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Abstract

Background: ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA

(miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired

in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome

and the progression of glioblastoma is not known.

Results: By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies,

we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the

expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers

the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and

tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is

to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221

and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with

important effects on cell proliferation and migration.

Conclusions: Our findings disclose an additional layer of complexity in miRNome regulation and provide information

to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for

maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

Background
MicroRNAs (miRNAs or miRs) are small non-coding

single-stranded RNAs that play a crucial role in many

cellular pathways by silencing RNA targets by either

inhibiting their translation or promoting their degrad-

ation [1]. miRNAs are transcribed in the nucleus and the

nascent transcripts are called primary miRNAs (pri-miR-

NAs). Pri-miRNAs can be several kilobases long and

contain one or more secondary stem-loop structures [2].

The nuclear pri-miRNA transcripts are cleaved by a nu-

clear RNAse III enzyme, Drosha [2], which acts in con-

cert with several co-factors, including DGCR8 [3], to

generate stem-loop precursor miRNAs (pre-miRNAs).

Pre-miRNAs undergo a second cleavage by the cytoplas-

mic RNAse III enzyme Dicer, which, in cooperation with

other cofactors, cuts the loop end of pre-miRNAs. The

resulting product is an approximately 22 nucleotide

RNA duplex composed of the mature miRNA guide and

a passenger strand (also referred to as miRNA*). Once

loaded into the RNA-induced silencing complex (RISC),

the mature miRNA strand is able to recognize the target

RNA through a six to eight nucleotide seed region at the

5′ end of the miRNA, while the passenger strand is usu-

ally degraded [4].

miRNAs are important regulatory RNAs involved in

numerous cellular processes, including proliferation, dif-

ferentiation and development. Since miRNAs can act as

oncogenes or tumor suppressors [5], fluctuations of their

expression are important factors in both normal and

pathological conditions, including cancer [1,5]. Recently,

miRNAs have been shown to be differentially expressed

in malignant astrocytomas and glioblastomas (also known

as astrocytoma grade IV) compared with normal brain,

with some miRNAs, such as miR-21, miR-221 and

miR-222, being particularly over-expressed in cancers [6,7].
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Adenosine (A) to inosine (I) RNA editing, which is

mediated by the ADARs, adenosine deaminase enzymes

acting on double-stranded RNAs (dsRNAs), is a wide-

spread post-transcriptional mechanism in mammals that

affects several coding and regulatory RNAs, including

miRNA precursors, by altering their sequence and struc-

ture. Indeed, inosines are recognized as guanosines (G)

by the splicing and translation machineries and dsRNAs

containing I∙U wobble base pairs can interfere with the

action of RNA-binding proteins such as Dicer [8].

Therefore, A-to-I RNA editing events, equivalent to A-

to-G cDNA changes, may induce amino acid substitu-

tions, alter RNA splicing sites and perturb dsRNA struc-

tures. In mammals, there are three ADAR enzymes:

ADAR1 and ADAR2 are active deaminases, whereas

ADAR3 seems to be an inactive enzyme [9]. All ADARs

have a similar domain structure with a catalytic domain

at the carboxyl terminus and two or three dsRNA-binding

domains at the amino terminus [9]. Recently, it has been

shown that ADARs can interact with the miRNA world in

both an editing-dependent and -independent way [10,11].

Specifically, ADARs can edit miRNA precursors and thus

alter their maturation steps [12]. Moreover, when editing

occurs within the miRNA seed, this can lead to redirection

of the edited miRNA to a different subset of mRNA tar-

gets [13]. It has also been shown that ADARs can impair

miRNA maturation independently of their catalytic do-

mains, with ADAR1 able to globally enhance miRNA

biogenesis by directly interacting with Dicer [14,15].

ADAR2 is an essential enzyme for brain development

and function [16,17]. In previous studies, we and others

showed that ADAR2 activity is impaired in glioblastoma

in both children and adults [18-20] and that the decrease

of ADAR2-mediated editing correlates with increased

tumor grade in children [18]. Moreover, we recently dem-

onstrated that ADAR2 deaminase activity is sufficient to

inhibit glioblastoma proliferation and tumor growth, as it

modulates the CDC14B/Skp2/p21/p27 pathway in adult

glioblastoma cell lines and this was further confirmed in

different grades of pediatric glioma [21].

Due to the importance of ADAR2 activity in glioblast-

oma and the link between ADARs and miRNAs, we de-

cided to analyze miRNA profiles in glioblastoma cells

upon ADAR2 over-expression or silencing as well as in

normal brain and glioblastoma tissues, with the aim of

identifying important ADAR2-regulated miRNAs in glio-

blastoma. We found that ADAR2 specifically edits a

small number of mature miRNAs. Moreover, it is able to

modulate the expression of many miRNAs, most of

which are involved in tumorigenesis. In particular, we

found that the maturation steps of the important onco-

genic miR-221, -222 and -21 are inhibited by ADAR2

editing activity, with consequent effects on the prolifera-

tive and migratory capacities of glioblastoma cells.

Results
ADAR2 editing activity alters the miRNA expression

profile in glioblastoma

A-to-I RNA editing within miRNA precursors can alter

their maturation steps and consequently the expression

levels of mature miRNAs [12]. To investigate the effects

mediated by ADAR2 editing activity on the miRNome

(microRNA expression and editing profile), we used both

microarray and deep-sequencing approaches, followed by an

extensive bioinformatic analysis, in human brain and glio-

blastoma tissues as well as in a glioblastoma cell line (U118)

in which we modulated ADAR2 expression and/or activity.

Microarray expression analysis was performed to com-

pare RNA isolated from glioblastoma U118 cells trans-

fected with either the active ADAR2 or the inactive

ADAR2 enzyme (ADAR2 E/A) [21]. ADAR2 E/A carries

a single point mutation (E/A) in the catalytic domain,

which renders it unable to promote the deamination re-

action but still able to bind dsRNAs [22]. Both the active

and inactive ADAR2 were expressed at similar levels in

the stably transfected U118 cell lines (Figure S1 in

Additional file 1). Three independent miRNA-array ex-

periments were performed using total RNA extracted

from U118 over-expressing either ADAR2 or ADAR2 E/A.

In these cells, exogenous ADAR2 is expressed at approxi-

mately three-fold the level of the endogenous protein

levels and this is sufficient to rescue the normal editing

levels at well-known editing sites [21]. We selected only

miRNAs exhibiting a log2(ratio) of at least ±0.5 (corre-

sponding to ≥1.41 relative fold-change) (Additional file 2,

ADAR2 versus ADAR2 E/A, E column). For the statistical

analysis we applied the standard Benjamini-Hochberg

multiple testing correction adopting a cutoff false discov-

ery rate (FDR) ≤0.2 (Additional file 2; see Materials and

methods). Over-expression of the active ADAR2 caused

significant changes in the expression of several miRNAs

(46 miRNAs), compared with the inactive ADAR2 E/A

(Additional file 2). Among the down-regulated miRNAs,

miR-29b, miR-221 and miR-21 were the most reduced in

ADAR2 cells (-1.82, -1.65 and -1.59 log-fold, respectively;

Additional file 2, column in green). Strikingly, 40 out of

46 of the ADAR2 target miRNAs are involved in cancer

development/progression (Additional file 2, column in light

brown). Specifically, approximately 80% (13/19) of the

down-regulated miRNAs and approximately 30% (8/27)

of the over-expressed miRNAs play a role in glioblast-

oma (Additional file 2, column in light gray). Of note,

approximately 52% (10/19) of miRNAs down-regulated

by ADAR2 are usually over-expressed and act as onco-

miRNAs in glioblastoma (Additional file 2, column in dark

gray). Moreover, approximately 20% (5/27) of miRNAs

up-regulated by ADAR2 have a role as tumor suppres-

sors and/or are usually down-regulated in glioblastoma

(Additional file 2, column in dark gray).
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No significant changes in miRNA expression were de-

tected between ADAR2 E/A transfected cells and the

control U118 cell line (Additional file 2, untransfected

versus ADAR2 E/A).

In summary, miRNA-array data showed that ADAR2

activity restricts the expression of several well-known

onco-miRNAs in glioblastoma (Additional file 2, ADAR2

versus ADAR2 E/A, column in dark gray), with mir-221,

miR-21, miR-125b and miR-222 being the most down-

regulated.

ADAR2 edits a few miRNAs and alters the expression of

many miRNAs

Current miRNA arrays have pre-designed probe se-

quences that do not give information about the possible

sequence modification events within miRNAs. Addition-

ally, any editing events within the mature sequence

could alter the binding between the probe and the miR-

NAs. Therefore, we also carried out a deep-sequencing

analysis of small RNA fractions isolated from the U118,

U118 ADAR2, U118 ADAR2 E/A and U118 siADAR2

cells (in which we silenced the over-expressed ADAR2

enzyme) [21]. Additionally, we further extended our ana-

lysis to healthy human brain and glioblastoma tissues.

Mature miRNAs from these samples were sequenced

using the Illumina HiSeq2000 platform. No significant

A-to-G changes were identified in the U118 untrans-

fected cells (Table 1), confirming the notion that ADAR2

is either inactive or has greatly reduced activity in high-

grade astrocytoma/glioblastoma cell lines [18,23]. Intro-

ducing the active ADAR2 into U118 cells, we identified

19 editing sites within 18 miRNAs (Table 1). Nine sites

were also found to be edited at statistically significant

levels in human brains whereas only two of these were

edited in glioblastoma tissue (Table 1). We are confident

that these miRNAs are specifically edited by ADAR2,

since (i) the inactive ADAR2 E/A cell line shows no sig-

nificant A-to-G changes and (ii) decreased editing values

were observed in the ADAR2-silenced cell line (siA-

DAR2 versus ADAR2 cells) (Table 1). Most of these edi-

ted miRNAs had already been identified in our previous

study [23]; however, here we detected new potential edit-

ing sites in miR-210, miR-503 and miR-3157* (shown in

italics in Table 1). The identified editing sites were char-

acterized by an enrichment of uridine (U) in the up-

stream nucleotide position, with guanosine (G) usually

as the downstream nucleotide and with the nucleotide

opposing the editing site usually being a cytidine (C) or

Table 1 ADAR2-mediated editing events in brain and glioblastoma cells and tissues

Chr Strand miRNA U118 ADAR2 ADAR2 E/A siADAR2 P-value Pooled
human
brain

Human
frontal
lobe

Glioblastoma Location
in pre-miR

Location in
mature miR

Chr9 + hsa-let-7d* 0.3 2.0 0 0.5 1.61E-10 1.2 0.7 0 66 5

Chr17 - hsa-mir-22 0 0.1 0 0.1 5.50E-34 0 0 0 67 15

Chr19 - hsa-mir-24–2* 0.1 16.4 0 7.1 <1E-155 0.8 2.3 ND 18 6

Chr19 - hsa-mir-27a* 0.1 22.5 0.1 9.8 <1E-155 ND 0 2.6 10 1

Chr21 + hsa-mir-99a 0.1 13.8 0 6.9 <1E-155 5.0 1.2 0 13 1

Chr11 - hsa-mir-100 0 0.2 0 0.1 1.22E-145 0 0 0 13 1

Chr3 + hsa-mir-138–1* 0 0.8 0 0.5 2.57E-35 2.1 0.2 ND 74 12

Chr8 - hsa-mir-151 0.1 0.3 0 0.2 5.70E-13 0.9 0.6 ND 49 3

Chr11 - hsa-mir-210 0 0.5 0 0.5 2.31E-11 ND ND 0 77 12

Chr14 + hsa-mir-411 0 12.6 0 5.6 4.31E-39 15.3 13.9 3.2 20 5

Chrx - hsa-mir-421 0.2 13.8 0.5 9.6 <1E-155 1.8 1.0 0 61 14

Chr9 + hsa-mir-455 0 14.2 0 5.7 <1E-155 1.2 0.9 0 32 17

Chr17 - hsa-mir-497 0 26.1 0 16.7 1.73E-155 6.2 0.6 0 25 2

Chrx - hsa-mir-503 0 5.9 0 1.7 8.75E-14 ND ND 0 7 2

Chr7 - hsa-mir-589* 2.3 9.5 2.2 2.9 1.36E-31 70.0 74.1 0 66 6

Chr19 - hsa-mir-641 0 17.0 0 8.8 5.83E-116 0 0 0 17 2

Chr19 - hsa-mir-641 0 3.0 0 0.9 2.45E-14 0 3.6 0 18 3

Chr10 - hsa-mir-3157* 0 69.4 0 54.5 1.55E-90 ND ND 0 70 13

Chr16 + hsa-mir-3176 0 10.9 0 8.2 6.73E-41 ND ND 0 74 15

A-to-G changes in mature miRNAs isolated from U118 cell lines (untreated, ADAR2, ADAR2 E/A, siADAR2), human brains (pooled and frontal lobe) and

glioblastoma. The statistically significant modifications are marked in bold; the edited miRNAs that were not identified in our previous analysis are indicated in

italics [23]; miRNAs that are both edited and modulated by ADAR2 are indicated in bold (Additional files 2 and 3).

Editing levels are represented as percentages. ND, not determined (with <10 reads).
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a uridine (U). These sequence patterns are consistent

with genuine A-to-I editing [24]. Of note, 9 out of 19 of

the editing sites identified in the ADAR2 transfected

cells (Table 1) are located within the miRNA seed region

(including the new miR-503). Importantly, editing within

the seed sequence may lead to miRNA retargeting [13].

Next, we extended our analysis to possible alterations

of miRNA expression mediated by ADAR2 in glioblast-

oma cells and in human brain tissues (both normal brain

and glioblastoma), detecting differences in expression

that cannot be explained by the expected Poisson noise

[25]. We first analyzed the modulation of miRNA ex-

pression in ADAR2 versus ADAR2 E/A U118 cells and

in siADAR2 versus ADAR2 U118 cells, focusing our atten-

tion on those miRNAs that were up- or down-regulated

by ADAR2 and which reversed their expression-trend in

the siADAR2 cells (Additional file 3). We selected mature

miRNAs with (i) normalized counts greater than 200 reads

(ADAR2 plus ADAR2 E/A reads) and (ii) a log2(ratio) be-

tween ADAR2 and ADAR2 E/A exceeding 0.5 (in absolute

value) (Additional file 3). A total of 91 miRNAs with sta-

tistically significant differences in expression were identi-

fied (Additional file 3), with 60 miRNAs down- and 31

up-regulated miRNAs in ADAR2 versus ADAR2 E/A cells

(Additional file 3), indicating that ADAR2 preferentially

restricts miRNA expression. This trend was also observed

when we concentrated on the most highly expressed miR-

NAs (ADAR2 plus ADAR2 E/A ≥10.000 reads): 13 out of

16 miRNAs were down-regulated and only 3 out of 16

miRNAs were up-regulated by ADAR2 (Table 2). Of note,

almost all the miRNAs significantly modulated by ADAR2

were also known to be involved in cancer development/

progression (Table 2).

miRNA expression was also analyzed in human healthy

brain and glioblastoma tissues, as glioblastoma tissues

have reduced ADAR2 activity [18-20]. We selected mature

miRNAs with (i) normalized counts greater than 200 reads

and (ii) a log2(ratio) between human brain and glioblast-

oma exceeding 0.5 (in absolute value) (Additional file 4).

We identified a total of 293 differently expressed miRNAs

between brain and glioblastoma (Additional file 4). Of

these miRNAs, 56 were among those significantly

expressed in U118 cells and modulated by ADAR2.

ADAR2 ‘corrected’ about 50% of the miRNAs (27/56)

that were deregulated in glioblastoma (shown in gray

in Additional file 4).

Comparing miRNA editing (Table 1) and expression

(Additional file 2 and Additional file 3), we observed that

relatively few miRNAs were both edited and significantly

modulated by ADAR2 (shown in bold in Table 1): miR-22,

miR-503 (Additional file 2), miR-138-1* and miR-455

(Additional file 3).

Overall, we identified four miRNAs that are both edited

and differentially expressed by ADAR2 (shown in bold in

Table 1), 14 miRNAs that are edited but not significantly

modulated by ADAR2 (Table 1) and 89 miRNAs that are

modulated (either up-regulated or down-regulated) by

ADAR2 but not edited within their mature sequence

(Additional file 3; excluding the edited miR-138-1* and

miR-455).

Table 2 miRNAs highly expressed in glioblastoma cells and modulated by ADAR2

Chr miRNA ADAR2 ADAR2 E/A siADAR2 log2(ratio) of ADAR2
versus ADAR2 E/A

log2(ratio) of siADAR2
versus ADAR2

Involvement
in cancer

Chr9 hsa-let-7d 0 18,813 13,703 −14.1995 13.7423 Yes

Chr2 hsa-miR-10b 0 11,101 559 −13.4385 9.1293 Yes

Chr7 hsa-miR-335* 5,296 14,463 5,463 −1.4492 0.0448 No

Chr5 hsa-miR-143 61,575 159,453 81,440 −1.3727 0.4034 Yes

Chr7 hsa-miR-25 29,424 58,238 35,063 −0.9849 0.2529 Yes

Chr19 hsa-let-7e 30,846 56,890 36,482 −0.8831 0.2421 Yes

Chr7 hsa-miR-29a 33,734 59,096 49,119 −0.8088 0.5421 Yes

Chr17 hsa-miR-21 919,239 1,506,954 1,384,694 −0.7131 0.1581 Yes

Chr17 hsa-miR-21* 53,970 84,276 106,392 −0.6430 0.9791 Yes

Chr3 hsa-miR-138-1* 4,460 6,714 5,063 −0.5900 0.1829 Yes

Chrx hsa-miR-222 277,271 410,972 348,219 −0.5677 0.3287 Yes

Chr19 hsa-miR-769 6,339 9,225 6,433 −0.5412 0.0212 No

Chr6 hsa-miR-30a* 9,650 13,716 13,235 −0.5072 0.4619 Yes

Chr10 hsa-miR-146b 12,692 6,639 10,948 0.9348 −0.2132 Yes

Chr2 hsa-miR-548 s 11,559 8 22 10.3269 −8.3083 No

Chr19 hsa-miR-520c 14,093 0 0 13.7828 −13.7828 Yes

Highly expressed mature miRNAs in U118 glioblastoma cells (ADAR2 plus ADAR2 E/A ≥10,000 reads).
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ADAR2 activity reduces the levels of the oncogenic

miR-221, -222 and -21 by blocking maturation of their

precursors

ADAR2 editing activity is progressively lost in astrocyto-

mas from low to high grade in children [18]. Interestingly,

we observed that the rescue of active ADAR2 in glioblast-

oma cells (U118) results in the down-regulation of a large

number of miRNAs (Additional file 3), including three im-

portant onco-miRNAs (miR-221, miR-222 and miR-21),

which play a pivotal role in cancer progression and are

found particularly over-expressed in glioblastoma [26,27].

In order to validate the deep-sequencing and micro-

array data and to explore the connection between

ADAR2 activity and miR-221, miR-222 and miR-21, we

used two glioblastoma cell lines (U118 and A172) stably

over-expressing either ADAR2 or its inactive form

ADAR2 E/A at similar levels (Figure S1 in Additional file 1

and data not shown). By using these cell lines, we con-

firmed that the active ADAR2 editing enzyme significantly

decreases the levels of mature miR-221, miR-222 and

miR-21 compared with the controls (untreated and

ADAR2 E/A cells), as tested by quantitative real-time

PCR (qRT-PCR) (Figure 1a, b) and northern blotting

analysis (Figure S2 in Additional file 1). As miRNA con-

trol, we analyzed the levels of miR-223 (Figure 1c), which

were found to be unchanged by ADAR2 as observed in

miRNA array and deep-sequencing experiments.

Conversely, silencing of ADAR2 in U118 ADAR2 cells

(Figure 2a) increased the expression levels of mature

miR-221, miR-222 and miR-21 (Figure 2b). Similar results

were also found in A172 silenced cells (data not shown).

It has been shown that ADARs can alter the structure

and the sequence of miRNA precursors, thus blocking

Drosha and Dicer activity, resulting in reduced mature

miRNAs and in concomitant accumulation of their pre-

cursors [11,28]. Therefore, we tested the precursor levels

of miR-221, miR-222 and miR-21 in the ADAR2-modified

cell lines. While the levels of mature miR-221, miR-222

and miR-21 decreased (Figure 1a, b), the corresponding

precursors (pri- or pre-miRNAs) accumulated in both

U118 and A172 cells upon ADAR2 expression (Figure 3).

Specifically, we observed that the endogenous pri-miR-

221 and pri-miR-222 levels increase in ADAR2 glioblast-

oma cells compared with both the inactive ADAR2 E/A

Figure 1 Down-regulation of selected onco-miRNAs (miR-221, miR-222 and miR-21) in glioblastoma cell lines upon ADAR2 expression.

(a) Mature miR-221, miR-222 and miR-21 expression levels are shown in untreated (ctrl, dark gray), ADAR2 over-expressed (ADAR2, medium gray)

and inactive ADAR2 over-expressed (ADAR2 E/A, light gray) U118 cell lines. Values represent the mean of at least three independent quantitative

RT-PCRs (qRT-PCRs). Error bars represent standard error of the mean (s.e.m.) (n = 3), **P < 0.01, *P < 0.05. (b) The same experiments shown in (a)

were performed in the A172 cell lines. (c) Mature miR-223 expression levels are shown in U118 (upper panel) and in A172 (lower panel) cell lines.

Mean ± s.e.m. (n = 2). All the samples were normalized to RNU6B levels. The expression levels were calculated as a relative-fold increase compared

with untreated cells (ctrl) arbitrarily set to 1.
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and the untreated cells (Figure 3a, b). In the case of miR-

21 it was the pre-miR-21 rather than the pri-miR-21 that

accumulated in the ADAR2 glioblastoma cells, as tested

by qRT-PCR (Figure 3c) and northern blotting analysis

(Figure S3 in Additional file 1).

Overall, these data demonstrate that ADAR2 deami-

nase activity results in accumulation of miR-222/221

and miR-21 precursors in two glioblastoma cell lines,

with a concomitant reduction of the corresponding

mature onco-miRNAs.

Adar2 inhibits miR-221, miR-222 and miR-21 expression

in vivo

In order to verify our observation in vivo, we took advan-

tage of RNA samples extracted from Adar2
-/- and wild-

type mouse brains. If Adar2 is important for the matur-

ation of miR-221, miR-222 and miR-21 in physiological

conditions, we would expect a substantial increase in ex-

pression of these three miRNAs in the absence of Adar2.

We examined the endogenous levels of miR-221, miR-222

and miR-21 and of their precursors by qRT-PCR and

found that their mature miRNA are indeed significantly

over-expressed in the Adar2
-/- mouse brain (+2.7-, +2.2-

and +2.7-fold, respectively) compared with the wild type

(Figure 4a). We also observed an approximately 40% de-

crease in the level of their precursors (pri-miRs) in the

absence of Adar2 (Figure 4b).

Our results indicate that the ADAR2 enzyme controls

miRNA expression, not only in cancer cells, but also in

normal mammalian brain.

ADAR2 edits the pri-miR-221, -222 and -21 precursors

In order to validate our findings in a different cell sys-

tem, we used HEK293T cells, which show very low

ADAR2 editing activity [18]. The cells were transfected

with the pri-miR-222/221 cluster or pri-miR-21, either

alone or together with the ADAR2 or ADAR2 E/A plas-

mids (Figure S4 in Additional file 1). Transcripts from

these pri-miRNA plasmids had previously been shown

to be efficiently processed by mammalian cell machiner-

ies in different cell lines [26,29]. We also confirmed

these results in HEK293T cells (data not shown). The

final amount of mature miRNAs and the corresponding

precursors were analyzed 48 h post-transfection by qRT-

Figure 2 ADAR2 silencing in U118 cell line increases miR-221, miR-222 and miR-21 expression levels. (a) Left: qRT-PCRs of ADAR2 in U118

ADAR2 (ctrl, dark gray) and the same cell line stably transfected with siADAR2 (siADAR2, medium gray) or scramble (scr, light gray) plasmids. Each

sample was normalized to GAPDH mRNA levels. Mean ± standard error of the mean (s.e.m.) (n = 3), **P < 0.01. Right: a representative immunoblot

of ADAR2 in the cell lines analyzed. (b) Mature miR-221 (left panel), miR-222 (middle panel) and miR-21 (right panel) expression levels in U118

ADAR2, siADAR2 and scramble cell lines are shown. Each sample was normalized to RNU6B levels. Mean ± s.e.m. (n = 3), **P < 0.01, *P < 0.05. The

expression levels were calculated as a relative-fold increase compared with U118 ADAR2 (ctrl) arbitrarily set to 1.
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PCR. As observed in glioblastoma cells and in mouse

brain, we found that ADAR2 (but not its inactive ver-

sion) reduces the levels of mature miR-221, miR-222

and miR-21 (endogenous plus transfected) compared

with controls in HEK293T cells (Figure 5a), with the

concomitant accumulation of their respective miRNA

precursors (Figure 5b). Of note, in this cell system and

similarly to mouse brain (Figure 4b), ADAR2 can accu-

mulate pri-miR-21 (Figure 5b), whereas only the pre-

miR-21 was affected by ADAR2 activity in glioblastoma

cells (Figure 3).

Since the inactive ADAR2 E/A did not alter the ex-

pression of these onco-miRNAs (Figures 1, 3 and 5), we

hypothesized that possible editing events may occur

within pri-miR-221, -222 and -21. To test this possibility,

we took advantage of a cell system in which ADAR2 ac-

tivity was strongly enhanced (HEK293T transiently

transfected with ADAR2; Figure S4 in Additional file 1).

RT-PCRs were designed to amplify over-expressed pri-

miR-222/221, pri-miR-21 and pri-miR-223 (the latter

was used as control) from ADAR2 or ADAR2 E/A

HEK293T cells. PCR products were analyzed using three

different methods: (i) direct sequencing of cDNA pools,

(ii) single-clone sequencing reactions (with 40 to 100 in-

dependent clones/sample) and (iii) MiSeq technology

(Illumina). Editing events were detected as A-to-G

changes in the cDNA sequences. According to the single

clone analyses, approximately 20% of each pri-miRNA

molecules carry A-to-G changes. Specifically, we found

that 28% of the pri-miR-221 clones, 18% of the pri-miR-

222 clones and 25% of the pri-miR-21 clones had A-to-G

changes.

Overall, the pri-miR-221 was edited at 12 sites, with

the most edited sites being positions -1, +1, +34, +64

and +187 (with editing levels ranging from 4% to 8%;

Figure 6a). Pri-miR-222 was found edited at nine sites:

Figure 3 Modulation of miR-221, miR-222 and miR-21 precursors in glioblastoma cell lines upon ADAR2 and ADAR2 E/A expression.

(a) Pri-miR-221, pri-miR-222 and pri-miR-21 expression levels analyzed by qRT-PCR in U118 untreated (ctrl, dark gray), U118 over-expressing ADAR2

(ADAR2, medium gray) and U118 over-expressing ADAR2 E/A (ADAR2 E/A, light gray) cell lines. Each sample was normalized to GAPDH mRNA

levels. Mean ± standard error of the mean (s.e.m.) (n = 3), **P < 0.01. (b) The same set of experiments in (a) was performed in the A172 cell line.

(c) Pre-miR-21 expression levels in U118 (upper panel) and A172 (bottom panel) cell lines were analyzed by qRT-PCR. For the pre-miRs assay each

sample was normalized to RNU6B levels. Mean ± s.e.m. (n = 3), **P < 0.01, *P < 0.05. The expression levels were calculated as a relative-fold increase

compared with untreated cells (ctrl) arbitrarily set to 1.
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the most edited positions were -4 and +53, which were

20% and 9% edited, respectively (Figure 6b). Pri-miR-21

was edited at eight different positions (all located within

the pre-miR sequence), with positions +16, +46 and +51

being edited between 9% and 15% (Figure 6c). The A-to-

G substitutions we observed are due to ADAR2 activity,

and not to RT/sequencing errors/artifacts, as no substi-

tutions were observed in the control ADAR2 E/A cell

line (single clone analysis and MiSeq; Figure 6). As a fur-

ther control, we co-transfected the pri-miR-223 and the

ADAR2 plasmids in HEK293T cells in order to test

whether ADAR2 can edit any dsRNA structure of

miRNA precursors in our over-expressing conditions.

No A-to-G changes were found within pri-miR-223

sequences (as tested by single-clone analysis with ap-

proximately 70 screened clones, data not shown). Fluctua-

tions in editing percentages detected by different methods

are mainly due to their different accuracy/sensitivity, as

the sequences analyzed ranged from just a few (cDNA

pool), to dozens (single clones), to thousands (MiSeq).

We also investigated editing events in these three pri-

miRNAs (pri-miR-222/221 and -21) in vivo, using total

RNA isolated from human brain tissue (single individual

or commercial RNA pools) with similar sequencing

technologies. Among the A-to-G changes identified in

the over-expressing HEK293T system, some were also

found in the human adult and pediatric brain samples.

Specifically, A-to-G changes were found within pri-miR-

221 (sites -15, +39 and +41), pri-miR-222 (sites -21 and

+70) and pri-miR-21 (sites +12 and +41) (Figure 6, adeno-

sines marked with red circles). All these positions showed

extremely low percentages of A-to-G changes, ranging

from 1.5 to 3% in the different RNA brain samples, with

the only exception being site -21 within pri-miR-222,

which was highly edited in different human samples: ap-

proximately 20% in adult brain (Clontech), approximately

15% in the adult brain pool (Ambion) and approximately

4% in pediatric brain.

None of the A-to-G changes identified in this study

have been reported as single nucleotide polymor-

phisms [30,31].

Edited miRNA precursors can undergo rapid degrad-

ation due to the action of specific inosine-dependent

ribonucleases, such as Tudor-SN [12,32], and the 2′-

deoxythimidine 3′,5′-bisphosphate (pdTp) can inhibit

Tudor-SN activity [12]. In order to see if Tudor-SN

could degrade our substrates, we examined the pri-

miR-221, -222 and -21 sequences (cDNA pools) from

Figure 4 Altered expression of mature and primary miR-221, -222 and -21 in wild-type and Adar2
-/- mouse brain tissue. (a) Mature

miR-221 (left panel), miR-222 (middle panel) and miR-21 (right panel) expression levels were analyzed using specific qRT-PCRs in wild-type

(WT, dark gray) and Adar2
-/- (medium gray) mouse brain tissue. (b) Primary miR-221 (left panel), pri-miR-222 (middle panel) and pri-miR-21

(right panel) expression levels were measured using specific qRT-PCRs in the same samples. Mature miRNAs were normalized to RNU6B and

pri-miRNAs were normalized to β-actin levels. The expression levels were calculated as a relative-fold increase compared with the wild-type

samples arbitrarily set to 1. Mean ± standard error of the mean (n = 3), **P < 0.01, *P < 0.05.
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ADAR2 HEK293T cells treated with the pdTp inhibitor

as previously described [12]. We did not observe any

increase in RNA editing levels compared with the con-

trol cells in these conditions (data not shown).

Overall, our data demonstrate that ADAR2 is able to

edit the pri-miR-222/221 and the pri-miR-21 transcripts

both in vivo and in cell lines. In order to verify whether

the editing events detected in these three pri-miRs might

have an effect on their maturation, we substituted gua-

nosines (by site-specific mutagenesis) within these pri-

miR-plasmids at the sites with the highest editing levels

as detected by MiSeq analysis (for pri-miR-221: -1, +1,

+64; for pri-miR-222: -21, -4, +53; for pri-miR-21: +16,

+46, +51) (adenosines marked with circles in Figure 7).

The mutagenized and wild-type plasmids were then

transfected into HeLa cells. We switched to the HeLa

cells as they have an extremely low endogenous level of

the mature miR-221, -222 and -21. This thus enabled us

to quantify exogenous miRNA expression changes reli-

ably without background noise. We transfected HeLa

cells with the wild-type or the edited versions (at single

or multiple sites) of each pri-miRNA plasmid and we

monitored the expression levels of mature miRNAs as

well as miRNAs*. We observed a significant reduction

of miR-221 and -222 levels when we used the edited

pri-miRNAs versus the unedited ones (Figure 7a, b).

Specifically, A-to-G mutagenesis at all the three pri-

miR-221 editing sites (-1, +1, +64) strongly inhibited

miRNA maturation, with the -1 and +1 sites strongly

influencing the maturation process, whereas the +64

site was involved to a lesser extent (Figure 7a). Simi-

larly, the A-to-G mutations of the pri-miR-222 at the

-21 and +53 sites play a major role in inhibiting miR-

222 maturation, while that at the -4 site does not

(Figure 7b). To further confirm that the reduction in

mature miR-221 and -222 levels detected after trans-

fection of the edited pri-miRNA plasmids was due to

alterations in their processing, we also analyzed the

levels of miR-221* and miR-222*, finding similar re-

sults (Figure 7a, b).

Surprisingly, no effect was observed when the edited

pri-miR-21 plasmid was used (Figure 7c), demonstrating

that mutagenesis at these three selected edited sites did

not affect miR-21 processing.

Figure 5 Modulation of miR-221, miR-222 and miR-21 and their precursors in HEK293T cell lines upon ADAR2 and ADAR2 E/A expression.

(a) Expression levels, using qRT-PCR, of mature miR-221 (left panel), miR-222 (middle panel) and miR-21 (right panel) in HEK293T cells transiently

co-transfected with either pri-miR-222/221 or pri-miR-21 plasmids and with ADAR2 or ADAR2 E/A. (b) In the same cells, the pri-miR-221

(left panel), pri-miR-222 (middle panel) and pri-miR-21 (right panel) expression levels measured by qRT-PCR are shown. Mature miRNAs and

pri-miRNAs were normalized using RNU6B and GAPDH, respectively. The expression levels were calculated as a relative-fold increase compared

with the sample transfected with the pri-miR-222/221 or pri-miR-21 plasmid arbitrarily set to 1. Mean ± standard error of the mean (n = 3),

**P < 0.01, *P < 0.05.
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ADAR2 decreases proliferation and migration of

glioblastoma cells by inhibiting miR-221, miR-222 and

miR-21 maturation

We have previously shown that editing activity mediated

by ADAR2 in glioblastoma cells decreases cell prolifera-

tion and migration both in vitro and in vivo, while glio-

blastoma cells transfected with the inactive ADAR2 E/A

enzyme retain malignant features similar to the un-

treated cells [18,21]. In order to test whether the de-

crease in miR-221, -222 and -21 levels mediated by

ADAR2 reduces cell aggressivity, we over-expressed

miR-221, -222 or -21 in ADAR2 glioblastoma cells and

evaluated their effects on cell proliferation and migra-

tion, generally affected by these three miRNAs. We tran-

siently transfected an equal amount (100 nM) of scramble

or miR-221- plus miR-222-mimic in U118 ADAR2 cells

(Figures S5a in Additional file 1). We monitored cell pro-

liferation of the untransfected and transfected U118

cells over four days, observing that while the presence

of ADAR2 alone inhibited cell proliferation compared

with the untreated cells, the combination of the two

miRNAs considerably increased cell proliferation (at 48 to

72 h post-transfection; Figure 8a). Next, we assessed

the protein expression levels of a well-known target of

miR-221 and -222, p27Kip1 [33]. This protein is down-

expressed in glioblastomas and plays a pivotal role at

the G1/S cell cycle checkpoint [34]. As expected, the

level of p27Kip1 decreased upon miRNA-mimic transfection

compared with U118 ADAR2 scramble or U118 ADAR2

cells (Figure 8b). Similar results were also observed in

another glioblastoma cell line (A172) (Figures S5c and

S6a,b in Additional file 1).

Of note, the U118 ADAR2 E/A cells (which have a

high level of both miR-221 and miR-222 and a high pro-

liferative rate) did not show cell proliferation increases

comparable to that observed in the ADAR2 cells when

Figure 6 ADAR2-mediated editing events within pri-miR-221, pri-miR-222 and pri-miR-21 in HEK293T cells. (a-c) Left: editing sites and

percentages of the pri-miR-221 (a), pri-miR-222 (b) and pri-miR-21 (c) are shown. Right: stem-loop structures of each precursor with the edited

sites indicated by red and gray circles (the site +187 of pri-miR-221 is not shown in the structure). Adenosines found edited in both ADAR2

HEK293T cells and human brain samples are indicated by red circles. Of note, the site -21 within pri-miR-222 was found highly edited in different

human samples, with values increasing from children (4%) to adult (approximately 20%) brain.
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they were transfected with miR-221- plus miR-222-mimic

(Figures S7 in Additional file 1). This effect is probably

due to the high levels of these miRNAs in highly malignant

glioblastoma cells [35] that are thus not ‘corrected/

decreased’ by the ADAR2 activity. These data indicate

that the reduction of miR-221 and -222 levels medi-

ated by ADAR2 editing activity contributes signifi-

cantly to the inhibition of glioblastoma proliferation.

miR-21 is involved in cell proliferation and cell migra-

tion [36]. Among the validated miR-21 target genes,

PDCD4 plays an important role in cancer cell migration

[37]. In our previous study, we showed that ADAR2 in-

hibits glioblastoma cell migration [18]. Here, we demon-

strate that the expression of ADAR2 in glioblastoma

cells can significantly down-modulate miR-21 and up-

regulate PDCD4 protein levels in the U118 (Figure 8c)

and A172 (Figures S6c in Additional file 1) cell lines. To

evaluate whether miR-21 transfection can abolish the

inhibition of cell migration caused by ADAR2, we over-

expressed either miR-21-mimic or scramble (100 nM) in

U118 and A172 ADAR2 cells (Figures S5b, d in Additional

file 1). We monitored cell migration by wound healing

Figure 7 miRNA maturation of the wild-type and the edited versions of pri-miR-221, pri-miR-222 and pri-miR-21. (a) Left: the pri-miR-221

sequence structure, indicating the mutagenized/edited positions. Right: the mature miR-221 and -221* levels were measured by qRT-PCR in

untreated HeLa cells (untr, black) and in HeLa cells transfected with wild-type pri-miR-221 (221 WT, dark gray), fully edited pri-miR-221 (221 ED,

light gray) or pri-miR-221 edited at specific sites (221 ED +64; 221 ED -1,+1). (b) Left: the pri-miR-222 sequence structure, indicating the mutagenized/edited

positions. Right: the mature miR-222 and -222* levels were measured by qRT-PCR in untreated HeLa cells (untr, black) and in HeLa cells transfected with

wild-type pri-miR-222 (222 WT, dark gray), fully edited pri-miR-222 (222 ED, light gray) or pri-miR-222 edited at specific sites (222 ED +53; 222 ED -4; 222

ED -21; 222 ED -4,-21). (c) Left: the pri-miR-21 sequence structure, indicating the mutagenized/edited positions. Right: the mature miR-21 levels were

measured by qRT-PCR in untreated HeLa cells (untr, black) and in HeLa cells transfected with wild-type pri-miR-21 (21 WT, dark gray) or edited

pri-miR-21 (at sites +16, +46, +51) (21 ED, light gray). Mature miRNAs were normalized using RNU6B. The expression levels were calculated as a

relative-fold increase compared with the untreated cells and arbitrarily set to 1. Mean ± standard error of the mean (n = 3), **P < 0.01, *P < 0.05

when each sample is compared with the corresponding wild-type pri-miR.
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assay over 24 h, a time interval in which the cells do not

divide (data not shown). We observed that cell migration

increases in both U118 (Figure 8d) and A172 (Figures S6

in Additional file 1d) cell lines upon miR-21 over-

expression. Altogether, these data indicate that ADAR2

exerts its anti-proliferative and anti-migratory activity in

glioblastoma also through the modulation of miR-221,

miR-222 and miR-21.

Discussion
It is becoming clear that a large number of RNA-

binding proteins join forces to create an additional layer

of complexity in miRNA maturation and function. It is

thus critical that we gain a better understanding of the

mechanisms by which they control miRNAs and affect

normal physiology and disease [38].

Herein, we show that ADAR2, an essential RNA-

binding protein that converts A-to-I in dsRNAs, plays a

critical role in controlling miRNA expression levels and

determining their final sequence. By analyzing normal

brain and glioblastoma tissues as well as ADAR2-

modified glioblastoma cells, we found that: 1) selected

miRNAs undergo ADAR2-mediated editing in normal

brain, some of which is within the seed sequence; 2)

editing within miRNAs is decreased (or lost) in glioblast-

oma, where ADAR2 activity is impaired, compared with

normal brain; 3) glioblastomas have altered miRNA

expression profiles when compared with normal brain;

4) the rescue of ADAR2 activity in glioblastoma cells

restores the edited miRNA population and tends to re-

balance the miRNA expression profile (onco-miRNAs

versus tumor suppressor miRNAs) towards a state re-

sembling normal brain tissue; 5) the most striking effect

of ADAR2 rescue in glioblastoma cells is a general de-

crease in the levels of several onco-miRNAs (such as

miR-221, -222, -21); 6) ADAR2 can edit miR-222/221

and miR-21 precursors and decrease the expression of

the corresponding mature miRNAs both in vivo (mouse

brain) and in human glioblastoma cells, and this has sig-

nificant effects on cell proliferation and migration.

In our previous study, we demonstrated that ADAR2

activity is progressively lost during the progression of as-

trocytoma malignancy grade in children (from grade I to

grade IV) and that this contributes to cancer progression

Figure 8 The ADAR2-mediated anti-tumoral effect is reversed by miR-221, miR-222 and miR-21 expression. (a) U118 cells (8 × 104;

untreated, dark gray), U118 ADAR2 cells (ADAR2, medium gray), and U118 ADAR2 cells transiently transfected with either scramble mimic

(ADAR2 + scr, light gray) or with a mix of miR-221- and miR-222-mimic (ADAR2 +miR-221/222, red) were seeded and proliferation was monitored over

3 days. U118 untransfected cells (untreated, dark gray) were used as control. Error bars indicate standard deviations of four independent experiments.

Mean ± standard deviation (n = 4), **P < 0.01 when ADAR2 plus miR-221/222 cells (red) are compared with the ADAR2 (dark gray) and ADAR2 plus

scramble (light gray). (b) Protein lysates were extracted from the cells shown in (a) and analyzed by immunoblotting for p27Kip1, a target of miR-221

and miR-222. (c) PDCD4 protein analysis after immunoblotting of total protein extracts from U118 ADAR2 and ADAR2 E/A cell lines and the corresponding

quantitative densitometric analysis are shown. Each sample was normalized to GAPDH and compared with the ADAR2 E/A cells arbitrarily set to 1. A

representative sample of two independent experiments is shown. (d) Representative photographs of U118 ADAR2 cells transfected with scramble

mimic (scr) and miR-21-mimic (miR-21) at 0, 15 and 21 h after scratching the surface of monolayers cells. Only the U118 ADAR2 plus miR-21 cells show

an increase in motility when compared with the control cells (scr). The wound healing assay was performed in a time interval in which the cells do

not divide (data not shown).
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[18]. Here, we show that ADAR2 activity is fundamental

for miRNA homeostasis and we identify ADAR2 as an

important factor for miRNA expression and function in

both normal and cancer cells.

The most important information that comes from

ADAR2 rescue in glioblastoma cells is that this enzyme

can modulate the expression of a large number of miR-

NAs. The general tendency observed is that ADAR2

limits the expression of many miRNAs and most espe-

cially of onco-miRs. This finding is intriguing, as ADAR2

may thus have the opposite effect to the other RNA edit-

ing enzyme, ADAR1, which has recently been shown to

enhance miRNA processing [14].

Among the onco-miRNAs down-expressed by ADAR2,

we focused on miR-221, miR-222 and miR-21. These

miRNAs are often over-expressed in tumors, including

glioblastoma [6]. We show that ADAR2 activity inhibits

miR-221, -222 and -21 maturation and causes accumula-

tion of their precursors in different cell lines (including

glioblastoma cells) and in normal mouse brain. Consist

with this, we found a significant increase of miR-221,

-222 and -21 levels in Adar2
-/- mouse brain, with a con-

comitant decrease of the corresponding precursors. Edit-

ing of miRNA precursors may impair the production of

mature miRNAs [11]. Considering that the inactive

ADAR2 E/A did not alter miRNA expression (miR-221,

-222 and -21), we tested whether editing events may

occur within their pri-miRNAs. Using an over-

expressing cell system (HEK293T), we identified mul-

tiple editing sites (with editing levels ranging from 2% to

20%) within the stem-loop structure of pri-miR-222/221

and pri-miR-21, but not within the control pri-miR-223.

The integrity of the dsRNA stem structure of miRNA

precursors is essential for their maturation [2]. Most of

the identified A-to-I editing events replace an A-U or U-

A Watson-Crick pair with a less stable I∙U or U∙I wobble

pair, leading to changes in the stem structure and/or sta-

bility. Investigating the miRNA maturation process of

wild-type and the edited versions of pri-miR-222/221,

we found that editing at the chosen positions did indeed

affect miRNA processing, since both miRNA and miRNA*

expression levels were impaired. Conversely, the mutagen-

ized/edited pri-miR-21 (carrying three A-to-G changes)

was processed normally, indicating that the selected sites

were not involved in miR-21 maturation, at least in our

system. Previous studies reported that not all the editing

events in pri-miRNA affect Drosha cleavage [12]. Indeed,

we show that only specific editing events (or combinations of

events) within miRNA precursors affect miRNA maturation.

We have to underline that ADAR2 can edit multiple

substrates in vivo; therefore, we cannot exclude the pos-

sibility that ADAR2 may control miRNA expression not

only by editing miRNA precursors directly but also by

editing other RNAs involved in miRNA maturation.

Some of the editing sites within pri-miR-222/221 and

pri-miR-21 identified in the ADAR2 HEK293T cells were

also detected in normal human brain, even if at low per-

centages compared with the cell system. Only site -21

within pri-miR-222 was found to be highly edited in dif-

ferent human brain samples, with editing increasing

from child (4%) to adult (approximately 20%) brain.

Interestingly, this editing position alone (which is located

in the lower stem of pri-miR-222 in the extension of the

pre-miRNA structure [39] and distant from the Drosha

cleavage site) is able to hamper miR-222 maturation by

more than 50% (Figure 7b). Also of note, miR-222 de-

creases its expression during porcine brain development

from embryonic to adult cortex [40]. Overall, our find-

ings indicate a connection between ADAR2-mediated

editing of miR-222 and brain development.

The generally low editing frequencies observed within

the three precursors in this study in vivo could be due to

the action of inosine-dependent nucleases, such as Tudor-

SN, that can degrade edited miRNA precursors [12,32].

However, the inhibition of Tudor-SN by pdTp did not in-

crease editing levels in our cell system (HEK293T), in con-

trast to previous reports on other miRNA precursors in

HEK293T cells [12]. However, a recent study demon-

strated the existence of a novel inosine-dependent nucle-

ase [41]; therefore, we cannot exclude the possibility that

different inosine-dependent nucleases may play a role in

the fate of specific edited miRNA precursors in vivo, such

as the ones identified in this study.

We previously showed that ADAR2 rescue in glioblast-

oma cells has important anti-tumoral effects, such as the

inhibition of cell proliferation and migration [18,21]. It is

conceivable that ADAR2 also exerts its anti-tumoral ef-

fects through miRNA modulation, such as of miR-221,

miR-222 and miR-21. In order to explore this possibility,

we reintroduced miR-221 and miR-222 into ADAR2-

modified glioblastoma cells (U118 and A172) and ana-

lyzed cell proliferation. The over-expression of miR-221

plus miR-222 caused a significant boost in cell prolifera-

tion and abolished the anti-tumoral effect of ADAR2.

These data indicate that miR-221 and miR-222 are im-

portant mediators of the effects of ADAR2, through

which this enzyme plays its anti-proliferative role in glio-

blastoma cells. In our previous study, we identified the

CDC14B transcript as an essential ADAR2 target gene,

acting over the Skp2/p21/p27 pathway, whose editing

slows down cell proliferation [21]. Here, we found that

two miRNAs (miR-221 and miR-222) that act in the

same molecular pathway (through p27Kip1) are also

modulated by ADAR2 activity, indicating that this path-

way is particularly sensitive to epigenetic mechanisms

such as RNA editing (Figure 9).

We also previously showed that ADAR2 plays an im-

portant role in inhibiting glioblastoma cell migration
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[18]. Here, we demonstrate that ADAR2 strongly down-

modulates miR-21 and up-regulates PDCD4 protein

(PDCD4 is a validated miR-21 target gene [37]) and that

this has important consequences in inhibiting glioblastoma

cell migration (Figure 8c,d and S6c,d in Additional file 1).

Our data add an important piece of information re-

garding miRNome fluctuation due to ADAR2 in glio-

blastomas, indicating ADAR2 as an important player in

gliomas. Indeed, ADAR2-mediated RNA editing is

strongly dysregulated in glioblastoma cell lines (derived

from adult de novo glioblastoma [42]), in pediatric

[18,21,43] as well as adult gliomas [19,20]. However,

adult and pediatric gliomas are very different tumors at

both the genomic and epigenomic level. For example,

differences in cell methylomes were observed between

pediatric and adult gliomas [44]. In this respect, muta-

tions in the isocitrate dehydrogenase (IDH) 1 and 2

genes, which are able to alter the methylome [45], were

observed in adult and secondary glioblastomas [46], but

not in pediatric or de novo glioblastomas [45]. In order

to see if specific ADAR2 genetic alterations occurred in

gliomas, we analyzed the ADAR2 gene (21q22.3), inter-

rogating different available datasets [47-49]. We did not

identify any somatic aberrations in ADAR2; therefore, it

is more likely that epigenetic/post-transcription events

are responsible for its inactivation during gliomagenesis.

Future studies, including a comprehensive analysis of

molecular pathways and of ADAR2-mediated RNA edit-

ing profiles, should further provide important informa-

tion about changes in genetic, epigenetic and post-

transcriptional mechanisms among different groups of

gliomas.

Conclusions
We propose ADAR2 as a ‘radar’ enzyme that maintains

a degree of editing in the miRNA population and balances

miRNA expression, maintaining them at physiological,

that is, safe, levels. Whenever ADAR2 is impaired (that is,

in glioblastoma), miRNA homeostasis is altered and this

may contribute to cancer progression (Figure 10). In sum-

mary, our findings identify ADAR2 as a promising target

for an innovative anti-tumoral strategy, since ADAR2

alone can simultaneously modulate more than one

miRNA and cellular pathway altered in cancer cells.

Future studies on dissecting the causes of ADAR2 de-

regulation will be aimed at the identification of com-

pounds that can adjust ADAR2 expression/activity in

glioblastoma and provide a potential anti-cancer therapy.

Materials and methods
Cell lines

Well-characterized permanent human glioblastoma cell

lines U118 MG (HTB-15™) and A172 (CRL-1620™), derived

from adult patients with malignant de novo glioblastoma

[42], were obtained from American Type Culture Collec-

tion (ATCC). Human embryonic kidney 293 T (HEK293T,

CRL-1573™) and human cervical cancer (HeLa, CCL2™)

cells were obtained from ATCC. All the cell lines were

Figure 9 Cartoon summarizing the role played by ADAR2

over p27Kip1.

Figure 10 Cartoon summarizing the role played by ADAR2 in cancer versus normal cells/tissues. ADAR2 editing activity rebalances miRNA

expression and recovers the edited miRNA population. Dark blue dots represent editing events present in normal brain but absent

in glioblastoma.
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routinely maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal bovine

serum (Gibco-Life Technologies, Carlsbad, CA, USA),

100 U/ml penicillin and 100 μg/ml streptomycin, at

37°C in 5% CO2. U118 and A172 cell lines stably over-

expressing the active EGFP-ADAR2 or the inactive

EGFP-ADAR2 E/A enzyme were generated as previ-

ously reported [18,21]. The U118 ADAR2 cell line sta-

bly silenced for ADAR2 (siADAR2) and the scramble

were generated as previously described [21]. All the

stable cell lines used in this study were polyclonal to

avoid problems due to positional insertion effects.

Human and mouse brain tissues/RNAs

Brain tissues from homozygous Adar2 knockout and

control mice were kindly supplied by Dr Michael

Jantsch. Mouse tissues were obtained in accordance with

the local (Austria) research ethics regulations. We used

total RNA of human adult brains from a pool of 23 indi-

viduals (AM6050, Ambion-Life Technologies, Carlsbad,

CA, USA) and from an 18-year-old single donor (636530,

Clontech, Mountain View, CA, USA). Furthermore, we

used normal human brain tissue obtained from a pediatric

donor (undergoing focal brain resection for head injury

sequelae) and a de novo glioblastoma (grade IV astrocy-

toma) tissue. The study was revised and approved by the

local institutional review board (study number 571/2012)

of Bambino Gesù Children’s Hospital of Rome. Informed

consent from patients was obtained for the use of bio-

logical samples for research purposes.

RNA isolation

The small (up to 200 nucleotide) and total RNA frac-

tions were isolated using miRVana™ miRNA Isolation Kit

(Ambion-Life Technologies) and TRIzol reagent (Invi-

trogen-Life Technologies, Carlsbad, CA, USA), respect-

ively. Both procedures were performed according to the

manufacturer’s recommendations. RNA concentration

and purity (A260/A280nm ratio) were evaluated using

NanoDrop ND-2000 (Thermo Scientific, Walthman,

MA, USA). RNA quality was assessed by gel electrophor-

esis or by an Agilent 2100 Bioanalyzer microfluidics-based

platform (Agilent Technologies, Santa Clara, CA, USA)

with two chips: Agilent RNA 6000 Nano Kit for total

RNA and Agilent Small RNA kit for low molecular weight

RNA. RNA samples were DNase treated (Ambion-Life

Technologies).

miRNA microarray

Microarray experiments were performed using a miR-

CURY™ LNA microRNA Array Power Labeling Kit

(Exiqon, Vedbaek, Denmark). Total RNA from U118,

U118 ADAR2 and U118 ADAR2 E/A were labeled with

specific fluorescent dyes (Hy3 and Hy5), following

Exiqon’s protocol. Fluorochrome-labeled RNA samples

were then combined, denatured and hybridized on home-

made slides, containing LNA-modified microRNA capture

probes targeting all human miRNAs listed in miRBASE

v.8.1 [50]. The hybridization was performed according to

the miRCURY™ LNA array manual using hybridization

chambers (Agilent Technologies), for 16 h at 56°C. A

ScanArray Lite Microarray Scanner (Packard Bioscience

Company, Arvada, CO, USA was used to acquire images

and the software GenePix Pro 6.0 was used to quantify

hybridization signals. Microarray images were processed

and analyzed using Genepix Pro 6.0, Excel and TIGR

Multiexperiment Viewer v.4.0. Data were normalized

using different endogenous controls present in the LNA-

modified spotted library. The Hy3/Hy5 ratios of ADAR2

versus ADAR2 E/A were log2-transformed and data from

three independent experiments were averaged. To identify

the miRNAs with a statistically significant difference of

expression, we used the Benjamini-Hochberg multiple-

testing correction for the t-test results. We adopted a FDR

cutoff of 0.2 (FDR ≤ 0.2) that ensures a global statistical

accuracy of 80%. We selected only miRNAs with a log2

(ratio) above +0.5 or below -0.5.

miRNA deep-sequencing: editing and expression profiling

miRNA capture and library construction were conducted

using Illumina’s TruSeq Small RNA Sample Prep Kit ac-

cording to the manufacturer’s protocol (Illumina, San

Diego, CA, USA). The mature miRNA libraries were

sequenced with barcodes on one lane of an Illumina

HiSeq2000 instrument following the manufacturer’s

protocol. The total number of reads was 16.8 million,

35.6 million, 21.6 million and 36.5 million for the U118

untreated, ADAR2, ADAR2 E/A and siADAR2 cell lines,

respectively, and 10 million, 40 million and 124 million

for the Ambion pool of adult brains, frontal lobe sample

and glioblastoma sample, respectively. All reads were fil-

tered such that the quality of each read will not be below

a given threshold value (chosen to be 20) in more than

three positions. In addition, sequences identified as 5′ or

3′ adaptors were removed. After adaptor trimming,

reads longer (>28 bases) or shorter (<15 bases) than the

typical length of a mature miRNA were also removed.

Editing events were identified as previously described

[23]. Briefly, considering that the 3′ end of mature reads

undergoes extensive modifications [51], the last two

bases of the read were trimmed [52]. The filtered and

trimmed reads were aligned using Bowtie [53] against

the human genome (UCSC hg19/GRCh37) allowing up

to one mismatch with quality score (phred score) of 30

and above. The total number of reads aligned to known

miRNAs (miRBase, release 17) [54] was 4.3 million, 6.7

million, 6.6 million and 6.3 million for U118 untreated,

ADAR2, ADAR2 E/A and siADAR2 cells, respectively,
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and 1.4 million, 3.2 million and 1.1 million for Ambion’s

pool of adult brains, frontal lobe sample and glioblast-

oma sample, respectively. All the locations in each ma-

ture or miRNA* were screened for mismatches that

were overrepresented considering the expected sequen-

cing error rate of 0.1% (as only mismatches with phred

score of 30 were allowed). This was done by applying

the binomial cumulative distribution on the counts of

each sequenced nucleotide. All the miRNA expression

profiles were normalized and statistically significant differ-

ences between the profiles were identified as described

previously [25]. Briefly, the expression profiles were nor-

malized using a variation of the trimmed mean of M-

values normalization method [25,55]. Then, we looked for

expression differences that cannot be explained by the ex-

pected Poisson noise with P-value <0.05 and Bonferroni

correction for multiple testing. Fold-changes between

counts of sample A and B were calculated using the for-

mula log2[(A + 1)/(B + 1)], in order to avoid problems as-

sociated with zero values.

Quantitative real-time-PCR

qRT-PCRs were performed to validate the expression of

specific mature miRNAs, using pre-designed stem-loop

primers (TaqMan MicroRNA Assay, Applied Biosystems-

Life Technologies). cDNA was synthesized from 10 ng of

total RNA using TaqMan MiR Reverse Transcriptase Kit

(Applied Biosystems-Life Technologies) according to the

manufacturer’s instructions.

For pri-miRNA and mRNA, 1 μg of total RNA (pre-

treated with DNase I) was used to generate cDNA by

the ImProm-II Reverse Transcription System (Promega,

Madison, WI, USA) using random hexamer primers ac-

cording to the manufacturer’s instructions.

Custom stem-loop primers were designed for the detec-

tion of pre-miRNAs (Applied Biosystems-Life Technolo-

gies). A pre-amplification step was introduced for the

detection of pre-miRNAs to increase the sensitivity of the

following real-time PCR analysis [56]. Briefly, the pre-

amplification reaction was carried out using Taqman Pre-

Amp Master Mix (Applied Biosystems-Life Technologies)

and the following cycling conditions: 95°C for 10 minutes,

14 cycles of 95°C for 15 s and 60°C for 4 minutes, followed

by a hold at 4°C. qRT-PCRs were conducted on an ABI

PRISM 7700 Sequence Detection System (Applied

Biosystems-Life Technologies) using TaqMan Univer-

sal PCR MasterMix. The small endogenous nuclear

RNA U6 (RNU6B) and GAPDH were used as controls

for normalization of mature miRNAs/pre-miRNAs and

mRNAs/pri-miRNAs, respectively. The relative amount of

each substrate was calculated by the 2-ΔΔCT method [57].

Expression levels were represented as a relative-fold in-

crease compared with the control sample arbitrarily set

to 1. All qRT-PCRs were performed in duplicates and

repeated at least two times from independent RT-PCRs.

All the primers were supplied by Applied Biosystems:

miR-221, ID 000524; miR-221*, ID 002096; miR-222, ID

002276; miR-222*, ID 000525; miR-21, ID 000397;

miR-223, ID 002295; RNU6B, ID 001093; pri-miR-221,

ID Hs03303007_pri and Mm03307181_pri; pri-miR-222,

ID Hs03303011_pri and Mm03307187_pri; pri-miR-21,

ID Hs03302625_pri and Mm03306822_pri; ADAR2, ID

Hs00953730_m1; GAPDH, ID Hs99999905_m1; Actb,

ID Mm00607939_s1.

RNA editing analysis by Sanger sequencing

For the editing analysis, RNA samples were pretreated

with DNase I and cDNAs were generated with Superscript

II Reverse Transcriptase (Invitrogen-Life Technologies)

using random hexamer primers or transcript-specific oli-

gonucleotides, according to the manufacturer’s instruc-

tions. The cDNAs were amplified by PCR reactions using

Expand high fidelity Plus PCR System (Roche, Basel,

Switzerland) and specific primers. The specific PCR

products were gel purified (Qiaquick, Qiagen, Venlo,

Limburgo, Netherlands), directly sequenced or cloned

into pGEM T-easy vector (Promega) and transformed

into Escherichia coli.

Direct sequencing (ABI 3500 Genetic Analyzer, Applied

Biosystems-Life Technologies) was performed on cDNA

pools and editing levels were calculated as previously de-

scribed [18,58]. Briefly, editing was quantified dividing the

area under the curve (AUC) of the G peak by the sum of

the AUC of A and G peaks of the analyzed site. For single

clone analysis, approximately 40 to 100 individual cDNA

clones were sequenced for each sample using T7 or Sp6

primers and A-to-G changes in the individual clones were

analyzed. All primer sequences used for these studies are

available on request.

RNA editing analysis by MiSeq technology

The specific PCR products of pri-miR-221, pri-miR-222

and pri-miR-21 from different samples were gel purified,

quantified and used in equimolar amounts. Dual-indexed

paired-end libraries for subsequent cluster generation

and DNA sequencing of amplicon pools were prepared

using Illumina Nextera®XT DNA Sample Preparation

Kit (Illumina), as recommended in the manufacturer’s

instructions. MiSeq sequencing of the sample libraries

was performed using the MiSeq Reagent Nano Kit v2

(300 cycles) and analysis of the reads produced was per-

formed by IGV (Integrative Genomics Viewer) software [59].

Northern blot

For northern blot analysis of miRNAs, 20 μg of total

RNA was separated on 10% denaturing polyacrylamide

gels, electroblotted onto Immobilon Nylon+ membrane

(Millipore Corp., Billerica, MA, USA) and UV-crosslinked.
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The specific probes were end-labeled using T4 poly-

nucleotide kinase and [γ-32P] ATP. Oligonucleotide

probes, corresponding to the antisense miRNA se-

quences used, were: miR-221 probe, 5′-gaaacccagcaga-

caatgtagc-3′; miR-222 probe, 5′-gagacccagtagccagat-3′;

miR-21 probe, 5′-tcaacatgagtctgataagcta-3′; and U6 probe,

5′-cacgaatttgcgtgtcatccttgcgcaggggcc-3′. Hybridization

was done at 37°C in 0.1% SDS, 5X Denhardt’s and 6X

SSPE overnight and membranes were washed at 42°C

with 6X SSPE. Membranes were stripped by boiling in

0.1% SDS and rehybridized. U6 RNA was used as control.

Immunoblotting

Total protein extracts were isolated with RIPA lysis buffer

in the presence of a protease inhibitor mixture and

phosphatase inhibitor cocktail (Sigma-Aldrich, St. Luis,

MO, USA). Protein extracts were quantified with a BCA

Protein Assay Kit (Pierce Biotechnology, Rockford, IL,

USA). Equal amounts of total cellular lysates (30 μg)

were separated by SDS-PAGE, transferred on nitrocellu-

lose membrane, analyzed by immunoblotting with the

appropriate antibodies and then revealed by ECL (en-

hanced chemiluminescence) (GE Healthcare, Bucking-

hamshire, UK). The antibodies used in this study were:

anti-p27 (1:500; Cell Signaling, Danvers, MA, USA),

anti-PDCD4 (1:1,000; Origene Technologies, Rockville,

MD, USA), anti-ADAR2 (1:200; Sigma), anti-β-actin

(1:5,000; Santa Cruz Biotechnology, Santa Cruz, CA,

USA) and anti-GAPDH (1:5,000; Cell Signaling). The

protein-specific signals were quantified by densitomet-

ric analysis using ImageJ v1.47 software.

Plasmid constructs and cell transfection

The pri-miR-222/221 cluster sequence was amplified by

PCR from genomic human DNA using the following

primers: miR-222/221 sense, 5′-cgcagatcttttcttccacag

agcccctcc-3′; miR-222/221 antisense, 5′-gctcgaggcgg

tcctttctctgcactct-3′. The correct sequences of amplified

products were verified by sequencing and cloned into

the BamHI-XhoI sites of pCDNA(+)3.1 vector. The

pCMV-miR-21 vector was obtained from Origene Tech-

nologies. The plasmid containing the pri-miR-223 se-

quence was kindly provided by Dr Alessandro Fatica

(Sapienza University, Rome). EGFP-ADAR2 and EGFP-

ADAR2 E/A constructs were generated as previously

described [18].

HEK293T cells seeded into a six-well plate were tran-

siently co-transfected at 80% confluence using Lipofec-

tamine 2000 (Invitrogen-Life Technologies) with either

2 μg of EGFP-ADAR2 or EGFP-ADAR2 E/A in the

presence of 1.5 μg of pri-miR-222/221 or pri-miR-21

plasmid. After 48 h, the cells were collected and

analyzed.

Site-directed mutagenesis to generate edited

pri-miR-221, -222 and -21

A-to-G single point mutations in the pri-miR-221, -222,

-21 sequences were introduced using a site-directed mu-

tagenesis kit (Agilent Technologies) following the manu-

facturer’s instructions. The oligonucleotides used for the

mutagenesis are available on request.

miRNA mimic transfection

One day before transfection, U118 and A172 cells (8 ×

105/well) were plated into a six-well plate. miRIDIAN

miRNA mimics (small, chemically modified dsRNAs that

mimic endogenous miRNAs; Dharmacon-GE Health-

care, Lafayette, CO, USA) miR-221, miR-222 or miR-21

(100 nM or 200 mM) were transfected into cells using

Oligofectamine (Invitrogen-Life Technologies), accord-

ing to the manufacturer’s instructions, and then tested

for in vitro proliferation and motility.

Proliferation assay

The day after transfection, cell viability (trypan blue dye

exclusion) was determined daily, from day 1 to day 3.

Monolayer wounding assay

For evaluation of in vitro motility, a monolayer wound-

ing (scratch) assay was performed. Cells were allowed to

form a monolayer on a culture dish surface and, when

approaching 100% cell confluence, a wound was made

by scratching the monolayer with a pipette tip. After the

scratching, the cells were incubated in a 5% CO2 incuba-

tor at 37°C for further 24 h. Photographs of the wound

were taken at various time points after wounding. Two

independent series of experiments were performed.

Data availability

The miR-seq data were deposited to the Sequence Read

Archive (SRA), under the following accession codes:

SRX735409 (U118 ADAR2), SRX735410 (U118 ADAR2

E/A), SRX764455 (U118 siADAR2), SRX039177 (brain

Ambion), SRX747635 (glioblastoma). The miR-array

data discussed in this publication have been deposited

in NCBI’s Gene Expression Omnibus (GEO) and are

accessible through GEO Series accession number GSE63694.

The manuscript’s experimental methods comply with

the Helsinki declaration.
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Additional file 1: Figures S1 to S7. Supplementary Figures S1 to S7

and their corresponding figure legends in portable document format.

Additional file 2: Table S1. Mature miRNAs with significant change in

expression levels [log2(ratio)] as a result of ADAR2 and ADAR2 E/A

over-expression in U118 cell line (by miRNA array).
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Additional file 3: Table S2. Mature miRNAs with statistically significant

changes in expression levels (log2(ratio) of at least ±0.5) between U118

ADAR2 versus U118 ADAR2 E/A and which inverted their expression

trend in the U118 siADAR2 cell line.

Additional file 4: Table S3. Mature miRNAs with significant changes in

expression levels (log2(ratio) of at least ±0.5) between normal human

brain versus glioblastoma.
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