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Abstract 

Background: Human cytomegalovirus (HCMV) resides latently in cells of the myeloid compartment, including 

 CD34+ hematopoietic progenitor cells and circulating monocytes. Healthy hosts maintain the virus latently, and this 

infection is, for the most part, asymptomatic. However, given the proper external cues, HCMV reactivates from latency, 

at which point the virus disseminates, causing disease. The viral and cellular factors dictating the balance between 

these phases of infection are incompletely understood, though a large body of literature support a role for viral-medi-

ated manipulation of host cell signaling.

Main body: To establish and maintain latency, HCMV has evolved various means by which it usurps host cell factors 

to alter the cellular environment to its own advantage, including altering host cell signaling cascades. As early as virus 

entry into myeloid cells, HCMV usurps cellular signaling to change the cellular milieu, and this regulation includes 

upregulation, as well as downregulation, of different signaling cascades. Indeed, given proper reactivation cues, this 

signaling is again altered to allow for transactivation of viral lytic genes.

Conclusions: HCMV modulation of host cell signaling is not binary, and many of the cellular pathways altered are 

finely regulated, wherein the slightest modification imparts profound changes to the cellular milieu. It is also evident 

that viral-mediated cell signaling differs not only between these phases of infection, but also is myeloid cell type spe-

cific. Nonetheless, understanding the exact pathways and the means by which HCMV mediates them will undoubt-

edly provide novel targets for therapeutic intervention.
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Background

HCMV latency is maintained in cells of the myeloid 

compartment, specifically peripheral blood monocytes 

and  CD34+ hematopoietic progenitor cells (HPCs) 

[1–6]. During the initial stages of a primary infection, 

HCMV lytically infects and amplifies within epithelial 

cells, ultimately leading to infection of peripheral blood 

monocytes [7, 8]. HCMV infection of monocytes results 

in a unique form of latency, which has been termed a 

quiescent infection by the Yurochko Lab [9–13]. �e 

establishment of this quiescent infection is characterized 

by the lack of viral lytic replication and limited expres-

sion of latency-associated viral gene products [3, 4, 14]. 

However, the maintenance phase of this distinct form of 

latency is limited, as the viral entry process triggers sign-

aling events that extend monocyte survival beyond their 

normal 48-h lifespan, enhance migration, and stimulate 

differentiation into replication permissive macrophages 

[9, 10, 15–19], which together allows monocytes to serve 

as vehicles of viral dissemination to peripheral tissue. 
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Once infected monocytes extravasate into tissue and dif-

ferentiate into macrophages, viral replication and spread 

can occur [14, 20, 21]. Importantly, spread to and infec-

tion of the bone marrow leads to the establishment of a 

latent reservoir within  CD34+ HPCs [2, 5, 22]. In con-

trast to a quiescent infection of monocytes during a pri-

mary infection, long-term maintenance occurs in latently 

infected  CD34+ HPCs and requires an external activation 

stimulus for reactivation into lytic replication [23]. In 

contrast, the early signaling events following infection of 

monocytes drives their differentiation into macrophages 

and spontaneous viral reactivation at 2–3  weeks post-

infection. [13], an important aspect distinguishing a 

quiescent infection from more canonical definitions of 

latency in  CD34+ HPCs. Following reactivation signal(s), 

latently infected  CD34+ HPCs preferentially differentiate 

down the myeloid lineage into latently infected mono-

cytes and ultimately replication permissive macrophages, 

leading to the reseeding of virus in peripheral organs 

sites [24, 25]. Similarly, quiescently infected monocytes 

can also be stimulated to reactivate prior to 2–3  weeks 

with an external reactivation signal (e.g. ref. [26]). �us, 

the early HCMV-induced events contributing to the 

establishment, maintenance, and reactivation of quies-

cently infected monocytes and latently infected  CD34+ 

HPCs are likely very similar. �us, studies on quiescently 

infected monocytes will also likely provide insight into 

the mechanisms of latency in CD34 + HPCs and vice 

versa. �e establishment of a persistent infection in both 

monocytes and  CD34+ HPCs is critical for viral dissemi-

nation and life-long persistence within an infected host 

(Fig.  1). Herein, we review the host cell signaling path-

ways HCMV coopts to make the cellular environment 

more amenable to latency establishment, as well as main-

tenance and reactivation.

Main text

Establishment

Establishment of latency

�e establishment of latent infection requires the restric-

tion of viral gene expression from the major immediate 

early promoter (MIEP) to abrogate HCMV lytic replica-

tion. �e MIEP controls the expression of viral immedi-

ate early (IE) genes, which are responsible for initiation 

of the viral lytic replication program [27, 28]. Restriction 

of the MIEP is accomplished by the repression of acti-

vating transcription factors, binding of repressive tran-

scription factors, and by the chromatin rearrangement 

leading to inaccessibility of the promoter (reviewed in 

[29]). Although literature is limited on the mechanisms 

specifically attributed to the establishment of latency, 

several studies hint at the modulation of cellular signal-

ing pathways during the viral entry process as essential. 

�is section will focus on how cellular receptors and viral 

G protein-coupled receptors (vGPCRs) modulate cellular 

signaling pathways during the viral entry process in order 

to promote the establishment of HCMV latency (Fig. 2).

HCMV entry and signaling in myeloid cells

Entry of HCMV is a complicated process that allows 

for efficient entry of the virus but also initiates signal-

ing events that alter the cellular environment. In the 

absence of viral gene expression during the establishment 

of latency, these signaling events are posited to be criti-

cal for latency establishment. Initially, the HCMV glyco-

proteins gM/gN bind heparin sulfate proteoglycans in a 

reversible, low-affinity interaction [30], which is rapidly 

replaced with irreversible high affinity binding between 

viral glycoproteins to cellular receptors (reviewed in 

[31]). �e viral glycoprotein gH is found in three com-

plexes within the virion; the dimeric gH/gL, the trimeric 

gH/gL/gO, or the pentameric gH/gL/UL128-131 com-

plex [32–34]. For the infection of monocytes, the pen-

tameric complex is required [35, 36]. gH directly binds 

integrin β1, while UL128-131 binds β3 integrins [19, 37]. 

Additionally, the viral glycoprotein gB binds epidermal 

growth factor receptor (EGFR) on both monocytes and 

 CD34+ HPCs [19, 38–41]. EGFR is a major determinant 

of HCMV tropism for the myeloid compartment, as 

monocytes are the only human leukocyte that expresses 

EGFR, which is also expressed in myeloid cell lines used 

for HCMV latency models, such as THP-1 cells [39, 42, 

43]. EGFR is an important receptor for efficient infec-

tion and establishment of latency in  CD34+ HPCs [40]. 

Additional cellular receptors for HCMV have been iden-

tified, including platelet derived growth factor receptor 

alpha (PDGFR-α), neuropilin-2 (NRP-2), thymocyte dif-

ferentiation antigen-1 (THY-1), olfactory receptor fam-

ily 14I1 (OR14I1), CD147, and CD151 [44–48]. Many of 

these receptors, such as PDGFR-α and OR14I1, are not 

expressed on cells of the myeloid lineage, and thus their 

involvement in the establishment of latency is unlikely 

[39, 48–51]. Despite the known expression of receptors 

such as NRP-2, THY-1, CD147, and CD151 on myeloid 

cells, the contribution of these HCMV entry receptors to 

infection of monocytes or  CD34+ HPCs have yet to be 

thoroughly examined [52–55].

In addition to the triggering of signaling pathways by 

viral glycoprotein interactions with cellular receptors, 

HCMV encodes four vGPCRs, including US28, US27, 

UL33, and UL78 that can modulate cellular signaling 

pathways. While all four vGPCRs are de novo synthe-

sized during lytic infection, only US28, UL33, and UL78 

are expressed during latency (reviewed in [56]). Each 

of the HCMV-encoded GPCRs is incorporated into the 

mature viral particle [57–61], thereby facilitating their 
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delivery into the host cell upon viral fusion. Impor-

tantly, virion-delivered US28 is sufficient to attenuate 

early IE gene expression [57, 62]. However, HCMV fails 

to maintain long-term latency in the absence of de novo 

synthesized US28, indicating virion delivered US28 is 

sufficient for the establishment, but not maintenance, 

of HCMV latency [62]. While UL78 and UL33 are also 

incorporated into the virion, the role for these vGPCRs 

during the establishment of latency in myeloid cells 

has yet to be explored, although UL33 functions dur-

ing reactivation, as detailed below [63]. Consequently, 

we will focus on the potential role of US28 in regulating 

glycoprotein induced cellular signaling pathways to 

promote the establishment of HCMV latency.

PI3K/Akt

EGFR is a well-studied viral entry receptor that con-

tributes to the establishment of efficient infection and 

latency of both monocytes and  CD34+ HPCs [19, 38, 41, 

64]. During HCMV entry, viral glycoprotein gB binds 

EGFR, triggering the activation of downstream PI3K/Akt 

signaling [19, 38–40]. HCMV activation of EGFR induces 

a non-canonical PI3K/Akt signaling pathway, via activa-

tion of Sh2 domain containing inositol 5-phospatase 1 

Fig. 1 The myeloid compartment and HCMV latency. During a primary infection, HCMV is spread through bodily fluids to oral epithelial cells, 

which are permissive for lytic infection. HCMV then infects peripheral blood monocytes, resulting in a unique form of latency known as a quiescent 

infection. Cellular signaling induced by viral entry drives the survival, extravasation, and monocyte-to-macrophage differentiation of infected 

monocytes. Viral spread to peripheral organs leads to lytic infection of tissue endothelial and epithelial cells. Additionally, infected monocytes 

can travel to the bone marrow and spread HCMV to  CD34+ HPCs, which are the long-term latency reservoir. Following an external reactivation 

signal, latently infected HPCs preferentially differentiate down the myeloid lineage into latently infected monocytes, and ultimately into replication 

permissive macrophages. Overall, the myeloid compartment is essential to viral life cycle and allows for the life-long persistence of HCMV
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(SHIP1) [16, 19], which results in the preferential phos-

phorylation of Akt at serine 473. In contrast, canoni-

cal growth factor induced PI3K/Akt signaling within 

monocytes stimulates the dual phosphorylation of Akt 

at both serine 473 and threonine 308 [16]. Akt activated 

by HCMV infection leads to the upregulation of a unique 

subset of anti-apoptotic proteins, including myeloid 

cell leukemia-1 (Mcl-1) protein, heat shock protein 27 

(HSP27), and X-linked inhibitor of apoptosis (XIAP), 

necessary for the survival of infected monocytes [9, 15, 

17, 18]. Although the upregulation of these survival fac-

tors is critical for allowing the establishment of latency 

within naturally short-lived monocytes, how the non-

canonical EGFR/PI3K/Akt signaling induced by HCMV 

directly contributes to the repression of MIEP is not 

entirely clear. In  CD34+ HPCs, Kim et  al. showed inhi-

bition of EGFR following genome nuclear translocation 

increases IE gene expression while attenuating expres-

sion of the latency maintenance protein, UL138 [40]. 

Chronic EGFR and PI3K signaling is also necessary to 

maintain latency as inhibition of the pathway stimulates 

viral reactivation, suggesting EGFR/PI3K/Akt signaling 

may directly regulate MIEP activity through modula-

tion of activating and repressive transcription factors. In 

support, the EGFR/PI3K/Akt cascade directly regulates 

the activities of several transcription factors. Alterna-

tively, early EGFR induced signaling events regulate viral 

genome trafficking within endosomes in both mono-

cytes and  CD34+ HPCs [40, 65]. �e viral tegument 

protein pp71 mediates the removal of promyelocytic 

leukemia nuclear body (PML-NB) proteins, including 

Daxx and histone deacetylases (HDACs), from the MIEP 

to allow transcription initiation [66–68]. However, Lee 

and Kalejta showed pp71 is sequestered to endosomes 

in TB40/E-latently infected  CD34+ HPCs, thereby pre-

venting pp71 translocation to the nucleus [69], possibly 

rendering pp71 unable to degrade PML-NB proteins dur-

ing latency establishment. Similarly, Saffert and Kalejta 

showed pp71 is restricted from the nucleus in AD169-

infected N-Tera2 or THP-1 cells [67], two in vitro model 

cell types to study HCMV latency. Using these same cell 

systems and virus strain, HDAC inhibitor treatment or 

siRNA-mediated knockdown of Daxx resulted in IE gene 

expression [67]. However, subsequent reports from the 

Fig. 2 Regulation of receptor signaling induced by viral glycoproteins is required for HCMV latency establishment. During HCMV entry in myeloid 

cells, glycoprotein complexes engage cellular receptors, including EGFR, integrins, and TLR2, stimulating a complex network of signaling pathways 

that generates an environment necessary for the establishment of HCMV latency within the myeloid compartment. However, many of the same 

signaling pathways also promote MIEP activity, and thus must be “fine-tuned” to ensure the MIEP remains inactive. Evidence indicates that viral 

factors carried by the incoming virion, such as US28, actively regulate virus-mediated cellular pathways to promote the establishment of latency
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Sinclair [70] and Stamminger [71] groups, who employed 

embryonal carcinoma NT2D1 cells or THP-1 monocytic 

cells, respectively, revealed a different phenotype. Daxx 

knockdown in NT2D1 cells did not impact IE gene tran-

scription following infection with the Toledo strain [70], 

and similarly, knockdown of PML, Daxx, or Sp100 failed 

to initiate IE gene expression in TB40/E-infected THP-1 

cells [71]. �ese data suggest the underlying mechanisms 

indeed may prove distinct, based on viral strain, clinical 

versus lab-adapted strain, and/or cell type used in the 

study. Nonetheless, it is intriguing to speculate that the 

EGFR driven PI3K/Akt control of endosomal trafficking 

may contribute to latency establishment by sequestration 

of pp71 or other viral proteins. Regardless of the mech-

anism of action, these data suggest a direct role for the 

EGFR/PI3K/Akt pathway in the early suppression of the 

MIEP and the establishment of latency. Although GCPRs 

are known alter the PI3K/Akt cascade, the role of viral 

GCPRs in modulating glycoprotein-induced EGFR/PI3K/

Akt signaling to promote latency establishment within 

HCMV-infected monocytes and  CD34+ HPCs remains 

to be elucidated and an important avenue of research.

MAPK

Mitogen activated protein kinases (MAPKs), includ-

ing c-Jun N-terminal kinases (JNK) 1/2/3, extracellu-

lar signal-regulated protein kinases (ERK) 1/2, and p38, 

promote transcription from the MIEP. MAPK signaling 

pathways activate the Activator Protein-1 (AP-1) tran-

scription factor, comprised of c-fos and c-jun, that  bind 

to  the MIEP to initiate transcription [72]. ERK1/2 sign-

aling mediates cyclic AMP response element binding 

protein (CREB)-dependent activation of the MIEP [73]. 

In addition to activating transcription factors, derepres-

sion of the MIEP by inhibition of transcriptional repres-

sors plays an equally important role during reactivation 

and IE gene expression. �e MIEP associates with het-

erochromatin protein 1 (HP-1), a chromosomal protein 

implicated in gene silencing, in latently infected mono-

cytes and  CD34+ HPCs [74–76]. However, the MIEP 

and HP1 association is lost during HCMV reactivation. 

Mechanistically, Dupont et  al. demonstrated that ERK 

stimulates the activities of mitogen and stress-activated 

kinases 1 and 2 (MSKs), which recognize and subse-

quently phosphorylate CREB to promote transcription 

and phosphorylation  at serine 10 of histone H3, result-

ing in the de-stabilization of histones with HP1 during 

IL-6-mediated reactivation within dendritic cells (DCs) 

[77]. Finally, the MIEP and subsequent viral replication 

are also activated in a p38-dependent manner [78], fur-

ther revealing the importance of MAPK activity to MIEP 

activation. Despite the essential role of MAPKs in pro-

moting IE gene expression, which we discuss in more 

detail below, MAPKs are rapidly activated by viral entry 

into monocytes and  CD34+ HPCs without initiating 

transcription from the MIEP. HCMV gB triggers ERK/

MAPK to promote the expression of Mcl-1 and the sub-

sequent survival of infected monocytes and  CD34+ HPCs 

[79]. Additionally, and as detailed below, EGFR signals 

through MEK/ERK to activate the early growth response 

1 (EGR-1) transcription factor, which drives the expres-

sion of the viral latency maintenance protein UL138 

[80]. Rapid secretion of IL-1β from HCMV-infected 

monocytes triggers p38 MAPK signaling that promotes 

a cellular environment conducive for latency [81]. �ese 

studies highlight the critical importance of MAPK sign-

aling in promoting a cellular environment supportive of 

latency, despite also functioning in stimulating IE gene 

expression. �us, the question remains as to how the 

activation of MAPKs are able to promote the establish-

ment of latency. As discussed in more detail below, US28 

attenuates ERK phosphorylation when expressed in iso-

lation in THP-1 cells [82]. Accordingly, US28 reduces 

the expression and phosphorylation of c-fos [62]. Simi-

larly, infection with a US28 deficient virus increased 

AP-1 binding to the MIE enhancer/promoter [62] and 

IE gene expression in monocytes [62, 82]. Interestingly, 

c-jun is also downregulated in latently infected  CD34+ 

HPCs and Kasumi-3 cells following HCMV infection, 

albeit in a US28-independent manner [62, 83]. However, 

it remains unclear if virion delivered US28 plays a role in 

regulating glycoprotein-activated MAPKs. It is intrigu-

ing to hypothesize that MAPKs are activated upon entry 

through glycoprotein/receptor interactions, which is then 

subsequently countered by US28. However, it is impor-

tant to note that MAPKs are not completely attenuated 

by US28; rather US28 acts as a rheostat that fine-tunes 

the activity of this signaling pathway. �erefore, there 

may be a threshold level of activation that is important 

for the establishment of latency, but is not sufficient to 

initiate MIEP-driven transcription.

Src

Integrins are a family of heterodimeric receptors com-

posed of a single α and β chain. �ere are 24 α and 9 

β integrin chains that can form 25 individual recep-

tors expressed to different levels depending on cell type 

(reviewed in [84]). Each combination of α and β chain 

not only has distinct binding properties, but also exhibits 

different downstream signaling characteristics. HCMV 

utilizes the integrin diversity to mediate entry into dif-

ferent cell types and to initiate distinct cell-type specific 

signaling. During entry into fibroblasts, HCMV engages 

only the α2β1, α6β1 [85], or αvβ3 [86] integrin heterodi-

mer via the gH/gL/gO trimer, which stimulates tran-

sient Src signaling. In contrast, the pentameric complex 
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simultaneously binds both β1 and β3 integrin containing 

heterodimers to stimulate a chronic but low-level activa-

tion of Src [87]. Importantly, the trimeric complex has no 

effect on Src activity during entry into monocytes, sug-

gesting that Src-mediated signaling specifically initiated 

from the pentameric complex is critical to the establish-

ment of infection [37]. During lytic infection of fibro-

blasts, there is also evidence that gB binds β1 integrins 

through a disintegrin domain binding [88]. However, the 

contribution of this interaction to the induction of Src 

signaling remains unexplored. Importantly, we recently 

reported gB directly interacts EGFR, but not with β1 

integrins, in infected monocytes [19]. In monocytes, 

pentamer-induced Src signaling is required for increased 

cellular motility as well as proper endocytosis and traf-

ficking of the virion [37, 41, 87, 89]. However, whether 

Src signaling regulates the MIEP in monocytes or  CD34+ 

HPCs is unclear. Recently, Src family kinases (SFKs) were 

implicated in the regulation of chromatin structure at the 

MIEP. As described in detail below, the upregulation of 

SFKs, Src and hematopoietic cell kinase (Hck), during 

latency recruit the monocytic leukemia zinc finger pro-

tein (MOZ) histone acetyltransferase leading to chroma-

tin rearrangement and initiation of transcription from 

the MIEP [77]. �ese data suggest that glycoprotein-

mediated activation of Src signaling during viral entry 

must be restricted to a certain extent to allow for the cel-

lular changes necessary for the establishment of latency 

while also suppressing the MIEP. In support of this, 

expression of US28 in THP-1 cells, a model myeloid cell 

line, results in the downregulation of Src gene expres-

sion [62]. It is important to point out that Krishna et al. 

showed THP-1 cells transduced with a constitutively 

expressed US28 construct increase Src phosphorylation 

in a phosphokinase study, though these data were not 

subsequently confirmed in this study [82]. However, sup-

porting this work, Aslam et al. showed that Src phospho-

rylation was upregulated in the presence of US28 [90]. It 

is unclear from this work, however, which Src phospho-

site was evaluated, which is critical, as  Ser416 phosphoryl-

ation renders Src active, while phosphorylation at  Ser527 

is a negative regulatory site, associated with Src inactiv-

ity (reviewed in [91]). Whether virion-delivered US28 

represses early Src signaling to promote the establish-

ment of latency remains to be elucidated, though this is 

an attractive hypothesis.

NF‑κB pathway

Nuclear factor-kappa B (NF-κB) signaling is crucial for 

many aspects of HCMV biology [92], but the role it has 

in the establishment of latency is unclear. Adding to the 

complexity of the regulation of this pathway, HCMV 

encodes both agonists and antagonists of NF-κB. As a 

transcription factor, NF-κB binds to the MIEP to drive IE 

gene expression [93, 94], and during lytic infection, virus 

binding and entry activates NF-κB signaling and expres-

sion of the MIEP [34, 95]. Interestingly, upon monocyte 

infection, NF-κB is robustly activated by viral glyco-

protein and cellular receptor interactions in a Toll-like 

receptor-2 (TLR-2) dependent manner to promote the 

induction of a distinct inflammatory phenotype in mono-

cytes [39, 96, 97]. �e NF-κB-mediated phenotype stimu-

lates the expression of an unusual milieu of inflammatory 

and anti-inflammatory cytokines and chemokines likely 

important for driving extravasation of HCMV-infected 

monocytes in tissue. However, the question still remains 

as to why activation of the NF-κB pathway during infec-

tion of undifferentiated myeloid cells does not lead to 

the expression of IE genes, as it does during lytic infec-

tion. One possibility is that NF-κB-driven cellular gene 

expression is functional, but other regulated cofactors 

not active in undifferentiated myeloid cells are required 

to stimulate IE expression. Krishna and colleagues have 

demonstrated US28 regulates NF-κB nuclear localiza-

tion during latency. A US28 signaling deficient mutant 

increased nuclear localization of NF-κB, suggesting US28 

attenuates the NF-κB signaling pathway by an unknown 

mechanism [82]. Additionally, functional viral micro-

RNAs (miRNAs), including those known to regulate 

NF-κB [92], are delivered to the host cell by the infecting 

virion [98]. �ese data suggest a potential model whereby 

HCMV stimulates NF-κB activity via glycoprotein-cellu-

lar receptor interactions, but limits its activity through 

US28 and miRNAs, in order to allow for the expression 

of NF-κB responsive cellular genes without initiation of 

transcription from the MIEP.

Maintenance and reactivation

Once the virus establishes latency, the virus must now 

devise ways to maintain this phase of infection. �is pro-

cess is undoubtedly multifaceted, but it is clear HCMV 

has co-evolved with its host, usurping host cell networks 

to its own benefit. An “easy target” for the virus is cel-

lular signaling, as this is one of the prime means to alter 

the cellular milieu. Indeed, HCMV has devised biologi-

cal mechanisms to coopt host cell signaling to maintain 

viral latency and trigger reactivation into the lytic cycle 

(Fig. 3).

The UL133‑138 locus

Work from a variety of groups have revealed that the 

UL133-138 locus is quite important to the regulation 

of latency and reactivation (reviewed in [99]). UL138 is 

required for the establishment of latency, and in fact, 

abrogation of this open reading frame (ORF) results 

in an infection that favors lytic replication, leading to 
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increased virion production [100–102]. More recently, 

Buehler et  al. showed UL138 regulates EGFR signal-

ing, which downstream, upregulates PI3K/Akt signal-

ing [80, 103]. Pharmacological inhibition of PI3K/Akt 

favors reactivation, though this phenotype is most sig-

nificant when combined with reactivation stimulating 

cytokines, suggesting other factors regulate this path-

way [80]. �ese data also highlight that viral manipu-

lation of host cell signaling is likely not as simple as a 

direct on/off state, but instead reflects a mechanism 

that is more fine-tuned. In fact, UL138 actually regu-

lates its own expression during HPC latent infection, 

which it accomplishes through the upregulation of the 

EGFR-regulated transcription factor, EGR-1. �is host 

protein binds the viral genome, thereby driving UL138 

transcription in HPCs, as well as fibroblasts [80], in 

turn creating a feedback loop regulating UL138-medi-

ated events. Supporting the role of this feedback loop 

towards latency, disruption of the EGR-1 binding site 

upstream of UL138 in the viral genome results in the 

inability for the virus to establish/maintain latency in 

HPCs [80].

�e importance of the UL133-138 locus does not end 

with viral latency. While UL138 helps maintain latency, 

UL135 is critical for efficient reactivation. When given 

the proper reactivation cues, UL135 counters UL138-

mediated functions by targeting EGFR [80]. Indeed, 

disruption of the UL135 ORF results in a virus that 

fails to efficiently reactivate in  CD34+ HPCs [104]. To 

ensure EGFR signaling and its downstream effectors are 

appropriately regulated, HCMV additionally encodes 

an miRNA, cmv-miR-US22, which targets EGR1 [105]. 

UL135’s role during reactivation does not end with 

countering UL138’s functions. UL135 interacts with 

host adapter proteins, Abelson-interactor (Abi)-1 and 

Cbl-interaction protein (CIN) 85/ CD2 associated pro-

tein (CD2AP), which in turn regulate EGFR on the cell 

surface. Hence, in the absence of UL135 and its interac-

tions with these host proteins, EGFR is increased on the 

cell surface of HPCs, thereby amplifying signaling and 

favoring latency. In line with this, inhibiting EGFR or its 

downstream pathways leads to reactivation when cou-

pled with reactivation stimuli and rescues the reactiva-

tion defect observed for UL135 mutant viral infections 

Fig. 3 Modulation of signaling pathways during latency maintenance. Multiple signaling pathways are modulated by viral factors to support 

latency maintenance. Cellular receptors like EGFR, BMPR2, and TGFβR are usurped by HCMV to mediate downstream cellular pathways, including 

MAPK and TGFβ. HCMV also encodes its own factors, such as the viral GPCR, US28, which regulates several cellular signaling cascades. Additionally, 

these host and viral receptors modulate downstream transcription factor activity. The cumulative effect of this collective regulation is to alter the 

cellular environment to support latency maintenance and prevent expression from the MIE enhancer/promoter. Conversely, when provided the 

proper external cues, HCMV again alters host cell signaling, thereby making the cell more amenable to viral reactivation. Cellular factors are shown 

in blue, and viral factors are shown in red. Pathways activated during latency are shown in solid lines, and processes activated during reactivation 

and suppressed during latency are shown in dotted lines
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[80, 103]. Collectively, both UL135 and cmv-miR-US22 

antagonize UL138-mediated EGFR regulation, thereby 

creating a cellular environment more amenable to reac-

tivation. �ese data also illuminate the critical nature of 

EGFR signaling during latency, for which the virus has 

devised several means to regulate this pathway.

Manipulation of host cell signaling impacts MIE enhancer/

promoter activity

A key step in establishing and maintaining HCMV 

latent infection is silencing of the MIE locus, which is 

likely initiated by chromatin remodeling (reviewed in 

[29]). �e MIE enhancer/promoter is thought of as the 

“lytic switch”, acting like what may more accurately be 

described as a rheostat to skew the infection towards one 

that is latent versus one that is lytic (reviewed in [29]). 

Long regarded as a silencing factor of the MIE enhancer/

promoter [106, 107], Poole and colleagues recently con-

firmed the requirement for yin yang 1 (YY1) transcrip-

tion factor binding for maintaining latency [108]. Perhaps 

unsurprisingly, HCMV regulates YY1 by manipulating 

host cell signaling. Host-encoded transmembrane serine/

threonine kinase, bone morphogenetic protein receptor 

2 (BMPR2) signaling induces SMAD6, a SMAD family 

member that negatively regulates BMP and transform-

ing growth factor β (TGFβ) signaling (reviewed in [109]). 

In the context of latent infection, SMAD6 upregulation 

restricts the activity of TGFβ receptor (TGFβR) [108]. 

�is is critical, as latently infected induced pluripotent 

stem cells (iPSCs) or  CD34+ HPCs display a significant 

upregulation of TGFβ [108, 110, 111], mediated at least 

in part by cmv-miR-US5-2 attenuation of NGFI-A bind-

ing protein 1 (NAB1) [112]. Since NAB1 is a transcrip-

tional repressor of EGR-1 [113, 114], this represents an 

additional mechanism by which HCMV ensures EGR-1 

transcription and subsequent TGFβ production. Addi-

tionally, cmv-miR-UL22A also targets TGFβ signaling, 

and in fact deletion of the pre-miR-UL22A sequence 

within the viral genome results in a viral mutant that is 

less efficient at reactivation [110]. �is is consistent with 

the finding that increased TGFβ signaling leads to an 

increase in the host-encoded miRNA, hsa-miR-29, which 

ultimately targets YY1. In turn, recruitment of YY1 to 

the MIE enhancer/promoter is decreased, which relieves 

the repression of the viral promoter and leads to reacti-

vation [108]. Collectively, these findings reveal not only 

the importance of TGFβ signaling to latency and reac-

tivation, but the critical nature of this pathway towards 

regulating a central transcription factor that contributes 

to the balance between the active and repressive states of 

the MIE enhancer/promoter. �is latter point is ampli-

fied by the multiple biological mechanisms HCMV has 

devised to regulate cell signaling that culminates at YY1 

regulation.

A region rich in transcription factor binding sites, the 

MIE enhancer/promoter locus is studded with multiple 

binding sites for those which activate this very strong 

promoter region. �us, just as the virus must evolve 

strategies to only recruit silencing transcription fac-

tors like YY1 during latency, HCMV has converse tac-

tics to recruit transcription factors that activate the MIE 

enhancer/promoter as the virus reactivates. Investigators 

have shown that several of these transcription factors 

are regulated by viral manipulation of host cell signal-

ing. For example, Keller an colleagues found transcrip-

tion from the MIE locus was derepressed in quiescently 

infected NTera2-derived neuronal cells treated with 

forskolin, a compound that phosphorylates CREB [115, 

116]. Indeed, this was reliant upon the CRE-binding 

sites located within the MIE distal enhancer [115]. More 

recently, Kew et al. showed phosphorylated CREB bind-

ing to the MIE enhancer/promoter aids in viral reactiva-

tion in DCs, which is dependent upon the activation of 

the ERK-MSK signaling axis. Consistent with this, dele-

tion of the CREB binding sites in the MIE enhancer/

promoter region results in a mutant virus unable to reac-

tivate in DCs, though both  CD14+ monocytes and imma-

ture DCs maintained viral genomes. It is also important 

to point out that in this context, CREB not only acts as 

a canonical transcription factor, but it also promotes 

the phosphorylation of histone H3, which aids in chro-

matin remodeling of the MIEP, facilitating reactivation 

[73]. More recently, we showed a parallel mechanism 

for regulating CREB activity and recruitment to the MIE 

enhance/promoter. Consistent with previous findings in 

other cell types (e.g. COS-7, fibroblasts; [117, 118]), we 

found signaling via the viral GPCR, UL33, activates CREB 

[63]. Furthermore, UL33-mediated signaling facilitates 

recruitment of phospho-CREB to the MIE locus during 

reactivation. Indeed, disruption of the entire UL33 ORF 

or UL33’s G-protein coupling motif (the ‘DRY’ motif ) 

results in a failure to reactivate from latency following 

infection of  CD34+ HPCs, despite the ability of each 

mutant virus to maintain viral genomes. While phospho-

CREB was recruited to the MIE locus in latently infected 

Kasumi-3 hematopoietic cells treated with 12-O-tetrade-

canoylphorbol-13-acetate (TPA) to induce reactivation 

[63, 119], this was significantly reduced in parallel cul-

tures infected with either UL33 mutant [63]. Since cellu-

lar GPCRs coupled to Gαo activate CREB via p38 MAPK 

[120], it is plausible UL33 uses a similar mechanism. 

However, inhibition of p38 MAPK in monocytes had lit-

tle impact on phospho-CREB binding to the MIE locus 

[73]. �us, additional work is needed to comprehensively 
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understand the upstream mechanisms underlying CREB 

regulation.

NF-κB and AP-1 host transcription factors also func-

tion to activate the MIE enhancer/promoter (reviewed 

in [29]). Latently infected Kasumi-3 hematopoietic 

cells stimulated with tumor necrosis factor (TNF) α to 

induce reactivation [119] and treated simultaneously 

with curaxins to inhibit NF-κB, results in a significant 

decrease in UL123 transcription, when compared to cul-

tures treated with TNFα alone [121]. Furthermore, the 

HCMV-encoded GPCR, US28 attenuates NF-κB during 

latent infection [82], consistent with the requirement of 

US28 expression and signaling for viral latency, discussed 

in detail below [25, 57, 62, 82, 122–126]. In fact, phar-

macological inhibition of NF-κB in monocytes infected 

with a US28-deletion viral mutant resulted in an infec-

tion that favored latency rather than the lytic-like phe-

notype infection with this mutant usually observed [82]. 

With four binding sites within the MIE enhancer/pro-

moter (reviewed in [29]), it is likely NF-κB’s role during 

reactivation is key. Further work elucidating the exact 

mechanisms by which US28, for example, modulates host 

signaling to regulate this important transcription factor is 

warranted and may reveal hematopoietic-specific signal-

ing cascades critical for viral reactivation.

AP-1 is a heterodimeric transcription factor, comprised 

of c-fos and c-jun subunits [127]. We have shown previ-

ously that both c-fos [62] and c-jun [128] are attenuated 

during latency, thereby limiting their heterodimerization. 

�e balance of AP-1 binding to the MIE enhancer/pro-

moter is key to its regulation; while the absence of AP-1 

binding aids in keeping the MIE enhancer/promoter 

silenced [62], its binding to the promoter proximal site 

is required for viral reactivation [129]. Despite a require-

ment of this transcription factor for reactivation, how-

ever, AP-1 binding is dispensable for lytic replication in 

fibroblast or epithelial cells [72, 129]. �e upstream sign-

aling events regulating fos and jun are currently under 

investigation, and while we have shown US28-induced 

signaling targets fos [62], the viral and/or cellular factors 

manipulating jun are unknown. As discussed in more 

detail below, the signaling cascade US28 hijacks to atten-

uate c-fos remains to be elucidated, but it is likely that 

the virus balances the activation and attenuation of sign-

aling cascades to skew the cellular milieu towards one 

that favors latency versus one that aids in reactivation. 

�us, viral proteins, like US28, are likely antagonized to 

“switch” their functions during reactivation, similar to 

the relationship between UL138 and UL135.

A recent study detailed the involvement of Krup-

pel-associated box domain-associated protein 

(KAP)-1/ tripartite motif-containing (TRIM) 28 and 

mammalian target of rapamycin (mTOR) during latency 

and reactivation in  CD34+ HPCs [130]. KAP-1 co-regu-

lates transcription, as it recruits SET domain bifurcated 

(SETDB) 1 and HP1α, which facilitate H3K9me3. �is 

histone modification is a repressive chromatin mark, 

and during HCMV latency, represses the MIE locus after 

SETDB1 and HP1α recruitment (reviewed in [29]). As 

a result, these factors silence the MIE locus throughout 

latency. However, when mTOR is activated, it phospho-

rylates KAP-1, relieving chromatinization of the MIE 

locus, leading to activation of lytic gene transcription 

and the production of viral particles, suggesting a role 

for this pathway in both latency and reactivation [130]. 

Supporting this, and as mentioned above, work from 

Buehler et al. reveal treatment with either an Akt or PI3K 

pharmacological inhibitor stimulates lytic replication 

in  CD34+ HPCs cultured under latent conditions [80]. 

Additionally, we have shown HCMV stimulates mTOR 

activity 24 h post-latent infection of monocytes [17, 18], 

though this activity was not sufficient to drive active rep-

lication [18]. �is could reflect differences in cell type 

specificity or cell environment at distinctive times during 

latent infection (e.g. early [24hpi] vs. later [7dpi] events). 

Alternatively, this supports the notion that mTOR is 

regulated in a rheostat-like fashion, where a threshold of 

activation has to be met or has not been reached. While 

the mechanism(s) through which this pathway is regu-

lated remain unknown, rapamycin, an mTOR inhibitor, 

administered to transplant recipients suppresses viral 

reactivation [131–134]. Whether this is due to a direct 

impact on the virus or the immune response is debated 

[135], since rapamycin failed to impact UL123 expres-

sion in LPS-stimulated DCs [136]. MAPK and Akt sign-

aling axes regulate downstream mTOR signaling, all of 

which are implicated in entry and maintenance of CMV 

in cells supporting latency [137]. Akt is activated rapidly 

following latent infection of monocytes [16, 18, 138] and 

 CD34+ HPCs [80], though it is attenuated by 72hpi in 

monocytes [16, 138] and minimally sustained in  CD34+ 

HPCs [80]. Similarly, mTOR signaling is also rapidly 

upregulated within 24hpi of monocytes [17, 18], which is 

attenuated during latency maintenance [130]. Addition-

ally, sustained pharmacological inhibition of Akt activ-

ity results in reactivation of WT, latent virus in  CD34+ 

HPCs [80], suggesting completely abrogating Akt activ-

ity for prolonged times alters the cellular environment, 

such that it no longer is amenable to supporting HCMV 

latency.

Manipulation of MAPK signaling

�e importance of MAPK signaling to HCMV latency 

and reactivation has become increasingly clear over the 

past decade. Several studies have shown MAPK signal-

ing promotes HCMV reactivation in monocyte-derived 
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DCs [73, 77, 139]. However, this regulation is not binary; 

like Akt, low-levels of MEK and ERK phosphorylation 

are maintained during HCMV latent infection [80], argu-

ing activity of these MAPK proteins is fine-tuned. Addi-

tionally, such subtle differences may reflect tissue- or 

cell type-specificity. In support of this, MAPK activa-

tion promotes reactivation in a cell type specific manner 

[139, 140], suggesting that not all cells that harbor CMV 

latently do so similarly (reviewed in [141]). Indeed, IL-6 

mediated activation of MAPK signaling facilitates viral 

reactivation in monocyte-derived-DCs and monocyte-

derived-Langerhans-like cells (LCs), although viral reac-

tivation was not coupled with activation of IL-6-mediated 

MAPK signaling in LCs [77, 140], suggesting involvement 

of other viral or host factors. As mentioned above, SFKs, 

specifically Src and Hck, play  important roles in this cell 

type-specific signaling (reviewed in [141]). Both of these 

SFKs display upregulated expression during reactivation 

in monocyte-derived-DCs, and while MAPK activity 

impacts histone phosphorylation at the MIEP, chromati-

nization is regulated in parallel in an SFK-dependent 

fashion via the recruitment of MOZ histone acetyl-

transferase (HAT) [77]. Upstream of SFK signaling are 

various receptors capable of potentiating signals, one of 

which is the receptor tyrosine kinase, Fms related recep-

tor tyrosine kinase 3 receptor (FLT-3R), which down-

stream, regulates a cascades such as Ras and ERK/MAPK 

(reviewed in [142]). Crawford et  al. recently identified 

pUL7 as a novel, secreted ligand for the FLT-3R using 

HEK293T cells. �is ligand-receptor interaction indeed 

leads to cellular signaling, and in bone marrow lympho-

blast cells, PI3K/Akt and MAPK signaling cascades are 

activated. In turn, pUL7 induces differentiation of both 

HPCs and monocytes. Supporting these data, the inves-

tigators found that pUL7 required for reactivation [143].

�us, pUL7 activation of MAPK signaling may represent 

another mechanism HCMV has devised to ensure viral 

reactivation. Whether Src and/or Hck aid in regulating 

the pUL7-FLT-3R cascade to impact downstream MAPK 

signaling remains unknown, but it is attractive to hypoth-

esize these factors coordinate their functions to ensure 

proper MAPK activity during viral reactivation. Further-

more, such regulation may in fact be cell type depend-

ent, underscoring the need to interrogate such pathways 

across hematopoietic cell model systems. To this point, 

the addition of MEK or ERK inhibitors in combination 

with reactivation stimuli significantly increases viral 

reactivation compared to reactivated  CD34+ HPCs in the 

absence of the inhibitors [80]. �ese data reveal: 1) MEK/

ERK inhibition alone is not sufficient to drive reactiva-

tion, 2) significant increases in MEK/ERK phosphoryla-

tion tip the balance towards reactivation, and 3) MAPK 

activity as it pertains to HCMV latency and reactivation 

may depend on cell type. Collectively, these data reveal 

MAPK signaling is a key pathway usurped by HCMV 

during latency and reactivation, and like Akt, is likely 

fine-tuned by the virus to skew the host cell environment 

to favor a specific phase of infection.

US28‑mediated regulation of viral latency and reactivation

US28 has long been considered a latency-associated tran-

script, as early as 1998 when Patterson and colleagues 

showed this viral GPCR was detected in the peripheral 

blood mononuclear cells of infected individuals [144]. 

Shortly thereafter, Beisser et al. were the first to demon-

strate US28 was transcribed during latent infection of 

THP-1 monocytic cells [145]. Until recently, however, a 

role for US28 during this phase of infection had not been 

described. We were the first to demonstrate the require-

ment for US28 during viral latency [57], a finding subse-

quently confirmed independently by several groups [25, 

82, 122–124, 126]. US28 is a potent signaling molecule 

[146], thus it is unsurprising that US28-mediated signal-

ing helps establish and maintain viral latency [57, 62, 82, 

147]. Incorporation of US28 into the mature viral parti-

cle [57, 62] allows for its immediate expression, facilitat-

ing silencing of the MIE promoter/enhancer as early as 

2 days post-infection of hematopoietic cells [62]. To this 

end, US28 attenuates MAPK and NF-κB signaling [82], 

as well as fos expression downstream [62]. �at US28 

regulates the MAPK pathway is consistent with previ-

ous studies showing the upregulation of MAPK signaling 

promotes HCMV reactivation in monocyte-derived DCs 

[73, 77, 139], detailed above. US28-mediated attenuation 

of MAPK signaling is also consistent with downstream 

suppression of fos, which ultimately prevents the AP-1 

transcription factor from binding and activating the MIE 

promoter/enhancer [62]. As detailed above, preventing 

recruitment of AP-1 to this promoter region is critical 

for successful latent infection, and conversely, its binding 

is essential for viral reactivation [129]. As an active sign-

aling protein expressed during latency, it is perhaps not 

surprising that US28 regulates host factors that ultimately 

impact the activity of the MIE enhancer/promoter, since 

this region is so crucial to balancing latency and reacti-

vation. Recently, Elder et  al. demonstrated US28 also 

regulates CCCTC-binding factor (CTCF) binding to the 

MIE enhancer/promoter. CTCF binding to this region 

increases during latency, thereby suppressing transcrip-

tion from the MIE locus. Indeed, this is dependent upon 

US28-mediated signaling [122]. Furthermore, these new 

data reveal that the neutrophil chemoattractants, S100A8 

and S100A9, which are downregulated during latency 

[148], are in fact regulated, at least in part, by US28-

mediated recruitment of CTCF to their promoter [122], 

revealing yet another means by which US28 manipulates 
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cellular proteins, rendering the host cell more amenable 

to viral latency.

As much as we have learned collectively as a field, there 

are many outstanding questions surrounding US28’s 

function(s) during latency that remain. For the signal-

ing pathways US28 regulates that are identified to-date, 

it is clear from that US28 alters the cellular milieu during 

latency in a ligand- [57, 62, 82, 126, 147] and G protein-

coupling-dependent fashion [57, 62, 82, 126]. US28 binds 

a variety of cellular chemokines and couples to various G 

proteins (reviewed in [56]), thus understanding the key, 

cellular proteins US28 usurps to its advantage will inform 

potential treatment strategies. Latently infected granulo-

cyte macrophage progenitors (GMPs) display an increase 

in the expression of the CC chemokine, monocyte chem-

otactic protein-1 (MCP-1) [149], a known US28 ligand 

(reviewed in [56]). Pharmacological inhibition of  Gα 

proteins with pertussis toxin or PI3K with wortmannin 

attenuated MCP-1 transcript levels [149], suggesting this 

is regulated via GPCR-mediated signaling. �ough the 

molecular mechanism(s) underpinning MCP-1’s regula-

tion during latency is yet to be elucidated, it is certainly 

plausible the viral-encoded GPCRs expressed during 

latency [57, 63, 145, 150, 151], such as US28, may lever-

age MCP-1’s upregulation to its own advantage, perhaps 

promoting dissemination in the initial stages of viral 

infection.

While the numerous host cell chemokines are obvi-

ous potential ligands for US28, it is equally plausible 

US28 interacts with a viral-encoded chemokine. HCMV 

encodes viral chemokines and cytokines (reviewed in 

[152]), thus, this could represent a novel mechanism by 

which US28 regulates host cell signaling in hematopoi-

etic cells, thereby retaining the virus in its latent state 

until given the proper cues. While US28 is not required 

for viral reactivation in hematopoietic cells [25, 82, 

122–124, 126], Crawford et  al. published expression of 

the complete, functional US28 ORF has no impact on 

maintaining latency, but is required for viral reactivation 

in  CD34+ progenitor cells isolated from fetal liver. [147]. 

�is difference is possibly explained by tissue origin of 

the cells (fetal liver-derived vs. hematopoietic-derived). 

Nonetheless, since this viral GPCR is expressed through-

out all stages of infection, some host or viral factor(s) 

likely influence US28 during reactivation in hematopoi-

etic cells to either overcome its strong “pro-latent” signal-

ing, or “switch” its signaling to favor lytic infection.

miRNA regulation of latency and reactivation

Both host cell- and viral-encoded miRNAs have func-

tions during latency and reactivation (reviewed in [153]). 

�e known functions for cmv-US5-2, cmv-miR-UL22A, 

and cmv-miR-US22 are discussed above. Several other 

CMV-encoded miRNAs also regulate cell signaling 

pathways during latency and reactivation. For exam-

ple, cmv-miR-US25-1 targets RhoA, and disruption 

of this viral-encoded miRNA increases the prolifera-

tion of  CD34+ HPCs [154]. As part of the Rho family of 

GTPases, RhoA acts as a switch for a variety of signaling 

cascades as it cycles between its inactive GDP-bound and 

active GTP-bound states (reviewed in [155]). How RhoA 

might be manipulated and coopted by viral signaling 

proteins and other factors during latency in hematopoi-

etic cells is unclear, though Diggins et  al. hypothesize a 

role for TGFβ signaling [154], which regulates the RhoA 

pathway [156–161]. If true, this would reveal yet another 

means by which HCMV attenuates the TGFβ cascade 

during latency. As discussed above, cmv-miR-UL22A 

targets SMAD3 to prevent robust TGFβ signaling during 

latent infection of  CD34+ HPCs [110]. �us, it is possi-

ble that cmv-miR-US25-1 and cmv-miR-UL22a function 

cooperatively to ensure this host cell signaling pathways 

is dampened during latent infection. Similarly, cmv-miR-

UL148D, which is robustly expressed during viral latency, 

targets the activin signaling axis in monocytes, by directly 

suppressing the activin A receptor type (ACVR) 1B cel-

lular receptor, which in turn limits the secretion of IL-6 

[162]. �is represents a possible mechanism by which 

the virus subverts immune detection. Additionally, cmv-

miR-UL148 targets the cellular immediate early response 

gene 5 (IER5). Repression of IER5 results in an increase in 

host-encoded cell division cycle 25B (CDC25B) expres-

sion, which aids in suppressing UL123 transcription 

while simultaneously increasing cyclin-dependent kinase 

1 (CDK1). �us, cmv-miR-UL148-mediated regulation of 

the IER5-CDC25B axis is important for latent infection 

of Kasumi-3 and primary  CD34+ cells [163]. cmv-miR-

US5-1 and cmv-miR-UL112 also function to alter host 

cell signaling pathways during latency. Hancock and col-

leagues recently found these two viral-encoded miRNAs 

downregulate host cell Forkhead box O3a (FOXO3a). 

While both miRNAs protect  CD34+ HPCs from apop-

tosis [164], whether their expression and targeting of 

FOXO3a is required for latency remains outstanding. 

FOXO3a binds and drives transcription from the MIE 

internal promoter 2 (iP2) [165], a promoter that aids in 

reactivation of latent virus in primary  CD34+ HPCs [166] 

and Kasumi-3 cells [129]. Furthermore, mutation of the 

FOXO binding sites within the MIE promoter/enhancer 

locus leads to inefficient viral reactivation following 

stimulation of latently infected  CD34+ HPCs [165]. 

�us, it seems plausible that cmv-miR-US5-1 and cmv-

miR-UL112 target FOXO3a to limit sufficient quantities 

of this protein, such that it cannot transactivate the MIE 

locus. cmv-miR-UL112 may indeed have dual functions 

in this regard, as Lau et  al. showed this miRNA targets 
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IE72 in both monocytes and THP-1 monocytic cells to 

aid in the maintenance of latency [167], consistent with 

earlier work [168]. HCMV also modulates host cell miR-

NAs to suppress the MIE-encoded proteins. Indeed, hsa-

miR-200 family members target IE86. Mutation of the 

seed sequence in the UL122 3’ untranslated region (UTR) 

results in a virus that fails to undergo latency in Kasumi-3 

cells. Expression of this family of host-encoded miRNAs 

are upregulated in cells that favor latency (e.g. Kasumi-3, 

 CD34+, and monocyte cells) [169], thus it is attractive 

to speculate that they may also target proteins involved 

in signal transduction networks. Collectively, both viral 

and host miRNAs are pivotal to latency and reactivation. 

Many of the changes these non-coding RNAs impart are 

small, yet significant. �is again highlights that the regu-

lation of factors involved in cellular signaling are indeed 

fine-tuned.

Conclusions

It is quite evident that HCMV usurps host cell signal-

ing to its advantage, beginning as early as the initial 

phases of latency establishment and through reacti-

vation. Arguably, viral-manipulation of these signal-

ing cascades alters the cellular milieu, making it more 

amenable to viral latency. Indeed, such changes to the 

cell environment are further altered following external 

cues that trigger viral reactivation; pathways that were 

attenuated to establish and maintain latency become 

activated (and vice versa). However, it is important to 

realize the regulation of host cell signaling is not binary. 

Such cell signaling pathways are more likely finely regu-

lated, where the slightest of change in activity results 

in profound cellular changes. �is is particularly evi-

dent during the establishment of latency where signal-

ing pathways important for generating the biological 

changes critical to supporting latency are often also 

activated during lytic infection to promote viral gene 

expression and replication. �is paradox reveals the 

intricacy of viral manipulation of host cell signaling 

during latency establishment and maintenance, as well 

as reactivation. Cellular signaling cascades are inter-

twined, and their regulation is most likely dependent 

on multiple viral and cellular factors working in coor-

dinated fashion. Further work is necessary to unravel 

the regulatory mechanisms employed by HCMV to 

“rewire” the complex cellular signaling network that 

promote establishment, maintenance, and reactivation 

of HCMV latency within the myeloid compartment. 

Finally, viral manipulation of host signaling cascades is 

likely cell type specific depending on the type of infec-

tion elicited by HCMV. Quiescent infection of primary 

monocytes likely produces a signaling network skewed 

towards promoting the establishment of latency while 

signaling within latently infected hematopoietic cells is 

undoubtedly more conducive to both the establishment 

and long-term maintenance of latency. In turn, cell type 

specific signaling likely leads to differences in the acti-

vation signals necessary for reactivation into lytic rep-

lication. �us, understanding how HCMV modulates 

cell signaling in the cells that support viral latency and 

reactivation will undoubtedly provide clues as to the 

pathways crucial to supporting these exact phases of 

viral infection, keeping in mind that even the cell type 

used for experimentation matters (e.g. monocyte ver-

sus  CD34+ HPC). As more work is done in this area, 

we will likely identify pathways worthy of exploiting as 

novel therapeutic targets of the latent reservoir.
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