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Macrophages are essential innate immune cells that contribute to host defense during
infection. An important feature of macrophages is their ability to respond to extracellular
cues and to adopt different phenotypes and functions in response to these stimuli. The
evidence accumulated in the last decade has highlighted the crucial role of metabolic
reprogramming during macrophage activation in infectious context. Thus, understanding
and manipulation of macrophage immunometabolism during infection could be of interest
to develop therapeutic strategies. In this review, we focus on 5 major metabolic pathways
including glycolysis, pentose phosphate pathway, fatty acid oxidation and synthesis,
tricarboxylic acid cycle and amino acid metabolism and discuss how they sustain and
regulate macrophage immune function in response to parasitic, bacterial and viral
infections as well as trained immunity. At the end, we assess whether some drugs
including those used in clinic and in development can target macrophage
immunometabolism for potential therapy during infection with an emphasis on SARS-
CoV2 infection.
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INTRODUCTION

Macrophages are professional phagocytes patrolling most of the tissues, helping to maintain
homeostasis and contributing to the first line of defense against pathogens (1). They are notably
characterized by a high plasticity and ability to change their phenotype in response to different
environmental stimuli (2). Macrophages derive either from an embryonic origin (deriving from the
yolk-sac or the liver and maintained throughout the life by self-renewal) or originate from monocyte
precursors (differentiating in the tissue after their infiltration) (3). Macrophages notably counter
invading pathogens by recognizing defined pathogen associated molecular patterns (also known as
PAMP) by a system of pathogen recognition receptors (PRR). Different classes of PRR have been so far
described: the ALR (for Absent in melanoma 2 (AIM2)-like receptors) the CLR (for C-type lectin
receptors), the NLR (for NOD-like receptors), the RLR (for RIG-I-like receptors), the TLR (for Toll-
like receptors) and the cGAS (cyclic GMP–AMP Synthase)-STING (Stimulator of Interferon Genes)
signaling (4, 5). ALR are composed of AIM2 and IFI16 (Interferon (IFN)-Inducible protein 16) which
can sense cytosolic and nuclear DNA by assembling inflammasomes (6, 7). RLR are composed of RIG-
I (Retinoic acid-inducible gene I), MDA-5 (Melanoma differentiation factor-5) and LGP-2
org January 2022 | Volume 13 | Article 7808391
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(Laboratory of genetics and physiology-2) which detect viral RNA
and DNA. NOD1 (Nucleotide-binding oligomerization domain-
containing protein 1) and 2 belong to the NLR and recognize gram
positive and negative bacteria. TLR are the best described family of
PRR and 10 members belong to this family in human (TLR1 to 10)
and 12 in mice (TLR1 to 13 except TLR 10). They recognize a wide
variety of PAMP including bacterial, parasitic and viral ligands (4,
8–10). Finally, the cGAS-STING pathway can recognize microbial
and cytosolic DNA (11). While all these PRR trigger different
molecular signaling, they will lead to the generation of an innate
immune response via the production of pro-inflammatory
molecules (cytokines, chemokines and DAMP (Damage
Associated Molecular Patterns). The PRR recognizing viral
PAMP will also trigger the secretion of type I interferon (IFN)
which are crucial molecules in the antiviral response (4, 10, 12).
These signaling cascades lead to the activation of different
components of innate and adaptive immune responses, host cell
metabolism and phagocytosis (13, 14). An important hallmark of
macrophages is their plasticity in response to environmental cues.
During bacterial and viral infections, the PRR stimulation and the
pro-inflammatory micro-environment will enable macrophages to
be activated toward a pro-inflammatory phenotype (also called
classically activated macrophages or M1). On the other hand, a
parasitic infection will result in the differentiation of alternatively
activated macrophages, notably through the effects of IL-4 and IL-
13 (also called anti-inflammatory phenotype, or M2). These
different polarized states will help the macrophages to sustain
their functions during homeostasis and in diseases, including
infections (15–17). Notably, a growing body of evidence show
that macrophages change their activation state through
reprogramming of the metabolism. These metabolic changes,
not only provide energy but also sustain changes in function
and phenotype (18). In this review, we will highlight the main
metabolic pathways and discuss how they regulate macrophages
functions in response to different types of infections. We will also
assess how the innate immune memory of macrophages during
infections (called trained immunity) can be supported by changes
in metabolism. Finally, we will envision the possibility of targeting
macrophage immunometabolism as a possible therapeutic target
to infections.
MAIN METABOLIC PATHWAYS USED
BY MACROPHAGES

Cell intrinsic metabolic changes are required in all cells to
metabolize nutrients to help their survival, proliferation and
differentiation. Five major pathways are used by macrophages to
generate energy: i.e. the glycolysis, the tricarboxylic acid (TCA)
cycle, the pentose-phosphate pathway (PPP), the fatty acid
metabolism [including the fatty acid oxidation (FAO) and the
fatty acid synthesis (FAS)] and the amino acid metabolism. In
addition to generating energy, macrophages also produce
intermediates metabolites that support their phenotype
reprogramming in response to external stimuli. Interestingly,
these diverse metabolic pathways are closely linked to each other
and interconnected as described below. In most cells, glucose is
Frontiers in Immunology | www.frontiersin.org 2
the primary source of energy. Once entering the cells through its
transporters, glucose is broken down by glycolysis. Along all
these different steps, glycolysis can be diverted to provide
metabolites for the PPP pathway or the generation of amino
acids, but its primary fate will be to enter the TCA cycle and
finally feed the OXPHOS to generate energy in the form of ATP.
While it has been thought for decades that the purpose of
metabolic pathways is to generate energy, it now appears that
producing intermediates metabolites is also important for
cellular and molecular signaling (Figure 1). We will discuss in
more detail the different steps of these five major pathways in the
next sections.

The Glycolytic Pathway
In macrophages, glucose from the extracellular environment
typically enters the cell through the glucose transporter
GLUT1 (Glucose transporter 1) [encoded by the gene Slc2a1
(Solute Carrier 2a1)] to fulfill glycolysis (19, 20) (Figure 1).
Glucose is further catalyzed by the Hexokinases (Hk1-4) which
phosphorylates glucose into glucose-6-phosphate. The glucose-
6-phosphate then enters the glycolysis (through the form of
fructose-6-phosphate) or the PPP (which will be discussed
below). Fructose-6-phosphate can also be used by the
phosphofructokinases (Pfkl, m, p) into glycolysis or diverted
toward the hexosamine biosynthesis pathway. This pathway will
lead to the generation of UDP-GlcNAc that is the substrate used
for the glycosylation reactions (O- and N-GlcNAcylation). A
downstream metabolite of glycolysis, the glyceraldehyde-3-
phosphate can also lead to the generation of glycerol-3-
phosphate and the biosynthesis of diverse lipids. Another
possible break into the glycolysis is to enter the serine and
glycine pathway from 3-phosphoglycerate. Serine can further
be converted into folate to generate one-carbon units. The final
glycolytic enzyme is the pyruvate kinase (PKM1 and 2 are the
main isoforms in most tissues) which catalyzes the conversion of
phosphoenolpyruvate into pyruvate. Pyruvate is then converted
into 2 major metabolites. The first one is lactate which is
generated by the lactate dehydrogenase (LDHA and B), and
finally exported to outside the cell, in a process that is called
aerobic glycolysis. While this process was originally described to
occur in cancer cells due to a defect in mitochondria, this aerobic
glycolysis clearly occurs during normal cellular processes in
immune cells including macrophages. It appears that, despite
generating less adenosine triphosphate (ATP) per molecule of
glucose used, this mechanism can sustain a rapid activation of
immune cells and preserve the redox balance through a tight
control of the NADH levels. The second pathway is for the
pyruvate to be oxidized in the mitochondria by the pyruvate
dehydrogenase (PDH) which convert it into acetyl-coA to enter
the TCA cycle (21–23).

The TCA Cycle
The TCA cycle (also called Krebs cycle or citrate cycle) occurs
into the mitochondria (Figure 1). It is initiated with the
generation of acetyl-coA coming from three possible sources:
the pyruvate from glycolysis, the fatty acyl-coA from fatty acids
and the acetate (either coming from acetate metabolism or
January 2022 | Volume 13 | Article 780839
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extracellular uptake). The acetyl-coA will, in combination with
oxaloacetate, generate citrate which will be further oxidized into
the TCA cycle. Citrate can also be exported to the cytosol to
generate itaconate or to be hydrolyzed by ATP-citrate lyase
(ACLY) in cytosolic acetyl-coA which will fuel the fatty acid
and cholesterol synthesis (for the generation of new membranes)
or will contribute to protein acetylation (notably histone
acetylation) (24). Interestingly, cytosolic citrate can also exert a
negative feedback on glycolysis by inhibiting, directly or
Frontiers in Immunology | www.frontiersin.org 3
indirectly, PFK and HK enzymes (25). The major products
generated by the TCA cycle are NADH and FADH2 which can
be transferred into the electron transport chain to support the
oxidative phosphorylation (OXPHOS) and the efficient
generation of ATP (26).

The Pentose Phosphate Pathway
The glucose-6-phosphate (G6P) generated by hexokinases can be
metabolized to enter the glycolysis or be directed into the PPP
FIGURE 1 | Overview of the main metabolic pathways used by macrophages. There are 5 major pathways used by macrophages to provide energy in cells
including glycolysis, TCA (Tricarboxylic acid) cycle, PPP (Pentose phosphate pathway), FAS (Fatty acid synthesis) and FAO (Fatty acid oxidation) and amino
acid (Aa) metabolism. These pathways are highly interconnected and are tightly regulated in immune cells, including macrophages. ACLY, ATP citrate lyase;
ACO2, Aconitase 2; ATP, Adenosine triphosphate; CPT1, Carnitine palmitoyltransferase 1; CS, Citrate synthase; ENO, Enolase; FH, Fumarase; GAPDH,
Glyceraldehyde 3-phosphate dehydrogenase; GLUT1, Glucose transporter 1; HK, Hexokinase; GS, Glutamine synthetase; IDH, Isocitrate dehydrogenase;
IDO, Indoleamine 2,3-dioxygenase; LDHA, Lactate dehydrogenase; MCT1, Monocarboxylate transporter 1; MDH, Malate dehydrogenase; NO, Nitric oxide;
iNOS, inducible NO synthase; OAA, Oxaloacetate; OGDH, a-ketoglutarate dehydrogenase; OXPHOS, Oxidative phosphorylation; P, Phosphate; PDH,
Pyruvate dehydrogenase; PFK1,Phosphofructokinase 1; PGK1, Phosphoglycerate kinase 1; PGI, Phosphoglucoisomerase; PGM, Phosphoglycerate mutase;
PKM, Pyruvate kinase muscle isotype; PP, bisphosphate; SAM, S-Adenosyl methionine; SCS, Succinyl coenzyme A synthetase; SDH, Succinate
dehydrogenase; SLC, Solute carrier; TDO, Tryptophan 2,3-dioxygenase; TPI1, Triosephosphate isomerase 1.
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(which occurs in the cytosol) (Figure 1). The PPP is divided into
2 phases; an oxidative phase which will give raise to the reduction
of NADP+ (Nicotinamide adenine dinucleotide phosphate) into
NADPH linked to the conversion of G6P into ribulose-5-
phosphate (R5P); a non-oxidative phase will generate ribose-5-
phosphate. NADPH is an essential cofactor for the generation of
antioxidants, ROS and NO, but also to generate lipids and
nucleotides. The R5P is a precursor of nucleotides and amino
acids synthesis (27). NADPH can further be used by the Fatty
acid synthase to promote the generation of fatty acids or by the
enzyme NADPH oxidase 2 (NOX2) to generate reactive oxygen
species (ROS) ultimately leading to an oxidative burst (28, 29).

The Fatty Acid Metabolism
Fatty acid Oxidation (FAO) is the most efficient producer of
energy for the cell since a single molecule of fatty acid can
generate as much as 100 molecules of ATP. The short chain fatty
acids can passively enter the mitochondria, while the medium
and long chain fatty acids need to be imported by the ligation to
coA, which is then exchanged by carnitine palmitoyltransferase
1A (CPT-1A) upon mitochondrial transfer (Figure 1). The
carnitine conjugated to the fatty acid is then shuttled into the
mitochondria and the carnitine is removed by the CPT2 to give a
molecule of fatty acid acyl-coA. The oxidation of this fatty acid
will lead to produce large amounts of acetyl-coA, NADH and
FADH2 which are used to augment the TCA cycle and the
OXPHOS to generate ATP.

Fatty acid synthesis (FAS), on the other hand, uses precursors
from the other metabolic pathways (glycolysis, TCA cycle and
PPP) to generate lipids. Notably, the acetyl-coA is transformed
into malonyl-coA by the acetyl-coA carboxylases. Seven
molecules of malonyl-coA are then condensated to generate
palmitate (the initial product of fatty acid synthesis) by the
enzyme Fatty Acid Synthase. Palmitate, a 16 carbons saturated
molecule, is then elongated and desaturated to generate fatty acid
of diverse size and degrees of saturation (30, 31).

The Amino Acid Metabolism
Amino acids availability is crucial for multiple aspects of cell
biological functions. Since there is a large number of different
amino acids, there are different pathways leading to the
utilization and generation of amino acids. They can be divided
into two categories: the essential amino acids which cannot be
synthesized by the human body (and therefore need to be taken
from nutrition) and the non-essential amin acids which can be
synthesized by the body (32).

An important amino acid for the macrophage behavior is
glutamine. Glutamine enters the cell through a diverse range of
Slc transporter including Slc1a5 (Solute carrier 1a5) and Slc3a2,
which are highly expressed in macrophages (33) (Figure 1).
Glutamine can then contribute to the generation of nucleotides
or UDP-GlcNac or enter the mitochondria to generate glutamate
(34). The glutamate can generate glutathione (which can help to
control the redox balance) or be converted into a-ketoglutarate
to enter the TCA cycle. The glutamate is also a donor for the
generation of many different amino acids (35).
Frontiers in Immunology | www.frontiersin.org 4
Serine is a central hub for cell metabolism. As described
previously, it can be converted from the glycolytic metabolite 3-
PG (3-phosphoglycerate). The conversion of Serine to Glycine is
an outcome of Serine generation which can later lead to
production of glutathione. Serine is also a major source for the
one-carbon metabolism pathway which will serve as a building
block for S-adenosylmethionine (and the regulation of protein
methylation), nucleotides, NAD(P)H, and ATP. Finally, this
pathway can also fuel the folate metabolism leading to the
production of purines (36).

Another important amino acid in term of immunometabolism
is Arginine. Arginine can be produced by many different pathways
(including extracellular uptake and intracellular production) to
support cell growth and proliferation (37). An important feature,
in macrophages, is the ability of arginine to be catalyzed either by
NOS (Nitric Oxide Synthase) to generate NO (Nitric oxide) and
citrulline or to be catalyzed by Arginase 1 (Arg1) to ornithine and
urea (38). Of note, Arg1 has been long described to be expressed
by anti-inflammatory M2 macrophages while the expression of
iNOS has been demonstrated to be a marker of pro-inflammatory
M1 macrophages (38).

L-tryptophan is also an essential amino acid coming from
dietary intake. A small fraction of tryptophan is used to the
production of proteins and neurotransmitters; however, the major
part is used to fuel the kynurenine pathway which give raise to
several metabolites. The first step of this reaction is the conversion
of tryptophan into N-formylkynurenine, which is catalyzed by the
rate-limiting enzymes IDO1,2 (Indoleamine-2,3-dioxygenase 1 and
2) and TDO (Tryptophan-2,3-dioxygenase) (39, 40). Interestingly, it
appears that the tryptophan metabolism in macrophages promotes
immune tolerance by increasing the generation of M2 macrophages
and by depleting extracellular tryptophan, thus modulating T cell
functions (41, 42).

While all these metabolic pathways are described as distinct
entities, they are highly interdependent and inter-regulated
demonstrating a tight and complex regulation of cellular
metabolism. A good example of this complex regulation is the
kinase serine/threonine kinase mTOR (mammalian Target of
Rapamycin). mTOR is composed of 2 different complexes
mTORC1 and 2 (mTOR Complex). mTOR activation has been
widely demonstrated to be regulated by the level of amino acid in
the cell but mTOR is also regulated by the levels of glucose,
oxygen and DNA damage (43, 44). Downstream, mTOR can
regulate lipid synthesis or the PPP through SREBP (sterol
responsive element binding protein) and the glycolysis through
the transcription factor Hif-1a (Hypoxia induced factor 1 alpha),
both of which can transcriptionally activate genes that encode
enzymes belonging to these pathways (45, 46).

Importantly, these different pathways are used by all mammalian
cells to generate energy and intermediate metabolites. However,
different cells can modulate the use of these pathways to adapt their
function, development, or proliferation. In the context of
macrophage immunology, it appears that, despite the fact they are
long-lived non proliferative cells, pro- and anti-inflammatory
macrophages use different pathways to meet their needs,
differentiate into M1 and M2 macrophages and perform their
January 2022 | Volume 13 | Article 780839
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function. More specifically, it has now been demonstrated that the
pro-inflammatory M1 macrophages rely on an increased
dependency on glycolysis and PPP, while they remodel largely
their TCA cycle and depend less on OXPHOS to generate energy.
This will allow them to sustain an inflammatory phenotype
(increased phagocytosis, production of pro-inflammatory
cytokines and chemokines, NO and ROS production, and
enhanced bacterial killing). On the other hand, the anti-
inflammatory M2 macrophages will use the TCA cycle, the FAO
and the OXPHOS to generate energy, while relying less on
glycolysis. They will also promote the glutamine metabolism and
arginase activity. This will promote the expression of M2 markers,
the production of anti-inflammatory cytokines and their pro-repair
functions. Interestingly, it appears that other pro- or anti-
inflammatory immune cells (for example Th1/TH17 versus Treg)
use similar pathways than macrophages to sustain their pro-
(glycolysis, PPP) and anti-inflammatory (TCA cycle, OXHPOS,
FAO) phenotypes. This highlights the crucial role of the
microenvironmental cues to modulate immune cell metabolism
and functions (18, 47). We will now describe in details how
macrophages adapt their metabolic responses during different
types of infections.
MACROPHAGE IMMUNOMETABOLISM
IN INFECTIONS

Role of Macrophage Immunometabolism
During Parasitic Infection
Parasitic infections such as helminths and protozoans represent a
major health concern in developing countries. According to the
US Center for Disease Control and Prevention (CDC), malaria
(caused by a protozoan named Plasmodium) is responsible for
the death of 600 000 people each year, mainly in sub-Saharan
Africa. Helminths, in the other side, could infect up to 1.5 billion
people worldwide and lead to diverse manifestations like
diarrhea, respiratory symptoms, asthma-like symptoms, as well
as neurologic and motor disorders (16, 48, 49).

Macrophage Metabolism in Helminth
Infection and IL-4 Dependent Polarization
Helminths generate a type 2 immune response in the infected
organs, inducing the release of high levels of IL-4 and IL-13,
which will instruct the macrophages to adopt an alternatively
activated macrophages (50, 51). IL4 and IL13 can be produced by
T cells, innate lymphoid cells (ILC), basophils and eosinophils.
AAM express typical markers like RELMa (Resistin-like
molecule-alpha), VEGF (Vascular Endothelial Growth Factor),
Arg1, YM1, IGF-1 (Insulin-like Growth Factor 1) or TGF-b
(Transforming Growth Factor Beta) which will help them to
control parasite confinement in granulomas and their clearance,
as well as tissue repair and control of the immune response. In
addition, the transcription factors associated with this AAM
phenotype include STAT6 (Signal Transducer and Activator of
Transcription 6), GATA3 (GATA binding protein 3) or PPARg
Frontiers in Immunology | www.frontiersin.org 5
(Peroxisome Proliferator-Activated Receptor gamma) (50,
52) (Figure 2).

The up-regulation of FAO is a crucial feature of AAM (53,
54). This is orchestrated by a STAT6-PPARg/PGC-1b signaling
pathway, finally leading to the expression of specific markers of
AAM and their survival (53, 55, 56). The main source of fatty
acids for IL4 treated macrophages is through uptake of fatty
acids via the scavenger receptor CD36 or through the lysosomal
lipolysis via lysosomal acid lipase, which both sustain the
expression of alternative markers (57). Interestingly, during
H. polygyrus infection, the inhibition of lipolysis block AAM
differentiation and the elimination of the parasite in an IL4
setting (57). However, two recent publications challenged the
previous findings demonstrating that FAO is indispensable for
AAM polarization. These publications demonstrated that the
genetic depletion of Cpt1a and Cpt2 does not inhibit the IL4
induced polarization (58, 59). They also observed that the
widely used FAO inhibitor etomoxir, at the doses commonly
used to inhibit FAO, inhibits IL4 polarization by targeting the
CoA metabolism instead of the FAO (59). In fact, despite its
effect observed at low-dose (FAO inhibitor), a high dose of
etomoxir can disrupt intracellular CoA homeostasis therefore
leading to block the IL4-induced polarization. The example of
etomoxir is of great interest for the field of immunometabolism.
In fact, many of the findings in this field rely on the use of
inhibitor, some of which could have several off-targets, and
tightly controlling the dose used when performing experiments
appears to be of crucial importance. This also highlights the
necessity to confirm the findings observed by using inhibitors
with other techniques like gene knock-down and to proceed
carefully in the interpretation of the results. The alternatively
activated macrophages also increase glycolysis in response to
IL4 in a manner dependent on an AKT-mTORC2-IRF4
(Interferon regulatory factor 4) signaling pathway (60, 61).
Interestingly, the loss of mTORC2 in macrophages during
helminth infection by H. polygyrus (Heligmosomoides
polygyrus) lead to lose the AAM polarization and their ability
to clear the infection (61). A possible outcome for this increased
glycolysis is to feed, together with glutamine, the hexosamine
biosynthetic pathway to promote protein glycosylation. In fact,
the inhibition of this pathway with tunicamycin (an inhibitor of
N-glycosylation) prevent the expression of some AAM markers
(54). Another outcome of this increased glycolysis is possibly to
fuel lipid synthesis, acetyl-coA production and TCA cycle (54,
62). The pool of acetyl-coA (notably coming from the cleavage
of cytosolic citrate from the enzyme ACLY which is activated in
an AKT-mTORC1 pathway) is used by macrophage in this
context to promote the histone acetylation of IL-4 inducible
genes (60). However, some recent publications suggest that the
link between glycolysis and AAMmight be more complex. This
question has been raised because some publications
demonstrated that some inhibitors used to study the role of
glycolysis (ACLY inhibitor and 2-DG) have a broader effect
than just inhibit their primary target (63). In fact, glucose
depletion or galactose treatment, while affecting glycolysis,
does not affect the AAM polarization. In the meantime, 2-
January 2022 | Volume 13 | Article 780839
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DG, which can suppress both glycolysis and AAM polarization,
likely affect the AAM polarization by modulating the ATP
levels and the JAK-STAT6 signaling (64). Thus, several
questions about the role of glycolysis during IL-4 polarization
Frontiers in Immunology | www.frontiersin.org 6
and helminth infection remain unanswered. Firstly, how the
glycolysis pathway is up-regulated during AAM; secondly, what
is the exact role of glycolysis during AAM polarization and how
it affects helminth infection; and finally, which metabolic
FIGURE 2 | Phenotypic characteristics of pro- versus anti-inflammatory macrophages. Pro-inflammatory stimuli (like TLR ligands or pro-inflammatory cytokines) will
generate a pro-inflammatory response in macrophages, notably characterized by the production of pro-inflammatory cytokines, the expression of co-stimulatory
molecules and a Th1 response. On the other hand, anti-inflammatory stimuli (like IL4, IL13 or IL10) will promote a pro-repair phenotype in macrophages notably
caracterized by the production of anti-inflammatory and pro-resolutive factors and the generation of a Th2 response. In the context of infection, the generation of
pro-inflammatory macrophages will promote their killing activity but microbes will try to promote the generation of anti-inflammatory phenotype to escape these
responses. Anti-inflammatory macrophages, while promoting infections in general, will have a strong anti-helminth effect. Metabolically, the pro-inflammatory
macrophages use glycolysis and PPP to produce energy and have a broken TCA cycle. Instead, anti-inflammatory macrophages use the FAO and OXPHOS to
provide cellular energy. FAO, Fatty acid oxidation; IFN, Interferon; IL, Interleukin; LPS, Lipopolysaccharide; OXPHOS, Oxidative phosphorylation; NO, Nitric oxide;
PPP, Pentose phosphate pathway; TCA, Tricarboxylic acid; Th, T helper; TLR, Toll like receptor; TNFa, Tumor necrosis factor alpha.
January 2022 | Volume 13 | Article 780839
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pa thway the d i ff e r en t g l yco l y t i c me tabo l i t e s a r e
preferentially fueling.

In the meantime, IL4 activation limits the use of the PPP in
macrophages by increasing the expression of the sedoheptulose
kinase CARKL (Carbohydrate kinase-like) that limits the
production of sedoheptulose-7-phosphate, thus promoting an
alternative activation (65). However, the mechanisms by which
the PPP interacts with the IL-4 polarization is not fully
understood and needs to be further investigated.

IL4 treated macrophages generate ATP through an oxidative
TCA cycle coupled to OXPHOS (54) (Table 1). To fuel the TCA
Frontiers in Immunology | www.frontiersin.org 7
cycle, AAM will use the glutaminolysis or the FAO. The
degradation of glutamine through glutaminolysis in IL-4
treated macrophages will generate a-ketoglutarate which will
promote the AAM polarization through 3 different mechanisms:
1) it is used to fuel the FAO; 2) it induces an epigenetic
reprogramming demethylation of H3K27 on the promoters of
AAM-specific genes; 3) it favors PHD activity leading to the
inhibition of NFkB pathway (66).

A crucial regulator of AAM polarization is the protein
LAMTOR1 (Late endosomal/lysosomal adaptor and MAPK
and mTOR activator 1). LAMTOR1 is a component of the
TABLE 1 | Metabolic changes induced during pathogen infections.

Pathogen Helminth Protozoa Bacteria Virus Trained
immunity

Glycolysis Increased glycolysis (possibly
to feed the TCA cycle or the
Hexosamine pathway).

Depending on
the pathogen:
L. infantum
increases
glycolysis while
L. donovani
and L.
amazonensis
don’t. Support
the clearance of
T. cruzi.

Increased glycolysis levels.
Increased expression and/or
activation of most glycolytic genes
(GLUT1, HK1/2, GAPDH, PKM2…)
which promotes the production of
pro-inflammatory cytokines
(HMGB1, IL1b, IL6, TNFa…).

Role is dependent on viral infection and
timeline. Protective during RSV infection
and HIV-1 but detrimental during
norovirus and HIV-1 infections.

Increased
glycolysis through
AKT-mTOR-
HIF1a.

PPP Limited use of PPP through
overexpression of CARKL.

Support the
clearance of T.
cruzi.

Increased PPP (notably through
dowregulation of CARKL) which
support the inflammation.

Role largely unknown. Might be
decreased during HIV-1 infection.

Role unknown.

FAO Up-regulation of FAO and
lysosomal lipolysis. FAO feed
the TCA cycle.

Increased
during T. cruzi
infection

Role unknown. Cholesterol and FA import are increased
which promote infection during HIV or
MHV-68 infections.

Role unknown.

FAS Role unknown. Increased
during T. cruzi
infection

Possibly increased to sustain the
inflammasome activation and IL1b/
IL18 production.

Increased production of MUFA during
TLR7/9 stimulation (decrease during
TLR3) which controls the expression of
pro-inflammatory genes.

Role unknown.

TCA cycle/
OXPHOS

TCA cycle intact and OXPHOS
increased to generate energy.

Depending on
the pathogen:
L. infantum
switch from
OXPHOS to
glycolysis while
L. donovani
and L.
amazonensis
promote
OXPHOS.

TCA cycle broken. Increase in citrate
(which fuel PGE2, ROS and NO
production; also activates ACLY
which promote LPS-induced gene
expression), increase in itaconate
(which inhibits bacterial growth but
limit inflammation) and increase in
succinate (which stabilize HIF1a and
promote pro-inflammatory gene
expression).

Altered TCA cycle and OXPHOS during
HIV infection.

Decreased
OXPHOS.

Aa
metabolism

Glutamine: feed the TCA cycle,
promote anti-inflammatory
gene expression and inhibit the
NFkB pathway. Arginine: Arg1
expression highly increased.
Tryptophan: expression of IDO
decreased and depletion of
tryptophan. Lamtor1 is critical
for expression of IL4 induced
markers.

Arginine is
depleted by
macrophages
to prevent
pathogen
growth during
Leishmania
infections.

Glutamine is crucial for the
production of NO and IL-1b through
feeding of the TCA cycle. Serine is
also crucial for the production of
IL1b. The arginine metabolism is
crucial for anti-bacterial response
(notably via the production of NO).
The role of tryptophan is still unclear.

Glutamine is a crucial source of energy
during HIV latent infection and has
detrimental effect. IDO expression is
increased during HIV and EBV infections
and its blockade lead to kill infected
macrophages. Role of Arginine
metabolism is depending of the phase
infection and can be beneficial or
detrimental. mTOR is largely modulated
by viruses to promote cellular infection.

Glutaminolysis is
required for the
induction of
trained immunity
through control of
HIF-1a/KDM5
induction of TNFa
and IL-6. The role
of other Aa
remains unknown.
January 2022 | Volume 1
Aa, Amino acid; ACLY, ATP-citrate lyase; Arg1, Arginse 1; CARKL, Carbohydrate kinase-like; EBV, Epstein-Barr virus; FAO, Fatty acid oxidation; FAS, Fatty acid synthesis; GAPDH,
Glyceraldehyde 3-phosphate dehydrogenase; GLUT1, Glucose transporter 1; HIV, Human immunodeficiency virus; HIF1a, Hypoxia factor 1 alpha; HMGB1, High–mobility group box 1;
HK, Hexokinase; IDO, Indoleamine 2,3-dioxygenase; IL, Interleukin; KDM5, Lysine deacetylase 5; Lamtor1, Late endosomal/lysosomal adaptor and MAPK and mTOR activator 1; MHV-
68, Murine gammaherpesvirus-68; MUFA, Monounsaturated long chain fatty acid; mTOR, mammalian target of rapamycin; NFkB, Nuclear factor kappa B; NO, Nitric oxide; OXPHOS,
Oxidative phosphorylation; PGE2, Prostaglandin E2; PKM, Pyruvate kinase muscle isotype; PPP, Pentose phosphate pathway; ROS, Reactive oxygen species; RSV, Respiratory syncytial
virus; TCA, Tricarboxylic acid; TNFa, Tumor necrosis factor alpha.
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mTORC1 complex which is necessary for the recruitment of
mTORC1 to the lysosome in response to amino acid stimulation
(67). Importantly, macrophages deficient for LAMTOR1 or
depleted in amino acids in the media are completely unable to
express the main IL-4 induced markers (e.g., Arginase I,
Mannose receptor, IL10 and RELMa) demonstrating a decisive
role of amino acids for the polarization (68). IL4 treated
macrophages metabolize arginine to urea and ornithine via an
increased expression of the Arg1 (69). Arg1 expression is
induced by a STAT6-Cebp/b (CCAAT-enhancer-binding
proteins beta) (70, 71). While Arg1 is one of the most used
markers to define AAM, its exact role in macrophage
polarization remains largely unexplored. Some studies suggest
that, notably through the synthesis of polyamines, Arg1 might
promote tissue repair during infections (72, 73). Downstream of
arginine, the polyamine-eIF5-hypusine pathway regulates IL4
mediated polarization of macrophages and the blockade of this
pathway inhibits the protective effect of IL4 during H. polygyrus
infection (74). On the other hand, the resistance to infection by
the helminth Trichuris muris is unaffected by the deletion of
Arg1 in macrophages suggesting more complex roles of arginine
metabolism during helminth infection. In this context,
macrophages treated by IL4 downregulate the expression of
IDO and promote the expression of the immunoregulatory
phenylalanine oxidase IL4L1 (IL4-induced gene 1) leading to
the depletion of tryptophan (75, 76). However, the consequence
of this depletion is largely unexplored. One suggestion is that the
depletion of tryptophan in the micro-environment remove a
source of energy used by helminths.

Macrophage Metabolism During
Protozoan Infection
Macrophages also play a crucial role in the immune responses to
protozoan infections. During protozoan infections, macrophage
polarization toward a pro-inflammatory phenotype will play a role
in the clearance of the pathogen. Macrophages will use the
respiratory burst and production of ROS (Reactive oxygen
species), NO (Nitric oxide) and pro-inflammatory cytokines
(TNFa, IL6, IFNg) as ways to kill the pathogen and initiate an
adaptive immune response if needed (77). Macrophages are
responsible for the destruction of the parasites, yet paradoxically
also provide a way for parasite to replicate. In fact, protozoan
could polarize macrophages toward an anti-inflammatory
phenotype (similar to the one induced by IL4 during helminth
infection) to escape the killing by macrophages and favor their
replication (78). Notably, the expression of Arg1, Mannose
receptor (also called CD206) or PPARg in macrophages are
detrimental to the host response during Leishmania infections
(79–81).

At basal state, macrophage infection with L. donovani and
L. amazonensis increases the OXPHOS levels, without affecting the
glycolysis, which is linked to an increase in the production of pro-
inflammatory cytokines and chemokines (82) (Table 1). During
L. infantum infection, macrophages transiently increase aerobic
glycolysis which is followed by a later sustained increased in
OXPHOS through a SIRT1 (Sirtuin 1)-LKB1 (Liver kinase B1)-
Frontiers in Immunology | www.frontiersin.org 8
AMPK (AMP-activated protein kinase) pathway. In this context,
the deletion of SIRT1 or AMPK in mice led to promote parasite
clearance (83). Interestingly, arginine, which is a crucial metabolite
for the growth of Leishmania parasite, is depleted by macrophages
(either through NO or polyamines). To counterbalance the
depletion of arginine in infected macrophages, Leishmania
induces the overexpression of many arginine transporter. These
findings demonstrate that the interaction between host and
pathogen metabolism is crucial to control the infection (84).
During Trypanosoma cruzi infection, the glycolysis and
OXPHOS do not appear to be modulated in macrophages (82).
However, FAO and lipids production are increased, and they
promote the pathogen replication. This appears to be dependent
on the ability of T. cruzi to promote the expression of LDLR (Low
Density Lipoprotein Receptor) therefore leading to the
accumulation of LDL and cholesterol into the cells. However,
the exact downstream mechanisms remain to be elucidated (85,
86). Interestingly, IFN-g treatment of macrophages infected with
T. cruzi support the up-regulation of a glycolysis-PPP axis
important for the production of ROS and NO and the clearance
of the pathogen (87). T. brucei produces large amounts of
indolepyruvate (a transamination product of tryptophan). This
metabolite reduces the host level of HIF1a and the production of
IL1b as well as the glycolysis during LPS-induced inflammation
(88). While the links between helminth infection and
macrophages start to be understood (mostly due to the study of
IL4 treated macrophages), further mechanistic studies will be
necessary to decipher how macrophages modulate their
metabolism to fight protozoa infection compared to how the
pathogen modulate their metabolism to favor its survival.
ROLE OF MACROPHAGE
IMMUNOMETABOLISM DURING
BACTERIAL INFECTION

During encounter of bacteria, macrophages are able to sense the
pathogen through the system of PAMP-PRR. A well described
PAMP is LPS that signals through TLR4. These stimuli will
generate a pro-inflammatory phenotype of macrophages
typically characterized by their ability to kill pathogens and
elicit an adaptive immune response via antigen presentation.
The macrophages express high levels of co-stimulatory molecules
like CD40 (Cluster of differentiation 40), CD80, CD86, as well as
MHC-II (Major Histocompatibility Complex II) to perform
antigen presentation. They also produce pro-inflammatory
cytokines such as TNFa, IL6, IL1b, IL12 and IL23 which will
promote a TH1 (T helper 1) response leading to the production
of IFNg. The production of these cytokines will also further
polarize the macrophages toward a more pro-inflammatory
profile through a positive feedback loop. Th1 cells, through
production of IFNg, will reinforce this pro-inflammatory
polarization of macrophages notably by enhancing their ability
to clear the bacteria (via increased phagocytosis, autophagy,
phagolysosomal maturation and promoting cytokines
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production). In the meantime, the enhanced production of NO
and ROS will also provide mechanisms to enhance bacterial
clearance. The expression of these factors is controlled by a
network of transcription factors including NFkB (Nuclear factor
kappa B), STAT1 and 3, HIF1a or the IRFs (15, 23, 89). While
the principle of immunometabolism has been documented in
many different contexts, the most well studied one is during the
bacterial infections associated with LPS stimulation (coupled or
not to IFNg stimuli) (Table 1).

It has been shown that macrophages treated by LPS+IFNg
largely up-regulate their aerobic glycolysis to provide energy to
the cell in a more efficient way (54). This increase is mediated by
the glucose transporter GLUT1 which is up-regulated after
bacterial stimuli. Interestingly, the deletion or up-regulation of
Slc2a1 result in changes in the expression of many inflammatory
genes (for example nos2, serpine1, mcp-1) (19, 20). The first step
of glycolysis is the generation of glucose-6-phosphate by the
Hexokinases (and mostly in immune cells by HK1 and HK2).
HK1 is regulated by mTORC1 and HK1-induced glycolysis is
necessary for the activation of the inflammasome (90). HK2
exerts a similar effect through its localization in the
mitochondrial membrane. The release of HK2 from the outer
membrane of the mitochondria is a sufficient event to trigger the
activation of the NLRP3 inflammasome and the IL1b/IL18
production (91). The rate-limiting enzyme PFKL has been
identified as a negative regulator of the oxidative burst in the
context of Staphylococcus aureus infection. When PFKL is
deleted, glucose is diverted in the PPP rather than entering
glycolysis and sustains the production of NADPH finally
leading to enhanced bactericidal activity through an
unregulated respiratory burst (92). Another glycolytic enzyme,
aldolase can also play a role in macrophage immunometabolism.
In fact, treatment of macrophages with itaconate, a well-known
anti-bacterial product which is a by-product of citrate and TCA
activity, induces the inhibition of aldolase during LPS
st imulat ion and prevents the product ion of IL1b
demonstrating that aldolase promotes the production of IL1b
(93). Downstream of aldolase, LPS can also regulate GAPDH
through the malonylation of its lysine 213 which will regulate its
activity and its binding to the TNFa mRNA, leading to an
enhance translation and cytokine production (94). Moreover,
macrophage treated with 4-Octyl itaconate modulates GAPDH
activity and glycolysis leading to a decrease in LPS-induced
inflammation in vitro and in a sepsis model (95). Another
article linked GAPDH to an anti-inflammatory response in
mice. In fact, treatment of LPS-induced sepsis mice with
GAPDH lead to decrease inflammation and improve survival
in a not fully understood mechanism suggesting that the
regulation of GAPDH might be a tight point of control for the
inflammatory response. However, in this study, the authors
injected high levels (10 mg/kg) of GAPDH originated from
rabbit muscle in a systemic manner suggesting that this effect
might not be relevant to decipher the physiological role of
GAPDH in inflammation (96). a-enolase, which catalyzes the
conversion of 2-phosphoglycerate into phosphoenolpyruvate has
also been described to be expressed at the surface of monocytes
Frontiers in Immunology | www.frontiersin.org 9
and macrophages from rheumatoid arthritis patients and a
mouse model of arthritis. The activation of surface a-enolase
trigger the production of inflammatory factors (TNFa, IL1b,
IFNg and PGE2) and could be detrimental for the pathology but
could be beneficial during bacterial infection (97). Finally,
PKM2, the major isoform of pyruvate kinases expressed in
macrophages, is also up-regulated after LPS treatment.
Interestingly, the activity of PKM2 is also regulated by its
ability to dimerize or tetramerize (while other PK isoforms
only exists as tetramers). PKM2 tetramer acts as a pyruvate
kinase enzyme and therefore it regulates glycolysis, while the
PKM2 dimer can exist in different localizations and has a
moonlighting function (it can notably regulates the
mitochondria and ER functions or regulates gene expression in
the nucleus) (98). LPS induces the tetramerization of PKM2
leading to decrease its nuclear localization and the expression of
glycolytic and HIF-1a-induced genes. However, its dimerization
promotes the expression of pro-inflammatory genes. These
findings are also applicable in vivo since the activation of
PKM2 decreases the inflammation and the bacterial load in a
model of LPS-sepsis and a model of Salmonella typhimurium
infection (99). The knockdown or inhibition of PKM2 confirmed
that PKM2 is crucial for the inflammatory effect of LPS since it
also inhibits the NLRP3 and AIM2 inflammasomes activation,
the HMGB1 (High–mobility group box 1) release and improves
the survival of the mice in a model of LPS-induced septic shock
(100, 101). Moreover, the inhibition of LDHA (the final step
enzyme of glycolysis) might also protect cells against LPS
induction of pro-inflammatory genes (102). Finally, most of
the glycolytic enzymes are overexpressed after LPS treatment
in a HIF-1a-dependent manner, suggesting the regulation of
immune responses through glycolytic enzymes might be much
wider than previously thought and might also be tightly
regulated by the network of transcription factors expressed (47,
103). However, many of the findings obtained to prove the role of
glycolysis in supporting inflammatory functions of LPS-treated
macrophages rely on the use of inhibitors that may possibly be
non-specific (e.g., 2-DG as it has been described before) or on the
deletion of transcription factors playing a broad role in the
generation of proper immune response (e.g., HIF1a). Thus, it
needs more studies and development of specific tools to target
glycolysis to fully understand the role of glycolysis in the
development of anti-bacterial responses.

The increase in glycolysis in these cells is substantially
rerouted toward the PPP by downregulating the inhibitory
sedoheptulose kinase CARKL. This increase in PPP in turn
supports pro-inflammatory macrophage phenotype. It might
promote NADPH production necessary for the NADPH
oxidase and iNOS activity thus supporting an antibacterial
function (65, 104).

While IL4 treated macrophages are not link to changes in the
TCA cycle, LPS-treated macrophages largely remodel their TCA
cycle through breaks at several key points of the cycle leading to
accumulation of citrate, succinate and itaconate (54, 104, 105).
Accumulation of citrate is due to a decreased expression of IDH
(Isocitrate dehydrogenase) and increased expression of CIC
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(Citrate carrier) (leading to its removal from the mitochondria)
(54, 106). Citrate can then be utilized to fuel the production of
PGE2 (Prostaglandin E2), NO and ROS (through increased FAS
and NADPH production) (106). Another crucial role of citrate is
to promote histone acetylation via ACLY and the expression of
LPS responsive genes (105–108). The next break occurs at the
level of itaconate. Itaconate production is enhanced because of
the increased expression of IRG1 (Immune-Responsive Gene 1)
(54, 109). Itaconate inhibits directly the growth of bacteria like
Salmonella enterica and Mycobacterium tuberculosis (Mtb) by
targeting the isocitrate lyase demonstrating a strong anti-
bacterial effect (109). Despite this effect, itaconate has an anti-
inflammatory effect on macrophage activation triggered by LPS
+IFNg treatment by limiting the production of pro-inflammatory
factors including IL1b, IL6, IL12, NO or HIF1a. This occurs
through different mechanisms that include the regulation of
succinate oxidation (and the level of OXPHOS), the activation
of a KEAP1 (Kelch-like ECH-associated protein 1)-NRF2
(Nuclear factor erythroid 2-related factor 2) pathway and the
control of the ATF3 (Activating transcription factor 3)-IkBz
(Nuclear factor of kappa light polypeptide gene enhancer in B-
cells inhibitor zeta) (110, 111). The last break of TCA cycle in
response to LPS occurs at the level of succinate. Succinate
production is highly induced after LPS treatment in a
glutamine dependent manner, which stabilizes HIF-1a and the
expression of IL1b (104). Succinate can also promote this
pathway through the succinylation of PKM2 by SIRT5. Once
PKM2 is succinylated it can form a heterodimer with HIF1a and
promote the expression of IL1b (112). Another mechanism by
which succinate can activate HIF1a is through its oxidation,
coupled with an increased mitochondrial potential membrane,
which increases ROS production and thus the stability of HIF1a
(113). Interestingly, succinate can also promote inflammation
through an autocrine and a paracrine manner via its release into
the extracellular milieu and its sensing by the receptor
GPR91 (114).

The role of fatty acid in macrophages treated by LPS is poorly
understood. While the FAO seems to not be important for
macrophage polarization, the fatty acid synthesis might play a
role. In fact, LPS-treated macrophages increased their
production of triglycerides which is associated with an increase
in CD36 expression (115). The production of FA is regulated
through a UCP2 (Uncoupling Protein 2)-FASN (Fatty acid
synthase) axis which can trigger the activation of the NLRP3
inflammasome and the production of IL1b and IL18. The
regulation of this pathway improves the survival in a model of
polymicrobial sepsis (116). Salmonella infection promotes the
expression of PPARd in macrophages. This will induce a switch
from a glycolytic metabolism toward FA metabolism in host cells
and allow Salmonella to use the available glucose to promote its
replication (117). Mycobacterium tuberculosis, through an IFNg-
HIF1a axis, promotes the formation of lipid droplets. Lipid
droplets are not used by the bacteria for replication, but are
rather used by macrophages to promote the production of PGE2
and LXB4 (Lipoxin B4) to support host defense (118). Live
Mycobacterium tuberculosis (in contrast the dead or attenuated
Frontiers in Immunology | www.frontiersin.org 10
bacteria) also shifted the mitochondrial and glycolytic
metabolism toward quiescence and induces a higher
dependency of mitochondria to use exogenous fatty acid as a
source of energy (119).

Amino acids also have a role in the regulation of macrophages
during bacterial infection. Glutamine is a crucial metabolite for
the production of NO as well as for IL1b (120, 121). Of note, a
similar phenomenon also occurs in macrophages activated by
BCG (122). Glutamine can feed the TCA cycle and is notably
responsible for the increase of succinate observed after LPS
treatment by inducing a GABA shunt. Inhibiting this
glutamine-induced GABA shunt protects mice against LPS-
induced sepsis and S. Typhymurium infection in mice (104).
While the role of this metabolite is less described, serine is
required for the optimal expression of IL1b gene and the
blockade of de novo serine synthesis improve survival in a
model of LPS-induced sepsis (123). The role of tryptophan
metabolism is more controversial. Studies have demonstrated
that LPS or IFNg can induce the expression of IDO and the
degradation of tryptophan could have an anti-bacterial effect
(47). However, another group reported that IL4L1 can block the
LPS effect in macrophages through induction of tryptophan
catabolism, suggesting that its exact role needs to be further
studied (76). Finally, the arginine metabolism is another crucial
pathway to modulate the anti-bacterial response by regulating
the balance between citrulline/NO (notably via iNOS) and the
levels of ornithine and urea (notably via ARG1) (38, 124). It also
appears thatMycobacterium tuberculosis regulates several amino
acid transporters and metabolic enzymes but the exact
mechanisms by which it affects the host response versus the
bacterial survival remains to be elucidated (125).

Despite the well described effect of LPS, other bacterial
infections have been described to modulate the host
metabolism. LPS has been widely used to study macrophage
immunometabolism because it is a simple way to mimic bacterial
infections and it shares functional similarities with other TLR
ligands. However, it is a single product of gram-negative bacteria
(and therefore does not mimic the possible effect of gram-
positive bacteria) and it does not mimic the complex in vivo
settings in which several TLR ligands and inflammatory
mediators, as well as several types of bacteria, can modulate
immunometabolism. Besides LPS, infection of human
macrophages with Legionella Pneumophila induces aerobic
glycolysis and the inhibition of glycolysis by 2-DG reduces
bacterial replication. The OXPHOS is however largely
suppressed due to mitochondrial fragmentation through
accumulation of DNM1L (Dynamin 1 like) (126, 127).
L. Pneumophila also induces the production of itaconate by
IRG1 which promotes the bacterial clearance as a host protective
mechanism (128). Besides these effects, L. Pneumophila
modulates the expression of genes involved in lipid and amino
acid metabolism but more studies are needed to precisely define
the roles of these genes (129). During Mycobacterium
tuberculosis infection, interstitial and alveolar macrophages
both have different roles and metabolism. In mice, interstitial
macrophages use the glycolysis to differentiate toward a pro-
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inflammatory phenotype and control bacterial growth as well as
the mice survival. On the other hand, alveolar macrophages use
the fatty acid oxidation and are not able to control bacterial
infection. Blocking glycolysis with 2-DG enhances bacterial
replication while blocking FAO with etomoxir decreases
bacterial replication (130–132). Interestingly, the control of
glycolysis in alveolar macrophages appear to be dependent on
miR-21 which controls the expression of PFKM and IL1b (133).
Finally, and similarly to other pathogens, Staphylococcus aureus
has to ability to modulate the host metabolism which has been
recently reviewed recently (134–137). Another important
metabolic regulation of bacterial infection through metabolism
is that bacteria can reroute the macrophage metabolism to use
nutrients for their own use which is nicely described elsewhere
and might be a key in the macrophage response to infections
(138–141).
ROLE OF MACROPHAGE
IMMUNOMETABOLISM DURING
VIRAL INFECTION

During viral infections, macrophages will elicit a pro-
inflammatory response similar to what have been described
during bacterial infection. Coupled to this, macrophages will
also start producing type I interferons (interferon alpha and
beta). The sensing of ssRNA, dsRNA and unmethylated DNA
with CpG motifs via TLR3, 7 and 9, respectively, will trigger type
I interferon production by macrophages. The RLR family
members will also recognize viral motifs and mediate the
production of type I interferons (142). Type I interferons will
therefore signal through their receptors (Interferon-a/b receptor
1 and 2) which will lead to the activation of the PI3K, MAPKs,
STATs and IRF9 ultimately leading to the induction of the ISGs
(Interferon Stimulated Genes). Theses ISGs include genes
implicated in the mount of antiviral responses, inflammation,
pro- and anti-apoptotic molecules as well as regulation of
translation and RNA turnover. Type I interferons can be
produced by a broad range of cells including macrophages,
dendritic cells, epithelial cells, fibroblasts, as well as
plasmacytoid dendritic cells (which is the primary source of
interferons during viral infection). Type I interferon will
therefore signal in the abovementioned cells as well as in T
and B cells (143, 144). Interestingly, while macrophages were not
supposed to be the primarily source of type I interferon
producers, it clearly appears that they are able to control viral
infection through production of IFNa/b and are among the first
responders during viral infections (145, 146).

The exact role of glycolysis during viral infection remains
unclear. First of all, the expression of GLUT1 is increased in
monocytes from HIV infected patients and is linked to an
increase in glucose uptake and the generation of pro-
inflammatory monocytes (147) (Table 1). HIV-I infection in
monocytes/macrophages also promotes the expression of HK1
and its localization to the mitochondria thus protecting the cells
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from apoptosis (148). However, a previous study reported that
HIV-I infection of macrophages decreased the glucose uptake
and the levels of several glycolytic intermediate (149). These
discrepancies suggest that the timeline of infection as well as
other parameters like cell differentiation status (monocytes vs
macrophages) and the phenotype (pro- vs anti-inflammatory)
might play a part for the regulation of glycolysis into HIV-
infected macrophages and need to be further studied (150).
During Dengue virus infection, the expression of GLUT1 and
HK2 are increased as well as the level of early (from glucose to
glyceraldehyde 3 phosphate) glycolytic metabolites (G6P, F6P),
while the levels of late (from glyceraldehyde 3 phosphate to
pyruvate) glycolytic metabolites is increased at shorter time
(10 h) and decreased later (48 h). Interestingly, glycolysis
supports the viral replication and inhibition of glycolysis using
oxamate (a competitive inhibitor of LDH) and 2-DG blocks the
viral replication (151). A similar phenomenon occurs during
murine norovirus infection (152). While the authors of these two
papers did not study further mechanisms, they hypothesized that
an increase in glycolysis could promote the generation of
biomolecules needed for their replication such as lipids, ATP
or NADH. The role of glycolysis during viral infection might be
virus dependent. In fact, during VSV (Vesicular stomatitis virus)
infection, glycolysis is increased through a type I IFN dependent
pathway. The expression of several glycolytic enzymes is
increased in this context, and more particularly the expression
of PFKFB3 which supports the viral phagocytosis and protects
the mice during RSV (Respiratory syncytial virus) infection
in vivo (153). Finally, during SARS-CoV2 infection,
macrophages largely increase their glycolytic levels which
promotes the viral replication and the production of pro-
inflammatory cytokines. Mechanistically, the infection induces
the production of mROS leading to the stabilization of HIF1a,
thus promoting glycolysis. Interestingly, these changes in
metabolism inhibit T cell responses and reduce epithelial cell
survival (154).

Little is known regarding the role of PPP during viral
infections in macrophages. A pioneer study underlined that
6PG and S7P are decreased during HIV-1 infection and the
ratio NADP/NADPH is largely decreased (149). However, the
functional role of these changes in PPP remains unknown and
will have to be further studied. Importantly, it has to be noted
that virus, similarly to what has been described above for
bacteria, can hijack the host glycolysis (and metabolism in
general) in an attempt to use these nutrients to sustain their
replication and survival in the host (155, 156).

Similarly, the function of TCA cycle is poorly defined. During
HIV infection, the levels of the TCA cycle metabolites are
unchanged (except for malate which is increased) (149).
However, macrophages surviving HIV infection present an
altered TCA cycle and OXPHOS (157).

On the other hand, the activation of macrophages by viruses
and their products largely remodels their lipid pool. The
stimulation of macrophages with TLR3, 7 and 9 agonists to
mimic viral infection modulates the lipid composition of nearly
all lipid classes. These changes largely occur through a MyD88
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and TRIF signaling pathway and the interferon signaling is also a
requirement to these changes. Interestingly, the TLR3 and TLR7/
9 signaling differentially modulate the fatty acid synthesis
respectively because of their use of the TRIF (TIR-domain-
containing adapter-inducing interferon-b) and MyD88
(Myeloid differentiation primary response 88) signaling
pathways. While TLR3 stimulation decreased the generation of
saturated long chain fatty acid (SFA) and monounsaturated long
chain fatty acid (MUFA), the TLR7/9 stimulations increased
these levels. Mechanistically, the MyD88-NRF2 (Nuclear factor
erythroid 2-related factor 2)/SREBP (Sterol regulatory element-
binding protein) axis induces the expression of stearoyl-CoA
desaturases 1 and 2 which negatively controls the inflammation
(Il1b, Il6 and Cxcl1 expression notably) through an increased
production of these MUFAs (158). While this study was
performed using only TLR agonists, other publications in
different cell types suggest that targeting fatty acid during
different types of viral infections might be a strategy to control
viral replication (159–161). Type I interferons can also promote
the import of cholesterol and long chain fatty acid during murine
gammaherpesvirus-68 (MHV-68) infection (but also with HIV).
In this setting, blocking the lipid import protects from viral
infection through production of type I interferon in a STING-
dependent manner (162). Moreover, the infection of
macrophages by HIV impairs the cholesterol efflux through a
Nef (Negative regulatory factor)-ABCA1 (ATP-binding cassette
A1) pathway inducing the formation of foam cells. In the
meantime, the activation of TLR8 in macrophages by ssRNA
from HIV reinforces this foam cell phenotype through the
production of TNFa (163, 164). Besides these effects, the
cholesterol has also largely been demonstrated to be crucial for
the virus entry in the cell and the anti-viral response (165–168).
A growing number of evidence showed that SARS-CoV2
infection is linked to a reprogramming in lipid metabolism
with cholesterol playing a crucial role. Indeed, membranes rich
in cholesterol are a point of entry of SARS-CoV2 in the cells
(169). The enzyme cholesterol 25-hydroxylase (CH25H,
belonging to the ISGs) is highly induced during SARS-CoV2
infection and restricts viral infection by depleting cholesterol on
the plasma membrane (170, 171). Moreover, SARS-CoV2
promotes the expression of several lipid synthesis modulators
(including SREBP1/2, CD36, PPARg or DGAT-1) leading to the
production of cholesterol and lipid droplets. Blockade of this
pathway can decrease both the viral replication and the
inflammatory response induced by SARS-CoV2 (172, 173).

The modulation of amino acid uptake and production is also
a crucial regulator during viral infections. The amino acid
glutamine is the main source of energy during HIV latent
infection along with glutamate and a-ketoglutarate and
blocking the use of these metabolites induces the death of
latency infected macrophages (157). EBV (Epstein-Barr virus)
and HIV infections both induce the expression of IDO in
macrophages in an IL6 and TNFa dependent manner thus
inhibiting the activation of T cell activation. Inhibition of IDO
eventually lead to the elimination of the macrophages infected by
viruses (174, 175). The arginine metabolism is regulated in a
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complex manner during viral infection. The activation of innate
immune responses by viruses induces the production of NO by
macrophages and other immune cells (176). But some viruses
like the Sendai virus will try to limit the production of NO as a
mechanism to escape host responses (177). In fact, while
beneficial at first, a sustained production of NO over the time
will lead to damage the host tissues and inhibits the Th1
responses (176); (178). Arginine, in the other hand, is a critical
metabolite for the replication of viruses and the inhibition of
Arg1 reduces the viral replication and ability to infect the host
cells (179). However, Arg1 might also promote the tissue repair
after viral infection [for an extensive review about the role of
arginine metabolism see (180)]. Finally, viruses can target mTOR
to modulate the innate immune responses. For example,
Vaccinia virus encode the protein F17 which as the ability to
disrupt the mTOR complex in the Golgi which will block the
activation of STING (Stimulator of interferon genes) and the
generation of an interferon-mediated immune response (181,
182). Additionally, viruses can modulate mTORC1 to inhibit
host protein translation or promote the translation of their own
mRNAs (183–185).
ROLE OF MACROPHAGE
IMMUNOMETABOLISM DURING
TRAINED IMMUNITY

The immune system is classically divided into two arms: the
innate immune system and the adaptive immune system.
Scientists assumed for a long time that only the adaptive
immune system has an immunological memory, and that the
innate immune system was only able to sense pathogens in a
partially unspecific manner (through the PRR) which does not
last over the time. However, this concept has recently been
largely challenged. In fact, it appears that innate immune cells
do have an ability to develop a broad immunological memory
that lasts over the time (and could even be antigen-specific in
some cases) (186, 187). These memory-like responses are now
well known as trained immunity (188–190). Overall, trained
immunity will induce an enhanced inflammatory response in
response to secondary stimuli marked by the increased ability of
monocytes to produce inflammatory cytokines (notably TNFa
and IL6) trough sustained changes in metabolism. In human
monocytes, the stimulation with b-glucan followed by 7 days of
resting period leads to a decreased level of OXPHOS, increased
glucose consumption and lactate production (Table 1). An AKT-
mTOR-HIF1a pathway is responsible for this increase in
glycolysis and its blocking (either by pharmacological or
genetic inhibition) abrogates this trained immunity and is
protective in lethal models of C. albicans and S. aureus
infections (191). Glutaminolysis is also required for the
induction of trained immunity through its ability to sustain the
production of fumarate which will modulate the stability of
HIF1a and KDM5 (Lysine deacetylase 5) activity, thus
promoting the epigenetic reprogramming at the promoter of
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IL6 and TNFa (192). The cholesterol pathway is also linked to
the induction of trained immunity through the induction of
mevalonate production (192, 193). Mechanistically, mevalonate
promotes the function of IGF1R (Insulin-like growth factor 1
receptor) and mTOR leading to subsequent epigenetic changes
(193). A similar glycolysis-AKT-mTOR-epigenetic pathway is
also involved during BCG (Bacille Calmette-Guerin)-induced
trained immunity demonstrating that this pathway might be a
general process during different type of stimuli inducing trained
immunity (194). Interestingly, a similar phenomenon is observed
in hematopoietic myeloid progenitors and increases the
myelopoiesis (195). At the opposite of the concept of trained
immunity is the concept of immune tolerance (or
immunoparalysis) which induced a persistent tolerance in
macrophages over the time, notably in response to LPS (186,
189). Tolerant monocytes from sepsis patients show an impair
levels of OXPHOS and glycolysis and IFNg can restore the
metabolic defects through activation of mTOR (196). The state
of tolerance is induced by itaconate and b-glucan can revert this
state of tolerance by blocking the expression of Irg1 and
increasing the expression of Sdh eventually reversing the
immunoparalysis (197, 198).
TARGETING MACROPHAGE
IMMUNOMETABOLISM AS A
POTENTIAL THERAPEUTIC TARGET FOR
INFECTIONS: AN EMPHASIS
ON COVID-19

Macrophages have, for a long time, be considered potential
targets to control immune responses in a wide variety of
diseases (199, 200). As new research shed light on the role of
immunometabolism in macrophages, it becomes clear that
targeting the immunometabolism in macrophages can be a
therapeutic target during the development of many diseases
including infections. A current focus of research in the past
few months has been the development of drugs and vaccines for
the SARS-CoV-2 (Severe acute respiratory syndrome
Frontiers in Immunology | www.frontiersin.org 13
coronavirus 2) infection that leads to the development of
COVID-19 (Coronavirus disease 2019) and firstly appeared in
December 2019 in Wuhan, China. In fact, the development of
potential therapeutics is critically needed since it already affected
more than two hundred fifty million people worldwide and led to
5,284,432 deaths (according to the daily WHO report on
December 7th). As other viral infections, COVID-19 induces
the development of an immune response in which the innate
immune cells (and notably macrophages) are the first line of
defense (201). Several studies have been reported that the
progression to severe forms of infection by COVID-19 (but
this also true for many viral and bacterial infections like the
development of sepsis) is associated with an overt and
dysregulated production of inflammatory factors like IL1b, IL6,
TNFa, IFNg, GMCSF, CCL2, CCL3, CCL4, CXCL10 and many
others (202, 203). This cytokine release syndrome (or cytokine
storm) is responsible for damages during infections and more
particularly into the lungs of patients of sepsis and COVID-19
[also called Acute respiratory distress syndrome (ARDS)] and
plays a major role in the related deaths observed in patients with
severe conditions (204–207). Importantly, the monocyte/
macrophage system is largely remodeled during acute SARS-
CoV2 infection with an increased proportion of inflammatory
monocyte infiltration in patients with severe condition and
macrophages harboring a highly pro-inflammatory phenotype
(208, 209). Interestingly, a similar phenomenon occurs during
SARS-CoV infection (210, 211). As discussed before, many of
these parameters are regulated by metabolism suggesting that
targeting metabolism might be a therapeutic strategy to protect
against this overt inflammation during severe infections and
more particularly during COVID-19. Five drugs targeting
metabolism are currently in use clinically to treat different
diseases and could be used to prevent the cytokine storm:
dimethylfumarate (DMF), metformin, methotrexate, rapamycin
and dexamethasone (Table 2).

Firstly, DMF (a fumarate analog and NRF2 activator
currently used for the treatment of multiple sclerosis) notably
inhibits NFkB, ERK (Extracellular-signal-regulated kinase) and
other signaling pathway. In macrophages, DMF will notably
activates NRF2 to protect the cells from oxidative stress and
TABLE 2 | Potential therapeutic molecules for the treatment of infections.

Molecule Target Consequence

Already used in clinic
DMF NRF2-KEAP1, NFkB, ERK, GAPDH Decreases glycolysis and inflammation, promotes an anti-inflammatory phenotype.
Metformin Complex I of OXPHOS Inhibits ROS, ATP and IL1 b production, promotes IL-10 production.
Methotrexate AICAR (at low dose) Raises adenosine levels and activates AMPK. Decreases IL1b, IL6 and TNFa levels.
Rapamycin mTOR Promotes tolerance and controls glycolysis and inflammation.
Dexamethasone Multiple possible targets (including mTOR, NFkB…) Promotes tolerance. Increases OXPHOS and ROS levels. Antibacterial effect.

In development
2-DG Hexokinase Blocking of glycolysis. Decreases inflammatory responses.
TEPP-46 PKM2 Inhibits glycolysis, HIF1a and IL1b production
DMM SDH Inhibits HIF1a and IL1b production, promotes IL-10 and IL1RA production.
2-DG, 2-deoxyglucose; Aa, Amino acid; AICAR, Amido-imidazolecarbox-amido-ribonucleotide; DMF, Dimethylfumarate; DMM, Dimethylmalonate; Erk, Extracellular-signal-regulated
kinase; FAO, Fatty acid oxidation; FAS, Fatty acid synthesis; HIF1a, Hypoxia factor 1 alpha; HK, Hexokinase; HMG-CoA, b-hydroxy b-methylglutaryl-CoA; IL, Interleukin; KEAP1, Kelch-like
ECH-associated protein 1; mTOR, mammalian target of rapamycin; NFkB, Nuclear factor kappa B; NRF2, Nuclear factor erythroid 2-related factor 2; OXPHOS, Oxidative phosphorylation;
PKM, Pyruvate kinase muscle isotype; ROS, Reactive oxygen species; SDH, Succinate dehydrogenase; TNFa, Tumor necrosis factor alpha.
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promote an anti-inflammatory phenotype (212). DMF also acts
on glycolysis since it decreases the activity of GAPDH suggesting
therefore that DMF could be repurposed to modulate
immunometabolism during infectious diseases (213). Similarly
to DMF, 4-OI (an itaconate analog not used in clinic for the
moment) target the NRF2-KEAP1 pathway and might prevent
the cytokine storm during acute infections (214). These 2 analogs
work by mimicking their respective metabolites suggesting that
fumarate and itaconate modulation could be interesting targets
to dampen inflammation in infectious settings. Interestingly, a
recent report suggested that these 2 drugs might have a potent
antiviral and anti-inflammatory activity during COVID-19
(DOI:10.21203/rs.3.rs-31855/v1, under review in Virology).

Metformin is a first-line treatment for the treatment of type 2
diabetes and metabolic disorders notably through a glucose
lowering effect. Interestingly, metformin has also an
immunomodulatory function. Both these functions depends on
the ability of metformin to activate AMPK. This occurs through
the ability of metformin to inhibits the complex I of ETC which
controls the production of ATP and ROS. The blockade of ATP
generation will lead to an increase in AMP or ADP/ATP ratio
which will consequently activate AMPK (215). Metformin is
known to suppress the production of IL1b and promotes the
production of IL10 in response to LPS (216). Interestingly,
metformin has been used in the 1940’s as an antimalarial drug
as well as to treat influenza and might show interesting properties
in the treatment of M. tuberculosis and COVID-19 (217–220).
Importantly, three recent studies have suggested that metformin
could be used as a therapeutic during HIV, SARS-CoV2 and Mtb
infections (219, 221–223). In all pathologies, metformin use has
been linked to an improved survival in diabetes and obese patients.
Mechanistically, metformin reprograms the immunometabolism
of CD4 and CD8 T cells which lead to a modulation of viral
replication and enhanced the immune responses. However,
whether macrophages can be targeted by metformin remains to
be studied (219, 223). Metformin has therefore be proposed to
possibly be a treatment for several bacterial, protozoal and viral
infections (https://doi.org/10.1002/dmrr.2975), and several clinical
trials to assess the use of metformin during HIV (NCT04500678,
NCT02383563, NCT02659306, NCT04930744) Mtb
(NCT04930744) or SARS-CoV2 (NCT04510194) infections are
now ongoing. However, despite a relative good safety profile,
metformin is associated with several side effects (notably at the
cutaneous and gastro-intestinal tract levels) and approximately 5%
of the patients have to discontinue the treatment (224).

At high dose, the methotrexate is an inhibitor of the DHFR
(Dihydrofolase reductase) which will block the downstream
inhibitors of the folate pathway eventually leading to the
inhibition of nucleotide synthesis. At lower dose, methotrexate
is inhibiting AICAR (Amido-imidazolecarbox-amido-
ribonucleotide) leading to the increased production of the anti-
inflammatory factor adenosine. Methotrexate can induce the
activation of AMPK and further inhibit the production of
IL1b, IL6 and TNFa in macrophages in response to LPS (and
can also inhibit the activation of pro-inflammatory B and T cells
and promote the generation of Treg) suggesting a potential
Frontiers in Immunology | www.frontiersin.org 14
therapeutic efficacy to control the overt inflammation during
SARS-CoV2 infection (225–227). The effect of methotrexate on
viral-induced inflammation has been or is currently being tested
in two cohorts of SARS-CoV2 and HIV patients and will
require further investigations (NCT01949116, NCT04352465).
Methotrexate is currently used as an anti-tumoral, anti-psoriatic
and anti-arthritic drug. However, due to its immunomodulatory
effects, methotrexate is associated to an increased level of
infection in rheumatoid arthritis patients. Moreover, its use is
also linked to hepatotoxicity, pulmonary toxicity, nephrotoxicity,
hematologic toxicity as well as gastrointestinal side effects and
carcinogenicity and 20-30% of patients have to stop the usage of
this drug due to these side effects (which could remain for up to 5
years) therefore emphasizing the need of more research to
determine its potential use to treat infections (228).

Another interesting target is to modulate mTOR by using the
inhibitor rapamycin (or similar mTOR inhibitors like
everolimus, vistusertib or AZD8055). It has been demonstrated
that rapamycin can protect mice against inflammation and death
(through control of macrophages) in a model of CLP-induced
sepsis (229). Moreover, derivatives of rapamycin were shown to
reduce the rate of infection to influenza in elderly in without side
effects (230). These findings have led to the hypothesis that
rapamycin might be a potential target to treat infections and
might be of great interest in severe forms of COVID-19 (231,
232). mTOR has also been hypothesized to be a therapeutic
target during Mtb, T cruzi or HIV infections (233–235) and the
safety and efficacy of sirolimus is currently being tested in a
clinical trial as a Covid-19 treatment (NCT04461340). As an
immunosuppressant, blocking mTOR (notably with the use of
sirolimus) is linked to development of cancer (especially
lymphoma and skin cancer), infections and other adverse
events including hyperglycemia and dyslipidemia (236).

Finally, Dexamethasone, a synthetic glucocorticoid with anti-
inflammatory and immunosuppressive properties is widely used to
treat inflammatory conditions. Dexamethasone acts largely
through macrophages by decreasing their production of pro-
inflammatory factors (like CCL2, TNFa, COX-2…) (237–239).
Dexamethasone is able to promote bacterial phagocytosis and
killing by human macrophages in vitro and is protective in a
model of LPS-sepsis (240, 241). A possible mechanism of action is
also to increase the expression of OXPHOS genes and to promote
the production of ROS by macrophages finally leading to suppress
the T cell responses (242, 243). Interestingly, dexamethasone has
recently been determined to be the first drug to save lives in the
SARS-CoV2 infection. The RECOVERY trial enrolled 2100
patients treated with low to intermediate doses of dexamethasone
(6 mg per day for 10 days) compared to patients receiving standard
care. The survival rate was improved by 30% in patients receiving
invasive ventilation and by 20% in patients receiving oxygen
support (without invasive mechanical ventilation) (244).
However, as a corticosteroid with an immunosuppressive action,
dexamethasone has been described to have several side effects and
the dose used appears to be critical (245).

Besides the drugs already approved in clinic, the development
of drugs inhibiting the metabolites implied in the mounting of an
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immune response can be targeted as well (Table 2). For example,
the development of 2-DG (HK2 inhibitor, currently tested in 219
clinical trials currently), TEPP-46 (PKM2 activator) or
dimethylmalonate (DMM, SDH inhibitor, tested in phase 2
clinical trials currently) might be an important advance in the
development of immunometabolic inhibitors (226). These
finding provide a crucial understanding on how using drugs
targeting macrophage immunometabolism (notably to prevent
the cytokine storm) might be used as therapeutic targets during
infections and more specifically during SARS-CoV2 Infection.
CONCLUDING REMARKS

The past decade has seen a great development in our understanding
on how the metabolism can regulate immune responses.
Macrophages have been demonstrated to be a key player in how
immunometabolism regulates the mount of a proper immune
response during different types of infections. Although the
modulation of metabolism has been largely described in vitro in
response to LPS and IL4, its role in different complex
microenvironment and more importantly in vivo remains largely
poorly understood. Moreover, much of the data has been published
in mice and the potential to target metabolism in humans must be
further studied. While the different major metabolic pathways are
Frontiers in Immunology | www.frontiersin.org 15
seen as a unique block, they all intersect each other and a break in a
unique metabolite might largely affect the cell behavior rendering
the things more complex. Despite these limitations, the possibility to
target metabolism in macrophages to control infectious disease has
shown a great potential and might play an important role in the
finding for a cure of different infections, including COVID-19.
Indeed, the modulation of macrophages phenotype is a promising
target since, contrary to many other immune cell types, it can be
targeted in a specific manner through the use of liposomes or other
cellular “backpack”, thus limiting specificity and side effects (246,
247). Based on these facts, it is likely that an increase in macrophage
immunometabolism understanding will provide new insights to
cure infections.
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