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One of the key features of the immune system is its extraordinary capacity to discriminate

between self and non-self and to respond accordingly. Several molecular interactions

allow the induction of acquired immune responses when a foreign antigen is recognized,

while others regulate the resolution of inflammation, or the induction of tolerance to

self-antigens. Post-translational signatures, such as glycans that are part of proteins

(glycoproteins) and lipids (glycolipids) of host cells or pathogens, are increasingly

appreciated as key molecules in regulating immunity vs. tolerance. Glycans are sensed

by glycan binding receptors expressed on immune cells, such as C-type lectin receptors

(CLRs) and Sialic acid binding immunoglobulin type lectins (Siglecs), that respond to

specific glycan signatures by triggering tolerogenic or immunogenic signaling pathways.

Glycan signatures present on healthy tissue, inflamed and malignant tissue or pathogens

provide signals for “self” or “non-self” recognition. In this review we will focus on sialic

acids that serve as “self” molecular pattern ligands for Siglecs. We will emphasize on

the function of Siglec-expressing mononuclear phagocytes as sensors for sialic acids in

tissue homeostasis and describe how the sialic acid-Siglec axis is exploited by tumors

and pathogens for the induction of immune tolerance. Furthermore, we highlight how the

sialic acid-Siglec axis can be utilized for clinical applications to induce or inhibit immune

tolerance.

Keywords: mononuclear phagocytes, dendritic cells, macrophages, Siglecs, tolerance, inflammation, sialic acid,

cancer

HIGHLIGHTS

- Siglecs have an immune modulatory effect on TLR signaling.
- Sialic acids can be presented by pathogens through synthesis of “mimic” structures or the novo
synthesis for survival advantage.

- Hyper sialic acid expression in the tumor microenvironments is linked to immune suppression.
- Targeting the sialic acid-Siglec axis could have beneficial effects in therapy in cancer, allergies
and auto immune diseases.

INTRODUCTION

The human mononuclear phagocyte network consists of monocytes, different subsets of
macrophages (MQ) and Dendritic cells (DCs) depending on their origin and tissue
micro-environment. In each microenvironment, differentiation is dictated by various
components such as stromal cell compartment, presence of immune cells and the diversity
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of chemokines and cytokines present (1). Moreover,
mononuclear phagocytes are key instructors for inflammatory or
tolerogenic programming of the immune system. The presence of
MQ and DCs at multiple sites in the human body, like gut, lung,
brain, oral mucosa, lymphnodes, spleen, skin and peripheral
blood illustrates their importance in controlling immunity and
tolerance (2–5). MQ are plastic cells that can polarize according
to the signals they receive and this polarization is mainly
described as classical activated M1, alternatively activated M2,
or tumor-associated macrophages (TAM). The M1, depicted as
pro-inflammatory cells, are induced by stimulating MQ with
LPS and/or IFN-γ that produce IL-1, TNF-α and nitric oxide.
On the other hand, M2 MQ are induced by stimulation with
IL-4 and have anti-inflammatory and tissue repair properties,
producing Il-10 and TGF-ß (6, 7). TAMs are found in the
microenvironment of tumors, promoting tumor growth by
among others release angiogenic factors like VEGF and EGF,
attract regulatory T cells and inhibit effector T cells by the release
of multiple cytokines and chemokines such as IL-10, TGF-ß,
and CCL22 (8). DCs consists also of multiple subsets, were the
conventional DCs (cDCs) and plasmacytoid DCs (pDCs) are
the main populations in peripheral blood. The cDCs are the
main antigen-presenting subset, able to present antigens to and
activate antigen specific naïve CD4+ and CD8+ T cells and are
able to secrete multiple proinflammatory and anti-inflammatory
cytokines like IL12p70 and IL-10, respectively (9, 10). pDCs do
not prime naïve T cells, however, there specialized function is
the production of type I interferon (IFN-α/β) in response to
viruses (11). Different cytokines like IFN-α, TNF-α and LPS
can polarize cDCs into a more immunogenic state (12, 13),
while other cytokines like IL-10 and TGF-ß induce tolerogenic
cDCs that express checkpoint ligands like PD-L1 and produce
the checkpoint molecule indoleamine 2,3-dioxygenase (IDO).
In-vitro treatment of DCs with dexamethasone or vitamin D3
will also result in tolerogenic DCs (14). Functionally the main
characteristics of MQ is their phagocytic capacity, while DCs are
key in antigen presentation and stimulation of naïve T cells into
antigen-specific effector T cells, however, some of these functions
are not 100% restricted and are also shared between MQ and
DCs.

In-vitro, human monocyte-derived DCs (moDCs) and
monocyte-derived MQ (moMQ) can be generated from
monocytes. Culturing monocytes with GM-CSF and IL-4 gives
rise to moDCs, while culturing monocytes with M-CSF or
GM-CSF alone creates moMQ (15, 16). moDCs and moMQ
are often used as model systems for inflammatory DCs and
MQ, respectively, as they are easily obtained in large numbers.
moDCs are excellent antigen presenters, and able to induce
antigen-specific CD4+ and CD8+ T cells, while culturing with
IL-10 or TGF-β generates moDC prone to induce tolerance
(4, 17–21). However, recent studies using mass cytometry as
well as single cell RNA sequencing have revealed that moDCs
are distinct from human peripheral blood and skin-derived DCs
(2, 22).

Mononuclear phagocytes have an important function in
maintenance of tissue homeostasis and the resolution of
inflammation. They express multiple pattern recognition
receptors (PRRs), like toll like receptors (TLR) and CLRs to

recognize pathogen-associated molecular patterns (PAMPs),
damaged self-antigens (DAMPs) or altered glycosylated self-
antigens, such as tumor antigens (3, 23). The differentiation
and maturation status of mononuclear phagocytes alters the
expression levels of PRR (24, 25). CLRs is a large family of
glycan-specific receptors that include, amongst others: DC-SIGN
(CD209), Mannose receptor (MR, CD206), DEC-205 (CD205),
Dectin-1, Macrophage galactose-type lectin (MGL, CD301) and
Langerin (CD207) (26, 27). These CLRs are glycan-binding
receptors, recognizing a wide variety of carbohydrate structures,
like fucoses and mannoses found on host glycoproteins
expressed by cells or pathogens or β-glucan structures that are
only expressed on pathogens such as Aspergillus fumigatus and
Saccharomyces cerevisiae (27–29). CLRs play an important role
in the antigen uptake for processing and presentation of peptides
on MHC class I and II, thereby stimulating antigen-specific T
cell responses and T helper differentiation (27). Some CLRs,
like Dectin-1, have the ability to directly modulate the DC or
MQ phenotype and cytokine responses, while, other CLRs, like
DC-SIGN and MGL are also highly expressed on tolerogenic
DC/MQ and modulate TLR signaling through the acetylation of
p65 and the induction of IL10 production (30–32).

Next to TLRs and CLRs, mononuclear phagocytes express
Sialic acid binding immunoglobulin type lectins (Siglecs), that
recognize sialic acids, a family of sugars with a nine-carbon
sugar core structure derived from neuraminic acid, with the N-
acetylneuraminic acid (Neu5Ac) being the main moiety present
in humans (Box 1 and Figure 1). Sialic acids are generally
the last sugars added during the glycosylation process, thereby
capping a diverse array of glycosylation structures (44, 45).
Often, the presence of sialic acids functions as a self-associated
molecular pattern (SAMP) and thus, Siglecs can serve as
sensors for “self ” (46). Most Siglecs possess an intracellular
immunoreceptor tyrosine-based inhibition motif (ITIM) that
induce strong inhibitory signaling when Siglecs bind sialic acids
(47). Interestingly, both pathogens and tumor cells use enhanced
expression of sialic acids as a mechanism to modify the immune
system in their favor, illustrating that the sialic acid-Siglec axis is
a key regulator in infection and cancer.

SIGLECS

The human genome contains 14 different Siglecs, which can be
divided into two groups based on their genetic homology among
mammalian species. The first group is present in all mammals
and consists of Siglec-1 (Sialoadhesin), Siglec-2 (CD22), Siglec-
4 (MAG), and Siglec-15 (48–50). The second group consists of
the CD33-related Siglecs that have evolved rapidly and therefore
their repertoire differs between species. The CD33 related Siglecs
are Siglec-3 (CD33),−5,−6,−7,−8,−9,−10,−11,−14, and −16
(51). Monocytes, moMQ andmoDCs have largely the same Siglec
profile (Figure 2), namely high expression of Siglec-3,−7,−9,
low Siglec-10 expression and upon stimulation with IFN-α, also
Siglec-1 (52–60) is expressed. In contrast, MQ have primarily
expression of Siglec-1,−3,−8,−9,−11,−15, and−16 depending
on their differentiation status (49, 52, 61, 62). cDCs express
Siglec-3,−7, and−9, similar to moDCs, but in addition also
express low levels of Siglec-2 and Siglec-15 (49, 63–67). pDCs are
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Box 1 | Sialic acid.

Sialic acids are a family of sugars with nine carbons derived from neuraminic acid that are negatively charged. Humans are able to synthetize Neu5Ac (Figure 1A),

while other mammals can also synthetize the structure N-glycolylneuraminic acid (Neu5Gc). A deletion in the gene encoding the enzyme CMAH (Cytidine

monophosphate-N-acetylneuraminic acid hydroxylase) is the reason why humans cannot produce Neu5Gc (33).

Figure 1 | Sialic acids, linkages, and interactions. (A) chemical structure of sialic acids Neu5Ac and Neu5Gc. (B) α2,3; α2,6, and α2,8 linked sialic acids. (C) Trans

and (D) Cis interactions of Siglecs with sialic acids.

Synthesis
The expression of sialylated glycans is the result of glycosylation related enzymes able to catalyse the addition or removal of a glycan to growing carbohydrate

structures. The transfer of sialic acid motifs from an activated donor (CMP-NeuAc, Cytidine 5′-MonoPhospho-N-AcetylNeuraminic acid) to underlying glycans that

serve as acceptors, is performed by a group of enzymes called sialyltransferases. Humans express more than 20 different sialyltransferases, each differing in their

tissue expression, substrate specificity and linkages produced (34). The synthesis of sialylated structures depends also on the presence of the donor, which is

synthetized in the nucleus by the enzyme CMAS (CMP-Neu5Ac synthetase) and subsequently transported into the Golgi via the transporter SLC35A1 (33, 35). Sialic

acid blocking glycomimetic: Ac53FaxNeu5Ac is a metabolic inhibitor of sialyltransferases that blocks the addition of sialic acids to the glycan backbone (36).

Sialic Acid Linkages
Sialic acids can be linked to the underlying glycan via different types of linkages, which affects their recognition by glycan-binding receptors, such as Siglecs. These

linkages mainly have an alpha configuration and are defined by which carbon in the acceptor glycan is connected to the anomeric carbon in the Neu5Ac (carbon 2).

When sialic acid is transferred to a different glycan, the bond can involve the carbon 3 or 6 in the acceptor rising to α2,3 or a α2,6 linkages, respectively, (33, 35)

(Figure 2B). In poly-sialic acid structures, one Neu5Ac is added to a strain of sialic acids in an α2,8 linkage. The different Sialic acid linkages are depicted in the

complementary figure to this box.

Trans/Cis Interaction
Siglecs can interact with sialic acid on a different cell or protein/particulate (trans interaction) or with sialic acids present on the same cell that expresses the receptor

(cis interaction), as depicted in the figure complementary with this box. An illustration of a trans interaction is α2,3 linked sialic acids expressed by lung epithelium

under inflammatory conditions and Siglecs present on neutrophils (37, 38) (Figure 1C). An example of a cis interaction is α2,3 linked sialic acid present on the cell

surface of moDCs, which bind to a Siglecs present on the same moDCs (39) (Figure 1D).

Degradation
Specific glycosidases, called neuraminidases or sialidases, can hydrolyse the sialic acid from oligosaccharides. Present mainly in intracellular vesicles, these enzymes

can be secreted, thereby changing the profile of sialylated structures present on the cell membrane. Their expression is dysregulated in many different types of cancer.

Sialic Acid Immune Modulation
Sialic acids can modulate the immune system in diverse ways through Siglecs, influence on antibody mediated clearance of pathogens and through complement.

Sialylation of the antibody immunoglobulin A (IgA) interferes with the cell surface attachment of influenza A and mediates anti-viral activity of IgA (40). Sialic acids can

also bind to complement regulator factor H and by this negatively regulate the complement alternative pathway (41–43).
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FIGURE 2 | Siglec expression by different mononuclear phagocytes in steady state. Depicted in the blue square are monocytes and in-vitro cultured

monocyte-derived dendritic cells (moDC) and monocyte-derived macrophages (moMQ). In the red square the conventional dendritic cells and plasmacytoid dendritic

cells that appear in peripheral blood are highlighted, whereas in the green square tissue resident macrophages (MQ) are depicted. Depending on microenvironmental

triggers the immunogenic or tolerogenic status of the mononuclear phagocyte can change, leading to altered Siglec expression.

different in their expression of Siglecs, as they express Siglec-1
and Siglec-5 (54, 68). The presence of the Siglecs onmononuclear
phagocytes is based on their steady state situation, however,
microenvironmental triggers that change the maturation status
of the cell, may influence the loss or gain of the expression of
Siglecs. Downregulation of Siglecs-7 and Siglec-9 expression on
moDCs is observed after stimulating moDCs for 48 h with LPS,
however, on moMQ Siglec expression is not changed upon LPS
triggering (54). Clearly, further research on the regulation of
Siglec expression during cellular maturation is needed. Siglecs
are also present on other immune cells [nicely reviewed by
MacAuley et al. (69)], such as B cells, basophils, neutrophils,
and NK cells, with different expression patterns for every cell
subset.

Sialic acids, the ligands for Siglecs receptors, are widely
expressed as they are exposed on the outermost end of
glycosylated structures of glycoproteins expressed on immune
and other cells in the body, secreted glycoproteins in tissues and
blood and on extracellular matrix in tissues (70, 71). It is the
glycosylation machinery of the cells that determines the type
of sialic acids to be added on the carbohydrate backbone to
be expressed by the glycoprotein (Box 1, Figure 1). A Siglec-
expressing immune cell can bind to sialic acids present on
another cell or secreted glycoprotein and this is called a trans
interaction (72) (Figure 1). Siglec receptors can also bind sialic
acids exposed on the same cell, called a cis interaction. Moreover,
Siglec receptors have different binding affinities for different
linkage and modifications of sialic acids (see Box 1 for more
information about sialic acid). Most Siglecs have a preference
for a particular sialic acid linkage, being either α2,3, α2,6, or

α2,8-linked sialic acid but Siglecs may also show redundant
specificity toward more linkages (52, 58).

IMMUNE MODULATION THROUGH
SIGLEC SIGNALING

The immune modulatory effect induced upon sialic acid binding
to Siglec is regulated through downstream signaling pathways.
Siglec-5 till Siglec-11, are the so-called inhibitory Siglecs, carrying
ITIM and/or ITIM like motifs in their cytoplasmic domains,
which can be phosphorylated by the Src family, thereby creating
a binding site for the tyrosine phosphatases SHP-1 and SHP-
2 (Figure 3A). Upon binding of SHP-1/2, de-phosphorylation
of downstream targets can be achieved and ubiquitination,
internalization, and phosphorylation of the receptor can be
regulated (73, 74). The Src-mediated phosphorylation of ITIMs
in Siglec-3 and possible also other ITIM-containing Siglecs
can also lead to the binding of Cbl, a RING finger-containing
E3 ligase, and suppressor of cytokine signaling 3 (SOCS3),
resulting in the ubiquitination and protosomal degradation of
Siglec-3. The same process also regulates the internalization and
surface abundance of Siglec-3. SOCS proteins are upregulated
by cytokines during inflammatory responses, leading to the
loss of Siglec-3 and thereby higher proliferation of myeloid
cells (75, 76) (Figure 3A). Signaling of different Siglecs through
the binding of sialic acids or crosslinking via antibodies can
lead to both an inflammatory or tolerogenic state in distinct
mononuclear phagocytes. Antibodies against Siglec-3 and −7
inhibit the proliferation of myeloid cells (77) while monocytes
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FIGURE 3 | Siglec signaling and the immune modulatory effect on TLR signaling. (A) Siglec-2,−3, and−5 till−11 modulate TLR signaling upon binding of sialic acids

and thereby dampen proinflammatory responses. Ligand binding to Siglec-3 leads to phosphorylation of the ITIM motif and reveals a binding site for SOCS3 and Cbl,

causing proteasomal degradation of Siglec-3 and SOCS3. (B) Activating Siglecs-14,−15, and−16 can associate with DAP12, resulting in the activation of the MAPK

and AKT pathways, thereby stimulating a proinflammatory response. (C) Siglec-1 can internalize upon binding of its ligand and thereby present antigens to dendritic

cells or B cell to initiate an immune response.

treated with Siglec-3 antibodies show increased production of
the pro-inflammatory cytokines IL-1β, TNF-α, and IL-8 (78).
These findings illustrate that crosslinking of Siglec-3 expressed
on different myeloid cells induces opposite functional outcomes.
Moreover, crosslinking Siglec-3 on monocytes via antibodies
signals a pro-inflammatory effect, while cis binding of sialic acids
to Siglec-3 represses IL-1β production by monocytes (78).

In contrast, Siglec-4 and Siglec-14 till Siglec-16 do not
have an ITIM or ITIM like motif, but instead signal through
the association of DNAX activation protein (DAP)12 and
are therefore called activating Siglecs. DAP12 associates with
these activating Siglecs through a positively charged lysine
residue in the transmembrane domains and contain a cytosolic
immunoreceptor tyrosine-based activation motifs (ITAM),
which can recruit PI3K (Figure 3B) (49, 62). Furthermore,
Siglec-14 can promote an inflammatory response by activating
the MAPK pathway (46). The activating Siglecs most likely
developed under evolutionary pressure, when pathogens adapted
using the inhibitory Siglecs to circumvent the immune system,
allowing sialic acids to also activate the immune system. There
are a couple of paired Siglecs, consisting of an inhibitory
and an activating Siglec, like Siglec-5 and Siglec-14 as well as
Siglec-11 and Siglec-16. Polymorphisms in Siglec-5/14 have been
described, whereby the Siglec-14 gene is deleted and the Siglec-5
gene is present under the Siglec-14 promotor. When monocytes
from these individuals are challenged with LPS or with group B
streptococcus (GBS) they produce less TNF-α than individuals
that have normal Siglec-5 and Siglec-14 expression on their
monocytes, indicating that Siglec-14 is tipping the balance
toward the pro-inflammatory site when cells are confronted by
pathogens (46, 61, 62).

Siglec-1 is a non-signaling Sigelc, that internalizes upon ligand
binding (Figure 3C). Den Haan et al. showed in mice that
antigen coupled to Siglec-1 antibodies targets Siglec-1 expressing
marginal zone macrophages that transfer antigen to CD8+ DC
favoring effective antigen specific T cells to eradicate tumor
growth (79, 80). Furthermore, it has been shown that Siglec-
1+ MQ promote germinal center B cell responses upon Siglec-1
antibody targeting (81).

Siglecs can also exert their immune modulatory effects by
altering TLR signaling. LPS stimulation of TLR4 induces CCR7
upregulation of moMQ which is inhibited by anti-Siglec-9
antibodies or knock down of expression of Siglec-9 (53, 82). G.
Chen and colleagues revealed that TLR4 forms a complex with
Siglec E (mouse homologue for human Siglec-7 and Siglec-9) in
murine DCs and macrophages (83). This cis interaction between
Siglec-E and TLR4 is likely mediated by sialic acids present
on the TLR (83). The TLR-Siglec-E interaction, is abrogated
by NEU1 (a lysosomal sialidase that cleaves sialic acids from
their glycoprotein backbone), which is translocated to the cell
membrane upon LPS stimulation.

moDCs treated with the Ac53FaxNeu5Ac (Box 1), showed
reduced sialic acid expression and a lower threshold of TLR
activation, leading to increased sensitivity and response to poly
I:C (TLR 3 agonist) and LPS, as reflected by the induction of
moDC maturation and cytokine production by moDCs (55).
Furthermore, it has been reported that sialic acid removal
from moDCs uncovers Siglecs from their cis binding sialic acid
ligands and increases expression of the maturation markers
CD80 and CD86 and the secretion of IL-12 (84). Also, the
cross presentation of melanoma antigens gp100 by DCs to
antigen-specific CD8+ T cells was increased upon removal of
sialic acid on moDC, illustrating that the presence of sialic acid
constraints, that occupy Siglecs in cis, inhibits the effectiveness
of moDC to induce immunity (84). Alternatively, targeting
Siglecs with sialic acids or sialic acid mimetics in trans can
modulate TLR signaling leading to a more tolerogenic DC
phenotype. This illustrates that interference in the sialic acid-
Siglec axis is central in the balance between immunity and
tolerance.

SIALIC ACIDS USED BY PATHOGENS TO
MODULATE IMMUNITY

The co-evolution of the immune system and pathogens has
led to the acquisition of several strategies for pathogens to
evade the immune system, which also includes the expression
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of sialylated glycans to induce tolerance. One of the most
notable examples is Trypanosoma cruzi, a protist parasite
responsible for Chagas disease. During its infective stage
in vertebrates, called trypomastigote, T. cruzi expresses a
unique enzyme called trans-sialidase that catalyses the reversible
transference of sialic acid from host glycoconjugates to glycan
structures on the surface of the parasite. By doing this,
T. cruzi uses host glycans to mask its own antigens and
to modulate anti-parasitic responses (85). Parasitic sialylated
glycans can interact with Siglec-E [homolog of human Siglec
7 and 9, Siglec comparison between Mammalians was recently
reviewed by Bornhöfft et al. (86)] in murine dendritic
cells to suppress the production of the pro-inflammatory
cytokine IL-12 (87). Moreover, the addition of sialic acid to
the surface of the parasite results in a negatively charged
coat that inhibits complement-mediated killing. Furthermore,
thanks to the trans-sialidase activity, T. cruzi is also able
to alter the sialylation status of CD8+ T cells, dampening
their capacity to induce an effective anti-parasitic immune
response (88).

Interestingly, several pathogenic bacteria also use the sialic
acid-Siglec axis to dampen the immune system in favor of
their survival. Despite the fact that sialic acids are mainly
restricted to vertebrates, some bacteria have acquired the ability
to take sialic acids or sialylated structures from the host,
to synthetize “mimic” structures or even perform de novo
synthesis of sialic acids, giving them a survival advantage. For
example, Siglec-5 and−9 on neutrophils can be triggered by
glycoconjugates present in Pseudomonas aeruginosa or Group
B streptococcus (GBS) serotypes Ia and III, thereby inhibiting
their ability to respond to the bacteria. Moreover, sialylated
glycans present inGBS are able to inhibit the complement system,
by reducing deposition of C3b on their surface and, therefore,
the generation of C5a and the membrane attack complex
(89–91).

The presence of sialic acids in envelope glycoproteins of
viruses also contributes to enhanced infection of the host. This
is the case for the Human immunodeficiency virus (HIV) and
the Porcine reproductive and respiratory syndrome virus (PRRSV),
which can bind to Siglec-1 to promote trans infection (92–
94). Nevertheless, Siglec-1 ligands on GBS surface interact with
Siglec-1 on marginal zone macrophages for the subsequent
generation of anti-GBS immune responses (95).

Influenza A virus recognizes α2,3 and α2,6 linked sialic acids
with its hemagglutinin (HA) glycoproteins to infect host cells.
On the other hand, influenza A virus carries the neuraminidase
(NA) glycoprotein that can cleave off sialic acids from cellular
and viral glycoproteins that are expressed in infected cells and
assembled in virions, to reduce HA causing aggregation of the
virions to the cell surface. The HA and NA proteins are in
perfect balance to warrant infection and to abolish detection
by the immune system (96). Another example is the non-
typeable Haemophilus influenzae (NTHi), which is also able
to take up sialic acids through a tripartite ATP-independent
periplasmic (TRAP) transporter. Incorporation of the sialic
acids in the NTHi membrane protects it from serum-mediated
killing (97).

Sialic acids are used by different pathogens to infect host
cells and dampen the immune response. Knowledge on this
mechanism can be exploited to design new therapeutic strategies
in cancer or auto-immune diseases and asthma.

SIALIC ACID—SIGLEC AXIS IN CANCER

Aberrant glycosylation of multiple cancers and its influence on
cancer progression and metastasis are well-known. Increased
sialylation, α2,3; α2,6, and α2,8 linked sialic acids, has been
demonstrated in multiple tumor tissues like renal cell carcinoma,
prostate cancer, colon cancer, breast cancer, head and neck
squamous cell carcinoma and oral cancer (98–101). This aberrant
sialylation can also be detected in serum serving as potential
biomarkers for cancer detection, progression and treatment
responses (99, 101–103) (Figure 4).

In a mouse model for melanoma, hyper sialylation of B16
melanoma cells leads to increased tumor growth, associated with
an enhanced T regulatory/T effector balance and reduced NK
cell activity within the tumor and secondary lymphoid organs
(110). DCs that interacted and sampled sialylated antigens via
Siglec-E (murine homologue of human Siglec-7 and Siglec-
9) induced regulatory T cells and inhibited effector T cell
function in-vivo. These findings revealed that tumor sialylation
impedes T cell-mediated anti-tumor immune responses, while
promoting tumor-associated regulatory T cells (110). Blocking
the inhibitory effects of sialic acids with a sialic acid blocking
glycomimetic (Box 1) in a B16-OVA mouse model revealed
reduced tumor growth, enhanced tumor killing by ovalbumin
specific CD8+ T cells and inhibition of metastasis (106, 107)
(Figure 4C).

In breast cancer a specific glycoform of transmembranemucin
1, MUC1-T is sialylated, creating MUC1-sT (111, 112). The
MUC1-sT can interact with Siglec-9 on monocytes and thereby
induce secretion of IL-6, M-CSF and chemokines associated
with tumor progression. Binding of MUC1-sT to Siglec-
9 on macrophages induces a tumor-associated macrophage
(TAM) phenotype, that inhibits CD8+ T cell proliferation
and results in the upregulation of IDO, CD163 and PD-
L1 in-vivo (113, 114). Another specific mucin glycoform,
called MUC2-sT, has been shown to increase apoptosis of
immature moDCs (115). Together, this points toward a
broad immunological suppression by tumor-produced sialylated
mucins.

Antibodies against Siglecs are explored for the treatment
of different cancer types. For Acute Lymphoblastic Lymphoma
(ALL) the FDA approved InotuzumabOzogamicin (Besponsa R©),
a monoclonal antibody against Siglec-2 coupled to the toxic agent
calicheamicin is used. This antibody targets Siglec-2 positive B-
lymphoblasts and causes cell death of these cells through the
toxic agent (Figure 4A). Trials with this antibody revealed that
an enhanced number of patients reached complete remission
and had an increased overall progression free survival. However,
serious adverse effects were seen like myeloid suppression
(104), which could be due to the presence of Siglec-2 on
DC subsets. Another Siglec that is targeted for the treatment
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FIGURE 4 | Sialic acid—Siglec axis usage for the treatment of cancer or allergies and auto-immune diseases. (A) Siglec-2 antibodies coupled to an immunotoxin

induce apoptosis of Siglec-2-expressing acute lymphoblastic leukemia cells (104). (B) HER2 targeting with a sialidase coupled to the HER2 antibody or locally applied

non-targeted sialidases/synthesis inhibitors. This decreases sialic acid expression, reduce T reg induction and induced T cell activation and initiates NK cell killing

(105). (C) Sialic acid inhibitor P-3Fax-Neu5Ac inclusion in nanoparticles targeted to tumor cells inhibits the sialic acid expression on the tumor cells, thereby

decreasing metastasis and increasing tumor cell killing (106, 107). (D) Sialylated antigens target DC to remove regulatory T cells (108). (E) Antigen-specific B cell

apoptosis induction by STALs targeting Siglec-2 in combination with an antigen that inhibits B cell receptor signaling on B cells (109).

of acute myeloid leukemia (AML), is Siglec-3, using Siglec-
3 antibody coupled to calicheamicin (116, 117). Hereby, the
myeloid blasts that express Siglec-3 are targeted and this
improved outcome in patients with relapsing disease as well as in

elderly patients that were not eligible for extensive chemotherapy
(116). Similar to the Siglec-2 antibody treatments, the Siglec-
3 antibodies caused extensive adverse effects, probably due to
the wide spread expression of Siglec-3 on (healthy) myeloid
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subsets. Therefore, it is of great imporatnce to have a complete
and accurate overview of Siglec expression on immune cells.
Other strategies to target Siglec-3 in AML include the use
of CAR-T cells. Siglec-3 targeting CAR T-cells have shown
to induce CD8+ T cell degranulation against primary AML
and AML cell lines in-vitro (118, 119). Although different
CAR-T cells are already tested in the clinic for lymphoid
leukemia (120), it is questionable whether Siglec3 targeting CAR-
T cells have similar severe side effects as observed with Siglec-3
antibodies.

Instead of targeting the Siglecs using antibodies, modifying
the phosphorylation status of Siglec-3 and Siglec-9, in particular
dephosphorylation of the receptos, has shown to lead to increased
immunity of moDCs, when treated with Dasatinib a SRC
tryrosine kinase inhibitor that dephosphorylates Siglec-3 and
Siglec-9 (121). Also, leukemia (BCR-ABL+ AML) patients treated
with Dasatinib, had a stronger CD8+ T cell and NK cell
response associated with long lasting remission (122). Another
strategy to increase anti-tumor immunity through Siglecs has
been developed by Xiao et al., where they target HER2 with a
monoclonal antibody fused to a sialidase (105) (Figure 4B). This
sialidase specifically cuts off the sialic acid ligands that are bound
by Siglec-7 and Siglec-9 and thereby increase NK activity. In vitro
these HER2 targeting antibodies fused to a sialidase, increased the
NK cell mediated killing of HER2 positive tumor cells (105). As
most breast cancer patients are HER2 positive, targeting of HER2
with this sialidase fused antibody could be an effective treatment
strategy.

Most strategies that interfere with the sialic acids-Siglec Axis
are developed for leukemic cells as they have high expression
of Siglec-2 or Siglec-3 and are therefore easily targetable. Other
cancer type treatments could also benefit from targeting Siglecs,
blocking of Siglecs could abrogate the inhibitory effects on
mononuclear phagocytes and lead to better migration and
maturation of these cells, which subsequently stimulates tumor-
specific T cell responses. Moreover, local removal of tumor-
associated sialic acid may temporarily de-tolarize the tumor
microenvironment and trigger immune activation at the tumor
site. A combination with checkpoint inhibitors would than favor
improved tumor eradication.

SIALIC ACID—SIGLEC AXIS TO INDUCE
TOLERANCE FOR ALLERGIES AND
AUTO-IMMUNE DISEASES

While in cancer it is important to induce immunity, in allergies
and auto-immune diseases, an overactive immune system needs
to be restored by inducing tolerance. Exploring the potential of
the Sialic acid-Siglec Axis is an alternative to induce tolerance in
an antigen specific manner. Because immune inhibitory Siglecs
are found onmononuclear phagocytes, strategies can be designed
aimed to actively induce tolerance via targeting inhibitory Siglecs
on mononuclear phagocytes.

Modification of antigens such as OVA or MOG peptides
with α2,3 or α2,6 sialyl-lactose has shown to increase targeting

of these antigens to Siglec E, the human Siglec 7 and Siglec-
9 homologue, and alter DC function in mice. Both in-vitro
and in-vivo experiments demonstrated that sialic acid modified
antigens induced antigen specific T reg induction and inhibition
of inflammatory effector cells when activated with LPS (108)
(Figure 4D).

Also, Siglec-engaging tolerance-inducing antigenic liposomes
(STALs) are employed, in which sialic acid decorated
nanoparticles, or sialo-glycoproteins or Siglec antibody targeting
are used for Siglec targeting to induce tolerance. STALs with
the peanut allergen Ara h2 (Ah2) and a high affinity Siglec-2
ligand (modified α2,6 linked sialic acid) incorporated in the
outer membrane have shown high binding affinity to the B cell
receptor and Siglec-2 simultaneously and to prevent peanut
allergy against the Ah2 allergen in mice (109) (Figure 4E). This
is acclaimed to the forced interaction between the B cell receptor
and Siglec-2, thereby inducing apoptosis of autoreactive B cells.
Pang et al. used the same STALs and incorporated rapamycin
in the STALs and thereby enhanced the tolerogenic capacity in
mice, which was the result of increased phagocytosis of these
STALs by macrophages and DCs (123).

Sialic acid mimetics, such as the modified sialic acid coupled
to liposomes discussed above, comprise of natural sialic acids as
a backbone and are modified at certain positions in the sialic
acid structures to develop high affinity ligands for Siglecs (124–
126). Addition of hydrophobic groups at the C2 and C9 of α2,6
sialic acids results in a high affinity Siglec-2 ligands, which out-
competing the cis interaction between the Siglec and its ligand.
As a result better binding, endoyctosis, and eventually apoptosis
of targeted B cells is acquired (126, 127).

Nanoparticles decorated with α2,8 linked sialic acids were
developed to target murine Siglec-E (homologue of human
Siglec-7 and Siglec-9) on macrophages. This approach limited
the pro-inflammatory cytokines production by LPS-treated MQ
in-vitro. Subsequently, these nanoparticles were able to limit
the inflammation and increase levels of IL-10 in serum in a
mouse model for LPS-induced systemic inflammation. Similar
results were seen with human moMQ, resulting in an anti-
inflammatory cytokine profile. In an ex-vivo human lung
perfusion model the nanoparticles coated with α2,8 linked
sialic acids reduced pulmonary oedema after LPS-induced
injury (128).

Several studies have shown the importance of Siglec-sialic axes
in auto-immune disease and allergy due to expression of Siglecs
on other immune cells such as eosinophils and B-cells. Asthma
is an eosinophil, expressing Siglec-8, mediated disease and it
has been shown that polymorphisms in the SIGLEC8 gene are
linked to the development of asthma (38, 129). Antibodies against
Siglec-8 or the mouse homolog Siglec-F induce caspase and ROS
dependent apoptosis of eosinophils (130, 131). Autoantibodies
against Siglec-8 have been found in intravenous immunoglobulin
preparations that are used in various chronic inflammatory
disorders, although some cytotoxic effects are known (132). For
asthma it would be beneficial to have specific Siglec-8 agonists
to induce neutrophil apoptosis without the risk of side effects
observed with intravenous immunoglobulin injections. Another
example is the anti-Siglec-2 antibody (Epratuzumab) that has
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already been tested in seven clinical trials for the autoimmune
disease systemic Lupus erythematosus (SLE). Although initial
trials showed promising effects with reduced peripheral B cell
numbers, the overall effect was not better than standard care for
SLE (reviewed by D Geh) (133).

Most of these strategies are to date only tested in in-vitro or
ex-vivo experiments and should be tested in in-vivo and clinical
trials as they have great potential for future applications in
the treatment of allergies and auto-immune diseases. It is also
important to elucidate the Siglec expression on different human
immune cell subsets in order to identify the potential risks on
side-effects by targeting multiple Siglecs with one ligand.

CONCLUDING REMARKS

The last decade researchers identified the enormous potential
of the sialic acid—Siglec axis to induce wanted or unwanted
immune tolerance in cancer, allergies or auto-immune diseases.
Both Siglec targeting antibodies, sialic acid mimetics, or glycan
modifying agents can be used to interfere in this process and open
new area’s in the design of novel therapies for cancer, allergy and
auto-immune diseases.

Still several questions need to be answered related to a
better understanding of the biology of the Siglec-sialic acid axis.
Those relate to the signaling capacity that sialic acid impose on
immune cells to modify its function toward tolerance induction
or activation of immunity. Interesting research topics to be
addressed are: How do the various Siglecs expressed on one
cell communicate with each other What is the exact specificity
of these receptors for sialic-acids? Does multivalency of sialic
acids or Siglec receptors matter? Other intriguing questions to be
solved are: Do we need to inhibit only one Siglec receptor ormore
Siglec receptors simultaneously on one cell to alter function?
What is the relation to cis and trans interaction on Siglec-
sialic acid interactions? How important is the protein or lipid
backbone on which the sialic acid is exposed? To answer these
questions an urgent need for Siglec specific targeting molecules
is needed, which can be sialic acid mimetics or Siglec specific
antibodies.

As the Siglec—sialic axis plays a crucial role in tissue
homeostasis and the resolution of inflammation, more studies are
necessary to understand their involvement in these biomedical

processes. A better understanding of its role in the resolution
of inflammation is crucial for its application in the treatment of
auto-immune diseases and allergies.

Moreover, both pathogens and tumors use the Siglec-
sialic acid axis in their own benefit. It is therefore of vital
importance to design new methods to modify glycosylation
at site of infection or tumor location. Several studies already
touch upon the investigation of targeting specific sialidases
to the tumor micro-environment to remove the sialic acid
content involved in the induction of tolerance in the tumor
microenvironment. To unleash the sialic acid imposed tolerance
in the local tumor microenvironment may be combined
with other immune checkpoint inhibitors to stimulate tumor
immunity in a multilevel manner. Alternatively, presence of sialic
acid signatures in the tumormicroenvironment may serve as new
biomarkers to define immune tolerizing signatures in individual
tumors and response therapy prediction (99).

Future studies are of great importance to unveil the complex
Siglec-sialic acid axis and will warrant new discoveries in
clinical application strategies in cancer, allergy and auto-immune
diseases.
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