and the GAFF force field (v. 1.4) for cAMP. ff99SB force

field is used as the energetic interactions of side chains, which are

reasonably represented by this force field [72], and outperforms

the ff03 force field [73]. MD calculations used a short-range cutoff

of 10 Å, with the long-range portion of the Coulomb potential

represented by an Ewald summation, and employed a time step of

2 fs. The bond lengths were constrained by the SHAKE

algorithm. The initial starting structures were obtained directly

from X-ray diffraction. These structures were then solvated in

TIP3P water and energy minimized prior to simulation [74]. The

system was heated to 300 K over a period of 20 ps and further

equilibrated for 40 ns. Production runs at 300 K were carried out

over 200 ns. PCA was performed by diagonalising the mass

weighted covariance matrix of the atomistic simulations. The

eigenvectors represent the shape of the atomistic motion and the

corresponding eigenvalues the extent of the motion.

Analysis of CAP Variants
To determine if DK2/K1, hereon denoted x, is associated with

the mutation rate of amino acids, we first estimated the relative

amino acid mutation rate using the sequence data for CAP

variants and we then statistically tested for an effect of x on this

rate. Relative mutation rate was estimated by finding the

minimum number of amino acid mutations needed to generate

the observed variations in the sequence data, which we denote N.
For each of the 165 proteins we found the protein having the

smallest number of amino acid differences. The sum of these

differences gave N. When summing differences, if more than one

protein had the minimum difference, we included all the proteins

having the minimum. We then determined the number of these

mutations that were associated with each of the 210 amino acids,

which we denote ni. Thus, ni estimates the relative mutation rate of

amino acid i, and these estimates account for the evolutionary

history of the proteins. If all amino acids had an equal mutation

rate, then we would expect the ni to all be approximated by N/210.

We assumed that the true relative rate of mutation was related to x

according to the logistic function: m(x) = logit{1(b0zb1x
b2 ),

where b0, b1, and b2 are constants. To account for overdispersion

among the ni, which might be due to unmeasured covariates

associated with the proteins, we assumed that the variation

between the ni could be described by the beta-binomial

distribution. Under these assumptions, the log-likelihood of the

model described by the set of parameters h={b0,b1,b2,w}, is given

by:

LL(hDdata)~
X

210

i~1

lnBB(ni DN,m(xi),w),

where BB(n|N,m,w) is the beta-binomial distribution, which

describes the probability of observing n successes from N trials

when, on average, successes occur with probability m and variation

in this probability among replicates is described by the beta-

distribution with variance m(12m)w/(1+w) [75].

Evidence that mutation rate was related to x was found by

applying a likelihood ratio test (LRT) comparing the fit of the full

model with the model that ignored x (i.e., when b1= b2=0). Let

LL1 and LL0 be the maximum log-likelihood of the full model and

the simpler model, respectively. Under the null hypothesis that x is
not associated with mutation rate, the test statistic G=2[LL12LL0]

is chi-square distributed with two degrees of freedom, as the more

complex model has two additional free parameters: b1 and b2. A

LRT was also used to test for overdispersion by comparing the fit

from the full model described above with the model that assumed

variation had a binomial distribution (Q is vanishingly small). This

latter test, if significant, justifies the use of the beta-binomial

distribution rather than the binomial. Confidence intervals for

model parameters were estimated using the likelihood profile

approach.

The genome accession numbers analysed are: NP_232242.1,

NP_246094.1, NP_249343.1, NP_439118.1, NP_458435.1,
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NP_462369.1, NP_671249.1, NP_716257.1, NP_760245.1,

NP_799172.1, NP_873260.1, NP_927748.1, YP_052151.1,

YP_089126.1, YP_128534.1, YP_152459.1, YP_205663.1,

YP_237645.1, YP_262678.1, YP_272974.1, YP_455981.1,

YP_492074.1, YP_526229.1, YP_564189.1, YP_588978.1,

YP_606222.1, YP_690711.1, YP_693743.1, YP_718344.1,

YP_751967.1, YP_855526.1, YP_928876.1, YP_941848.1,

YP_960806.1, YP_001048976.1, YP_001092716.1,

YP_001143048.1, YP_001178491.1, YP_001189422.1,

YP_001218107.1, YP_001343325.1, YP_001440391.1,

YP_001443362.1, YP_001464812.1, YP_001475605.1,

YP_001503357.1, YP_001675803.1, YP_001759053.1,

YP_001909102.1, YP_002152521.1, YP_002228709.1,

YP_002294894.1, YP_002476451.1, YP_002650381.1,

YP_002801694.1, YP_002875051.1, YP_002893931.1,

YP_002923696.1, YP_002986005.1, YP_003002662.1,

YP_003008634.1, YP_003039145.1, YP_003074496.1,

YP_003255073.1, YP_003261368.1, YP_003469961.1,

YP_003532766.1, YP_003555253.1, YP_003812150.1,

YP_003914673.1, YP_004117516.1, YP_004211044.1,

YP_004382110.1, YP_004391469.1, YP_004419866.1,

YP_004472683.1, YP_004565203.1, YP_004713013.1,

YP_004821770.1, YP_005091541.1, YP_005334361.1,

YP_005458526.1, YP_005817463.1, YP_006006755.1,

YP_006238931.1, YP_006286710.1, YP_006326252.1,

YP_006459298.1, YP_006523113.1, YP_006588319.1,

ZP_00134303.1, ZP_00991497.1, ZP_01161654.1,

ZP_01215522.1, ZP_01815379.1, ZP_01894180.1,

ZP_01898714.1, ZP_02478644.1, ZP_02958582.1,

ZP_03319669.1, ZP_03611762.1, ZP_03825776.1,

ZP_04636540.1, ZP_04640765.1, ZP_04752629.1,

ZP_04977551.1, ZP_05043634.1, ZP_05637197.1,

ZP_05774479.1, ZP_05849758.1, ZP_05879825.1,

ZP_05880998.1, ZP_05919259.1, ZP_05972068.1,

ZP_05990699.1, ZP_06018230.1, ZP_06051220.1,

ZP_06126446.1, ZP_06542208.1, ZP_06637662.1,

ZP_07161146.1, ZP_07222409.1, ZP_07266238.1,

ZP_07379670.1, ZP_07395486.1, ZP_07528968.1,

ZP_07744420.1, ZP_07777878.1, ZP_07888842.1,

ZP_08039455.1, ZP_08068248.1, ZP_08079426.1,

ZP_08100561.1, ZP_08148040.1, ZP_08310711.1,

ZP_08519301.1, ZP_08725568.1, ZP_08731411.1,

ZP_08745737.1, ZP_08754750.1, ZP_09013912.1,

ZP_09039716.1, ZP_09185001.1, ZP_09505069.1,

ZP_09557915.1, ZP_09710329.1, ZP_09778630.1,

ZP_09972449.1, ZP_10075284.1, ZP_10125383.1,

ZP_10128956.1, ZP_10135899.1, ZP_10142323.1,

ZP_10146384.1, ZP_10426764.1, ZP_10438900.1,

ZP_10622342.1, ZP_10628430.1, ZP_10630449.1,

ZP_10643899.1, ZP_10655392.1, ZP_10677933.1,

ZP_10700164.1, and ZP_10763153.1.

Supporting Information

Figure S1 ENM representation of CAP. Alpha helices are

represented in magenta and beta sheets in yellow. Blue spheres

show the positions of the Ca atoms, and the black lines display the

connectivity of the Hookean springs with a cutoff of 8 Å. Apo and

singly bound ENMs were constructed by manually removing

cAMP from the holoenzyme.

(TIF)

Figure S2 Validation of ENM methodology. (A) CAP B-

factors are independent of coarse-grained methodology. The chart

represents the B-factor plotted against amino acid number for the

crystal structure, ENM, and molecular dynamics. (B) Mode

frequencies are independent of methodology. The chart represents

the mode frequency plotted against mode number for ENM and

molecular dynamics.

(TIF)

Figure S3 ENM predicted residue interactions that
impact on cooperativity. (A) The change in cooperativity that

occurs when kR/k is varied at the indicated residue (legend) against

every amino acid within the same monomer (within an 8 Å cutoff).

(B) The change in cooperativity that occurs when kR/k is varied at

the indicated residue (legend) against every amino acid within the

opposing monomer (within an 8 Å cutoff).

(TIF)

Figure S4 Least-squares superposition of one represen-
tative chain of each of the seven doubly cAMP-bound

crystal structures treating the two domains (dimeriza-
tion/cAMP-binding domain and DNA-binding domain)

as rigid bodies with a flexible linker (wild-type, green;
V132A, cyan; V132L, dark cyan; V140A, magenta; V140L,

orange; H160L, red). The transformation matrices were

obtained using RAPIDO [76].

(TIF)

Figure S5 Fitting of ITC data. Binding isotherm for a

representative data set for the calorimetric titration of cAMP to

wild-type CAP protein showing experimental data and fitted

curves for two and three molecules of ligand cAMP. The inset

shows the structure of CAP (green) with three bound molecules of

cAMP (blue).

(TIF)

Figure S6 Calculated and observed values for coopera-

tivity in CAP. (A) The ratio of the second to first dissociation

constants for cAMP (K2/K1) for wild-type and mutant CAP

proteins were calculated from the ENMs (calculated) or obtained

by ITC (observed). The coloured lines correspond to the value for

K2/K1 in the wild-type to enable comparison of the direction of

change. (B) Values for K2/K1 obtained by ITC plotted against

values for K2/K1 predicted by the ENM demonstrating the

correlation between the extents of experimentally observed and

predicted values for K2/K1. Dotted line represents the 95%

confidence interval for the linear regression (R2=0.85).

(TIF)

Figure S7 Mapping local dynamics in CAP. (A) The effect

of mutation of V140 and H160 on local dynamics over the CAP

monomer. The chart represents the percentage variation in B-factor

from the wild-type ENM plotted against amino acid number. Inset

shows the same chart with an expansion of the y-axis. (B) The chart is

identical to that shown in panel C except with the y-axis expanded.

(TIF)

Figure S8 The dependence of K2/K1 on the number of
summed modes. The chart represents the calculated value for

K2/K1 from the ENM plotted against the total number of summed

modes.

(TIF)

Table S1 Least-squares superposition of all indepen-
dent protein chains in each of the doubly cAMP-bound

CAP crystal structures.

(PDF)

Table S2 Experimental thermodynamic parameters for

CAP proteins.

(PDF)
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Table S3 Experimental thermodynamic parameters for
GlxR proteins.
(PDF)

Table S4 Crystallographic data collection and refine-
ment statistics.
(PDF)
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